mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 04:00:50 +00:00 
			
		
		
		
	 07345ac252
			
		
	
	
		07345ac252
		
			
		
	
	
	
	
		
			
			ZFS prefetch is currently governed by the zfs_prefetch_disable tunable. However, this is a module-wide settings - if a specific dataset benefits from prefetch, while others have issue with it, an optimal solution does not exists. This commit introduce the "prefetch" tri-state property, which enable granular control (at dataset/volume level) for prefetching. This patch does not remove the zfs_prefetch_disable, which remains a system-wide switch for enable/disable prefetch. However, to avoid duplication, it would be preferable to deprecate and then remove the module tunable. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Ameer Hamza <ahamza@ixsystems.com> Signed-off-by: Gionatan Danti <g.danti@assyoma.it> Co-authored-by: Gionatan Danti <g.danti@assyoma.it> Closes #15237 Closes #15436
		
			
				
	
	
		
			593 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			593 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 | |
|  * Use is subject to license terms.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <sys/zfs_context.h>
 | |
| #include <sys/arc_impl.h>
 | |
| #include <sys/dnode.h>
 | |
| #include <sys/dmu_objset.h>
 | |
| #include <sys/dmu_zfetch.h>
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/dbuf.h>
 | |
| #include <sys/kstat.h>
 | |
| #include <sys/wmsum.h>
 | |
| 
 | |
| /*
 | |
|  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
 | |
|  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
 | |
|  * prescient prefetch never issues i/os that end up not being needed,
 | |
|  * so it can't hurt performance.
 | |
|  */
 | |
| 
 | |
| static int zfs_prefetch_disable = B_FALSE;
 | |
| 
 | |
| /* max # of streams per zfetch */
 | |
| static unsigned int	zfetch_max_streams = 8;
 | |
| /* min time before stream reclaim */
 | |
| static unsigned int	zfetch_min_sec_reap = 1;
 | |
| /* max time before stream delete */
 | |
| static unsigned int	zfetch_max_sec_reap = 2;
 | |
| #ifdef _ILP32
 | |
| /* min bytes to prefetch per stream (default 2MB) */
 | |
| static unsigned int	zfetch_min_distance = 2 * 1024 * 1024;
 | |
| /* max bytes to prefetch per stream (default 8MB) */
 | |
| unsigned int	zfetch_max_distance = 8 * 1024 * 1024;
 | |
| #else
 | |
| /* min bytes to prefetch per stream (default 4MB) */
 | |
| static unsigned int	zfetch_min_distance = 4 * 1024 * 1024;
 | |
| /* max bytes to prefetch per stream (default 64MB) */
 | |
| unsigned int	zfetch_max_distance = 64 * 1024 * 1024;
 | |
| #endif
 | |
| /* max bytes to prefetch indirects for per stream (default 64MB) */
 | |
| unsigned int	zfetch_max_idistance = 64 * 1024 * 1024;
 | |
| 
 | |
| typedef struct zfetch_stats {
 | |
| 	kstat_named_t zfetchstat_hits;
 | |
| 	kstat_named_t zfetchstat_misses;
 | |
| 	kstat_named_t zfetchstat_max_streams;
 | |
| 	kstat_named_t zfetchstat_io_issued;
 | |
