mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 07:58:45 +00:00 
			
		
		
		
	 ac04407ffe
			
		
	
	
		ac04407ffe
		
			
		
	
	
	
	
		
			
			zfs_dbgmsg() does not need newline at the end of the message. While there, slightly update/sync FreeBSD __dprintf(). Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Alexander Motin <mav@FreeBSD.org> Sponsored by: iXsystems, Inc. Closes #16536
		
			
				
	
	
		
			6288 lines
		
	
	
		
			193 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6288 lines
		
	
	
		
			193 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
 | |
|  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
 | |
|  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
 | |
|  * Copyright (c) 2017, Intel Corporation.
 | |
|  */
 | |
| 
 | |
| #include <sys/zfs_context.h>
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/dmu_tx.h>
 | |
| #include <sys/space_map.h>
 | |
| #include <sys/metaslab_impl.h>
 | |
| #include <sys/vdev_impl.h>
 | |
| #include <sys/vdev_draid.h>
 | |
| #include <sys/zio.h>
 | |
| #include <sys/spa_impl.h>
 | |
| #include <sys/zfeature.h>
 | |
| #include <sys/vdev_indirect_mapping.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/btree.h>
 | |
| 
 | |
| #define	GANG_ALLOCATION(flags) \
 | |
| 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
 | |
| 
 | |
| /*
 | |
|  * Metaslab granularity, in bytes. This is roughly similar to what would be
 | |
|  * referred to as the "stripe size" in traditional RAID arrays. In normal
 | |
|  * operation, we will try to write this amount of data to each disk before
 | |
|  * moving on to the next top-level vdev.
 | |
|  */
 | |
| static uint64_t metaslab_aliquot = 1024 * 1024;
 | |
| 
 | |
| /*
 | |
|  * For testing, make some blocks above a certain size be gang blocks.
 | |
|  */
 | |
| uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
 | |
| 
 | |
| /*
 | |
|  * Of blocks of size >= metaslab_force_ganging, actually gang them this often.
 | |
|  */
 | |
| uint_t metaslab_force_ganging_pct = 3;
 | |
| 
 | |
| /*
 | |
|  * In pools where the log space map feature is not enabled we touch
 | |
|  * multiple metaslabs (and their respective space maps) with each
 | |
|  * transaction group. Thus, we benefit from having a small space map
 | |
|  * block size since it allows us to issue more I/O operations scattered
 | |
|  * around the disk. So a sane default for the space map block size
 | |
|  * is 8~16K.
 | |
|  */
 | |
| int zfs_metaslab_sm_blksz_no_log = (1 << 14);
 | |
| 
 | |
| /*
 | |
|  * When the log space map feature is enabled, we accumulate a lot of
 | |
|  * changes per metaslab that are flushed once in a while so we benefit
 | |
|  * from a bigger block size like 128K for the metaslab space maps.
 | |
|  */
 | |
| int zfs_metaslab_sm_blksz_with_log = (1 << 17);
 | |
| 
 | |
| /*
 | |
|  * The in-core space map representation is more compact than its on-disk form.
 | |
|  * The zfs_condense_pct determines how much more compact the in-core
 | |
|  * space map representation must be before we compact it on-disk.
 | |
|  * Values should be greater than or equal to 100.
 | |
|  */
 | |
| uint_t zfs_condense_pct = 200;
 | |
| 
 | |
| /*
 | |
|  * Condensing a metaslab is not guaranteed to actually reduce the amount of
 | |
|  * space used on disk. In particular, a space map uses data in increments of
 | |
|  * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
 | |
|  * same number of blocks after condensing. Since the goal of condensing is to
 | |
|  * reduce the number of IOPs required to read the space map, we only want to
 | |
|  * condense when we can be sure we will reduce the number of blocks used by the
 | |
|  * space map. Unfortunately, we cannot precisely compute whether or not this is
 | |
|  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
 | |
|  * we apply the following heuristic: do not condense a spacemap unless the
 | |
|  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
 | |
|  * blocks.
 | |
|  */
 | |
| static const int zfs_metaslab_condense_block_threshold = 4;
 | |
| 
 | |
| /*
 | |
|  * The zfs_mg_noalloc_threshold defines which metaslab groups should
 | |
|  * be eligible for allocation. The value is defined as a percentage of
 | |
|  * free space. Metaslab groups that have more free space than
 | |
|  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
 | |
|  * a metaslab group's free space is less than or equal to the
 | |
|  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
 | |
|  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
 | |
|  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
 | |
|  * groups are allowed to accept allocations. Gang blocks are always
 | |
|  * eligible to allocate on any metaslab group. The default value of 0 means
 | |
|  * no metaslab group will be excluded based on this criterion.
 | |
|  */
 | |
| static uint_t zfs_mg_noalloc_threshold = 0;
 | |
| 
 | |
| /*
 | |
|  * Metaslab groups are considered eligible for allocations if their
 | |
|  * fragmentation metric (measured as a percentage) is less than or
 | |
|  * equal to zfs_mg_fragmentation_threshold. If a metaslab group
 | |
|  * exceeds this threshold then it will be skipped unless all metaslab
 | |
|  * groups within the metaslab class have also crossed this threshold.
 | |
|  *
 | |
|  * This tunable was introduced to avoid edge cases where we continue
 | |
|  * allocating from very fragmented disks in our pool while other, less
 | |
|  * fragmented disks, exists. On the other hand, if all disks in the
 | |
|  * pool are uniformly approaching the threshold, the threshold can
 | |
|  * be a speed bump in performance, where we keep switching the disks
 | |
|  * that we allocate from (e.g. we allocate some segments from disk A
 | |
|  * making it bypassing the threshold while freeing segments from disk
 | |
|  * B getting its fragmentation below the threshold).
 | |
|  *
 | |
|  * Empirically, we've seen that our vdev selection for allocations is
 | |
|  * good enough that fragmentation increases uniformly across all vdevs
 | |
|  * the majority of the time. Thus we set the threshold percentage high
 | |
|  * enough to avoid hitting the speed bump on pools that are being pushed
 | |
|  * to the edge.
 | |
|  */
 | |
| static uint_t zfs_mg_fragmentation_threshold = 95;
 | |
| 
 | |
| /*
 | |
|  * Allow metaslabs to keep their active state as long as their fragmentation
 | |
|  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
 | |
|  * active metaslab that exceeds this threshold will no longer keep its active
 | |
|  * status allowing better metaslabs to be selected.
 | |
|  */
 | |
| static uint_t zfs_metaslab_fragmentation_threshold = 70;
 | |
| 
 | |
| /*
 | |
|  * When set will load all metaslabs when pool is first opened.
 | |
|  */
 | |
| int metaslab_debug_load = B_FALSE;
 | |
| 
 | |
| /*
 | |
|  * When set will prevent metaslabs from being unloaded.
 | |
|  */
 | |
| static int metaslab_debug_unload = B_FALSE;
 | |
| 
 | |
| /*
 | |
|  * Minimum size which forces the dynamic allocator to change
 | |
|  * it's allocation strategy.  Once the space map cannot satisfy
 | |
|  * an allocation of this size then it switches to using more
 | |
|  * aggressive strategy (i.e search by size rather than offset).
 | |
|  */
 | |
| uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
 | |
| 
 | |
| /*
 | |
|  * The minimum free space, in percent, which must be available
 | |
|  * in a space map to continue allocations in a first-fit fashion.
 | |
|  * Once the space map's free space drops below this level we dynamically
 | |
|  * switch to using best-fit allocations.
 | |
|  */
 | |
| uint_t metaslab_df_free_pct = 4;
 | |
| 
 | |
| /*
 | |
|  * Maximum distance to search forward from the last offset. Without this
 | |
|  * limit, fragmented pools can see >100,000 iterations and
 | |
|  * metaslab_block_picker() becomes the performance limiting factor on
 | |
|  * high-performance storage.
 | |
|  *
 | |
|  * With the default setting of 16MB, we typically see less than 500
 | |
|  * iterations, even with very fragmented, ashift=9 pools. The maximum number
 | |
|  * of iterations possible is:
 | |
|  *     metaslab_df_max_search / (2 * (1<<ashift))
 | |
|  * With the default setting of 16MB this is 16*1024 (with ashift=9) or
 | |
|  * 2048 (with ashift=12).
 | |
|  */
 | |
| static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
 | |
| 
 | |
| /*
 | |
|  * Forces the metaslab_block_picker function to search for at least this many
 | |
|  * segments forwards until giving up on finding a segment that the allocation
 | |
|  * will fit into.
 | |
|  */
 | |
| static const uint32_t metaslab_min_search_count = 100;
 | |
| 
 | |
| /*
 | |
|  * If we are not searching forward (due to metaslab_df_max_search,
 | |
|  * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
 | |
|  * controls what segment is used.  If it is set, we will use the largest free
 | |
|  * segment.  If it is not set, we will use a segment of exactly the requested
 | |
|  * size (or larger).
 | |
|  */
 | |
| static int metaslab_df_use_largest_segment = B_FALSE;
 | |
| 
 | |
| /*
 | |
|  * These tunables control how long a metaslab will remain loaded after the
 | |
|  * last allocation from it.  A metaslab can't be unloaded until at least
 | |
|  * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
 | |
|  * have elapsed.  However, zfs_metaslab_mem_limit may cause it to be
 | |
|  * unloaded sooner.  These settings are intended to be generous -- to keep
 | |
|  * metaslabs loaded for a long time, reducing the rate of metaslab loading.
 | |
|  */
 | |
| static uint_t metaslab_unload_delay = 32;
 | |
| static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
 | |
| 
 | |
| /*
 | |
|  * Max number of metaslabs per group to preload.
 | |
|  */
 | |
| uint_t metaslab_preload_limit = 10;
 | |
| 
 | |
| /*
 | |
|  * Enable/disable preloading of metaslab.
 | |
|  */
 | |
| static int metaslab_preload_enabled = B_TRUE;
 | |
| 
 | |
| /*
 | |
|  * Enable/disable fragmentation weighting on metaslabs.
 | |
|  */
 | |
| static int metaslab_fragmentation_factor_enabled = B_TRUE;
 | |
| 
 | |
| /*
 | |
|  * Enable/disable lba weighting (i.e. outer tracks are given preference).
 | |
|  */
 | |
| static int metaslab_lba_weighting_enabled = B_TRUE;
 | |
| 
 | |
| /*
 | |
|  * Enable/disable metaslab group biasing.
 | |
|  */
 | |
| static int metaslab_bias_enabled = B_TRUE;
 | |
| 
 | |
| /*
 | |
|  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
 | |
|  */
 | |
| static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
 | |
| 
 | |
| /*
 | |
|  * Enable/disable segment-based metaslab selection.
 | |
|  */
 | |
| static int zfs_metaslab_segment_weight_enabled = B_TRUE;
 | |
| 
 | |
| /*
 | |
|  * When using segment-based metaslab selection, we will continue
 | |
|  * allocating from the active metaslab until we have exhausted
 | |
|  * zfs_metaslab_switch_threshold of its buckets.
 | |
|  */
 | |
| static int zfs_metaslab_switch_threshold = 2;
 | |
| 
 | |
| /*
 | |
|  * Internal switch to enable/disable the metaslab allocation tracing
 | |
|  * facility.
 | |
|  */
 | |
| static const boolean_t metaslab_trace_enabled = B_FALSE;
 | |
| 
 | |
| /*
 | |
|  * Maximum entries that the metaslab allocation tracing facility will keep
 | |
|  * in a given list when running in non-debug mode. We limit the number
 | |
|  * of entries in non-debug mode to prevent us from using up too much memory.
 | |
|  * The limit should be sufficiently large that we don't expect any allocation
 | |
|  * to every exceed this value. In debug mode, the system will panic if this
 | |
|  * limit is ever reached allowing for further investigation.
 | |
|  */
 | |
| static const uint64_t metaslab_trace_max_entries = 5000;
 | |
| 
 | |
| /*
 | |
|  * Maximum number of metaslabs per group that can be disabled
 | |
|  * simultaneously.
 | |
|  */
 | |
| static const int max_disabled_ms = 3;
 | |
| 
 | |
| /*
 | |
|  * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
 | |
|  * To avoid 64-bit overflow, don't set above UINT32_MAX.
 | |
|  */
 | |
| static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
 | |
| 
 | |
| /*
 | |
|  * Maximum percentage of memory to use on storing loaded metaslabs. If loading
 | |
|  * a metaslab would take it over this percentage, the oldest selected metaslab
 | |
|  * is automatically unloaded.
 | |
|  */
 | |
| static uint_t zfs_metaslab_mem_limit = 25;
 | |
| 
 | |
| /*
 | |
|  * Force the per-metaslab range trees to use 64-bit integers to store
 | |
|  * segments. Used for debugging purposes.
 | |
|  */
 | |
| static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
 | |
| 
 | |
| /*
 | |
|  * By default we only store segments over a certain size in the size-sorted
 | |
|  * metaslab trees (ms_allocatable_by_size and
 | |
|  * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
 | |
|  * improves load and unload times at the cost of causing us to use slightly
 | |
|  * larger segments than we would otherwise in some cases.
 | |
|  */
 | |
| static const uint32_t metaslab_by_size_min_shift = 14;
 | |
| 
 | |
| /*
 | |
|  * If not set, we will first try normal allocation.  If that fails then
 | |
|  * we will do a gang allocation.  If that fails then we will do a "try hard"
 | |
|  * gang allocation.  If that fails then we will have a multi-layer gang
 | |
|  * block.
 | |
|  *
 | |
|  * If set, we will first try normal allocation.  If that fails then
 | |
|  * we will do a "try hard" allocation.  If that fails we will do a gang
 | |
|  * allocation.  If that fails we will do a "try hard" gang allocation.  If
 | |
|  * that fails then we will have a multi-layer gang block.
 | |
|  */
 | |
| static int zfs_metaslab_try_hard_before_gang = B_FALSE;
 | |
| 
 | |
| /*
 | |
|  * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
 | |
|  * metaslabs.  This improves performance, especially when there are many
 | |
|  * metaslabs per vdev and the allocation can't actually be satisfied (so we
 | |
|  * would otherwise iterate all the metaslabs).  If there is a metaslab with a
 | |
|  * worse weight but it can actually satisfy the allocation, we won't find it
 | |
|  * until trying hard.  This may happen if the worse metaslab is not loaded
 | |
|  * (and the true weight is better than we have calculated), or due to weight
 | |
|  * bucketization.  E.g. we are looking for a 60K segment, and the best
 | |
|  * metaslabs all have free segments in the 32-63K bucket, but the best
 | |
|  * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
 | |
|  * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
 | |
|  * bucket, and therefore a lower weight).
 | |
|  */
 | |
| static uint_t zfs_metaslab_find_max_tries = 100;
 | |
| 
 | |
| static uint64_t metaslab_weight(metaslab_t *, boolean_t);
 | |
| static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
 | |
| static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
 | |
| static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
 | |
| 
 | |
| static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
 | |
| static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
 | |
| static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
 | |
| static unsigned int metaslab_idx_func(multilist_t *, void *);
 | |
| static void metaslab_evict(metaslab_t *, uint64_t);
 | |
| static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
 | |
| kmem_cache_t *metaslab_alloc_trace_cache;
 | |
| 
 | |
| typedef struct metaslab_stats {
 | |
| 	kstat_named_t metaslabstat_trace_over_limit;
 | |
| 	kstat_named_t metaslabstat_reload_tree;
 | |
| 	kstat_named_t metaslabstat_too_many_tries;
 | |
| 	kstat_named_t metaslabstat_try_hard;
 | |
| } metaslab_stats_t;
 | |
| 
 | |
| static metaslab_stats_t metaslab_stats = {
 | |
| 	{ "trace_over_limit",		KSTAT_DATA_UINT64 },
 | |
| 	{ "reload_tree",		KSTAT_DATA_UINT64 },
 | |
| 	{ "too_many_tries",		KSTAT_DATA_UINT64 },
 | |
| 	{ "try_hard",			KSTAT_DATA_UINT64 },
 | |
| };
 | |
| 
 | |
| #define	METASLABSTAT_BUMP(stat) \
 | |
| 	atomic_inc_64(&metaslab_stats.stat.value.ui64);
 | |
| 
 | |
| 
 | |
| static kstat_t *metaslab_ksp;
 | |
| 
 | |
| void
 | |
| metaslab_stat_init(void)
 | |
| {
 | |
| 	ASSERT(metaslab_alloc_trace_cache == NULL);
 | |
| 	metaslab_alloc_trace_cache = kmem_cache_create(
 | |
| 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
 | |
| 	    0, NULL, NULL, NULL, NULL, NULL, 0);
 | |
| 	metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
 | |
| 	    "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
 | |
| 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
 | |
| 	if (metaslab_ksp != NULL) {
 | |
| 		metaslab_ksp->ks_data = &metaslab_stats;
 | |
| 		kstat_install(metaslab_ksp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_stat_fini(void)
 | |
| {
 | |
| 	if (metaslab_ksp != NULL) {
 | |
| 		kstat_delete(metaslab_ksp);
 | |
| 		metaslab_ksp = NULL;
 | |
| 	}
 | |
| 
 | |
| 	kmem_cache_destroy(metaslab_alloc_trace_cache);
 | |
| 	metaslab_alloc_trace_cache = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * Metaslab classes
 | |
|  * ==========================================================================
 | |
|  */
 | |
| metaslab_class_t *
 | |
| metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
 | |
| {
 | |
| 	metaslab_class_t *mc;
 | |
| 
 | |
| 	mc = kmem_zalloc(offsetof(metaslab_class_t,
 | |
| 	    mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
 | |
| 
 | |
| 	mc->mc_spa = spa;
 | |
| 	mc->mc_ops = ops;
 | |
| 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
 | |
| 	    offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
 | |
| 	for (int i = 0; i < spa->spa_alloc_count; i++) {
 | |
| 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
 | |
| 		mca->mca_rotor = NULL;
 | |
| 		zfs_refcount_create_tracked(&mca->mca_alloc_slots);
 | |
| 	}
 | |
| 
 | |
| 	return (mc);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_class_destroy(metaslab_class_t *mc)
 | |
| {
 | |
| 	spa_t *spa = mc->mc_spa;
 | |
| 
 | |
| 	ASSERT(mc->mc_alloc == 0);
 | |
| 	ASSERT(mc->mc_deferred == 0);
 | |
| 	ASSERT(mc->mc_space == 0);
 | |
| 	ASSERT(mc->mc_dspace == 0);
 | |
| 
 | |
| 	for (int i = 0; i < spa->spa_alloc_count; i++) {
 | |
| 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
 | |
| 		ASSERT(mca->mca_rotor == NULL);
 | |
| 		zfs_refcount_destroy(&mca->mca_alloc_slots);
 | |
| 	}
 | |
| 	mutex_destroy(&mc->mc_lock);
 | |
| 	multilist_destroy(&mc->mc_metaslab_txg_list);
 | |
| 	kmem_free(mc, offsetof(metaslab_class_t,
 | |
| 	    mc_allocator[spa->spa_alloc_count]));
 | |
| }
 | |
| 
 | |
| int
 | |
| metaslab_class_validate(metaslab_class_t *mc)
 | |
| {
 | |
| 	metaslab_group_t *mg;
 | |
| 	vdev_t *vd;
 | |
| 
 | |
| 	/*
 | |
| 	 * Must hold one of the spa_config locks.
 | |
| 	 */
 | |
| 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
 | |
| 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
 | |
| 
 | |
| 	if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
 | |
| 		return (0);
 | |
| 
 | |
| 	do {
 | |
| 		vd = mg->mg_vd;
 | |
| 		ASSERT(vd->vdev_mg != NULL);
 | |
| 		ASSERT3P(vd->vdev_top, ==, vd);
 | |
| 		ASSERT3P(mg->mg_class, ==, mc);
 | |
| 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
 | |
| 	} while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
 | |
|     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
 | |
| {
 | |
| 	atomic_add_64(&mc->mc_alloc, alloc_delta);
 | |
| 	atomic_add_64(&mc->mc_deferred, defer_delta);
 | |
| 	atomic_add_64(&mc->mc_space, space_delta);
 | |
| 	atomic_add_64(&mc->mc_dspace, dspace_delta);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| metaslab_class_get_alloc(metaslab_class_t *mc)
 | |
| {
 | |
| 	return (mc->mc_alloc);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| metaslab_class_get_deferred(metaslab_class_t *mc)
 | |
| {
 | |
| 	return (mc->mc_deferred);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| metaslab_class_get_space(metaslab_class_t *mc)
 | |
| {
 | |
| 	return (mc->mc_space);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| metaslab_class_get_dspace(metaslab_class_t *mc)
 | |
| {
 | |
| 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_class_histogram_verify(metaslab_class_t *mc)
 | |
| {
 | |
| 	spa_t *spa = mc->mc_spa;
 | |
| 	vdev_t *rvd = spa->spa_root_vdev;
 | |
| 	uint64_t *mc_hist;
 | |
| 	int i;
 | |
| 
 | |
| 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
 | |
| 	    KM_SLEEP);
 | |
| 
 | |
| 	mutex_enter(&mc->mc_lock);
 | |
| 	for (int c = 0; c < rvd->vdev_children; c++) {
 | |
| 		vdev_t *tvd = rvd->vdev_child[c];
 | |
| 		metaslab_group_t *mg = vdev_get_mg(tvd, mc);
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip any holes, uninitialized top-levels, or
 | |
| 		 * vdevs that are not in this metalab class.
 | |
| 		 */
 | |
| 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
 | |
| 		    mg->mg_class != mc) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
 | |
| 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
 | |
| 
 | |
| 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
 | |
| 			mc_hist[i] += mg->mg_histogram[i];
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
 | |
| 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
 | |
| 	}
 | |
| 
 | |
| 	mutex_exit(&mc->mc_lock);
 | |
| 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the metaslab class's fragmentation metric. The metric
 | |
|  * is weighted based on the space contribution of each metaslab group.
 | |
|  * The return value will be a number between 0 and 100 (inclusive), or
 | |
|  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
 | |
|  * zfs_frag_table for more information about the metric.
 | |
|  */
 | |
| uint64_t
 | |
| metaslab_class_fragmentation(metaslab_class_t *mc)
 | |
| {
 | |
| 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
 | |
| 	uint64_t fragmentation = 0;
 | |
| 
 | |
| 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
 | |
| 
 | |
| 	for (int c = 0; c < rvd->vdev_children; c++) {
 | |
| 		vdev_t *tvd = rvd->vdev_child[c];
 | |
| 		metaslab_group_t *mg = tvd->vdev_mg;
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip any holes, uninitialized top-levels,
 | |
| 		 * or vdevs that are not in this metalab class.
 | |
| 		 */
 | |
| 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
 | |
| 		    mg->mg_class != mc) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If a metaslab group does not contain a fragmentation
 | |
| 		 * metric then just bail out.
 | |
| 		 */
 | |
| 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
 | |
| 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
 | |
| 			return (ZFS_FRAG_INVALID);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Determine how much this metaslab_group is contributing
 | |
| 		 * to the overall pool fragmentation metric.
 | |
| 		 */
 | |
| 		fragmentation += mg->mg_fragmentation *
 | |
| 		    metaslab_group_get_space(mg);
 | |
| 	}
 | |
| 	fragmentation /= metaslab_class_get_space(mc);
 | |
| 
 | |
| 	ASSERT3U(fragmentation, <=, 100);
 | |
| 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
 | |
| 	return (fragmentation);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the amount of expandable space that is available in
 | |
|  * this metaslab class. If a device is expanded then its expandable
 | |
|  * space will be the amount of allocatable space that is currently not
 | |
|  * part of this metaslab class.
 | |
|  */
 | |
| uint64_t
 | |
| metaslab_class_expandable_space(metaslab_class_t *mc)
 | |
| {
 | |
| 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
 | |
| 	uint64_t space = 0;
 | |
| 
 | |
| 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
 | |
| 	for (int c = 0; c < rvd->vdev_children; c++) {
 | |
| 		vdev_t *tvd = rvd->vdev_child[c];
 | |
| 		metaslab_group_t *mg = tvd->vdev_mg;
 | |
| 
 | |
| 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
 | |
| 		    mg->mg_class != mc) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Calculate if we have enough space to add additional
 | |
| 		 * metaslabs. We report the expandable space in terms
 | |
| 		 * of the metaslab size since that's the unit of expansion.
 | |
| 		 */
 | |
| 		space += P2ALIGN_TYPED(tvd->vdev_max_asize - tvd->vdev_asize,
 | |
| 		    1ULL << tvd->vdev_ms_shift, uint64_t);
 | |
| 	}
 | |
| 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
 | |
| 	return (space);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
 | |
| {
 | |
| 	multilist_t *ml = &mc->mc_metaslab_txg_list;
 | |
| 	hrtime_t now = gethrtime();
 | |
| 	for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
 | |
| 		multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
 | |
| 		metaslab_t *msp = multilist_sublist_head(mls);
 | |
| 		multilist_sublist_unlock(mls);
 | |
| 		while (msp != NULL) {
 | |
| 			mutex_enter(&msp->ms_lock);
 | |
| 
 | |
| 			/*
 | |
| 			 * If the metaslab has been removed from the list
 | |
| 			 * (which could happen if we were at the memory limit
 | |
| 			 * and it was evicted during this loop), then we can't
 | |
| 			 * proceed and we should restart the sublist.
 | |
| 			 */
 | |
| 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
 | |
| 				mutex_exit(&msp->ms_lock);
 | |
| 				i--;
 | |
| 				break;
 | |
| 			}
 | |
| 			mls = multilist_sublist_lock_idx(ml, i);
 | |
| 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
 | |
| 			multilist_sublist_unlock(mls);
 | |
| 			if (txg >
 | |
| 			    msp->ms_selected_txg + metaslab_unload_delay &&
 | |
| 			    now > msp->ms_selected_time +
 | |
| 			    MSEC2NSEC(metaslab_unload_delay_ms) &&
 | |
| 			    (msp->ms_allocator == -1 ||
 | |
| 			    !metaslab_preload_enabled)) {
 | |
| 				metaslab_evict(msp, txg);
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * Once we've hit a metaslab selected too
 | |
| 				 * recently to evict, we're done evicting for
 | |
| 				 * now.
 | |
| 				 */
 | |
| 				mutex_exit(&msp->ms_lock);
 | |
| 				break;
 | |
| 			}
 | |
| 			mutex_exit(&msp->ms_lock);
 | |
| 			msp = next_msp;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| metaslab_compare(const void *x1, const void *x2)
 | |
| {
 | |
| 	const metaslab_t *m1 = (const metaslab_t *)x1;
 | |
| 	const metaslab_t *m2 = (const metaslab_t *)x2;
 | |
| 
 | |
| 	int sort1 = 0;
 | |
| 	int sort2 = 0;
 | |
| 	if (m1->ms_allocator != -1 && m1->ms_primary)
 | |
| 		sort1 = 1;
 | |
| 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
 | |
| 		sort1 = 2;
 | |
| 	if (m2->ms_allocator != -1 && m2->ms_primary)
 | |
| 		sort2 = 1;
 | |
| 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
 | |
| 		sort2 = 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
 | |
| 	 * selecting a metaslab to allocate from, an allocator first tries its
 | |
| 	 * primary, then secondary active metaslab. If it doesn't have active
 | |
| 	 * metaslabs, or can't allocate from them, it searches for an inactive
 | |
| 	 * metaslab to activate. If it can't find a suitable one, it will steal
 | |
| 	 * a primary or secondary metaslab from another allocator.
 | |
| 	 */
 | |
| 	if (sort1 < sort2)
 | |
| 		return (-1);
 | |
| 	if (sort1 > sort2)
 | |
| 		return (1);
 | |
| 
 | |
| 	int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
 | |
| 	if (likely(cmp))
 | |
| 		return (cmp);
 | |
| 
 | |
| 	IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
 | |
| 
 | |
| 	return (TREE_CMP(m1->ms_start, m2->ms_start));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * Metaslab groups
 | |
|  * ==========================================================================
 | |
|  */
 | |
| /*
 | |
|  * Update the allocatable flag and the metaslab group's capacity.
 | |
|  * The allocatable flag is set to true if the capacity is below
 | |
|  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
 | |
|  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
 | |
|  * transitions from allocatable to non-allocatable or vice versa then the
 | |
|  * metaslab group's class is updated to reflect the transition.
 | |
|  */
 | |
| static void
 | |
| metaslab_group_alloc_update(metaslab_group_t *mg)
 | |
| {
 | |
| 	vdev_t *vd = mg->mg_vd;
 | |
| 	metaslab_class_t *mc = mg->mg_class;
 | |
| 	vdev_stat_t *vs = &vd->vdev_stat;
 | |
| 	boolean_t was_allocatable;
 | |
| 	boolean_t was_initialized;
 | |
| 
 | |
| 	ASSERT(vd == vd->vdev_top);
 | |
| 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
 | |
| 	    SCL_ALLOC);
 | |
| 
 | |
| 	mutex_enter(&mg->mg_lock);
 | |
| 	was_allocatable = mg->mg_allocatable;
 | |
| 	was_initialized = mg->mg_initialized;
 | |
| 
 | |
| 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
 | |
| 	    (vs->vs_space + 1);
 | |
| 
 | |
| 	mutex_enter(&mc->mc_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the metaslab group was just added then it won't
 | |
| 	 * have any space until we finish syncing out this txg.
 | |
| 	 * At that point we will consider it initialized and available
 | |
| 	 * for allocations.  We also don't consider non-activated
 | |
| 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
 | |
| 	 * to be initialized, because they can't be used for allocation.
 | |
| 	 */
 | |
| 	mg->mg_initialized = metaslab_group_initialized(mg);
 | |
| 	if (!was_initialized && mg->mg_initialized) {
 | |
| 		mc->mc_groups++;
 | |
| 	} else if (was_initialized && !mg->mg_initialized) {
 | |
| 		ASSERT3U(mc->mc_groups, >, 0);
 | |
| 		mc->mc_groups--;
 | |
| 	}
 | |
| 	if (mg->mg_initialized)
 | |
| 		mg->mg_no_free_space = B_FALSE;
 | |
| 
 | |
| 	/*
 | |
| 	 * A metaslab group is considered allocatable if it has plenty
 | |
| 	 * of free space or is not heavily fragmented. We only take
 | |
| 	 * fragmentation into account if the metaslab group has a valid
 | |
| 	 * fragmentation metric (i.e. a value between 0 and 100).
 | |
| 	 */
 | |
| 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
 | |
| 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
 | |
| 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
 | |
| 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
 | |
| 
 | |
| 	/*
 | |
| 	 * The mc_alloc_groups maintains a count of the number of
 | |
| 	 * groups in this metaslab class that are still above the
 | |
| 	 * zfs_mg_noalloc_threshold. This is used by the allocating
 | |
| 	 * threads to determine if they should avoid allocations to
 | |
| 	 * a given group. The allocator will avoid allocations to a group
 | |
| 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
 | |
| 	 * and there are still other groups that are above the threshold.
 | |
| 	 * When a group transitions from allocatable to non-allocatable or
 | |
| 	 * vice versa we update the metaslab class to reflect that change.
 | |
| 	 * When the mc_alloc_groups value drops to 0 that means that all
 | |
| 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
 | |
| 	 * eligible for allocations. This effectively means that all devices
 | |
| 	 * are balanced again.
 | |
| 	 */
 | |
| 	if (was_allocatable && !mg->mg_allocatable)
 | |
| 		mc->mc_alloc_groups--;
 | |
| 	else if (!was_allocatable && mg->mg_allocatable)
 | |
| 		mc->mc_alloc_groups++;
 | |
| 	mutex_exit(&mc->mc_lock);
 | |
| 
 | |
| 	mutex_exit(&mg->mg_lock);
 | |
| }
 | |
| 
 | |
| int
 | |
| metaslab_sort_by_flushed(const void *va, const void *vb)
 | |
| {
 | |
| 	const metaslab_t *a = va;
 | |
| 	const metaslab_t *b = vb;
 | |
| 
 | |
| 	int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
 | |
| 	if (likely(cmp))
 | |
| 		return (cmp);
 | |
| 
 | |
| 	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
 | |
| 	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
 | |
| 	cmp = TREE_CMP(a_vdev_id, b_vdev_id);
 | |
| 	if (cmp)
 | |
| 		return (cmp);
 | |
| 
 | |
| 	return (TREE_CMP(a->ms_id, b->ms_id));
 | |
| }
 | |
| 
 | |
| metaslab_group_t *
 | |
| metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
 | |
| {
 | |
| 	metaslab_group_t *mg;
 | |
| 
 | |
| 	mg = kmem_zalloc(offsetof(metaslab_group_t,
 | |
| 	    mg_allocator[allocators]), KM_SLEEP);
 | |
| 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
 | |
| 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
 | |
| 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
 | |
| 	mg->mg_vd = vd;
 | |
| 	mg->mg_class = mc;
 | |
| 	mg->mg_activation_count = 0;
 | |
| 	mg->mg_initialized = B_FALSE;
 | |
| 	mg->mg_no_free_space = B_TRUE;
 | |
| 	mg->mg_allocators = allocators;
 | |
| 
 | |
| 	for (int i = 0; i < allocators; i++) {
 | |
| 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
 | |
| 		zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
 | |
| 	}
 | |
| 
 | |
| 	return (mg);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_group_destroy(metaslab_group_t *mg)
 | |
| {
 | |
| 	ASSERT(mg->mg_prev == NULL);
 | |
| 	ASSERT(mg->mg_next == NULL);
 | |
| 	/*
 | |
| 	 * We may have gone below zero with the activation count
 | |
| 	 * either because we never activated in the first place or
 | |
| 	 * because we're done, and possibly removing the vdev.
 | |
| 	 */
 | |
| 	ASSERT(mg->mg_activation_count <= 0);
 | |
| 
 | |
| 	avl_destroy(&mg->mg_metaslab_tree);
 | |
| 	mutex_destroy(&mg->mg_lock);
 | |
| 	mutex_destroy(&mg->mg_ms_disabled_lock);
 | |
| 	cv_destroy(&mg->mg_ms_disabled_cv);
 | |
| 
 | |
| 	for (int i = 0; i < mg->mg_allocators; i++) {
 | |
| 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
 | |
| 		zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
 | |
| 	}
 | |
| 	kmem_free(mg, offsetof(metaslab_group_t,
 | |
| 	    mg_allocator[mg->mg_allocators]));
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_group_activate(metaslab_group_t *mg)
 | |
| {
 | |
| 	metaslab_class_t *mc = mg->mg_class;
 | |
| 	spa_t *spa = mc->mc_spa;
 | |
| 	metaslab_group_t *mgprev, *mgnext;
 | |
| 
 | |
| 	ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
 | |
| 
 | |
| 	ASSERT(mg->mg_prev == NULL);
 | |
| 	ASSERT(mg->mg_next == NULL);
 | |
| 	ASSERT(mg->mg_activation_count <= 0);
 | |
| 
 | |
| 	if (++mg->mg_activation_count <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	mg->mg_aliquot = metaslab_aliquot * MAX(1,
 | |
| 	    vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
 | |
| 	metaslab_group_alloc_update(mg);
 | |
| 
 | |
| 	if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
 | |
| 		mg->mg_prev = mg;
 | |
| 		mg->mg_next = mg;
 | |
| 	} else {
 | |
| 		mgnext = mgprev->mg_next;
 | |
| 		mg->mg_prev = mgprev;
 | |
| 		mg->mg_next = mgnext;
 | |
| 		mgprev->mg_next = mg;
 | |
| 		mgnext->mg_prev = mg;
 | |
| 	}
 | |
| 	for (int i = 0; i < spa->spa_alloc_count; i++) {
 | |
| 		mc->mc_allocator[i].mca_rotor = mg;
 | |
| 		mg = mg->mg_next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Passivate a metaslab group and remove it from the allocation rotor.
 | |
|  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
 | |
|  * a metaslab group. This function will momentarily drop spa_config_locks
 | |
|  * that are lower than the SCL_ALLOC lock (see comment below).
 | |
|  */
 | |
| void
 | |
| metaslab_group_passivate(metaslab_group_t *mg)
 | |
| {
 | |
| 	metaslab_class_t *mc = mg->mg_class;
 | |
| 	spa_t *spa = mc->mc_spa;
 | |
| 	metaslab_group_t *mgprev, *mgnext;
 | |
| 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
 | |
| 
 | |
| 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
 | |
| 	    (SCL_ALLOC | SCL_ZIO));
 | |
| 
 | |
| 	if (--mg->mg_activation_count != 0) {
 | |
| 		for (int i = 0; i < spa->spa_alloc_count; i++)
 | |
| 			ASSERT(mc->mc_allocator[i].mca_rotor != mg);
 | |
| 		ASSERT(mg->mg_prev == NULL);
 | |
| 		ASSERT(mg->mg_next == NULL);
 | |
| 		ASSERT(mg->mg_activation_count < 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The spa_config_lock is an array of rwlocks, ordered as
 | |
| 	 * follows (from highest to lowest):
 | |
| 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
 | |
| 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
 | |
| 	 * (For more information about the spa_config_lock see spa_misc.c)
 | |
| 	 * The higher the lock, the broader its coverage. When we passivate
 | |
| 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
 | |
| 	 * config locks. However, the metaslab group's taskq might be trying
 | |
| 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
 | |
| 	 * lower locks to allow the I/O to complete. At a minimum,
 | |
| 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
 | |
| 	 * allocations from taking place and any changes to the vdev tree.
 | |
| 	 */
 | |
| 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
 | |
| 	taskq_wait_outstanding(spa->spa_metaslab_taskq, 0);
 | |
| 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
 | |
| 	metaslab_group_alloc_update(mg);
 | |
| 	for (int i = 0; i < mg->mg_allocators; i++) {
 | |
| 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
 | |
| 		metaslab_t *msp = mga->mga_primary;
 | |
| 		if (msp != NULL) {
 | |
| 			mutex_enter(&msp->ms_lock);
 | |
| 			metaslab_passivate(msp,
 | |
| 			    metaslab_weight_from_range_tree(msp));
 | |
| 			mutex_exit(&msp->ms_lock);
 | |
| 		}
 | |
| 		msp = mga->mga_secondary;
 | |
| 		if (msp != NULL) {
 | |
| 			mutex_enter(&msp->ms_lock);
 | |
| 			metaslab_passivate(msp,
 | |
| 			    metaslab_weight_from_range_tree(msp));
 | |
| 			mutex_exit(&msp->ms_lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mgprev = mg->mg_prev;
 | |
| 	mgnext = mg->mg_next;
 | |
| 
 | |
| 	if (mg == mgnext) {
 | |
| 		mgnext = NULL;
 | |
| 	} else {
 | |
| 		mgprev->mg_next = mgnext;
 | |
| 		mgnext->mg_prev = mgprev;
 | |
| 	}
 | |
| 	for (int i = 0; i < spa->spa_alloc_count; i++) {
 | |
| 		if (mc->mc_allocator[i].mca_rotor == mg)
 | |
| 			mc->mc_allocator[i].mca_rotor = mgnext;
 | |
| 	}
 | |
| 
 | |
| 	mg->mg_prev = NULL;
 | |
| 	mg->mg_next = NULL;
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| metaslab_group_initialized(metaslab_group_t *mg)
 | |
| {
 | |
| 	vdev_t *vd = mg->mg_vd;
 | |
| 	vdev_stat_t *vs = &vd->vdev_stat;
 | |
| 
 | |
| 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| metaslab_group_get_space(metaslab_group_t *mg)
 | |
| {
 | |
| 	/*
 | |
| 	 * Note that the number of nodes in mg_metaslab_tree may be one less
 | |
| 	 * than vdev_ms_count, due to the embedded log metaslab.
 | |
| 	 */
 | |
| 	mutex_enter(&mg->mg_lock);
 | |
| 	uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
 | |
| 	mutex_exit(&mg->mg_lock);
 | |
| 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_group_histogram_verify(metaslab_group_t *mg)
 | |
| {
 | |
| 	uint64_t *mg_hist;
 | |
| 	avl_tree_t *t = &mg->mg_metaslab_tree;
 | |
| 	uint64_t ashift = mg->mg_vd->vdev_ashift;
 | |
| 
 | |
| 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
 | |
| 	    KM_SLEEP);
 | |
| 
 | |
| 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
 | |
| 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
 | |
| 
 | |
| 	mutex_enter(&mg->mg_lock);
 | |
| 	for (metaslab_t *msp = avl_first(t);
 | |
| 	    msp != NULL; msp = AVL_NEXT(t, msp)) {
 | |
| 		VERIFY3P(msp->ms_group, ==, mg);
 | |
| 		/* skip if not active */
 | |
| 		if (msp->ms_sm == NULL)
 | |
| 			continue;
 | |
| 
 | |
| 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
 | |
| 			mg_hist[i + ashift] +=
 | |
| 			    msp->ms_sm->sm_phys->smp_histogram[i];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
 | |
| 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
 | |
| 
 | |
| 	mutex_exit(&mg->mg_lock);
 | |
| 
 | |
| 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
 | |
| {
 | |
| 	metaslab_class_t *mc = mg->mg_class;
 | |
| 	uint64_t ashift = mg->mg_vd->vdev_ashift;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 	if (msp->ms_sm == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_enter(&mg->mg_lock);
 | |
| 	mutex_enter(&mc->mc_lock);
 | |
| 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
 | |
| 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
 | |
| 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
 | |
| 		mg->mg_histogram[i + ashift] +=
 | |
| 		    msp->ms_sm->sm_phys->smp_histogram[i];
 | |
| 		mc->mc_histogram[i + ashift] +=
 | |
| 		    msp->ms_sm->sm_phys->smp_histogram[i];
 | |
| 	}
 | |
| 	mutex_exit(&mc->mc_lock);
 | |
| 	mutex_exit(&mg->mg_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
 | |
| {
 | |
| 	metaslab_class_t *mc = mg->mg_class;
 | |
| 	uint64_t ashift = mg->mg_vd->vdev_ashift;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 	if (msp->ms_sm == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_enter(&mg->mg_lock);
 | |
| 	mutex_enter(&mc->mc_lock);
 | |
| 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
 | |
| 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
 | |
| 		    msp->ms_sm->sm_phys->smp_histogram[i]);
 | |
| 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
 | |
| 		    msp->ms_sm->sm_phys->smp_histogram[i]);
 | |
| 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
 | |
| 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
 | |
| 
 | |
| 		mg->mg_histogram[i + ashift] -=
 | |
| 		    msp->ms_sm->sm_phys->smp_histogram[i];
 | |