| 	kstat_named_t zfetchstat_io_active;
 | |
| } zfetch_stats_t;
 | |
| 
 | |
| static zfetch_stats_t zfetch_stats = {
 | |
| 	{ "hits",			KSTAT_DATA_UINT64 },
 | |
| 	{ "misses",			KSTAT_DATA_UINT64 },
 | |
| 	{ "max_streams",		KSTAT_DATA_UINT64 },
 | |
| 	{ "io_issued",			KSTAT_DATA_UINT64 },
 | |
| 	{ "io_active",			KSTAT_DATA_UINT64 },
 | |
| };
 | |
| 
 | |
| struct {
 | |
| 	wmsum_t zfetchstat_hits;
 | |
| 	wmsum_t zfetchstat_misses;
 | |
| 	wmsum_t zfetchstat_max_streams;
 | |
| 	wmsum_t zfetchstat_io_issued;
 | |
| 	aggsum_t zfetchstat_io_active;
 | |
| } zfetch_sums;
 | |
| 
 | |
| #define	ZFETCHSTAT_BUMP(stat)					\
 | |
| 	wmsum_add(&zfetch_sums.stat, 1)
 | |
| #define	ZFETCHSTAT_ADD(stat, val)				\
 | |
| 	wmsum_add(&zfetch_sums.stat, val)
 | |
| 
 | |
| 
 | |
| static kstat_t		*zfetch_ksp;
 | |
| 
 | |
| static int
 | |
| zfetch_kstats_update(kstat_t *ksp, int rw)
 | |
| {
 | |
| 	zfetch_stats_t *zs = ksp->ks_data;
 | |
| 
 | |
| 	if (rw == KSTAT_WRITE)
 | |
| 		return (EACCES);
 | |
| 	zs->zfetchstat_hits.value.ui64 =
 | |
| 	    wmsum_value(&zfetch_sums.zfetchstat_hits);
 | |
| 	zs->zfetchstat_misses.value.ui64 =
 | |
| 	    wmsum_value(&zfetch_sums.zfetchstat_misses);
 | |
| 	zs->zfetchstat_max_streams.value.ui64 =
 | |
| 	    wmsum_value(&zfetch_sums.zfetchstat_max_streams);
 | |
| 	zs->zfetchstat_io_issued.value.ui64 =
 | |
| 	    wmsum_value(&zfetch_sums.zfetchstat_io_issued);
 | |
| 	zs->zfetchstat_io_active.value.ui64 =
 | |
| 	    aggsum_value(&zfetch_sums.zfetchstat_io_active);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfetch_init(void)
 | |
| {
 | |
| 	wmsum_init(&zfetch_sums.zfetchstat_hits, 0);
 | |
| 	wmsum_init(&zfetch_sums.zfetchstat_misses, 0);
 | |
| 	wmsum_init(&zfetch_sums.zfetchstat_max_streams, 0);
 | |
| 	wmsum_init(&zfetch_sums.zfetchstat_io_issued, 0);
 | |
| 	aggsum_init(&zfetch_sums.zfetchstat_io_active, 0);
 | |
| 
 | |
| 	zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
 | |
| 	    KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
 | |
| 	    KSTAT_FLAG_VIRTUAL);
 | |
| 
 | |
| 	if (zfetch_ksp != NULL) {
 | |
| 		zfetch_ksp->ks_data = &zfetch_stats;
 | |
| 		zfetch_ksp->ks_update = zfetch_kstats_update;
 | |
| 		kstat_install(zfetch_ksp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| zfetch_fini(void)
 | |
| {
 | |
| 	if (zfetch_ksp != NULL) {
 | |
| 		kstat_delete(zfetch_ksp);
 | |
| 		zfetch_ksp = NULL;
 | |
| 	}
 | |
| 
 | |
| 	wmsum_fini(&zfetch_sums.zfetchstat_hits);
 | |
| 	wmsum_fini(&zfetch_sums.zfetchstat_misses);
 | |
| 	wmsum_fini(&zfetch_sums.zfetchstat_max_streams);
 | |
| 	wmsum_fini(&zfetch_sums.zfetchstat_io_issued);
 | |
| 	ASSERT0(aggsum_value(&zfetch_sums.zfetchstat_io_active));
 | |
| 	aggsum_fini(&zfetch_sums.zfetchstat_io_active);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This takes a pointer to a zfetch structure and a dnode.  It performs the
 | |
|  * necessary setup for the zfetch structure, grokking data from the
 | |
|  * associated dnode.