| 		mc->mc_histogram[i + ashift] -=
 | |
| 		    msp->ms_sm->sm_phys->smp_histogram[i];
 | |
| 	}
 | |
| 	mutex_exit(&mc->mc_lock);
 | |
| 	mutex_exit(&mg->mg_lock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
 | |
| {
 | |
| 	ASSERT(msp->ms_group == NULL);
 | |
| 	mutex_enter(&mg->mg_lock);
 | |
| 	msp->ms_group = mg;
 | |
| 	msp->ms_weight = 0;
 | |
| 	avl_add(&mg->mg_metaslab_tree, msp);
 | |
| 	mutex_exit(&mg->mg_lock);
 | |
| 
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 	metaslab_group_histogram_add(mg, msp);
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
 | |
| {
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 	metaslab_group_histogram_remove(mg, msp);
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| 
 | |
| 	mutex_enter(&mg->mg_lock);
 | |
| 	ASSERT(msp->ms_group == mg);
 | |
| 	avl_remove(&mg->mg_metaslab_tree, msp);
 | |
| 
 | |
| 	metaslab_class_t *mc = msp->ms_group->mg_class;
 | |
| 	multilist_sublist_t *mls =
 | |
| 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
 | |
| 	if (multilist_link_active(&msp->ms_class_txg_node))
 | |
| 		multilist_sublist_remove(mls, msp);
 | |
| 	multilist_sublist_unlock(mls);
 | |
| 
 | |
| 	msp->ms_group = NULL;
 | |
| 	mutex_exit(&mg->mg_lock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 	ASSERT(MUTEX_HELD(&mg->mg_lock));
 | |
| 	ASSERT(msp->ms_group == mg);
 | |
| 
 | |
| 	avl_remove(&mg->mg_metaslab_tree, msp);
 | |
| 	msp->ms_weight = weight;
 | |
| 	avl_add(&mg->mg_metaslab_tree, msp);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
 | |
| {
 | |
| 	/*
 | |
| 	 * Although in principle the weight can be any value, in
 | |
| 	 * practice we do not use values in the range [1, 511].
 | |
| 	 */
 | |
| 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	mutex_enter(&mg->mg_lock);
 | |
| 	metaslab_group_sort_impl(mg, msp, weight);
 | |
| 	mutex_exit(&mg->mg_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the fragmentation for a given metaslab group. We can use
 | |
|  * a simple average here since all metaslabs within the group must have
 | |
|  * the same size. The return value will be a value between 0 and 100
 | |
|  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
 | |
|  * group have a fragmentation metric.
 | |
|  */
 | |
| uint64_t
 | |
| metaslab_group_fragmentation(metaslab_group_t *mg)
 | |
| {
 | |
| 	vdev_t *vd = mg->mg_vd;
 | |
| 	uint64_t fragmentation = 0;
 | |
| 	uint64_t valid_ms = 0;
 | |
| 
 | |
| 	for (int m = 0; m < vd->vdev_ms_count; m++) {
 | |
| 		metaslab_t *msp = vd->vdev_ms[m];
 | |
| 
 | |
| 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
 | |
| 			continue;
 | |
| 		if (msp->ms_group != mg)
 | |
| 			continue;
 | |
| 
 | |
| 		valid_ms++;
 | |
| 		fragmentation += msp->ms_fragmentation;
 | |
| 	}
 | |
| 
 | |
| 	if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
 | |
| 		return (ZFS_FRAG_INVALID);
 | |
| 
 | |
| 	fragmentation /= valid_ms;
 | |
| 	ASSERT3U(fragmentation, <=, 100);
 | |
| 	return (fragmentation);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine if a given metaslab group should skip allocations. A metaslab
 | |
|  * group should avoid allocations if its free capacity is less than the
 | |
|  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
 | |
|  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
 | |
|  * that can still handle allocations. If the allocation throttle is enabled
 | |
|  * then we skip allocations to devices that have reached their maximum
 | |
|  * allocation queue depth unless the selected metaslab group is the only
 | |
|  * eligible group remaining.
 | |
|  */
 | |
| static boolean_t
 | |
| metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
 | |
|     int flags, uint64_t psize, int allocator, int d)
 | |
| {
 | |
| 	spa_t *spa = mg->mg_vd->vdev_spa;
 | |
| 	metaslab_class_t *mc = mg->mg_class;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can only consider skipping this metaslab group if it's
 | |
| 	 * in the normal metaslab class and there are other metaslab
 | |
| 	 * groups to select from. Otherwise, we always consider it eligible
 | |
| 	 * for allocations.
 | |
| 	 */
 | |
| 	if ((mc != spa_normal_class(spa) &&
 | |
| 	    mc != spa_special_class(spa) &&
 | |
| 	    mc != spa_dedup_class(spa)) ||
 | |
| 	    mc->mc_groups <= 1)
 | |
| 		return (B_TRUE);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the metaslab group's mg_allocatable flag is set (see comments
 | |
| 	 * in metaslab_group_alloc_update() for more information) and
 | |
| 	 * the allocation throttle is disabled then allow allocations to this
 | |
| 	 * device. However, if the allocation throttle is enabled then
 | |
| 	 * check if we have reached our allocation limit (mga_alloc_queue_depth)
 | |
| 	 * to determine if we should allow allocations to this metaslab group.
 | |
| 	 * If all metaslab groups are no longer considered allocatable
 | |
| 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
 | |
| 	 * gang block size then we allow allocations on this metaslab group
 | |
| 	 * regardless of the mg_allocatable or throttle settings.
 | |
| 	 */
 | |
| 	if (mg->mg_allocatable) {
 | |
| 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
 | |
| 		int64_t qdepth;
 | |
| 		uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
 | |
| 
 | |
| 		if (!mc->mc_alloc_throttle_enabled)
 | |
| 			return (B_TRUE);
 | |
| 
 | |
| 		/*
 | |
| 		 * If this metaslab group does not have any free space, then
 | |
| 		 * there is no point in looking further.
 | |
| 		 */
 | |
| 		if (mg->mg_no_free_space)
 | |
| 			return (B_FALSE);
 | |
| 
 | |
| 		/*
 | |
| 		 * Some allocations (e.g., those coming from device removal
 | |
| 		 * where the * allocations are not even counted in the
 | |
| 		 * metaslab * allocation queues) are allowed to bypass
 | |
| 		 * the throttle.
 | |
| 		 */
 | |
| 		if (flags & METASLAB_DONT_THROTTLE)
 | |
| 			return (B_TRUE);
 | |
| 
 | |
| 		/*
 | |
| 		 * Relax allocation throttling for ditto blocks.  Due to
 | |
| 		 * random imbalances in allocation it tends to push copies
 | |
| 		 * to one vdev, that looks a bit better at the moment.
 | |
| 		 */
 | |
| 		qmax = qmax * (4 + d) / 4;
 | |
| 
 | |
| 		qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
 | |
| 
 | |
| 		/*
 | |
| 		 * If this metaslab group is below its qmax or it's
 | |
| 		 * the only allocatable metaslab group, then attempt
 | |
| 		 * to allocate from it.
 | |
| 		 */
 | |
| 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
 | |
| 			return (B_TRUE);
 | |
| 		ASSERT3U(mc->mc_alloc_groups, >, 1);
 | |
| 
 | |
| 		/*
 | |
| 		 * Since this metaslab group is at or over its qmax, we
 | |
| 		 * need to determine if there are metaslab groups after this
 | |
| 		 * one that might be able to handle this allocation. This is
 | |
| 		 * racy since we can't hold the locks for all metaslab
 | |
| 		 * groups at the same time when we make this check.
 | |
| 		 */
 | |
| 		for (metaslab_group_t *mgp = mg->mg_next;
 | |
| 		    mgp != rotor; mgp = mgp->mg_next) {
 | |
| 			metaslab_group_allocator_t *mgap =
 | |
| 			    &mgp->mg_allocator[allocator];
 | |
| 			qmax = mgap->mga_cur_max_alloc_queue_depth;
 | |
| 			qmax = qmax * (4 + d) / 4;
 | |
| 			qdepth =
 | |
| 			    zfs_refcount_count(&mgap->mga_alloc_queue_depth);
 | |
| 
 | |
| 			/*
 | |
| 			 * If there is another metaslab group that
 | |
| 			 * might be able to handle the allocation, then
 | |
| 			 * we return false so that we skip this group.
 | |
| 			 */
 | |
| 			if (qdepth < qmax && !mgp->mg_no_free_space)
 | |
| 				return (B_FALSE);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We didn't find another group to handle the allocation
 | |
| 		 * so we can't skip this metaslab group even though
 | |
| 		 * we are at or over our qmax.
 | |
| 		 */
 | |
| 		return (B_TRUE);
 | |
| 
 | |
| 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
 | |
| 		return (B_TRUE);
 | |
| 	}
 | |
| 	return (B_FALSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * Range tree callbacks
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Comparison function for the private size-ordered tree using 32-bit
 | |
|  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
 | |
|  */
 | |
| __attribute__((always_inline)) inline
 | |
| static int
 | |
| metaslab_rangesize32_compare(const void *x1, const void *x2)
 | |
| {
 | |
| 	const range_seg32_t *r1 = x1;
 | |
| 	const range_seg32_t *r2 = x2;
 | |
| 
 | |
| 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
 | |
| 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
 | |
| 
 | |
| 	int cmp = TREE_CMP(rs_size1, rs_size2);
 | |
| 
 | |
| 	return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Comparison function for the private size-ordered tree using 64-bit
 | |
|  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
 | |
|  */
 | |
| __attribute__((always_inline)) inline
 | |
| static int
 | |
| metaslab_rangesize64_compare(const void *x1, const void *x2)
 | |
| {
 | |
| 	const range_seg64_t *r1 = x1;
 | |
| 	const range_seg64_t *r2 = x2;
 | |
| 
 | |
| 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
 | |
| 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
 | |
| 
 | |
| 	int cmp = TREE_CMP(rs_size1, rs_size2);
 | |
| 
 | |
| 	return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
 | |
| }
 | |
| 
 | |
| typedef struct metaslab_rt_arg {
 | |
| 	zfs_btree_t *mra_bt;
 | |
| 	uint32_t mra_floor_shift;
 | |
| } metaslab_rt_arg_t;
 | |
| 
 | |
| struct mssa_arg {
 | |
| 	range_tree_t *rt;
 | |
| 	metaslab_rt_arg_t *mra;
 | |
| };
 | |
| 
 | |
| static void
 | |
| metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
 | |
| {
 | |
| 	struct mssa_arg *mssap = arg;
 | |
| 	range_tree_t *rt = mssap->rt;
 | |
| 	metaslab_rt_arg_t *mrap = mssap->mra;
 | |
| 	range_seg_max_t seg = {0};
 | |
| 	rs_set_start(&seg, rt, start);
 | |
| 	rs_set_end(&seg, rt, start + size);
 | |
| 	metaslab_rt_add(rt, &seg, mrap);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_size_tree_full_load(range_tree_t *rt)
 | |
| {
 | |
| 	metaslab_rt_arg_t *mrap = rt->rt_arg;
 | |
| 	METASLABSTAT_BUMP(metaslabstat_reload_tree);
 | |
| 	ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
 | |
| 	mrap->mra_floor_shift = 0;
 | |
| 	struct mssa_arg arg = {0};
 | |
| 	arg.rt = rt;
 | |
| 	arg.mra = mrap;
 | |
| 	range_tree_walk(rt, metaslab_size_sorted_add, &arg);
 | |
| }
 | |
| 
 | |
| 
 | |
| ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
 | |
|     range_seg32_t, metaslab_rangesize32_compare)
 | |
| 
 | |
| ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
 | |
|     range_seg64_t, metaslab_rangesize64_compare)
 | |
| 
 | |
| /*
 | |
|  * Create any block allocator specific components. The current allocators
 | |
|  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
 | |
|  */
 | |
| static void
 | |
| metaslab_rt_create(range_tree_t *rt, void *arg)
 | |
| {
 | |
| 	metaslab_rt_arg_t *mrap = arg;
 | |
| 	zfs_btree_t *size_tree = mrap->mra_bt;
 | |
| 
 | |
| 	size_t size;
 | |
| 	int (*compare) (const void *, const void *);
 | |
| 	bt_find_in_buf_f bt_find;
 | |
| 	switch (rt->rt_type) {
 | |
| 	case RANGE_SEG32:
 | |
| 		size = sizeof (range_seg32_t);
 | |
| 		compare = metaslab_rangesize32_compare;
 | |
| 		bt_find = metaslab_rt_find_rangesize32_in_buf;
 | |
| 		break;
 | |
| 	case RANGE_SEG64:
 | |
| 		size = sizeof (range_seg64_t);
 | |
| 		compare = metaslab_rangesize64_compare;
 | |
| 		bt_find = metaslab_rt_find_rangesize64_in_buf;
 | |
| 		break;
 | |
| 	default:
 | |
| 		panic("Invalid range seg type %d", rt->rt_type);
 | |
| 	}
 | |
| 	zfs_btree_create(size_tree, compare, bt_find, size);
 | |
| 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_rt_destroy(range_tree_t *rt, void *arg)
 | |
| {
 | |
| 	(void) rt;
 | |
| 	metaslab_rt_arg_t *mrap = arg;
 | |
| 	zfs_btree_t *size_tree = mrap->mra_bt;
 | |
| 
 | |
| 	zfs_btree_destroy(size_tree);
 | |
| 	kmem_free(mrap, sizeof (*mrap));
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
 | |
| {
 | |
| 	metaslab_rt_arg_t *mrap = arg;
 | |
| 	zfs_btree_t *size_tree = mrap->mra_bt;
 | |
| 
 | |
| 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
 | |
| 	    (1ULL << mrap->mra_floor_shift))
 | |
| 		return;
 | |
| 
 | |
| 	zfs_btree_add(size_tree, rs);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
 | |
| {
 | |
| 	metaslab_rt_arg_t *mrap = arg;
 | |
| 	zfs_btree_t *size_tree = mrap->mra_bt;
 | |
| 
 | |
| 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
 | |
| 	    mrap->mra_floor_shift))
 | |
| 		return;
 | |
| 
 | |
| 	zfs_btree_remove(size_tree, rs);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_rt_vacate(range_tree_t *rt, void *arg)
 | |
| {
 | |
| 	metaslab_rt_arg_t *mrap = arg;
 | |
| 	zfs_btree_t *size_tree = mrap->mra_bt;
 | |
| 	zfs_btree_clear(size_tree);
 | |
| 	zfs_btree_destroy(size_tree);
 | |
| 
 | |
| 	metaslab_rt_create(rt, arg);
 | |
| }
 | |
| 
 | |
| static const range_tree_ops_t metaslab_rt_ops = {
 | |
| 	.rtop_create = metaslab_rt_create,
 | |
| 	.rtop_destroy = metaslab_rt_destroy,
 | |
| 	.rtop_add = metaslab_rt_add,
 | |
| 	.rtop_remove = metaslab_rt_remove,
 | |
| 	.rtop_vacate = metaslab_rt_vacate
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * Common allocator routines
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Return the maximum contiguous segment within the metaslab.
 | |
|  */
 | |
| uint64_t
 | |
| metaslab_largest_allocatable(metaslab_t *msp)
 | |
| {
 | |
| 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
 | |
| 	range_seg_t *rs;
 | |
| 
 | |
| 	if (t == NULL)
 | |
| 		return (0);
 | |
| 	if (zfs_btree_numnodes(t) == 0)
 | |
| 		metaslab_size_tree_full_load(msp->ms_allocatable);
 | |
| 
 | |
| 	rs = zfs_btree_last(t, NULL);
 | |
| 	if (rs == NULL)
 | |
| 		return (0);
 | |
| 
 | |
| 	return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
 | |
| 	    msp->ms_allocatable));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the maximum contiguous segment within the unflushed frees of this
 | |
|  * metaslab.
 | |
|  */
 | |
| static uint64_t
 | |
| metaslab_largest_unflushed_free(metaslab_t *msp)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	if (msp->ms_unflushed_frees == NULL)
 | |
| 		return (0);
 | |
| 
 | |
| 	if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
 | |
| 		metaslab_size_tree_full_load(msp->ms_unflushed_frees);
 | |
| 	range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
 | |
| 	    NULL);
 | |
| 	if (rs == NULL)
 | |
| 		return (0);
 | |
| 
 | |
| 	/*
 | |
| 	 * When a range is freed from the metaslab, that range is added to
 | |
| 	 * both the unflushed frees and the deferred frees. While the block
 | |
| 	 * will eventually be usable, if the metaslab were loaded the range
 | |
| 	 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
 | |
| 	 * txgs had passed.  As a result, when attempting to estimate an upper
 | |
| 	 * bound for the largest currently-usable free segment in the
 | |
| 	 * metaslab, we need to not consider any ranges currently in the defer
 | |
| 	 * trees. This algorithm approximates the largest available chunk in
 | |
| 	 * the largest range in the unflushed_frees tree by taking the first
 | |
| 	 * chunk.  While this may be a poor estimate, it should only remain so
 | |
| 	 * briefly and should eventually self-correct as frees are no longer
 | |
| 	 * deferred. Similar logic applies to the ms_freed tree. See
 | |
| 	 * metaslab_load() for more details.
 | |
| 	 *
 | |
| 	 * There are two primary sources of inaccuracy in this estimate. Both
 | |
| 	 * are tolerated for performance reasons. The first source is that we
 | |
| 	 * only check the largest segment for overlaps. Smaller segments may
 | |
| 	 * have more favorable overlaps with the other trees, resulting in
 | |
| 	 * larger usable chunks.  Second, we only look at the first chunk in
 | |
| 	 * the largest segment; there may be other usable chunks in the
 | |
| 	 * largest segment, but we ignore them.
 | |
| 	 */
 | |
| 	uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
 | |
| 	uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
 | |
| 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 | |
| 		uint64_t start = 0;
 | |
| 		uint64_t size = 0;
 | |
| 		boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
 | |
| 		    rsize, &start, &size);
 | |
| 		if (found) {
 | |
| 			if (rstart == start)
 | |
| 				return (0);
 | |
| 			rsize = start - rstart;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	uint64_t start = 0;
 | |
| 	uint64_t size = 0;
 | |
| 	boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
 | |
| 	    rsize, &start, &size);
 | |
| 	if (found)
 | |
| 		rsize = start - rstart;
 | |
| 
 | |
| 	return (rsize);
 | |
| }
 | |
| 
 | |
| static range_seg_t *
 | |
| metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
 | |
|     uint64_t size, zfs_btree_index_t *where)
 | |
| {
 | |
| 	range_seg_t *rs;
 | |
| 	range_seg_max_t rsearch;
 | |
| 
 | |
| 	rs_set_start(&rsearch, rt, start);
 | |
| 	rs_set_end(&rsearch, rt, start + size);
 | |
| 
 | |
| 	rs = zfs_btree_find(t, &rsearch, where);
 | |
| 	if (rs == NULL) {
 | |
| 		rs = zfs_btree_next(t, where, where);
 | |
| 	}
 | |
| 
 | |
| 	return (rs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a helper function that can be used by the allocator to find a
 | |
|  * suitable block to allocate. This will search the specified B-tree looking
 | |
|  * for a block that matches the specified criteria.
 | |
|  */
 | |
| static uint64_t
 | |
| metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
 | |
|     uint64_t max_search)
 | |
| {
 | |
| 	if (*cursor == 0)
 | |
| 		*cursor = rt->rt_start;
 | |
| 	zfs_btree_t *bt = &rt->rt_root;
 | |
| 	zfs_btree_index_t where;
 | |
| 	range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
 | |
| 	uint64_t first_found;
 | |
| 	int count_searched = 0;
 | |
| 
 | |
| 	if (rs != NULL)
 | |
| 		first_found = rs_get_start(rs, rt);
 | |
| 
 | |
| 	while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
 | |
| 	    max_search || count_searched < metaslab_min_search_count)) {
 | |
| 		uint64_t offset = rs_get_start(rs, rt);
 | |
| 		if (offset + size <= rs_get_end(rs, rt)) {
 | |
| 			*cursor = offset + size;
 | |
| 			return (offset);
 | |
| 		}
 | |
| 		rs = zfs_btree_next(bt, &where, &where);
 | |
| 		count_searched++;
 | |
| 	}
 | |
| 
 | |
| 	*cursor = 0;
 | |
| 	return (-1ULL);
 | |
| }
 | |
| 
 | |
| static uint64_t metaslab_df_alloc(metaslab_t *msp, uint64_t size);
 | |
| static uint64_t metaslab_cf_alloc(metaslab_t *msp, uint64_t size);
 | |
| static uint64_t metaslab_ndf_alloc(metaslab_t *msp, uint64_t size);
 | |
| metaslab_ops_t *metaslab_allocator(spa_t *spa);
 | |
| 
 | |
| static metaslab_ops_t metaslab_allocators[] = {
 | |
| 	{ "dynamic", metaslab_df_alloc },
 | |
| 	{ "cursor", metaslab_cf_alloc },
 | |
| 	{ "new-dynamic", metaslab_ndf_alloc },
 | |
| };
 | |
| 
 | |
| static int
 | |
| spa_find_allocator_byname(const char *val)
 | |
| {
 | |
| 	int a = ARRAY_SIZE(metaslab_allocators) - 1;
 | |
| 	if (strcmp("new-dynamic", val) == 0)
 | |
| 		return (-1); /* remove when ndf is working */
 | |
| 	for (; a >= 0; a--) {
 | |
| 		if (strcmp(val, metaslab_allocators[a].msop_name) == 0)
 | |
| 			return (a);
 | |
| 	}
 | |
| 	return (-1);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_set_allocator(spa_t *spa, const char *allocator)
 | |
| {
 | |
| 	int a = spa_find_allocator_byname(allocator);
 | |
| 	if (a < 0) a = 0;
 | |
| 	spa->spa_active_allocator = a;
 | |
| 	zfs_dbgmsg("spa allocator: %s", metaslab_allocators[a].msop_name);
 | |
| }
 | |
| 
 | |
| int
 | |
| spa_get_allocator(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_active_allocator);
 | |
| }
 | |
| 
 | |
| #if defined(_KERNEL)
 | |
| int
 | |
| param_set_active_allocator_common(const char *val)
 | |
| {
 | |
| 	char *p;
 | |
| 
 | |
| 	if (val == NULL)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if ((p = strchr(val, '\n')) != NULL)
 | |
| 		*p = '\0';
 | |
| 
 | |
| 	int a = spa_find_allocator_byname(val);
 | |
| 	if (a < 0)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	zfs_active_allocator = metaslab_allocators[a].msop_name;
 | |
| 	return (0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| metaslab_ops_t *
 | |
| metaslab_allocator(spa_t *spa)
 | |
| {
 | |
| 	int allocator = spa_get_allocator(spa);
 | |
| 	return (&metaslab_allocators[allocator]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * Dynamic Fit (df) block allocator
 | |
|  *
 | |
|  * Search for a free chunk of at least this size, starting from the last
 | |
|  * offset (for this alignment of block) looking for up to
 | |
|  * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
 | |
|  * found within 16MB, then return a free chunk of exactly the requested size (or
 | |
|  * larger).
 | |
|  *
 | |
|  * If it seems like searching from the last offset will be unproductive, skip
 | |
|  * that and just return a free chunk of exactly the requested size (or larger).
 | |
|  * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
 | |
|  * mechanism is probably not very useful and may be removed in the future.
 | |
|  *
 | |
|  * The behavior when not searching can be changed to return the largest free
 | |
|  * chunk, instead of a free chunk of exactly the requested size, by setting
 | |
|  * metaslab_df_use_largest_segment.
 | |
|  * ==========================================================================
 | |
|  */
 | |
| static uint64_t
 | |
| metaslab_df_alloc(metaslab_t *msp, uint64_t size)
 | |
| {
 | |
| 	/*
 | |
| 	 * Find the largest power of 2 block size that evenly divides the
 | |
| 	 * requested size. This is used to try to allocate blocks with similar
 | |
| 	 * alignment from the same area of the metaslab (i.e. same cursor
 | |
| 	 * bucket) but it does not guarantee that other allocations sizes
 | |
| 	 * may exist in the same region.
 | |
| 	 */
 | |
| 	uint64_t align = size & -size;
 | |
| 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
 | |
| 	range_tree_t *rt = msp->ms_allocatable;
 | |
| 	uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
 | |
| 	uint64_t offset;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're running low on space, find a segment based on size,
 | |
| 	 * rather than iterating based on offset.
 | |
| 	 */
 | |
| 	if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
 | |
| 	    free_pct < metaslab_df_free_pct) {
 | |
| 		offset = -1;
 | |
| 	} else {
 | |
| 		offset = metaslab_block_picker(rt,
 | |
| 		    cursor, size, metaslab_df_max_search);
 | |
| 	}
 | |
| 
 | |
| 	if (offset == -1) {
 | |
| 		range_seg_t *rs;
 | |
| 		if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
 | |
| 			metaslab_size_tree_full_load(msp->ms_allocatable);
 | |
| 
 | |
| 		if (metaslab_df_use_largest_segment) {
 | |
| 			/* use largest free segment */
 | |
| 			rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
 | |
| 		} else {
 | |
| 			zfs_btree_index_t where;
 | |
| 			/* use segment of this size, or next largest */
 | |
| 			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
 | |
| 			    rt, msp->ms_start, size, &where);
 | |
| 		}
 | |
| 		if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
 | |
| 		    rt)) {
 | |
| 			offset = rs_get_start(rs, rt);
 | |
| 			*cursor = offset + size;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * Cursor fit block allocator -
 | |
|  * Select the largest region in the metaslab, set the cursor to the beginning
 | |
|  * of the range and the cursor_end to the end of the range. As allocations
 | |
|  * are made advance the cursor. Continue allocating from the cursor until
 | |
|  * the range is exhausted and then find a new range.
 | |
|  * ==========================================================================
 | |
|  */
 | |
| static uint64_t
 | |
| metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
 | |
| {
 | |
| 	range_tree_t *rt = msp->ms_allocatable;
 | |
| 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
 | |
| 	uint64_t *cursor = &msp->ms_lbas[0];
 | |
| 	uint64_t *cursor_end = &msp->ms_lbas[1];
 | |
| 	uint64_t offset = 0;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	ASSERT3U(*cursor_end, >=, *cursor);
 | |
| 
 | |
| 	if ((*cursor + size) > *cursor_end) {
 | |
| 		range_seg_t *rs;
 | |
| 
 | |
| 		if (zfs_btree_numnodes(t) == 0)
 | |
| 			metaslab_size_tree_full_load(msp->ms_allocatable);
 | |
| 		rs = zfs_btree_last(t, NULL);
 | |
| 		if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
 | |
| 		    size)
 | |
| 			return (-1ULL);
 | |
| 
 | |
| 		*cursor = rs_get_start(rs, rt);
 | |
| 		*cursor_end = rs_get_end(rs, rt);
 | |
| 	}
 | |
| 
 | |
| 	offset = *cursor;
 | |
| 	*cursor += size;
 | |
| 
 | |
| 	return (offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * New dynamic fit allocator -
 | |
|  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
 | |
|  * contiguous blocks. If no region is found then just use the largest segment
 | |
|  * that remains.
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
 | |
|  * to request from the allocator.
 | |
|  */
 | |
| uint64_t metaslab_ndf_clump_shift = 4;
 | |
| 
 | |
| static uint64_t
 | |
| metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
 | |
| {
 | |
| 	zfs_btree_t *t = &msp->ms_allocatable->rt_root;
 | |
| 	range_tree_t *rt = msp->ms_allocatable;
 | |
| 	zfs_btree_index_t where;
 | |
| 	range_seg_t *rs;
 | |
| 	range_seg_max_t rsearch;
 | |
| 	uint64_t hbit = highbit64(size);
 | |
| 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
 | |
| 	uint64_t max_size = metaslab_largest_allocatable(msp);
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	if (max_size < size)
 | |
| 		return (-1ULL);
 | |
| 
 | |
| 	rs_set_start(&rsearch, rt, *cursor);
 | |
| 	rs_set_end(&rsearch, rt, *cursor + size);
 | |
| 
 | |
| 	rs = zfs_btree_find(t, &rsearch, &where);
 | |
| 	if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
 | |
| 		t = &msp->ms_allocatable_by_size;
 | |
| 
 | |
| 		rs_set_start(&rsearch, rt, 0);
 | |
| 		rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
 | |
| 		    metaslab_ndf_clump_shift)));
 | |
| 
 | |
| 		rs = zfs_btree_find(t, &rsearch, &where);
 | |
| 		if (rs == NULL)
 | |
| 			rs = zfs_btree_next(t, &where, &where);
 | |
| 		ASSERT(rs != NULL);
 | |
| 	}
 | |
| 
 | |
| 	if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
 | |
| 		*cursor = rs_get_start(rs, rt) + size;
 | |
| 		return (rs_get_start(rs, rt));
 | |
| 	}
 | |
| 	return (-1ULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * Metaslabs
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Wait for any in-progress metaslab loads to complete.
 | |
|  */
 | |
| static void
 | |
| metaslab_load_wait(metaslab_t *msp)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	while (msp->ms_loading) {
 | |
| 		ASSERT(!msp->ms_loaded);
 | |
| 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for any in-progress flushing to complete.
 | |
|  */
 | |
| static void
 | |
| metaslab_flush_wait(metaslab_t *msp)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	while (msp->ms_flushing)
 | |
| 		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
 | |
| }
 | |
| 
 | |
| static unsigned int
 | |
| metaslab_idx_func(multilist_t *ml, void *arg)
 | |
| {
 | |
| 	metaslab_t *msp = arg;
 | |
| 
 | |
| 	/*
 | |
| 	 * ms_id values are allocated sequentially, so full 64bit
 | |
| 	 * division would be a waste of time, so limit it to 32 bits.
 | |
| 	 */
 | |
| 	return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| metaslab_allocated_space(metaslab_t *msp)
 | |
| {
 | |
| 	return (msp->ms_allocated_space);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify that the space accounting on disk matches the in-core range_trees.
 | |
|  */
 | |
| static void
 | |
| metaslab_verify_space(metaslab_t *msp, uint64_t txg)
 | |
| {
 | |
| 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | |
| 	uint64_t allocating = 0;
 | |
| 	uint64_t sm_free_space, msp_free_space;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 	ASSERT(!msp->ms_condensing);
 | |
| 
 | |
| 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can only verify the metaslab space when we're called
 | |
| 	 * from syncing context with a loaded metaslab that has an
 | |
| 	 * allocated space map. Calling this in non-syncing context
 | |
| 	 * does not provide a consistent view of the metaslab since
 | |
| 	 * we're performing allocations in the future.
 | |
| 	 */
 | |
| 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
 | |
| 	    !msp->ms_loaded)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Even though the smp_alloc field can get negative,
 | |
| 	 * when it comes to a metaslab's space map, that should
 | |
| 	 * never be the case.
 | |
| 	 */
 | |
| 	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
 | |
| 
 | |
| 	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
 | |
| 	    range_tree_space(msp->ms_unflushed_frees));
 | |
| 
 | |
| 	ASSERT3U(metaslab_allocated_space(msp), ==,
 | |
| 	    space_map_allocated(msp->ms_sm) +
 | |
| 	    range_tree_space(msp->ms_unflushed_allocs) -
 | |
| 	    range_tree_space(msp->ms_unflushed_frees));
 | |
| 
 | |
| 	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Account for future allocations since we would have
 | |
| 	 * already deducted that space from the ms_allocatable.
 | |
| 	 */
 | |
| 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
 | |
| 		allocating +=
 | |
| 		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
 | |
| 	}
 | |
| 	ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
 | |
| 	    msp->ms_allocating_total);
 | |
| 
 | |
| 	ASSERT3U(msp->ms_deferspace, ==,
 | |
| 	    range_tree_space(msp->ms_defer[0]) +
 | |
| 	    range_tree_space(msp->ms_defer[1]));
 | |
| 
 | |
| 	msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
 | |
| 	    msp->ms_deferspace + range_tree_space(msp->ms_freed);
 | |
| 
 | |
| 	VERIFY3U(sm_free_space, ==, msp_free_space);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_aux_histograms_clear(metaslab_t *msp)
 | |
| {
 | |
| 	/*
 | |
| 	 * Auxiliary histograms are only cleared when resetting them,
 | |
| 	 * which can only happen while the metaslab is loaded.
 | |
| 	 */
 | |
| 	ASSERT(msp->ms_loaded);
 | |
| 
 | |
| 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
 | |
| 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
 | |
| 		memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
 | |
|     range_tree_t *rt)
 | |
| {
 | |
| 	/*
 | |
| 	 * This is modeled after space_map_histogram_add(), so refer to that
 | |
| 	 * function for implementation details. We want this to work like
 | |
| 	 * the space map histogram, and not the range tree histogram, as we
 | |
| 	 * are essentially constructing a delta that will be later subtracted
 | |
| 	 * from the space map histogram.
 | |
| 	 */
 | |
| 	int idx = 0;
 | |
| 	for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
 | |
| 		ASSERT3U(i, >=, idx + shift);
 | |
| 		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
 | |
| 
 | |
| 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
 | |
| 			ASSERT3U(idx + shift, ==, i);
 | |
| 			idx++;
 | |
| 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called at every sync pass that the metaslab gets synced.
 | |
|  *
 | |
|  * The reason is that we want our auxiliary histograms to be updated
 | |
|  * wherever the metaslab's space map histogram is updated. This way
 | |
|  * we stay consistent on which parts of the metaslab space map's
 | |
|  * histogram are currently not available for allocations (e.g because
 | |
|  * they are in the defer, freed, and freeing trees).
 | |
|  */
 | |
| static void
 | |
| metaslab_aux_histograms_update(metaslab_t *msp)
 | |
| {
 | |
| 	space_map_t *sm = msp->ms_sm;
 | |
| 	ASSERT(sm != NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is similar to the metaslab's space map histogram updates
 | |
| 	 * that take place in metaslab_sync(). The only difference is that
 | |
| 	 * we only care about segments that haven't made it into the
 | |
| 	 * ms_allocatable tree yet.
 | |
| 	 */
 | |
| 	if (msp->ms_loaded) {
 | |
| 		metaslab_aux_histograms_clear(msp);
 | |
| 
 | |
| 		metaslab_aux_histogram_add(msp->ms_synchist,
 | |
| 		    sm->sm_shift, msp->ms_freed);
 | |
| 
 | |
| 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 | |
| 			metaslab_aux_histogram_add(msp->ms_deferhist[t],
 | |
| 			    sm->sm_shift, msp->ms_defer[t]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	metaslab_aux_histogram_add(msp->ms_synchist,
 | |
| 	    sm->sm_shift, msp->ms_freeing);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called every time we are done syncing (writing to) the metaslab,
 | |
|  * i.e. at the end of each sync pass.
 | |
|  * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
 | |
|  */
 | |
| static void
 | |
| metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
 | |
| {
 | |
| 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | |
| 	space_map_t *sm = msp->ms_sm;
 | |
| 
 | |
| 	if (sm == NULL) {
 | |
| 		/*
 | |
| 		 * We came here from metaslab_init() when creating/opening a
 | |
| 		 * pool, looking at a metaslab that hasn't had any allocations
 | |
| 		 * yet.
 | |
| 		 */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This is similar to the actions that we take for the ms_freed
 | |
| 	 * and ms_defer trees in metaslab_sync_done().
 | |
| 	 */
 | |
| 	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
 | |
| 	if (defer_allowed) {
 | |
| 		memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
 | |
| 		    sizeof (msp->ms_synchist));
 | |
| 	} else {
 | |
| 		memset(msp->ms_deferhist[hist_index], 0,
 | |
| 		    sizeof (msp->ms_deferhist[hist_index]));
 | |
| 	}
 | |
| 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensure that the metaslab's weight and fragmentation are consistent
 | |
|  * with the contents of the histogram (either the range tree's histogram
 | |
|  * or the space map's depending whether the metaslab is loaded).
 | |
|  */
 | |
| static void
 | |
| metaslab_verify_weight_and_frag(metaslab_t *msp)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can end up here from vdev_remove_complete(), in which case we
 | |
| 	 * cannot do these assertions because we hold spa config locks and
 | |
| 	 * thus we are not allowed to read from the DMU.
 | |
| 	 *
 | |
| 	 * We check if the metaslab group has been removed and if that's
 | |
| 	 * the case we return immediately as that would mean that we are
 | |
| 	 * here from the aforementioned code path.
 | |
| 	 */
 | |
| 	if (msp->ms_group == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Devices being removed always return a weight of 0 and leave
 | |
| 	 * fragmentation and ms_max_size as is - there is nothing for
 | |
| 	 * us to verify here.
 | |
| 	 */
 | |
| 	vdev_t *vd = msp->ms_group->mg_vd;
 | |
| 	if (vd->vdev_removing)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the metaslab is dirty it probably means that we've done
 | |
| 	 * some allocations or frees that have changed our histograms
 | |
| 	 * and thus the weight.
 | |
| 	 */
 | |
| 	for (int t = 0; t < TXG_SIZE; t++) {
 | |
| 		if (txg_list_member(&vd->vdev_ms_list, msp, t))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This verification checks that our in-memory state is consistent
 | |
| 	 * with what's on disk. If the pool is read-only then there aren't
 | |
| 	 * any changes and we just have the initially-loaded state.
 | |
| 	 */
 | |
| 	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
 | |
| 		return;
 | |
| 
 | |
| 	/* some extra verification for in-core tree if you can */
 | |
| 	if (msp->ms_loaded) {
 | |
| 		range_tree_stat_verify(msp->ms_allocatable);
 | |
| 		VERIFY(space_map_histogram_verify(msp->ms_sm,
 | |
| 		    msp->ms_allocatable));
 | |
| 	}
 | |
| 
 | |
| 	uint64_t weight = msp->ms_weight;
 | |
| 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
 | |
| 	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
 | |
| 	uint64_t frag = msp->ms_fragmentation;
 | |
| 	uint64_t max_segsize = msp->ms_max_size;
 | |
| 
 | |
| 	msp->ms_weight = 0;
 | |
| 	msp->ms_fragmentation = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This function is used for verification purposes and thus should
 | |
| 	 * not introduce any side-effects/mutations on the system's state.
 | |
| 	 *
 | |
| 	 * Regardless of whether metaslab_weight() thinks this metaslab
 | |
| 	 * should be active or not, we want to ensure that the actual weight
 | |
| 	 * (and therefore the value of ms_weight) would be the same if it
 | |
| 	 * was to be recalculated at this point.
 | |
| 	 *
 | |
| 	 * In addition we set the nodirty flag so metaslab_weight() does
 | |
| 	 * not dirty the metaslab for future TXGs (e.g. when trying to
 | |
| 	 * force condensing to upgrade the metaslab spacemaps).
 | |
| 	 */
 | |
| 	msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
 | |
| 
 | |
| 	VERIFY3U(max_segsize, ==, msp->ms_max_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the weight type changed then there is no point in doing
 | |
| 	 * verification. Revert fields to their original values.
 | |
| 	 */
 | |
| 	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
 | |
| 	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
 | |
| 		msp->ms_fragmentation = frag;
 | |
| 		msp->ms_weight = weight;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	VERIFY3U(msp->ms_fragmentation, ==, frag);
 | |
| 	VERIFY3U(msp->ms_weight, ==, weight);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
 | |
|  * this class that was used longest ago, and attempt to unload it.  We don't
 | |
|  * want to spend too much time in this loop to prevent performance
 | |
|  * degradation, and we expect that most of the time this operation will
 | |
|  * succeed. Between that and the normal unloading processing during txg sync,
 | |
|  * we expect this to keep the metaslab memory usage under control.
 | |
|  */
 | |
| static void
 | |
| metaslab_potentially_evict(metaslab_class_t *mc)
 | |
| {
 | |
| #ifdef _KERNEL
 | |
| 	uint64_t allmem = arc_all_memory();
 | |
| 	uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
 | |
| 	uint64_t size =	spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
 | |
| 	uint_t tries = 0;
 | |
| 	for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
 | |
| 	    tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
 | |
| 	    tries++) {
 | |
| 		unsigned int idx = multilist_get_random_index(
 | |
| 		    &mc->mc_metaslab_txg_list);
 | |
| 		multilist_sublist_t *mls =
 | |
| 		    multilist_sublist_lock_idx(&mc->mc_metaslab_txg_list, idx);
 | |
| 		metaslab_t *msp = multilist_sublist_head(mls);
 | |
| 		multilist_sublist_unlock(mls);
 | |
| 		while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
 | |
| 		    inuse * size) {
 | |
| 			VERIFY3P(mls, ==, multilist_sublist_lock_idx(
 | |
| 			    &mc->mc_metaslab_txg_list, idx));
 | |
| 			ASSERT3U(idx, ==,
 | |
| 			    metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
 | |
| 
 | |
| 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
 | |
| 				multilist_sublist_unlock(mls);
 | |
| 				break;
 | |
| 			}
 | |
| 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
 | |
| 			multilist_sublist_unlock(mls);
 | |
| 			/*
 | |
| 			 * If the metaslab is currently loading there are two
 | |
| 			 * cases. If it's the metaslab we're evicting, we
 | |
| 			 * can't continue on or we'll panic when we attempt to
 | |
| 			 * recursively lock the mutex. If it's another
 | |
| 			 * metaslab that's loading, it can be safely skipped,
 | |
| 			 * since we know it's very new and therefore not a
 | |
| 			 * good eviction candidate. We check later once the
 | |
| 			 * lock is held that the metaslab is fully loaded
 | |
| 			 * before actually unloading it.
 | |
| 			 */
 | |
| 			if (msp->ms_loading) {
 | |
| 				msp = next_msp;
 | |
| 				inuse =
 | |
| 				    spl_kmem_cache_inuse(zfs_btree_leaf_cache);
 | |
| 				continue;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * We can't unload metaslabs with no spacemap because
 | |
| 			 * they're not ready to be unloaded yet. We can't
 | |
| 			 * unload metaslabs with outstanding allocations
 | |
| 			 * because doing so could cause the metaslab's weight
 | |
| 			 * to decrease while it's unloaded, which violates an
 | |
| 			 * invariant that we use to prevent unnecessary
 | |
| 			 * loading. We also don't unload metaslabs that are
 | |
| 			 * currently active because they are high-weight
 | |
| 			 * metaslabs that are likely to be used in the near
 | |
| 			 * future.
 | |
| 			 */
 | |
| 			mutex_enter(&msp->ms_lock);
 | |
| 			if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
 | |
| 			    msp->ms_allocating_total == 0) {
 | |
| 				metaslab_unload(msp);
 | |
| 			}
 | |
| 			mutex_exit(&msp->ms_lock);
 | |
| 			msp = next_msp;
 | |
| 			inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
 | |
| 		}
 | |
| 	}
 | |
| #else
 | |
| 	(void) mc, (void) zfs_metaslab_mem_limit;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int