 | |
|  */
 | |
| void
 | |
| dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
 | |
| {
 | |
| 	if (zf == NULL)
 | |
| 		return;
 | |
| 	zf->zf_dnode = dno;
 | |
| 	zf->zf_numstreams = 0;
 | |
| 
 | |
| 	list_create(&zf->zf_stream, sizeof (zstream_t),
 | |
| 	    offsetof(zstream_t, zs_node));
 | |
| 
 | |
| 	mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dmu_zfetch_stream_fini(zstream_t *zs)
 | |
| {
 | |
| 	ASSERT(!list_link_active(&zs->zs_node));
 | |
| 	zfs_refcount_destroy(&zs->zs_callers);
 | |
| 	zfs_refcount_destroy(&zs->zs_refs);
 | |
| 	kmem_free(zs, sizeof (*zs));
 | |
| }
 | |
| 
 | |
| static void
 | |
| dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&zf->zf_lock));
 | |
| 	list_remove(&zf->zf_stream, zs);
 | |
| 	zf->zf_numstreams--;
 | |
| 	membar_producer();
 | |
| 	if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
 | |
| 		dmu_zfetch_stream_fini(zs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean-up state associated with a zfetch structure (e.g. destroy the
 | |
|  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
 | |
|  */
 | |
| void
 | |
| dmu_zfetch_fini(zfetch_t *zf)
 | |
| {
 | |
| 	zstream_t *zs;
 | |
| 
 | |
| 	mutex_enter(&zf->zf_lock);
 | |
| 	while ((zs = list_head(&zf->zf_stream)) != NULL)
 | |
| 		dmu_zfetch_stream_remove(zf, zs);
 | |
| 	mutex_exit(&zf->zf_lock);
 | |
| 	list_destroy(&zf->zf_stream);
 | |
| 	mutex_destroy(&zf->zf_lock);
 | |
| 
 | |
| 	zf->zf_dnode = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If there aren't too many active streams already, create one more.
 | |
|  * In process delete/reuse all streams without hits for zfetch_max_sec_reap.
 | |
|  * If needed, reuse oldest stream without hits for zfetch_min_sec_reap or ever.
 | |
|  * The "blkid" argument is the next block that we expect this stream to access.
 | |
|  */
 | |
| static void
 | |
| dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
 | |
| {
 | |
| 	zstream_t *zs, *zs_next, *zs_old = NULL;
 | |
| 	hrtime_t now = gethrtime(), t;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&zf->zf_lock));
 | |
| 
 | |
| 	/*
 | |
| 	 * Delete too old streams, reusing the first found one.
 | |
| 	 */
 | |
| 	t = now - SEC2NSEC(zfetch_max_sec_reap);
 | |
| 	for (zs = list_head(&zf->zf_stream); zs != NULL; zs = zs_next) {
 | |
| 		zs_next = list_next(&zf->zf_stream, zs);
 | |
| 		/*
 | |
| 		 * Skip if still active.  1 -- zf_stream reference.
 | |
| 		 */
 | |
| 		if (zfs_refcount_count(&zs->zs_refs) != 1)
 | |
| 			continue;
 | |
| 		if (zs->zs_atime > t)
 | |
| 			continue;
 | |
| 		if (zs_old)
 | |
| 			dmu_zfetch_stream_remove(zf, zs);
 | |
| 		else
 | |
| 			zs_old = zs;
 | |
| 	}
 | |
| 	if (zs_old) {
 | |
| 		zs = zs_old;
 | |
| 		goto reuse;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The maximum number of streams is normally zfetch_max_streams,
 | |
| 	 * but for small files we lower it such that it's at least possible
 | |
| 	 * for all the streams to be non-overlapping.