 | |
| metaslab_load_impl(metaslab_t *msp)
 | |
| {
 | |
| 	int error = 0;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 	ASSERT(msp->ms_loading);
 | |
| 	ASSERT(!msp->ms_condensing);
 | |
| 
 | |
| 	/*
 | |
| 	 * We temporarily drop the lock to unblock other operations while we
 | |
| 	 * are reading the space map. Therefore, metaslab_sync() and
 | |
| 	 * metaslab_sync_done() can run at the same time as we do.
 | |
| 	 *
 | |
| 	 * If we are using the log space maps, metaslab_sync() can't write to
 | |
| 	 * the metaslab's space map while we are loading as we only write to
 | |
| 	 * it when we are flushing the metaslab, and that can't happen while
 | |
| 	 * we are loading it.
 | |
| 	 *
 | |
| 	 * If we are not using log space maps though, metaslab_sync() can
 | |
| 	 * append to the space map while we are loading. Therefore we load
 | |
| 	 * only entries that existed when we started the load. Additionally,
 | |
| 	 * metaslab_sync_done() has to wait for the load to complete because
 | |
| 	 * there are potential races like metaslab_load() loading parts of the
 | |
| 	 * space map that are currently being appended by metaslab_sync(). If
 | |
| 	 * we didn't, the ms_allocatable would have entries that
 | |
| 	 * metaslab_sync_done() would try to re-add later.
 | |
| 	 *
 | |
| 	 * That's why before dropping the lock we remember the synced length
 | |
| 	 * of the metaslab and read up to that point of the space map,
 | |
| 	 * ignoring entries appended by metaslab_sync() that happen after we
 | |
| 	 * drop the lock.
 | |
| 	 */
 | |
| 	uint64_t length = msp->ms_synced_length;
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| 
 | |
| 	hrtime_t load_start = gethrtime();
 | |
| 	metaslab_rt_arg_t *mrap;
 | |
| 	if (msp->ms_allocatable->rt_arg == NULL) {
 | |
| 		mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
 | |
| 	} else {
 | |
| 		mrap = msp->ms_allocatable->rt_arg;
 | |
| 		msp->ms_allocatable->rt_ops = NULL;
 | |
| 		msp->ms_allocatable->rt_arg = NULL;
 | |
| 	}
 | |
| 	mrap->mra_bt = &msp->ms_allocatable_by_size;
 | |
| 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
 | |
| 
 | |
| 	if (msp->ms_sm != NULL) {
 | |
| 		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
 | |
| 		    SM_FREE, length);
 | |
| 
 | |
| 		/* Now, populate the size-sorted tree. */
 | |
| 		metaslab_rt_create(msp->ms_allocatable, mrap);
 | |
| 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
 | |
| 		msp->ms_allocatable->rt_arg = mrap;
 | |
| 
 | |
| 		struct mssa_arg arg = {0};
 | |
| 		arg.rt = msp->ms_allocatable;
 | |
| 		arg.mra = mrap;
 | |
| 		range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
 | |
| 		    &arg);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Add the size-sorted tree first, since we don't need to load
 | |
| 		 * the metaslab from the spacemap.
 | |
| 		 */
 | |
| 		metaslab_rt_create(msp->ms_allocatable, mrap);
 | |
| 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
 | |
| 		msp->ms_allocatable->rt_arg = mrap;
 | |
| 		/*
 | |
| 		 * The space map has not been allocated yet, so treat
 | |
| 		 * all the space in the metaslab as free and add it to the
 | |
| 		 * ms_allocatable tree.
 | |
| 		 */
 | |
| 		range_tree_add(msp->ms_allocatable,
 | |
| 		    msp->ms_start, msp->ms_size);
 | |
| 
 | |
| 		if (msp->ms_new) {
 | |
| 			/*
 | |
| 			 * If the ms_sm doesn't exist, this means that this
 | |
| 			 * metaslab hasn't gone through metaslab_sync() and
 | |
| 			 * thus has never been dirtied. So we shouldn't
 | |
| 			 * expect any unflushed allocs or frees from previous
 | |
| 			 * TXGs.
 | |
| 			 */
 | |
| 			ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
 | |
| 			ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
 | |
| 	 * changing the ms_sm (or log_sm) and the metaslab's range trees
 | |
| 	 * while we are about to use them and populate the ms_allocatable.
 | |
| 	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
 | |
| 	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
 | |
| 	 */
 | |
| 	mutex_enter(&msp->ms_sync_lock);
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 
 | |
| 	ASSERT(!msp->ms_condensing);
 | |
| 	ASSERT(!msp->ms_flushing);
 | |
| 
 | |
| 	if (error != 0) {
 | |
| 		mutex_exit(&msp->ms_sync_lock);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT3P(msp->ms_group, !=, NULL);
 | |
| 	msp->ms_loaded = B_TRUE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Apply all the unflushed changes to ms_allocatable right
 | |
| 	 * away so any manipulations we do below have a clear view
 | |
| 	 * of what is allocated and what is free.
 | |
| 	 */
 | |
| 	range_tree_walk(msp->ms_unflushed_allocs,
 | |
| 	    range_tree_remove, msp->ms_allocatable);
 | |
| 	range_tree_walk(msp->ms_unflushed_frees,
 | |
| 	    range_tree_add, msp->ms_allocatable);
 | |
| 
 | |
| 	ASSERT3P(msp->ms_group, !=, NULL);
 | |
| 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | |
| 	if (spa_syncing_log_sm(spa) != NULL) {
 | |
| 		ASSERT(spa_feature_is_enabled(spa,
 | |
| 		    SPA_FEATURE_LOG_SPACEMAP));
 | |
| 
 | |
| 		/*
 | |
| 		 * If we use a log space map we add all the segments
 | |
| 		 * that are in ms_unflushed_frees so they are available
 | |
| 		 * for allocation.
 | |
| 		 *
 | |
| 		 * ms_allocatable needs to contain all free segments
 | |
| 		 * that are ready for allocations (thus not segments
 | |
| 		 * from ms_freeing, ms_freed, and the ms_defer trees).
 | |
| 		 * But if we grab the lock in this code path at a sync
 | |
| 		 * pass later that 1, then it also contains the
 | |
| 		 * segments of ms_freed (they were added to it earlier
 | |
| 		 * in this path through ms_unflushed_frees). So we
 | |
| 		 * need to remove all the segments that exist in
 | |
| 		 * ms_freed from ms_allocatable as they will be added
 | |
| 		 * later in metaslab_sync_done().
 | |
| 		 *
 | |
| 		 * When there's no log space map, the ms_allocatable
 | |
| 		 * correctly doesn't contain any segments that exist
 | |
| 		 * in ms_freed [see ms_synced_length].
 | |
| 		 */
 | |
| 		range_tree_walk(msp->ms_freed,
 | |
| 		    range_tree_remove, msp->ms_allocatable);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are not using the log space map, ms_allocatable
 | |
| 	 * contains the segments that exist in the ms_defer trees
 | |
| 	 * [see ms_synced_length]. Thus we need to remove them
 | |
| 	 * from ms_allocatable as they will be added again in
 | |
| 	 * metaslab_sync_done().
 | |
| 	 *
 | |
| 	 * If we are using the log space map, ms_allocatable still
 | |
| 	 * contains the segments that exist in the ms_defer trees.
 | |
| 	 * Not because it read them through the ms_sm though. But
 | |
| 	 * because these segments are part of ms_unflushed_frees
 | |
| 	 * whose segments we add to ms_allocatable earlier in this
 | |
| 	 * code path.
 | |
| 	 */
 | |
| 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 | |
| 		range_tree_walk(msp->ms_defer[t],
 | |
| 		    range_tree_remove, msp->ms_allocatable);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Call metaslab_recalculate_weight_and_sort() now that the
 | |
| 	 * metaslab is loaded so we get the metaslab's real weight.
 | |
| 	 *
 | |
| 	 * Unless this metaslab was created with older software and
 | |
| 	 * has not yet been converted to use segment-based weight, we
 | |
| 	 * expect the new weight to be better or equal to the weight
 | |
| 	 * that the metaslab had while it was not loaded. This is
 | |
| 	 * because the old weight does not take into account the
 | |
| 	 * consolidation of adjacent segments between TXGs. [see
 | |
| 	 * comment for ms_synchist and ms_deferhist[] for more info]
 | |
| 	 */
 | |
| 	uint64_t weight = msp->ms_weight;
 | |
| 	uint64_t max_size = msp->ms_max_size;
 | |
| 	metaslab_recalculate_weight_and_sort(msp);
 | |
| 	if (!WEIGHT_IS_SPACEBASED(weight))
 | |
| 		ASSERT3U(weight, <=, msp->ms_weight);
 | |
| 	msp->ms_max_size = metaslab_largest_allocatable(msp);
 | |
| 	ASSERT3U(max_size, <=, msp->ms_max_size);
 | |
| 	hrtime_t load_end = gethrtime();
 | |
| 	msp->ms_load_time = load_end;
 | |
| 	zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
 | |
| 	    "ms_id %llu, smp_length %llu, "
 | |
| 	    "unflushed_allocs %llu, unflushed_frees %llu, "
 | |
| 	    "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
 | |
| 	    "loading_time %lld ms, ms_max_size %llu, "
 | |
| 	    "max size error %lld, "
 | |
| 	    "old_weight %llx, new_weight %llx",
 | |
| 	    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
 | |
| 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
 | |
| 	    (u_longlong_t)msp->ms_id,
 | |
| 	    (u_longlong_t)space_map_length(msp->ms_sm),
 | |
| 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
 | |
| 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
 | |
| 	    (u_longlong_t)range_tree_space(msp->ms_freed),
 | |
| 	    (u_longlong_t)range_tree_space(msp->ms_defer[0]),
 | |
| 	    (u_longlong_t)range_tree_space(msp->ms_defer[1]),
 | |
| 	    (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
 | |
| 	    (longlong_t)((load_end - load_start) / 1000000),
 | |
| 	    (u_longlong_t)msp->ms_max_size,
 | |
| 	    (u_longlong_t)msp->ms_max_size - max_size,
 | |
| 	    (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
 | |
| 
 | |
| 	metaslab_verify_space(msp, spa_syncing_txg(spa));
 | |
| 	mutex_exit(&msp->ms_sync_lock);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| int
 | |
| metaslab_load(metaslab_t *msp)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	/*
 | |
| 	 * There may be another thread loading the same metaslab, if that's
 | |
| 	 * the case just wait until the other thread is done and return.
 | |
| 	 */
 | |
| 	metaslab_load_wait(msp);
 | |
| 	if (msp->ms_loaded)
 | |
| 		return (0);
 | |
| 	VERIFY(!msp->ms_loading);
 | |
| 	ASSERT(!msp->ms_condensing);
 | |
| 
 | |
| 	/*
 | |
| 	 * We set the loading flag BEFORE potentially dropping the lock to
 | |
| 	 * wait for an ongoing flush (see ms_flushing below). This way other
 | |
| 	 * threads know that there is already a thread that is loading this
 | |
| 	 * metaslab.
 | |
| 	 */
 | |
| 	msp->ms_loading = B_TRUE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for any in-progress flushing to finish as we drop the ms_lock
 | |
| 	 * both here (during space_map_load()) and in metaslab_flush() (when
 | |
| 	 * we flush our changes to the ms_sm).
 | |
| 	 */
 | |
| 	if (msp->ms_flushing)
 | |
| 		metaslab_flush_wait(msp);
 | |
| 
 | |
| 	/*
 | |
| 	 * In the possibility that we were waiting for the metaslab to be
 | |
| 	 * flushed (where we temporarily dropped the ms_lock), ensure that
 | |
| 	 * no one else loaded the metaslab somehow.
 | |
| 	 */
 | |
| 	ASSERT(!msp->ms_loaded);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're loading a metaslab in the normal class, consider evicting
 | |
| 	 * another one to keep our memory usage under the limit defined by the
 | |
| 	 * zfs_metaslab_mem_limit tunable.
 | |
| 	 */
 | |
| 	if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
 | |
| 	    msp->ms_group->mg_class) {
 | |
| 		metaslab_potentially_evict(msp->ms_group->mg_class);
 | |
| 	}
 | |
| 
 | |
| 	int error = metaslab_load_impl(msp);
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 	msp->ms_loading = B_FALSE;
 | |
| 	cv_broadcast(&msp->ms_load_cv);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_unload(metaslab_t *msp)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	/*
 | |
| 	 * This can happen if a metaslab is selected for eviction (in
 | |
| 	 * metaslab_potentially_evict) and then unloaded during spa_sync (via
 | |
| 	 * metaslab_class_evict_old).
 | |
| 	 */
 | |
| 	if (!msp->ms_loaded)
 | |
| 		return;
 | |
| 
 | |
| 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
 | |
| 	msp->ms_loaded = B_FALSE;
 | |
| 	msp->ms_unload_time = gethrtime();
 | |
| 
 | |
| 	msp->ms_activation_weight = 0;
 | |
| 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
 | |
| 
 | |
| 	if (msp->ms_group != NULL) {
 | |
| 		metaslab_class_t *mc = msp->ms_group->mg_class;
 | |
| 		multilist_sublist_t *mls =
 | |
| 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
 | |
| 		if (multilist_link_active(&msp->ms_class_txg_node))
 | |
| 			multilist_sublist_remove(mls, msp);
 | |
| 		multilist_sublist_unlock(mls);
 | |
| 
 | |
| 		spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | |
| 		zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
 | |
| 		    "ms_id %llu, weight %llx, "
 | |
| 		    "selected txg %llu (%llu ms ago), alloc_txg %llu, "
 | |
| 		    "loaded %llu ms ago, max_size %llu",
 | |
| 		    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
 | |
| 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
 | |
| 		    (u_longlong_t)msp->ms_id,
 | |
| 		    (u_longlong_t)msp->ms_weight,
 | |
| 		    (u_longlong_t)msp->ms_selected_txg,
 | |
| 		    (u_longlong_t)(msp->ms_unload_time -
 | |
| 		    msp->ms_selected_time) / 1000 / 1000,
 | |
| 		    (u_longlong_t)msp->ms_alloc_txg,
 | |
| 		    (u_longlong_t)(msp->ms_unload_time -
 | |
| 		    msp->ms_load_time) / 1000 / 1000,
 | |
| 		    (u_longlong_t)msp->ms_max_size);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We explicitly recalculate the metaslab's weight based on its space
 | |
| 	 * map (as it is now not loaded). We want unload metaslabs to always
 | |
| 	 * have their weights calculated from the space map histograms, while
 | |
| 	 * loaded ones have it calculated from their in-core range tree
 | |
| 	 * [see metaslab_load()]. This way, the weight reflects the information
 | |
| 	 * available in-core, whether it is loaded or not.
 | |
| 	 *
 | |
| 	 * If ms_group == NULL means that we came here from metaslab_fini(),
 | |
| 	 * at which point it doesn't make sense for us to do the recalculation
 | |
| 	 * and the sorting.
 | |
| 	 */
 | |
| 	if (msp->ms_group != NULL)
 | |
| 		metaslab_recalculate_weight_and_sort(msp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We want to optimize the memory use of the per-metaslab range
 | |
|  * trees. To do this, we store the segments in the range trees in
 | |
|  * units of sectors, zero-indexing from the start of the metaslab. If
 | |
|  * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
 | |
|  * the ranges using two uint32_ts, rather than two uint64_ts.
 | |
|  */
 | |
| range_seg_type_t
 | |
| metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
 | |
|     uint64_t *start, uint64_t *shift)
 | |
| {
 | |
| 	if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
 | |
| 	    !zfs_metaslab_force_large_segs) {
 | |
| 		*shift = vdev->vdev_ashift;
 | |
| 		*start = msp->ms_start;
 | |
| 		return (RANGE_SEG32);
 | |
| 	} else {
 | |
| 		*shift = 0;
 | |
| 		*start = 0;
 | |
| 		return (RANGE_SEG64);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 	metaslab_class_t *mc = msp->ms_group->mg_class;
 | |
| 	multilist_sublist_t *mls =
 | |
| 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
 | |
| 	if (multilist_link_active(&msp->ms_class_txg_node))
 | |
| 		multilist_sublist_remove(mls, msp);
 | |
| 	msp->ms_selected_txg = txg;
 | |
| 	msp->ms_selected_time = gethrtime();
 | |
| 	multilist_sublist_insert_tail(mls, msp);
 | |
| 	multilist_sublist_unlock(mls);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
 | |
|     int64_t defer_delta, int64_t space_delta)
 | |
| {
 | |
| 	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
 | |
| 
 | |
| 	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
 | |
| 	ASSERT(vd->vdev_ms_count != 0);
 | |
| 
 | |
| 	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
 | |
| 	    vdev_deflated_space(vd, space_delta));
 | |
| }
 | |
| 
 | |
| int
 | |
| metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
 | |
|     uint64_t txg, metaslab_t **msp)
 | |
| {
 | |
| 	vdev_t *vd = mg->mg_vd;
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 	objset_t *mos = spa->spa_meta_objset;
 | |
| 	metaslab_t *ms;
 | |
| 	int error;
 | |
| 
 | |
| 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
 | |
| 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
 | |
| 	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
 | |
| 	multilist_link_init(&ms->ms_class_txg_node);
 | |
| 
 | |
| 	ms->ms_id = id;
 | |
| 	ms->ms_start = id << vd->vdev_ms_shift;
 | |
| 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
 | |
| 	ms->ms_allocator = -1;
 | |
| 	ms->ms_new = B_TRUE;
 | |
| 
 | |
| 	vdev_ops_t *ops = vd->vdev_ops;
 | |
| 	if (ops->vdev_op_metaslab_init != NULL)
 | |
| 		ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * We only open space map objects that already exist. All others
 | |
| 	 * will be opened when we finally allocate an object for it. For
 | |
| 	 * readonly pools there is no need to open the space map object.
 | |
| 	 *
 | |
| 	 * Note:
 | |
| 	 * When called from vdev_expand(), we can't call into the DMU as
 | |
| 	 * we are holding the spa_config_lock as a writer and we would
 | |
| 	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
 | |
| 	 * that case, the object parameter is zero though, so we won't
 | |
| 	 * call into the DMU.
 | |
| 	 */
 | |
| 	if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
 | |
| 	    !spa->spa_read_spacemaps)) {
 | |
| 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
 | |
| 		    ms->ms_size, vd->vdev_ashift);
 | |
| 
 | |
| 		if (error != 0) {
 | |
| 			kmem_free(ms, sizeof (metaslab_t));
 | |
| 			return (error);
 | |
| 		}
 | |
| 
 | |
| 		ASSERT(ms->ms_sm != NULL);
 | |
| 		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
 | |
| 	}
 | |
| 
 | |
| 	uint64_t shift, start;
 | |
| 	range_seg_type_t type =
 | |
| 	    metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
 | |
| 
 | |
| 	ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
 | |
| 	for (int t = 0; t < TXG_SIZE; t++) {
 | |
| 		ms->ms_allocating[t] = range_tree_create(NULL, type,
 | |
| 		    NULL, start, shift);
 | |
| 	}
 | |
| 	ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
 | |
| 	ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
 | |
| 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 | |
| 		ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
 | |
| 		    start, shift);
 | |
| 	}
 | |
| 	ms->ms_checkpointing =
 | |
| 	    range_tree_create(NULL, type, NULL, start, shift);
 | |
| 	ms->ms_unflushed_allocs =
 | |
| 	    range_tree_create(NULL, type, NULL, start, shift);
 | |
| 
 | |
| 	metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
 | |
| 	mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
 | |
| 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
 | |
| 	ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
 | |
| 	    type, mrap, start, shift);
 | |
| 
 | |
| 	ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
 | |
| 
 | |
| 	metaslab_group_add(mg, ms);
 | |
| 	metaslab_set_fragmentation(ms, B_FALSE);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're opening an existing pool (txg == 0) or creating
 | |
| 	 * a new one (txg == TXG_INITIAL), all space is available now.
 | |
| 	 * If we're adding space to an existing pool, the new space
 | |
| 	 * does not become available until after this txg has synced.
 | |
| 	 * The metaslab's weight will also be initialized when we sync
 | |
| 	 * out this txg. This ensures that we don't attempt to allocate
 | |
| 	 * from it before we have initialized it completely.
 | |
| 	 */
 | |
| 	if (txg <= TXG_INITIAL) {
 | |
| 		metaslab_sync_done(ms, 0);
 | |
| 		metaslab_space_update(vd, mg->mg_class,
 | |
| 		    metaslab_allocated_space(ms), 0, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (txg != 0) {
 | |
| 		vdev_dirty(vd, 0, NULL, txg);
 | |
| 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
 | |
| 	}
 | |
| 
 | |
| 	*msp = ms;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_fini_flush_data(metaslab_t *msp)
 | |
| {
 | |
| 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | |
| 
 | |
| 	if (metaslab_unflushed_txg(msp) == 0) {
 | |
| 		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
 | |
| 		    ==, NULL);
 | |
| 		return;
 | |
| 	}
 | |
| 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
 | |
| 
 | |
| 	mutex_enter(&spa->spa_flushed_ms_lock);
 | |
| 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
 | |
| 	mutex_exit(&spa->spa_flushed_ms_lock);
 | |
| 
 | |
| 	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
 | |
| 	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
 | |
| 	    metaslab_unflushed_dirty(msp));
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| metaslab_unflushed_changes_memused(metaslab_t *ms)