 | |
| 	 */
 | |
| 	uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
 | |
| 	    zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
 | |
| 	    zfetch_max_distance));
 | |
| 	if (zf->zf_numstreams >= max_streams) {
 | |
| 		t = now - SEC2NSEC(zfetch_min_sec_reap);
 | |
| 		for (zs = list_head(&zf->zf_stream); zs != NULL;
 | |
| 		    zs = list_next(&zf->zf_stream, zs)) {
 | |
| 			if (zfs_refcount_count(&zs->zs_refs) != 1)
 | |
| 				continue;
 | |
| 			if (zs->zs_atime > t)
 | |
| 				continue;
 | |
| 			if (zs_old == NULL || zs->zs_atime < zs_old->zs_atime)
 | |
| 				zs_old = zs;
 | |
| 		}
 | |
| 		if (zs_old) {
 | |
| 			zs = zs_old;
 | |
| 			goto reuse;
 | |
| 		}
 | |
| 		ZFETCHSTAT_BUMP(zfetchstat_max_streams);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
 | |
| 	zs->zs_fetch = zf;
 | |
| 	zfs_refcount_create(&zs->zs_callers);
 | |
| 	zfs_refcount_create(&zs->zs_refs);
 | |
| 	/* One reference for zf_stream. */
 | |
| 	zfs_refcount_add(&zs->zs_refs, NULL);
 | |
| 	zf->zf_numstreams++;
 | |
| 	list_insert_head(&zf->zf_stream, zs);
 | |
| 
 | |
| reuse:
 | |
| 	zs->zs_blkid = blkid;
 | |
| 	zs->zs_pf_dist = 0;
 | |
| 	zs->zs_pf_start = blkid;
 | |
| 	zs->zs_pf_end = blkid;
 | |
| 	zs->zs_ipf_dist = 0;
 | |
| 	zs->zs_ipf_start = blkid;
 | |
| 	zs->zs_ipf_end = blkid;
 | |
| 	/* Allow immediate stream reuse until first hit. */
 | |
| 	zs->zs_atime = now - SEC2NSEC(zfetch_min_sec_reap);
 | |
| 	zs->zs_missed = B_FALSE;
 | |
| 	zs->zs_more = B_FALSE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| dmu_zfetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t io_issued)
 | |
| {
 | |
| 	zstream_t *zs = arg;
 | |
| 
 | |
| 	if (io_issued && level == 0 && blkid < zs->zs_blkid)
 | |
| 		zs->zs_more = B_TRUE;
 | |
| 	if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
 | |
| 		dmu_zfetch_stream_fini(zs);
 | |
| 	aggsum_add(&zfetch_sums.zfetchstat_io_active, -1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the predictive prefetch entry point.  dmu_zfetch_prepare()
 | |
|  * associates dnode access specified with blkid and nblks arguments with
 | |
|  * prefetch stream, predicts further accesses based on that stats and returns
 | |
|  * the stream pointer on success.  That pointer must later be passed to
 | |
|  * dmu_zfetch_run() to initiate the speculative prefetch for the stream and
 | |
|  * release it.  dmu_zfetch() is a wrapper for simple cases when window between
 | |
|  * prediction and prefetch initiation is not needed.
 | |
|  * fetch_data argument specifies whether actual data blocks should be fetched:
 | |
|  *   FALSE -- prefetch only indirect blocks for predicted data blocks;
 | |
|  *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
 | |
|  */
 | |
| zstream_t *
 | |
| dmu_zfetch_prepare(zfetch_t *zf, uint64_t blkid, uint64_t nblks,
 | |
|     boolean_t fetch_data, boolean_t have_lock)
 | |
| {
 | |
| 	zstream_t *zs;
 | |
| 	spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
 | |
| 	zfs_prefetch_type_t os_prefetch = zf->zf_dnode->dn_objset->os_prefetch;
 | |
| 
 | |
| 	if (zfs_prefetch_disable || os_prefetch == ZFS_PREFETCH_NONE)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	if (os_prefetch == ZFS_PREFETCH_METADATA)
 | |
| 		fetch_data = B_FALSE;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we haven't yet loaded the indirect vdevs' mappings, we
 | |
| 	 * can only read from blocks that we carefully ensure are on
 | |
| 	 * concrete vdevs (or previously-loaded indirect vdevs).  So we
 | |
| 	 * can't allow the predictive prefetcher to attempt reads of other
 | |
| 	 * blocks (e.g. of the MOS's dnode object).