 | |
| {
 | |
| 	return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
 | |
| 	    range_tree_numsegs(ms->ms_unflushed_frees)) *
 | |
| 	    ms->ms_unflushed_allocs->rt_root.bt_elem_size);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_fini(metaslab_t *msp)
 | |
| {
 | |
| 	metaslab_group_t *mg = msp->ms_group;
 | |
| 	vdev_t *vd = mg->mg_vd;
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 
 | |
| 	metaslab_fini_flush_data(msp);
 | |
| 
 | |
| 	metaslab_group_remove(mg, msp);
 | |
| 
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 	VERIFY(msp->ms_group == NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this metaslab hasn't been through metaslab_sync_done() yet its
 | |
| 	 * space hasn't been accounted for in its vdev and doesn't need to be
 | |
| 	 * subtracted.
 | |
| 	 */
 | |
| 	if (!msp->ms_new) {
 | |
| 		metaslab_space_update(vd, mg->mg_class,
 | |
| 		    -metaslab_allocated_space(msp), 0, -msp->ms_size);
 | |
| 
 | |
| 	}
 | |
| 	space_map_close(msp->ms_sm);
 | |
| 	msp->ms_sm = NULL;
 | |
| 
 | |
| 	metaslab_unload(msp);
 | |
| 
 | |
| 	range_tree_destroy(msp->ms_allocatable);
 | |
| 	range_tree_destroy(msp->ms_freeing);
 | |
| 	range_tree_destroy(msp->ms_freed);
 | |
| 
 | |
| 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
 | |
| 	    metaslab_unflushed_changes_memused(msp));
 | |
| 	spa->spa_unflushed_stats.sus_memused -=
 | |
| 	    metaslab_unflushed_changes_memused(msp);
 | |
| 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
 | |
| 	range_tree_destroy(msp->ms_unflushed_allocs);
 | |
| 	range_tree_destroy(msp->ms_checkpointing);
 | |
| 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
 | |
| 	range_tree_destroy(msp->ms_unflushed_frees);
 | |
| 
 | |
| 	for (int t = 0; t < TXG_SIZE; t++) {
 | |
| 		range_tree_destroy(msp->ms_allocating[t]);
 | |
| 	}
 | |
| 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 | |
| 		range_tree_destroy(msp->ms_defer[t]);
 | |
| 	}
 | |
| 	ASSERT0(msp->ms_deferspace);
 | |
| 
 | |
| 	for (int t = 0; t < TXG_SIZE; t++)
 | |
| 		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
 | |
| 
 | |
| 	range_tree_vacate(msp->ms_trim, NULL, NULL);
 | |
| 	range_tree_destroy(msp->ms_trim);
 | |
| 
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| 	cv_destroy(&msp->ms_load_cv);
 | |
| 	cv_destroy(&msp->ms_flush_cv);
 | |
| 	mutex_destroy(&msp->ms_lock);
 | |
| 	mutex_destroy(&msp->ms_sync_lock);
 | |
| 	ASSERT3U(msp->ms_allocator, ==, -1);
 | |
| 
 | |
| 	kmem_free(msp, sizeof (metaslab_t));
 | |
| }
 | |
| 
 | |
| #define	FRAGMENTATION_TABLE_SIZE	17
 | |
| 
 | |
| /*
 | |
|  * This table defines a segment size based fragmentation metric that will
 | |
|  * allow each metaslab to derive its own fragmentation value. This is done
 | |
|  * by calculating the space in each bucket of the spacemap histogram and
 | |
|  * multiplying that by the fragmentation metric in this table. Doing
 | |
|  * this for all buckets and dividing it by the total amount of free
 | |
|  * space in this metaslab (i.e. the total free space in all buckets) gives
 | |
|  * us the fragmentation metric. This means that a high fragmentation metric
 | |
|  * equates to most of the free space being comprised of small segments.
 | |
|  * Conversely, if the metric is low, then most of the free space is in
 | |
|  * large segments. A 10% change in fragmentation equates to approximately
 | |
|  * double the number of segments.
 | |
|  *
 | |
|  * This table defines 0% fragmented space using 16MB segments. Testing has
 | |
|  * shown that segments that are greater than or equal to 16MB do not suffer
 | |
|  * from drastic performance problems. Using this value, we derive the rest
 | |
|  * of the table. Since the fragmentation value is never stored on disk, it
 | |
|  * is possible to change these calculations in the future.
 | |
|  */
 | |
| static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
 | |
| 	100,	/* 512B	*/
 | |
| 	100,	/* 1K	*/
 | |
| 	98,	/* 2K	*/
 | |
| 	95,	/* 4K	*/
 | |
| 	90,	/* 8K	*/
 | |
| 	80,	/* 16K	*/
 | |
| 	70,	/* 32K	*/
 | |
| 	60,	/* 64K	*/
 | |
| 	50,	/* 128K	*/
 | |
| 	40,	/* 256K	*/
 | |
| 	30,	/* 512K	*/
 | |
| 	20,	/* 1M	*/
 | |
| 	15,	/* 2M	*/
 | |
| 	10,	/* 4M	*/
 | |
| 	5,	/* 8M	*/
 | |
| 	0	/* 16M	*/
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
 | |
|  * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
 | |
|  * been upgraded and does not support this metric. Otherwise, the return
 | |
|  * value should be in the range [0, 100].
 | |
|  */
 | |
| static void
 | |
| metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
 | |
| {
 | |
| 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | |
| 	uint64_t fragmentation = 0;
 | |
| 	uint64_t total = 0;
 | |
| 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
 | |
| 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
 | |
| 
 | |
| 	if (!feature_enabled) {
 | |
| 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A null space map means that the entire metaslab is free
 | |
| 	 * and thus is not fragmented.
 | |
| 	 */
 | |
| 	if (msp->ms_sm == NULL) {
 | |
| 		msp->ms_fragmentation = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this metaslab's space map has not been upgraded, flag it
 | |
| 	 * so that we upgrade next time we encounter it.
 | |
| 	 */
 | |
| 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
 | |
| 		uint64_t txg = spa_syncing_txg(spa);
 | |
| 		vdev_t *vd = msp->ms_group->mg_vd;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we've reached the final dirty txg, then we must
 | |
| 		 * be shutting down the pool. We don't want to dirty
 | |
| 		 * any data past this point so skip setting the condense
 | |
| 		 * flag. We can retry this action the next time the pool
 | |
| 		 * is imported. We also skip marking this metaslab for
 | |
| 		 * condensing if the caller has explicitly set nodirty.
 | |
| 		 */
 | |
| 		if (!nodirty &&
 | |
| 		    spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
 | |
| 			msp->ms_condense_wanted = B_TRUE;
 | |
| 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
 | |
| 			zfs_dbgmsg("txg %llu, requesting force condense: "
 | |
| 			    "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
 | |
| 			    (u_longlong_t)msp->ms_id,
 | |
| 			    (u_longlong_t)vd->vdev_id);
 | |
| 		}
 | |
| 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
 | |
| 		uint64_t space = 0;
 | |
| 		uint8_t shift = msp->ms_sm->sm_shift;
 | |
| 
 | |
| 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
 | |
| 		    FRAGMENTATION_TABLE_SIZE - 1);
 | |
| 
 | |
| 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
 | |
| 		total += space;
 | |
| 
 | |
| 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
 | |
| 		fragmentation += space * zfs_frag_table[idx];
 | |
| 	}
 | |
| 
 | |
| 	if (total > 0)
 | |
| 		fragmentation /= total;
 | |
| 	ASSERT3U(fragmentation, <=, 100);
 | |
| 
 | |
| 	msp->ms_fragmentation = fragmentation;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute a weight -- a selection preference value -- for the given metaslab.
 | |
|  * This is based on the amount of free space, the level of fragmentation,
 | |
|  * the LBA range, and whether the metaslab is loaded.
 | |
|  */
 | |
| static uint64_t
 | |
| metaslab_space_weight(metaslab_t *msp)
 | |
| {
 | |
| 	metaslab_group_t *mg = msp->ms_group;
 | |
| 	vdev_t *vd = mg->mg_vd;
 | |
| 	uint64_t weight, space;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	/*
 | |
| 	 * The baseline weight is the metaslab's free space.
 | |
| 	 */
 | |
| 	space = msp->ms_size - metaslab_allocated_space(msp);
 | |
| 
 | |
| 	if (metaslab_fragmentation_factor_enabled &&
 | |
| 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
 | |
| 		/*
 | |
| 		 * Use the fragmentation information to inversely scale
 | |
| 		 * down the baseline weight. We need to ensure that we
 | |
| 		 * don't exclude this metaslab completely when it's 100%
 | |
| 		 * fragmented. To avoid this we reduce the fragmented value
 | |
| 		 * by 1.
 | |
| 		 */
 | |
| 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
 | |
| 
 | |
| 		/*
 | |
| 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
 | |
| 		 * this metaslab again. The fragmentation metric may have
 | |
| 		 * decreased the space to something smaller than
 | |
| 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
 | |
| 		 * so that we can consume any remaining space.
 | |
| 		 */
 | |
| 		if (space > 0 && space < SPA_MINBLOCKSIZE)
 | |
| 			space = SPA_MINBLOCKSIZE;
 | |
| 	}
 | |
| 	weight = space;
 | |
| 
 | |
| 	/*
 | |
| 	 * Modern disks have uniform bit density and constant angular velocity.
 | |
| 	 * Therefore, the outer recording zones are faster (higher bandwidth)
 | |
| 	 * than the inner zones by the ratio of outer to inner track diameter,
 | |
| 	 * which is typically around 2:1.  We account for this by assigning
 | |
| 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
 | |
| 	 * In effect, this means that we'll select the metaslab with the most
 | |
| 	 * free bandwidth rather than simply the one with the most free space.
 | |
| 	 */
 | |
| 	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
 | |
| 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
 | |
| 		ASSERT(weight >= space && weight <= 2 * space);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this metaslab is one we're actively using, adjust its
 | |
| 	 * weight to make it preferable to any inactive metaslab so
 | |
| 	 * we'll polish it off. If the fragmentation on this metaslab
 | |
| 	 * has exceed our threshold, then don't mark it active.
 | |
| 	 */
 | |
| 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
 | |
| 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
 | |
| 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
 | |
| 	}
 | |
| 
 | |
| 	WEIGHT_SET_SPACEBASED(weight);
 | |
| 	return (weight);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the weight of the specified metaslab, according to the segment-based
 | |
|  * weighting algorithm. The metaslab must be loaded. This function can
 | |
|  * be called within a sync pass since it relies only on the metaslab's
 | |
|  * range tree which is always accurate when the metaslab is loaded.
 | |
|  */
 | |
| static uint64_t
 | |
| metaslab_weight_from_range_tree(metaslab_t *msp)
 | |
| {
 | |
| 	uint64_t weight = 0;
 | |
| 	uint32_t segments = 0;
 | |
| 
 | |
| 	ASSERT(msp->ms_loaded);
 | |
| 
 | |
| 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
 | |
| 	    i--) {
 | |
| 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
 | |
| 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
 | |
| 
 | |
| 		segments <<= 1;
 | |
| 		segments += msp->ms_allocatable->rt_histogram[i];
 | |
| 
 | |
| 		/*
 | |
| 		 * The range tree provides more precision than the space map
 | |
| 		 * and must be downgraded so that all values fit within the
 | |
| 		 * space map's histogram. This allows us to compare loaded
 | |
| 		 * vs. unloaded metaslabs to determine which metaslab is
 | |
| 		 * considered "best".
 | |
| 		 */
 | |
| 		if (i > max_idx)
 | |
| 			continue;
 | |
| 
 | |
| 		if (segments != 0) {
 | |
| 			WEIGHT_SET_COUNT(weight, segments);
 | |
| 			WEIGHT_SET_INDEX(weight, i);
 | |
| 			WEIGHT_SET_ACTIVE(weight, 0);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return (weight);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the weight based on the on-disk histogram. Should be applied
 | |
|  * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
 | |
|  * give results consistent with the on-disk state
 | |
|  */
 | |
| static uint64_t
 | |
| metaslab_weight_from_spacemap(metaslab_t *msp)
 | |
| {
 | |
| 	space_map_t *sm = msp->ms_sm;
 | |
| 	ASSERT(!msp->ms_loaded);
 | |
| 	ASSERT(sm != NULL);
 | |
| 	ASSERT3U(space_map_object(sm), !=, 0);
 | |
| 	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
 | |
| 
 | |
| 	/*
 | |
| 	 * Create a joint histogram from all the segments that have made
 | |
| 	 * it to the metaslab's space map histogram, that are not yet
 | |
| 	 * available for allocation because they are still in the freeing
 | |
| 	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
 | |
| 	 * these segments from the space map's histogram to get a more
 | |
| 	 * accurate weight.
 | |
| 	 */
 | |
| 	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
 | |
| 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
 | |
| 		deferspace_histogram[i] += msp->ms_synchist[i];
 | |
| 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 | |
| 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
 | |
| 			deferspace_histogram[i] += msp->ms_deferhist[t][i];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	uint64_t weight = 0;
 | |
| 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
 | |
| 		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
 | |
| 		    deferspace_histogram[i]);
 | |
| 		uint64_t count =
 | |
| 		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
 | |
| 		if (count != 0) {
 | |
| 			WEIGHT_SET_COUNT(weight, count);
 | |
| 			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
 | |
| 			WEIGHT_SET_ACTIVE(weight, 0);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return (weight);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute a segment-based weight for the specified metaslab. The weight
 | |
|  * is determined by highest bucket in the histogram. The information
 | |
|  * for the highest bucket is encoded into the weight value.
 | |
|  */
 | |
| static uint64_t
 | |
| metaslab_segment_weight(metaslab_t *msp)
 | |
| {
 | |
| 	metaslab_group_t *mg = msp->ms_group;
 | |
| 	uint64_t weight = 0;
 | |
| 	uint8_t shift = mg->mg_vd->vdev_ashift;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	/*
 | |
| 	 * The metaslab is completely free.
 | |
| 	 */
 | |
| 	if (metaslab_allocated_space(msp) == 0) {
 | |
| 		int idx = highbit64(msp->ms_size) - 1;
 | |
| 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
 | |
| 
 | |
| 		if (idx < max_idx) {
 | |
| 			WEIGHT_SET_COUNT(weight, 1ULL);
 | |
| 			WEIGHT_SET_INDEX(weight, idx);
 | |
| 		} else {
 | |
| 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
 | |
| 			WEIGHT_SET_INDEX(weight, max_idx);
 | |
| 		}
 | |
| 		WEIGHT_SET_ACTIVE(weight, 0);
 | |
| 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
 | |
| 		return (weight);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the metaslab is fully allocated then just make the weight 0.
 | |
| 	 */
 | |
| 	if (metaslab_allocated_space(msp) == msp->ms_size)
 | |
| 		return (0);
 | |
| 	/*
 | |
| 	 * If the metaslab is already loaded, then use the range tree to
 | |
| 	 * determine the weight. Otherwise, we rely on the space map information
 | |
| 	 * to generate the weight.
 | |
| 	 */
 | |
| 	if (msp->ms_loaded) {
 | |
| 		weight = metaslab_weight_from_range_tree(msp);
 | |
| 	} else {
 | |
| 		weight = metaslab_weight_from_spacemap(msp);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the metaslab was active the last time we calculated its weight
 | |
| 	 * then keep it active. We want to consume the entire region that
 | |
| 	 * is associated with this weight.
 | |
| 	 */
 | |
| 	if (msp->ms_activation_weight != 0 && weight != 0)
 | |
| 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
 | |
| 	return (weight);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine if we should attempt to allocate from this metaslab. If the
 | |
|  * metaslab is loaded, then we can determine if the desired allocation
 | |
|  * can be satisfied by looking at the size of the maximum free segment
 | |
|  * on that metaslab. Otherwise, we make our decision based on the metaslab's
 | |
|  * weight. For segment-based weighting we can determine the maximum
 | |
|  * allocation based on the index encoded in its value. For space-based
 | |
|  * weights we rely on the entire weight (excluding the weight-type bit).
 | |
|  */
 | |
| static boolean_t
 | |
| metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
 | |
| {
 | |
| 	/*
 | |
| 	 * This case will usually but not always get caught by the checks below;
 | |
| 	 * metaslabs can be loaded by various means, including the trim and
 | |
| 	 * initialize code. Once that happens, without this check they are
 | |
| 	 * allocatable even before they finish their first txg sync.
 | |
| 	 */
 | |
| 	if (unlikely(msp->ms_new))
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the metaslab is loaded, ms_max_size is definitive and we can use
 | |
| 	 * the fast check. If it's not, the ms_max_size is a lower bound (once
 | |
| 	 * set), and we should use the fast check as long as we're not in
 | |
| 	 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
 | |
| 	 * seconds since the metaslab was unloaded.
 | |
| 	 */
 | |
| 	if (msp->ms_loaded ||
 | |
| 	    (msp->ms_max_size != 0 && !try_hard && gethrtime() <
 | |
| 	    msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
 | |
| 		return (msp->ms_max_size >= asize);
 | |
| 
 | |
| 	boolean_t should_allocate;
 | |
| 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
 | |
| 		/*
 | |
| 		 * The metaslab segment weight indicates segments in the
 | |
| 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
 | |
| 		 * Since the asize might be in the middle of the range, we
 | |
| 		 * should attempt the allocation if asize < 2^(i+1).
 | |
| 		 */
 | |
| 		should_allocate = (asize <
 | |
| 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
 | |
| 	} else {
 | |
| 		should_allocate = (asize <=
 | |
| 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
 | |
| 	}
 | |
| 
 | |
| 	return (should_allocate);
 | |
| }
 | |
| 
 | |
| static uint64_t
 | |
| metaslab_weight(metaslab_t *msp, boolean_t nodirty)
 | |
| {
 | |
| 	vdev_t *vd = msp->ms_group->mg_vd;
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 	uint64_t weight;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	metaslab_set_fragmentation(msp, nodirty);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the maximum size. If the metaslab is loaded, this will
 | |
| 	 * ensure that we get an accurate maximum size if newly freed space
 | |
| 	 * has been added back into the free tree. If the metaslab is
 | |
| 	 * unloaded, we check if there's a larger free segment in the
 | |
| 	 * unflushed frees. This is a lower bound on the largest allocatable
 | |
| 	 * segment size. Coalescing of adjacent entries may reveal larger
 | |
| 	 * allocatable segments, but we aren't aware of those until loading
 | |
| 	 * the space map into a range tree.
 | |
| 	 */
 | |
| 	if (msp->ms_loaded) {
 | |
| 		msp->ms_max_size = metaslab_largest_allocatable(msp);
 | |
| 	} else {
 | |
| 		msp->ms_max_size = MAX(msp->ms_max_size,
 | |
| 		    metaslab_largest_unflushed_free(msp));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Segment-based weighting requires space map histogram support.
 | |
| 	 */
 | |
| 	if (zfs_metaslab_segment_weight_enabled &&
 | |
| 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
 | |
| 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
 | |
| 	    sizeof (space_map_phys_t))) {
 | |
| 		weight = metaslab_segment_weight(msp);
 | |
| 	} else {
 | |
| 		weight = metaslab_space_weight(msp);
 | |
| 	}
 | |
| 	return (weight);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_recalculate_weight_and_sort(metaslab_t *msp)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	/* note: we preserve the mask (e.g. indication of primary, etc..) */
 | |
| 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
 | |
| 	metaslab_group_sort(msp->ms_group, msp,
 | |
| 	    metaslab_weight(msp, B_FALSE) | was_active);
 | |
| }
 | |
| 
 | |
| static int
 | |
| metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
 | |
|     int allocator, uint64_t activation_weight)
 | |
| {
 | |
| 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're activating for the claim code, we don't want to actually
 | |
| 	 * set the metaslab up for a specific allocator.
 | |
| 	 */
 | |
| 	if (activation_weight == METASLAB_WEIGHT_CLAIM) {
 | |
| 		ASSERT0(msp->ms_activation_weight);
 | |
| 		msp->ms_activation_weight = msp->ms_weight;
 | |
| 		metaslab_group_sort(mg, msp, msp->ms_weight |
 | |
| 		    activation_weight);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
 | |
| 	    &mga->mga_primary : &mga->mga_secondary);
 | |
| 
 | |
| 	mutex_enter(&mg->mg_lock);
 | |
| 	if (*mspp != NULL) {
 | |
| 		mutex_exit(&mg->mg_lock);
 | |
| 		return (EEXIST);
 | |
| 	}
 | |
| 
 | |
| 	*mspp = msp;
 | |
| 	ASSERT3S(msp->ms_allocator, ==, -1);
 | |
| 	msp->ms_allocator = allocator;
 | |
| 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
 | |
| 
 | |
| 	ASSERT0(msp->ms_activation_weight);
 | |
| 	msp->ms_activation_weight = msp->ms_weight;
 | |
| 	metaslab_group_sort_impl(mg, msp,
 | |
| 	    msp->ms_weight | activation_weight);
 | |
| 	mutex_exit(&mg->mg_lock);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	/*
 | |
| 	 * The current metaslab is already activated for us so there
 | |
| 	 * is nothing to do. Already activated though, doesn't mean
 | |
| 	 * that this metaslab is activated for our allocator nor our
 | |
| 	 * requested activation weight. The metaslab could have started
 | |
| 	 * as an active one for our allocator but changed allocators
 | |
| 	 * while we were waiting to grab its ms_lock or we stole it
 | |
| 	 * [see find_valid_metaslab()]. This means that there is a
 | |
| 	 * possibility of passivating a metaslab of another allocator
 | |
| 	 * or from a different activation mask, from this thread.
 | |
| 	 */
 | |
| 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
 | |
| 		ASSERT(msp->ms_loaded);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	int error = metaslab_load(msp);
 | |
| 	if (error != 0) {
 | |
| 		metaslab_group_sort(msp->ms_group, msp, 0);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When entering metaslab_load() we may have dropped the
 | |
| 	 * ms_lock because we were loading this metaslab, or we
 | |
| 	 * were waiting for another thread to load it for us. In
 | |
| 	 * that scenario, we recheck the weight of the metaslab
 | |
| 	 * to see if it was activated by another thread.
 | |
| 	 *
 | |
| 	 * If the metaslab was activated for another allocator or
 | |
| 	 * it was activated with a different activation weight (e.g.
 | |
| 	 * we wanted to make it a primary but it was activated as
 | |
| 	 * secondary) we return error (EBUSY).
 | |
| 	 *
 | |
| 	 * If the metaslab was activated for the same allocator
 | |
| 	 * and requested activation mask, skip activating it.
 | |
| 	 */
 | |
| 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
 | |
| 		if (msp->ms_allocator != allocator)
 | |
| 			return (EBUSY);
 | |
| 
 | |
| 		if ((msp->ms_weight & activation_weight) == 0)
 | |
| 			return (SET_ERROR(EBUSY));
 | |
| 
 | |
| 		EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
 | |
| 		    msp->ms_primary);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the metaslab has literally 0 space, it will have weight 0. In
 | |
| 	 * that case, don't bother activating it. This can happen if the
 | |
| 	 * metaslab had space during find_valid_metaslab, but another thread
 | |
| 	 * loaded it and used all that space while we were waiting to grab the
 | |
| 	 * lock.
 | |
| 	 */
 | |
| 	if (msp->ms_weight == 0) {
 | |
| 		ASSERT0(range_tree_space(msp->ms_allocatable));
 | |
| 		return (SET_ERROR(ENOSPC));
 | |
| 	}
 | |
| 
 | |
| 	if ((error = metaslab_activate_allocator(msp->ms_group, msp,
 | |
| 	    allocator, activation_weight)) != 0) {
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(msp->ms_loaded);
 | |
| 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
 | |
|     uint64_t weight)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 	ASSERT(msp->ms_loaded);
 | |
| 
 | |
| 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
 | |
| 		metaslab_group_sort(mg, msp, weight);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mutex_enter(&mg->mg_lock);
 | |
| 	ASSERT3P(msp->ms_group, ==, mg);
 | |
| 	ASSERT3S(0, <=, msp->ms_allocator);
 | |
| 	ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
 | |
| 
 | |
| 	metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
 | |
| 	if (msp->ms_primary) {
 | |
| 		ASSERT3P(mga->mga_primary, ==, msp);
 | |
| 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
 | |
| 		mga->mga_primary = NULL;
 | |
| 	} else {
 | |
| 		ASSERT3P(mga->mga_secondary, ==, msp);
 | |
| 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
 | |
| 		mga->mga_secondary = NULL;
 | |
| 	}
 | |
| 	msp->ms_allocator = -1;
 | |
| 	metaslab_group_sort_impl(mg, msp, weight);
 | |
| 	mutex_exit(&mg->mg_lock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_passivate(metaslab_t *msp, uint64_t weight)
 | |
| {
 | |
| 	uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
 | |
| 
 | |
| 	/*
 | |
| 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
 | |
| 	 * this metaslab again.  In that case, it had better be empty,
 | |
| 	 * or we would be leaving space on the table.
 | |
| 	 */
 | |
| 	ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
 | |
| 	    size >= SPA_MINBLOCKSIZE ||
 | |
| 	    range_tree_space(msp->ms_allocatable) == 0);
 | |
| 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
 | |
| 
 | |
| 	ASSERT(msp->ms_activation_weight != 0);
 | |
| 	msp->ms_activation_weight = 0;
 | |
| 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
 | |
| 	ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Segment-based metaslabs are activated once and remain active until
 | |
|  * we either fail an allocation attempt (similar to space-based metaslabs)
 | |
|  * or have exhausted the free space in zfs_metaslab_switch_threshold
 | |
|  * buckets since the metaslab was activated. This function checks to see
 | |
|  * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
 | |
|  * metaslab and passivates it proactively. This will allow us to select a
 | |
|  * metaslab with a larger contiguous region, if any, remaining within this
 | |
|  * metaslab group. If we're in sync pass > 1, then we continue using this
 | |
|  * metaslab so that we don't dirty more block and cause more sync passes.
 | |
|  */
 | |
| static void
 | |
| metaslab_segment_may_passivate(metaslab_t *msp)
 | |
| {
 | |
| 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | |
| 
 | |
| 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we are in the middle of a sync pass, the most accurate
 | |
| 	 * information that is accessible to us is the in-core range tree
 | |
| 	 * histogram; calculate the new weight based on that information.
 | |
| 	 */
 | |
| 	uint64_t weight = metaslab_weight_from_range_tree(msp);
 | |
| 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
 | |
| 	int current_idx = WEIGHT_GET_INDEX(weight);
 | |
| 
 | |
| 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
 | |
| 		metaslab_passivate(msp, weight);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_preload(void *arg)
 | |
| {
 | |
| 	metaslab_t *msp = arg;
 | |
| 	metaslab_class_t *mc = msp->ms_group->mg_class;
 | |
| 	spa_t *spa = mc->mc_spa;
 | |
| 	fstrans_cookie_t cookie = spl_fstrans_mark();
 | |
| 
 | |
| 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
 | |
| 
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 	(void) metaslab_load(msp);
 | |
| 	metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_group_preload(metaslab_group_t *mg)
 | |
| {
 | |
| 	spa_t *spa = mg->mg_vd->vdev_spa;
 | |
| 	metaslab_t *msp;
 | |
| 	avl_tree_t *t = &mg->mg_metaslab_tree;
 | |
| 	int m = 0;
 | |
| 
 | |
| 	if (spa_shutting_down(spa) || !metaslab_preload_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_enter(&mg->mg_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Load the next potential metaslabs
 | |
| 	 */
 | |
| 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
 | |
| 		ASSERT3P(msp->ms_group, ==, mg);
 | |
| 
 | |
| 		/*
 | |
| 		 * We preload only the maximum number of metaslabs specified
 | |
| 		 * by metaslab_preload_limit. If a metaslab is being forced
 | |
| 		 * to condense then we preload it too. This will ensure
 | |
| 		 * that force condensing happens in the next txg.
 | |
| 		 */
 | |
| 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload,
 | |
| 		    msp, TQ_SLEEP | (m <= mg->mg_allocators ? TQ_FRONT : 0))
 | |
| 		    != TASKQID_INVALID);
 | |
| 	}
 | |
| 	mutex_exit(&mg->mg_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine if the space map's on-disk footprint is past our tolerance for
 | |
|  * inefficiency. We would like to use the following criteria to make our
 | |
|  * decision:
 | |
|  *
 | |
|  * 1. Do not condense if the size of the space map object would dramatically
 | |
|  *    increase as a result of writing out the free space range tree.
 | |
|  *
 | |
|  * 2. Condense if the on on-disk space map representation is at least
 | |
|  *    zfs_condense_pct/100 times the size of the optimal representation
 | |
|  *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
 | |
|  *
 | |
|  * 3. Do not condense if the on-disk size of the space map does not actually
 | |
|  *    decrease.
 | |
|  *
 | |
|  * Unfortunately, we cannot compute the on-disk size of the space map in this
 | |
|  * context because we cannot accurately compute the effects of compression, etc.
 | |
|  * Instead, we apply the heuristic described in the block comment for
 | |
|  * zfs_metaslab_condense_block_threshold - we only condense if the space used
 | |
|  * is greater than a threshold number of blocks.
 | |
|  */
 | |
| static boolean_t
 | |
| metaslab_should_condense(metaslab_t *msp)
 | |
| {
 | |
| 	space_map_t *sm = msp->ms_sm;
 | |
| 	vdev_t *vd = msp->ms_group->mg_vd;
 | |
| 	uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 	ASSERT(msp->ms_loaded);
 | |
| 	ASSERT(sm != NULL);
 | |
| 	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * We always condense metaslabs that are empty and metaslabs for
 | |
| 	 * which a condense request has been made.
 | |
| 	 */
 | |
| 	if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
 | |
| 	    msp->ms_condense_wanted)
 | |
| 		return (B_TRUE);
 | |
| 
 | |
| 	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
 | |
| 	uint64_t object_size = space_map_length(sm);
 | |
| 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
 | |
| 	    msp->ms_allocatable, SM_NO_VDEVID);
 | |
| 
 | |
| 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
 | |
| 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Condense the on-disk space map representation to its minimized form.
 | |
|  * The minimized form consists of a small number of allocations followed
 | |
|  * by the entries of the free range tree (ms_allocatable). The condensed
 | |
|  * spacemap contains all the entries of previous TXGs (including those in
 | |
|  * the pool-wide log spacemaps; thus this is effectively a superset of
 | |
|  * metaslab_flush()), but this TXG's entries still need to be written.
 | |
|  */
 | |
| static void
 | |
| metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
 | |
| {
 | |
| 	range_tree_t *condense_tree;
 | |
| 	space_map_t *sm = msp->ms_sm;
 | |
| 	uint64_t txg = dmu_tx_get_txg(tx);
 | |
| 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 	ASSERT(msp->ms_loaded);
 | |
| 	ASSERT(msp->ms_sm != NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to condense the space map, we need to change it so it
 | |
| 	 * only describes which segments are currently allocated and free.
 | |
| 	 *
 | |
| 	 * All the current free space resides in the ms_allocatable, all
 | |
| 	 * the ms_defer trees, and all the ms_allocating trees. We ignore
 | |
| 	 * ms_freed because it is empty because we're in sync pass 1. We
 | |
| 	 * ignore ms_freeing because these changes are not yet reflected
 | |
| 	 * in the spacemap (they will be written later this txg).
 | |
| 	 *
 | |
| 	 * So to truncate the space map to represent all the entries of
 | |
| 	 * previous TXGs we do the following:
 | |
| 	 *
 | |
| 	 * 1] We create a range tree (condense tree) that is 100% empty.
 | |
| 	 * 2] We add to it all segments found in the ms_defer trees
 | |
| 	 *    as those segments are marked as free in the original space
 | |
| 	 *    map. We do the same with the ms_allocating trees for the same
 | |
| 	 *    reason. Adding these segments should be a relatively
 | |
| 	 *    inexpensive operation since we expect these trees to have a
 | |
| 	 *    small number of nodes.
 | |
| 	 * 3] We vacate any unflushed allocs, since they are not frees we
 | |
| 	 *    need to add to the condense tree. Then we vacate any
 | |
| 	 *    unflushed frees as they should already be part of ms_allocatable.
 | |
| 	 * 4] At this point, we would ideally like to add all segments
 | |
| 	 *    in the ms_allocatable tree from the condense tree. This way
 | |
| 	 *    we would write all the entries of the condense tree as the
 | |
| 	 *    condensed space map, which would only contain freed
 | |
| 	 *    segments with everything else assumed to be allocated.
 | |
| 	 *
 | |
| 	 *    Doing so can be prohibitively expensive as ms_allocatable can
 | |
| 	 *    be large, and therefore computationally expensive to add to
 | |
| 	 *    the condense_tree. Instead we first sync out an entry marking
 | |
| 	 *    everything as allocated, then the condense_tree and then the
 | |
| 	 *    ms_allocatable, in the condensed space map. While this is not
 | |
| 	 *    optimal, it is typically close to optimal and more importantly
 | |
| 	 *    much cheaper to compute.
 | |
| 	 *
 | |
| 	 * 5] Finally, as both of the unflushed trees were written to our
 | |
| 	 *    new and condensed metaslab space map, we basically flushed
 | |
| 	 *    all the unflushed changes to disk, thus we call
 | |
| 	 *    metaslab_flush_update().
 | |
| 	 */
 | |
| 	ASSERT3U(spa_sync_pass(spa), ==, 1);
 | |
| 	ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
 | |
| 
 | |
| 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
 | |
| 	    "spa %s, smp size %llu, segments %llu, forcing condense=%s",
 | |
| 	    (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
 | |
| 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
 | |
| 	    spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
 | |
| 	    (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
 | |
| 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
 | |
| 
 | |
| 	msp->ms_condense_wanted = B_FALSE;
 | |
| 
 | |
| 	range_seg_type_t type;
 | |
| 	uint64_t shift, start;
 | |
| 	type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
 | |
| 	    &start, &shift);
 | |
| 
 | |
| 	condense_tree = range_tree_create(NULL, type, NULL, start, shift);
 | |
| 
 | |
| 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 | |
| 		range_tree_walk(msp->ms_defer[t],
 | |
| 		    range_tree_add, condense_tree);
 | |
| 	}
 | |
| 
 | |
| 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
 | |
| 		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
 | |
| 		    range_tree_add, condense_tree);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
 | |
| 	    metaslab_unflushed_changes_memused(msp));
 | |
| 	spa->spa_unflushed_stats.sus_memused -=
 | |
| 	    metaslab_unflushed_changes_memused(msp);
 | |
| 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
 | |
| 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * We're about to drop the metaslab's lock thus allowing other
 | |
| 	 * consumers to change it's content. Set the metaslab's ms_condensing
 | |
| 	 * flag to ensure that allocations on this metaslab do not occur
 | |
| 	 * while we're in the middle of committing it to disk. This is only
 | |
| 	 * critical for ms_allocatable as all other range trees use per TXG
 | |
| 	 * views of their content.
 | |
| 	 */
 | |
| 	msp->ms_condensing = B_TRUE;
 | |
| 
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| 	uint64_t object = space_map_object(msp->ms_sm);
 | |
| 	space_map_truncate(sm,
 | |
| 	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
 | |
| 	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
 | |
| 
 | |
| 	/*
 | |
| 	 * space_map_truncate() may have reallocated the spacemap object.
 | |
| 	 * If so, update the vdev_ms_array.
 | |
| 	 */
 | |
| 	if (space_map_object(msp->ms_sm) != object) {
 | |
| 		object = space_map_object(msp->ms_sm);
 | |
| 		dmu_write(spa->spa_meta_objset,
 | |
| 		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
 | |
| 		    msp->ms_id, sizeof (uint64_t), &object, tx);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Note:
 | |
| 	 * When the log space map feature is enabled, each space map will
 | |
| 	 * always have ALLOCS followed by FREES for each sync pass. This is
 | |
| 	 * typically true even when the log space map feature is disabled,
 | |
| 	 * except from the case where a metaslab goes through metaslab_sync()
 | |
| 	 * and gets condensed. In that case the metaslab's space map will have
 | |
| 	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
 | |
| 	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
 | |
| 	 * sync pass 1.
 | |
| 	 */
 | |
| 	range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
 | |
| 	    shift);
 | |
| 	range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
 | |
| 	space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
 | |
| 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
 | |
| 	space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
 | |
| 
 | |
| 	range_tree_vacate(condense_tree, NULL, NULL);
 | |
| 	range_tree_destroy(condense_tree);
 | |
| 	range_tree_vacate(tmp_tree, NULL, NULL);
 | |
| 	range_tree_destroy(tmp_tree);
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 
 | |
| 	msp->ms_condensing = B_FALSE;
 | |
| 	metaslab_flush_update(msp, tx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
 | |
| {
 | |
| 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | |
| 	ASSERT(spa_syncing_log_sm(spa) != NULL);
 | |
| 	ASSERT(msp->ms_sm != NULL);
 | |
| 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
 | |
| 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
 | |
| 
 | |
| 	mutex_enter(&spa->spa_flushed_ms_lock);
 | |
| 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
 | |
| 	metaslab_set_unflushed_dirty(msp, B_TRUE);
 | |
| 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
 | |
| 	mutex_exit(&spa->spa_flushed_ms_lock);
 | |
| 
 | |
| 	spa_log_sm_increment_current_mscount(spa);
 | |
| 	spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
 | |
| {
 | |
| 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | |
| 	ASSERT(spa_syncing_log_sm(spa) != NULL);
 | |
| 	ASSERT(msp->ms_sm != NULL);
 | |
| 	ASSERT(metaslab_unflushed_txg(msp) != 0);
 | |
| 	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
 | |
| 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
 | |
| 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
 | |
| 
 | |
| 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
 | |
| 
 | |
| 	/* update metaslab's position in our flushing tree */
 | |
| 	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
 | |
| 	boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
 | |
| 	mutex_enter(&spa->spa_flushed_ms_lock);
 | |
| 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
 | |
| 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
 | |
| 	metaslab_set_unflushed_dirty(msp, dirty);
 | |
| 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
 | |
| 	mutex_exit(&spa->spa_flushed_ms_lock);
 | |
| 
 | |
| 	/* update metaslab counts of spa_log_sm_t nodes */
 | |
| 	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
 | |
| 	spa_log_sm_increment_current_mscount(spa);
 | |
| 
 | |
| 	/* update log space map summary */
 | |
| 	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
 | |
| 	    ms_prev_flushed_dirty);
 | |
| 	spa_log_summary_add_flushed_metaslab(spa, dirty);
 | |
| 
 | |
| 	/* cleanup obsolete logs if any */
 | |
| 	spa_cleanup_old_sm_logs(spa, tx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when the metaslab has been flushed (its own spacemap now reflects
 | |
|  * all the contents of the pool-wide spacemap log). Updates the metaslab's
 | |
|  * metadata and any pool-wide related log space map data (e.g. summary,
 | |
|  * obsolete logs, etc..) to reflect that.
 | |
|  */
 | |
| static void
 | |
| metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
 | |
| {
 | |
| 	metaslab_group_t *mg = msp->ms_group;
 | |
| 	spa_t *spa = mg->mg_vd->vdev_spa;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	ASSERT3U(spa_sync_pass(spa), ==, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Just because a metaslab got flushed, that doesn't mean that
 | |
| 	 * it will pass through metaslab_sync_done(). Thus, make sure to
 | |
| 	 * update ms_synced_length here in case it doesn't.
 | |
| 	 */
 | |
| 	msp->ms_synced_length = space_map_length(msp->ms_sm);
 | |
| 
 | |
| 	/*
 | |
| 	 * We may end up here from metaslab_condense() without the
 | |
| 	 * feature being active. In that case this is a no-op.
 | |
| 	 */
 | |
| 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
 | |