 | |
| 	 */
 | |
| 	if (!spa_indirect_vdevs_loaded(spa))
 | |
| 		return (NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * As a fast path for small (single-block) files, ignore access
 | |
| 	 * to the first block.
 | |
| 	 */
 | |
| 	if (!have_lock && blkid == 0)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	if (!have_lock)
 | |
| 		rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
 | |
| 
 | |
| 	/*
 | |
| 	 * A fast path for small files for which no prefetch will
 | |
| 	 * happen.
 | |
| 	 */
 | |
| 	uint64_t maxblkid = zf->zf_dnode->dn_maxblkid;
 | |
| 	if (maxblkid < 2) {
 | |
| 		if (!have_lock)
 | |
| 			rw_exit(&zf->zf_dnode->dn_struct_rwlock);
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 	mutex_enter(&zf->zf_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Find matching prefetch stream.  Depending on whether the accesses
 | |
| 	 * are block-aligned, first block of the new access may either follow
 | |
| 	 * the last block of the previous access, or be equal to it.
 | |
| 	 */
 | |
| 	for (zs = list_head(&zf->zf_stream); zs != NULL;
 | |
| 	    zs = list_next(&zf->zf_stream, zs)) {
 | |
| 		if (blkid == zs->zs_blkid) {
 | |
| 			break;
 | |
| 		} else if (blkid + 1 == zs->zs_blkid) {
 | |
| 			blkid++;
 | |
| 			nblks--;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the file is ending, remove the matching stream if found.
 | |
| 	 * If not found then it is too late to create a new one now.
 | |
| 	 */
 | |
| 	uint64_t end_of_access_blkid = blkid + nblks;
 | |
| 	if (end_of_access_blkid >= maxblkid) {
 | |
| 		if (zs != NULL)
 | |
| 			dmu_zfetch_stream_remove(zf, zs);
 | |
| 		mutex_exit(&zf->zf_lock);
 | |
| 		if (!have_lock)
 | |
| 			rw_exit(&zf->zf_dnode->dn_struct_rwlock);
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	/* Exit if we already prefetched this block before. */
 | |
| 	if (nblks == 0) {
 | |
| 		mutex_exit(&zf->zf_lock);
 | |
| 		if (!have_lock)
 | |
| 			rw_exit(&zf->zf_dnode->dn_struct_rwlock);
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	if (zs == NULL) {
 | |
| 		/*
 | |
| 		 * This access is not part of any existing stream.  Create
 | |
| 		 * a new stream for it.
 | |
| 		 */
 | |
| 		dmu_zfetch_stream_create(zf, end_of_access_blkid);
 | |
| 		mutex_exit(&zf->zf_lock);
 | |
| 		if (!have_lock)
 | |
| 			rw_exit(&zf->zf_dnode->dn_struct_rwlock);
 | |
| 		ZFETCHSTAT_BUMP(zfetchstat_misses);
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This access was to a block that we issued a prefetch for on
 | |
| 	 * behalf of this stream.  Calculate further prefetch distances.
 | |
| 	 *
 | |
| 	 * Start prefetch from the demand access size (nblks).  Double the
 | |
| 	 * distance every access up to zfetch_min_distance.  After that only
 | |
| 	 * if needed increase the distance by 1/8 up to zfetch_max_distance.
 | |
| 	 *
 | |
| 	 * Don't double the distance beyond single block if we have more
 | |
| 	 * than ~6% of ARC held by active prefetches.  It should help with
 | |
| 	 * getting out of RAM on some badly mispredicted read patterns.
 | |
| 	 */
 | |
| 	unsigned int dbs = zf->zf_dnode->dn_datablkshift;
 | |
| 	unsigned int nbytes = nblks << dbs;
 | |
| 	unsigned int pf_nblks;
 | |
| 	if (fetch_data) {
 | |
| 		if (unlikely(zs->zs_pf_dist < nbytes))
 | |
| 			zs->zs_pf_dist = nbytes;
 | |
| 		else if (zs->zs_pf_dist < zfetch_min_distance &&
 | |
| 		    (zs->zs_pf_dist < (1 << dbs) ||
 | |
| 		    aggsum_compare(&zfetch_sums.zfetchstat_io_active,
 | |
| 		    arc_c_max >> (4 + dbs)) < 0))
 | |
| 			zs->zs_pf_dist *= 2;
 | |
| 		else if (zs->zs_more)
 | |
| 			zs->zs_pf_dist += zs->zs_pf_dist / 8;
 | |
| 		zs->zs_more = B_FALSE;
 | |
| 		if (zs->zs_pf_dist > zfetch_max_distance)
 | |
| 			zs->zs_pf_dist = zfetch_max_distance;
 | |
| 		pf_nblks = zs->zs_pf_dist >> dbs;
 | |
| 	} else {
 | |
| 		pf_nblks = 0;
 | |
| 	}
 | |
| 	if (zs->zs_pf_start < end_of_access_blkid)
 | |
| 		zs->zs_pf_start = end_of_access_blkid;
 | |
| 	if (zs->zs_pf_end < end_of_access_blkid + pf_nblks)
 | |
| 		zs->zs_pf_end = end_of_access_blkid + pf_nblks;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do the same for indirects, starting where we will stop reading
 | |
| 	 * data blocks (and the indirects that point to them).
 | |
| 	 */
 | |
| 	if (unlikely(zs->zs_ipf_dist < nbytes))
 | |
| 		zs->zs_ipf_dist = nbytes;
 | |
| 	else
 | |
| 		zs->zs_ipf_dist *= 2;
 | |
| 	if (zs->zs_ipf_dist > zfetch_max_idistance)
 | |
| 		zs->zs_ipf_dist = zfetch_max_idistance;
 | |
| 	pf_nblks = zs->zs_ipf_dist >> dbs;
 | |
| 	if (zs->zs_ipf_start < zs->zs_pf_end)
 | |
| 		zs->zs_ipf_start = zs->zs_pf_end;
 | |
| 	if (zs->zs_ipf_end < zs->zs_pf_end + pf_nblks)
 | |
| 		zs->zs_ipf_end = zs->zs_pf_end + pf_nblks;
 | |
| 
 | |
| 	zs->zs_blkid = end_of_access_blkid;
 | |
| 	/* Protect the stream from reclamation. */
 | |
| 	zs->zs_atime = gethrtime();
 | |
| 	zfs_refcount_add(&zs->zs_refs, NULL);
 | |
| 	/* Count concurrent callers. */
 | |
| 	zfs_refcount_add(&zs->zs_callers, NULL);
 | |
| 	mutex_exit(&zf->zf_lock);
 | |
| 
 | |
| 	if (!have_lock)
 | |
| 		rw_exit(&zf->zf_dnode->dn_struct_rwlock);
 | |
| 
 | |
| 	ZFETCHSTAT_BUMP(zfetchstat_hits);
 | |
| 	return (zs);
 | |
| }
 | |
| 
 | |
| void
 | |
| dmu_zfetch_run(zstream_t *zs, boolean_t missed, boolean_t have_lock)
 | |
| {
 | |
| 	zfetch_t *zf = zs->zs_fetch;
 | |
| 	int64_t pf_start, pf_end, ipf_start, ipf_end;
 | |
| 	int epbs, issued;
 | |
| 
 | |
| 	if (missed)
 | |
| 		zs->zs_missed = missed;
 | |
| 
 | |
| 	/*
 | |
| 	 * Postpone the prefetch if there are more concurrent callers.
 | |
| 	 * It happens when multiple requests are waiting for the same
 | |
| 	 * indirect block.  The last one will run the prefetch for all.
 | |
| 	 */
 | |
| 	if (zfs_refcount_remove(&zs->zs_callers, NULL) != 0) {
 | |
| 		/* Drop reference taken in dmu_zfetch_prepare(). */
 | |
| 		if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
 | |
| 			dmu_zfetch_stream_fini(zs);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mutex_enter(&zf->zf_lock);
 | |
| 	if (zs->zs_missed) {
 | |
| 		pf_start = zs->zs_pf_start;
 | |
| 		pf_end = zs->zs_pf_start = zs->zs_pf_end;
 | |
| 	} else {
 | |
| 		pf_start = pf_end = 0;
 | |
| 	}
 | |
| 	ipf_start = zs->zs_ipf_start;
 | |
| 	ipf_end = zs->zs_ipf_start = zs->zs_ipf_end;
 | |
| 	mutex_exit(&zf->zf_lock);
 | |
| 	ASSERT3S(pf_start, <=, pf_end);
 | |
| 	ASSERT3S(ipf_start, <=, ipf_end);
 | |
| 
 | |
| 	epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
 | |
| 	ipf_start = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
 | |
| 	ipf_end = P2ROUNDUP(ipf_end, 1 << epbs) >> epbs;
 | |
| 	ASSERT3S(ipf_start, <=, ipf_end);
 | |
| 	issued = pf_end - pf_start + ipf_end - ipf_start;
 | |
| 	if (issued > 1) {
 | |
| 		/* More references on top of taken in dmu_zfetch_prepare(). */
 | |
| 		zfs_refcount_add_few(&zs->zs_refs, issued - 1, NULL);
 | |
| 	} else if (issued == 0) {
 | |
| 		/* Some other thread has done our work, so drop the ref. */
 | |
| 		if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
 | |
| 			dmu_zfetch_stream_fini(zs);
 | |
| 		return;
 | |
| 	}
 | |
| 	aggsum_add(&zfetch_sums.zfetchstat_io_active, issued);
 | |
| 
 | |
| 	if (!have_lock)
 | |
| 		rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
 | |
| 
 | |
| 	issued = 0;
 | |
| 	for (int64_t blk = pf_start; blk < pf_end; blk++) {
 | |
| 		issued += dbuf_prefetch_impl(zf->zf_dnode, 0, blk,
 | |
| 		    ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
 | |
| 	}
 | |
| 	for (int64_t iblk = ipf_start; iblk < ipf_end; iblk++) {
 | |
| 		issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk,
 | |
| 		    ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
 | |
| 	}
 | |
| 
 | |
| 	if (!have_lock)
 | |
| 		rw_exit(&zf->zf_dnode->dn_struct_rwlock);
 | |
| 
 | |
| 	if (issued)
 | |
| 		ZFETCHSTAT_ADD(zfetchstat_io_issued, issued);
 | |
| }
 | |
| 
 | |
| void
 | |
| dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data,
 | |
|     boolean_t missed, boolean_t have_lock)
 | |
| {
 | |
| 	zstream_t *zs;
 | |
| 
 | |
| 	zs = dmu_zfetch_prepare(zf, blkid, nblks, fetch_data, have_lock);
 | |
| 	if (zs)
 | |
| 		dmu_zfetch_run(zs, missed, have_lock);
 | |
| }
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW,
 | |
| 	"Disable all ZFS prefetching");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW,
 | |
| 	"Max number of streams per zfetch");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW,
 | |
| 	"Min time before stream reclaim");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_sec_reap, UINT, ZMOD_RW,
 | |
| 	"Max time before stream delete");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_distance, UINT, ZMOD_RW,
 | |
| 	"Min bytes to prefetch per stream");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW,
 | |
| 	"Max bytes to prefetch per stream");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW,
 | |
| 	"Max bytes to prefetch indirects for per stream");
 |