| 	    metaslab_unflushed_txg(msp) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	metaslab_unflushed_bump(msp, tx, B_FALSE);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
 | |
| {
 | |
| 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 	ASSERT3U(spa_sync_pass(spa), ==, 1);
 | |
| 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
 | |
| 
 | |
| 	ASSERT(msp->ms_sm != NULL);
 | |
| 	ASSERT(metaslab_unflushed_txg(msp) != 0);
 | |
| 	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * There is nothing wrong with flushing the same metaslab twice, as
 | |
| 	 * this codepath should work on that case. However, the current
 | |
| 	 * flushing scheme makes sure to avoid this situation as we would be
 | |
| 	 * making all these calls without having anything meaningful to write
 | |
| 	 * to disk. We assert this behavior here.
 | |
| 	 */
 | |
| 	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
 | |
| 
 | |
| 	/*
 | |
| 	 * We can not flush while loading, because then we would
 | |
| 	 * not load the ms_unflushed_{allocs,frees}.
 | |
| 	 */
 | |
| 	if (msp->ms_loading)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
 | |
| 	metaslab_verify_weight_and_frag(msp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Metaslab condensing is effectively flushing. Therefore if the
 | |
| 	 * metaslab can be condensed we can just condense it instead of
 | |
| 	 * flushing it.
 | |
| 	 *
 | |
| 	 * Note that metaslab_condense() does call metaslab_flush_update()
 | |
| 	 * so we can just return immediately after condensing. We also
 | |
| 	 * don't need to care about setting ms_flushing or broadcasting
 | |
| 	 * ms_flush_cv, even if we temporarily drop the ms_lock in
 | |
| 	 * metaslab_condense(), as the metaslab is already loaded.
 | |
| 	 */
 | |
| 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
 | |
| 		metaslab_group_t *mg = msp->ms_group;
 | |
| 
 | |
| 		/*
 | |
| 		 * For all histogram operations below refer to the
 | |
| 		 * comments of metaslab_sync() where we follow a
 | |
| 		 * similar procedure.
 | |
| 		 */
 | |
| 		metaslab_group_histogram_verify(mg);
 | |
| 		metaslab_class_histogram_verify(mg->mg_class);
 | |
| 		metaslab_group_histogram_remove(mg, msp);
 | |
| 
 | |
| 		metaslab_condense(msp, tx);
 | |
| 
 | |
| 		space_map_histogram_clear(msp->ms_sm);
 | |
| 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
 | |
| 		ASSERT(range_tree_is_empty(msp->ms_freed));
 | |
| 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 | |
| 			space_map_histogram_add(msp->ms_sm,
 | |
| 			    msp->ms_defer[t], tx);
 | |
| 		}
 | |
| 		metaslab_aux_histograms_update(msp);
 | |
| 
 | |
| 		metaslab_group_histogram_add(mg, msp);
 | |
| 		metaslab_group_histogram_verify(mg);
 | |
| 		metaslab_class_histogram_verify(mg->mg_class);
 | |
| 
 | |
| 		metaslab_verify_space(msp, dmu_tx_get_txg(tx));
 | |
| 
 | |
| 		/*
 | |
| 		 * Since we recreated the histogram (and potentially
 | |
| 		 * the ms_sm too while condensing) ensure that the
 | |
| 		 * weight is updated too because we are not guaranteed
 | |
| 		 * that this metaslab is dirty and will go through
 | |
| 		 * metaslab_sync_done().
 | |
| 		 */
 | |
| 		metaslab_recalculate_weight_and_sort(msp);
 | |
| 		return (B_TRUE);
 | |
| 	}
 | |
| 
 | |
| 	msp->ms_flushing = B_TRUE;
 | |
| 	uint64_t sm_len_before = space_map_length(msp->ms_sm);
 | |
| 
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| 	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
 | |
| 	    SM_NO_VDEVID, tx);
 | |
| 	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
 | |
| 	    SM_NO_VDEVID, tx);
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 
 | |
| 	uint64_t sm_len_after = space_map_length(msp->ms_sm);
 | |
| 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
 | |
| 		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
 | |
| 		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
 | |
| 		    "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
 | |
| 		    spa_name(spa),
 | |
| 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
 | |
| 		    (u_longlong_t)msp->ms_id,
 | |
| 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
 | |
| 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
 | |
| 		    (u_longlong_t)(sm_len_after - sm_len_before));
 | |
| 	}
 | |
| 
 | |
| 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
 | |
| 	    metaslab_unflushed_changes_memused(msp));
 | |
| 	spa->spa_unflushed_stats.sus_memused -=
 | |
| 	    metaslab_unflushed_changes_memused(msp);
 | |
| 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
 | |
| 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
 | |
| 
 | |
| 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
 | |
| 	metaslab_verify_weight_and_frag(msp);
 | |
| 
 | |
| 	metaslab_flush_update(msp, tx);
 | |
| 
 | |
| 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
 | |
| 	metaslab_verify_weight_and_frag(msp);
 | |
| 
 | |
| 	msp->ms_flushing = B_FALSE;
 | |
| 	cv_broadcast(&msp->ms_flush_cv);
 | |
| 	return (B_TRUE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write a metaslab to disk in the context of the specified transaction group.
 | |
|  */
 | |
| void
 | |
| metaslab_sync(metaslab_t *msp, uint64_t txg)
 | |
| {
 | |
| 	metaslab_group_t *mg = msp->ms_group;
 | |
| 	vdev_t *vd = mg->mg_vd;
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 	objset_t *mos = spa_meta_objset(spa);
 | |
| 	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
 | |
| 	dmu_tx_t *tx;
 | |
| 
 | |
| 	ASSERT(!vd->vdev_ishole);
 | |
| 
 | |
| 	/*
 | |
| 	 * This metaslab has just been added so there's no work to do now.
 | |
| 	 */
 | |
| 	if (msp->ms_new) {
 | |
| 		ASSERT0(range_tree_space(alloctree));
 | |
| 		ASSERT0(range_tree_space(msp->ms_freeing));
 | |
| 		ASSERT0(range_tree_space(msp->ms_freed));
 | |
| 		ASSERT0(range_tree_space(msp->ms_checkpointing));
 | |
| 		ASSERT0(range_tree_space(msp->ms_trim));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Normally, we don't want to process a metaslab if there are no
 | |
| 	 * allocations or frees to perform. However, if the metaslab is being
 | |
| 	 * forced to condense, it's loaded and we're not beyond the final
 | |
| 	 * dirty txg, we need to let it through. Not condensing beyond the
 | |
| 	 * final dirty txg prevents an issue where metaslabs that need to be
 | |
| 	 * condensed but were loaded for other reasons could cause a panic
 | |
| 	 * here. By only checking the txg in that branch of the conditional,
 | |
| 	 * we preserve the utility of the VERIFY statements in all other
 | |
| 	 * cases.
 | |
| 	 */
 | |
| 	if (range_tree_is_empty(alloctree) &&
 | |
| 	    range_tree_is_empty(msp->ms_freeing) &&
 | |
| 	    range_tree_is_empty(msp->ms_checkpointing) &&
 | |
| 	    !(msp->ms_loaded && msp->ms_condense_wanted &&
 | |
| 	    txg <= spa_final_dirty_txg(spa)))
 | |
| 		return;
 | |
| 
 | |
| 
 | |
| 	VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
 | |
| 
 | |
| 	/*
 | |
| 	 * The only state that can actually be changing concurrently
 | |
| 	 * with metaslab_sync() is the metaslab's ms_allocatable. No
 | |
| 	 * other thread can be modifying this txg's alloc, freeing,
 | |
| 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
 | |
| 	 * could call into the DMU, because the DMU can call down to
 | |
| 	 * us (e.g. via zio_free()) at any time.
 | |
| 	 *
 | |
| 	 * The spa_vdev_remove_thread() can be reading metaslab state
 | |
| 	 * concurrently, and it is locked out by the ms_sync_lock.
 | |
| 	 * Note that the ms_lock is insufficient for this, because it
 | |
| 	 * is dropped by space_map_write().
 | |
| 	 */
 | |
| 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate a log space map if one doesn't exist already.
 | |
| 	 */
 | |
| 	spa_generate_syncing_log_sm(spa, tx);
 | |
| 
 | |
| 	if (msp->ms_sm == NULL) {
 | |
| 		uint64_t new_object = space_map_alloc(mos,
 | |
| 		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
 | |
| 		    zfs_metaslab_sm_blksz_with_log :
 | |
| 		    zfs_metaslab_sm_blksz_no_log, tx);
 | |
| 		VERIFY3U(new_object, !=, 0);
 | |
| 
 | |
| 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
 | |
| 		    msp->ms_id, sizeof (uint64_t), &new_object, tx);
 | |
| 
 | |
| 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
 | |
| 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
 | |
| 		ASSERT(msp->ms_sm != NULL);
 | |
| 
 | |
| 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
 | |
| 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
 | |
| 		ASSERT0(metaslab_allocated_space(msp));
 | |
| 	}
 | |
| 
 | |
| 	if (!range_tree_is_empty(msp->ms_checkpointing) &&
 | |
| 	    vd->vdev_checkpoint_sm == NULL) {
 | |
| 		ASSERT(spa_has_checkpoint(spa));
 | |
| 
 | |
| 		uint64_t new_object = space_map_alloc(mos,
 | |
| 		    zfs_vdev_standard_sm_blksz, tx);
 | |
| 		VERIFY3U(new_object, !=, 0);
 | |
| 
 | |
| 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
 | |
| 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
 | |
| 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
 | |
| 
 | |
| 		/*
 | |
| 		 * We save the space map object as an entry in vdev_top_zap
 | |
| 		 * so it can be retrieved when the pool is reopened after an
 | |
| 		 * export or through zdb.
 | |
| 		 */
 | |
| 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
 | |
| 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
 | |
| 		    sizeof (new_object), 1, &new_object, tx));
 | |
| 	}
 | |
| 
 | |
| 	mutex_enter(&msp->ms_sync_lock);
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: metaslab_condense() clears the space map's histogram.
 | |
| 	 * Therefore we must verify and remove this histogram before
 | |
| 	 * condensing.
 | |
| 	 */
 | |
| 	metaslab_group_histogram_verify(mg);
 | |
| 	metaslab_class_histogram_verify(mg->mg_class);
 | |
| 	metaslab_group_histogram_remove(mg, msp);
 | |
| 
 | |
| 	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
 | |
| 	    metaslab_should_condense(msp))
 | |
| 		metaslab_condense(msp, tx);
 | |
| 
 | |
| 	/*
 | |
| 	 * We'll be going to disk to sync our space accounting, thus we
 | |
| 	 * drop the ms_lock during that time so allocations coming from
 | |
| 	 * open-context (ZIL) for future TXGs do not block.
 | |
| 	 */
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| 	space_map_t *log_sm = spa_syncing_log_sm(spa);
 | |
| 	if (log_sm != NULL) {
 | |
| 		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
 | |
| 		if (metaslab_unflushed_txg(msp) == 0)
 | |
| 			metaslab_unflushed_add(msp, tx);
 | |
| 		else if (!metaslab_unflushed_dirty(msp))
 | |
| 			metaslab_unflushed_bump(msp, tx, B_TRUE);
 | |
| 
 | |
| 		space_map_write(log_sm, alloctree, SM_ALLOC,
 | |
| 		    vd->vdev_id, tx);
 | |
| 		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
 | |
| 		    vd->vdev_id, tx);
 | |
| 		mutex_enter(&msp->ms_lock);
 | |
| 
 | |
| 		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
 | |
| 		    metaslab_unflushed_changes_memused(msp));
 | |
| 		spa->spa_unflushed_stats.sus_memused -=
 | |
| 		    metaslab_unflushed_changes_memused(msp);
 | |
| 		range_tree_remove_xor_add(alloctree,
 | |
| 		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
 | |
| 		range_tree_remove_xor_add(msp->ms_freeing,
 | |
| 		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
 | |
| 		spa->spa_unflushed_stats.sus_memused +=
 | |
| 		    metaslab_unflushed_changes_memused(msp);
 | |
| 	} else {
 | |
| 		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
 | |
| 
 | |
| 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
 | |
| 		    SM_NO_VDEVID, tx);
 | |
| 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
 | |
| 		    SM_NO_VDEVID, tx);
 | |
| 		mutex_enter(&msp->ms_lock);
 | |
| 	}
 | |
| 
 | |
| 	msp->ms_allocated_space += range_tree_space(alloctree);
 | |
| 	ASSERT3U(msp->ms_allocated_space, >=,
 | |
| 	    range_tree_space(msp->ms_freeing));
 | |
| 	msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
 | |
| 
 | |
| 	if (!range_tree_is_empty(msp->ms_checkpointing)) {
 | |
| 		ASSERT(spa_has_checkpoint(spa));
 | |
| 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
 | |
| 
 | |
| 		/*
 | |
| 		 * Since we are doing writes to disk and the ms_checkpointing
 | |
| 		 * tree won't be changing during that time, we drop the
 | |
| 		 * ms_lock while writing to the checkpoint space map, for the
 | |
| 		 * same reason mentioned above.
 | |
| 		 */
 | |
| 		mutex_exit(&msp->ms_lock);
 | |
| 		space_map_write(vd->vdev_checkpoint_sm,
 | |
| 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
 | |
| 		mutex_enter(&msp->ms_lock);
 | |
| 
 | |
| 		spa->spa_checkpoint_info.sci_dspace +=
 | |
| 		    range_tree_space(msp->ms_checkpointing);
 | |
| 		vd->vdev_stat.vs_checkpoint_space +=
 | |
| 		    range_tree_space(msp->ms_checkpointing);
 | |
| 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
 | |
| 		    -space_map_allocated(vd->vdev_checkpoint_sm));
 | |
| 
 | |
| 		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
 | |
| 	}
 | |
| 
 | |
| 	if (msp->ms_loaded) {
 | |
| 		/*
 | |
| 		 * When the space map is loaded, we have an accurate
 | |
| 		 * histogram in the range tree. This gives us an opportunity
 | |
| 		 * to bring the space map's histogram up-to-date so we clear
 | |
| 		 * it first before updating it.
 | |
| 		 */
 | |
| 		space_map_histogram_clear(msp->ms_sm);
 | |
| 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
 | |
| 
 | |
| 		/*
 | |
| 		 * Since we've cleared the histogram we need to add back
 | |
| 		 * any free space that has already been processed, plus
 | |
| 		 * any deferred space. This allows the on-disk histogram
 | |
| 		 * to accurately reflect all free space even if some space
 | |
| 		 * is not yet available for allocation (i.e. deferred).
 | |
| 		 */
 | |
| 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
 | |
| 
 | |
| 		/*
 | |
| 		 * Add back any deferred free space that has not been
 | |
| 		 * added back into the in-core free tree yet. This will
 | |
| 		 * ensure that we don't end up with a space map histogram
 | |
| 		 * that is completely empty unless the metaslab is fully
 | |
| 		 * allocated.
 | |
| 		 */
 | |
| 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 | |
| 			space_map_histogram_add(msp->ms_sm,
 | |
| 			    msp->ms_defer[t], tx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Always add the free space from this sync pass to the space
 | |
| 	 * map histogram. We want to make sure that the on-disk histogram
 | |
| 	 * accounts for all free space. If the space map is not loaded,
 | |
| 	 * then we will lose some accuracy but will correct it the next
 | |
| 	 * time we load the space map.
 | |
| 	 */
 | |
| 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
 | |
| 	metaslab_aux_histograms_update(msp);
 | |
| 
 | |
| 	metaslab_group_histogram_add(mg, msp);
 | |
| 	metaslab_group_histogram_verify(mg);
 | |
| 	metaslab_class_histogram_verify(mg->mg_class);
 | |
| 
 | |
| 	/*
 | |
| 	 * For sync pass 1, we avoid traversing this txg's free range tree
 | |
| 	 * and instead will just swap the pointers for freeing and freed.
 | |
| 	 * We can safely do this since the freed_tree is guaranteed to be
 | |
| 	 * empty on the initial pass.
 | |
| 	 *
 | |
| 	 * Keep in mind that even if we are currently using a log spacemap
 | |
| 	 * we want current frees to end up in the ms_allocatable (but not
 | |
| 	 * get appended to the ms_sm) so their ranges can be reused as usual.
 | |
| 	 */
 | |
| 	if (spa_sync_pass(spa) == 1) {
 | |
| 		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
 | |
| 		ASSERT0(msp->ms_allocated_this_txg);
 | |
| 	} else {
 | |
| 		range_tree_vacate(msp->ms_freeing,
 | |
| 		    range_tree_add, msp->ms_freed);
 | |
| 	}
 | |
| 	msp->ms_allocated_this_txg += range_tree_space(alloctree);
 | |
| 	range_tree_vacate(alloctree, NULL, NULL);
 | |
| 
 | |
| 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
 | |
| 	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
 | |
| 	    & TXG_MASK]));
 | |
| 	ASSERT0(range_tree_space(msp->ms_freeing));
 | |
| 	ASSERT0(range_tree_space(msp->ms_checkpointing));
 | |
| 
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify that the space map object ID has been recorded in the
 | |
| 	 * vdev_ms_array.
 | |
| 	 */
 | |
| 	uint64_t object;
 | |
| 	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
 | |
| 	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
 | |
| 	VERIFY3U(object, ==, space_map_object(msp->ms_sm));
 | |
| 
 | |
| 	mutex_exit(&msp->ms_sync_lock);
 | |
| 	dmu_tx_commit(tx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_evict(metaslab_t *msp, uint64_t txg)
 | |
| {
 | |
| 	if (!msp->ms_loaded || msp->ms_disabled != 0)
 | |
| 		return;
 | |
| 
 | |
| 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
 | |
| 		VERIFY0(range_tree_space(
 | |
| 		    msp->ms_allocating[(txg + t) & TXG_MASK]));
 | |
| 	}
 | |
| 	if (msp->ms_allocator != -1)
 | |
| 		metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
 | |
| 
 | |
| 	if (!metaslab_debug_unload)
 | |
| 		metaslab_unload(msp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after a transaction group has completely synced to mark
 | |
|  * all of the metaslab's free space as usable.
 | |
|  */
 | |
| void
 | |
| metaslab_sync_done(metaslab_t *msp, uint64_t txg)
 | |
| {
 | |
| 	metaslab_group_t *mg = msp->ms_group;
 | |
| 	vdev_t *vd = mg->mg_vd;
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 	range_tree_t **defer_tree;
 | |
| 	int64_t alloc_delta, defer_delta;
 | |
| 	boolean_t defer_allowed = B_TRUE;
 | |
| 
 | |
| 	ASSERT(!vd->vdev_ishole);
 | |
| 
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 
 | |
| 	if (msp->ms_new) {
 | |
| 		/* this is a new metaslab, add its capacity to the vdev */
 | |
| 		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
 | |
| 
 | |
| 		/* there should be no allocations nor frees at this point */
 | |
| 		VERIFY0(msp->ms_allocated_this_txg);
 | |
| 		VERIFY0(range_tree_space(msp->ms_freed));
 | |
| 	}
 | |
| 
 | |
| 	ASSERT0(range_tree_space(msp->ms_freeing));
 | |
| 	ASSERT0(range_tree_space(msp->ms_checkpointing));
 | |
| 
 | |
| 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
 | |
| 
 | |
| 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
 | |
| 	    metaslab_class_get_alloc(spa_normal_class(spa));
 | |
| 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing ||
 | |
| 	    vd->vdev_rz_expanding) {
 | |
| 		defer_allowed = B_FALSE;
 | |
| 	}
 | |
| 
 | |
| 	defer_delta = 0;
 | |
| 	alloc_delta = msp->ms_allocated_this_txg -
 | |
| 	    range_tree_space(msp->ms_freed);
 | |
| 
 | |
| 	if (defer_allowed) {
 | |
| 		defer_delta = range_tree_space(msp->ms_freed) -
 | |
| 		    range_tree_space(*defer_tree);
 | |
| 	} else {
 | |
| 		defer_delta -= range_tree_space(*defer_tree);
 | |
| 	}
 | |
| 	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
 | |
| 	    defer_delta, 0);
 | |
| 
 | |
| 	if (spa_syncing_log_sm(spa) == NULL) {
 | |
| 		/*
 | |
| 		 * If there's a metaslab_load() in progress and we don't have
 | |
| 		 * a log space map, it means that we probably wrote to the
 | |
| 		 * metaslab's space map. If this is the case, we need to
 | |
| 		 * make sure that we wait for the load to complete so that we
 | |
| 		 * have a consistent view at the in-core side of the metaslab.
 | |
| 		 */
 | |
| 		metaslab_load_wait(msp);
 | |
| 	} else {
 | |
| 		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When auto-trimming is enabled, free ranges which are added to
 | |
| 	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
 | |
| 	 * periodically consumed by the vdev_autotrim_thread() which issues
 | |
| 	 * trims for all ranges and then vacates the tree.  The ms_trim tree
 | |
| 	 * can be discarded at any time with the sole consequence of recent
 | |
| 	 * frees not being trimmed.
 | |
| 	 */
 | |
| 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
 | |
| 		range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
 | |
| 		if (!defer_allowed) {
 | |
| 			range_tree_walk(msp->ms_freed, range_tree_add,
 | |
| 			    msp->ms_trim);
 | |
| 		}
 | |
| 	} else {
 | |
| 		range_tree_vacate(msp->ms_trim, NULL, NULL);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Move the frees from the defer_tree back to the free
 | |
| 	 * range tree (if it's loaded). Swap the freed_tree and
 | |
| 	 * the defer_tree -- this is safe to do because we've
 | |
| 	 * just emptied out the defer_tree.
 | |
| 	 */
 | |
| 	range_tree_vacate(*defer_tree,
 | |
| 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
 | |
| 	if (defer_allowed) {
 | |
| 		range_tree_swap(&msp->ms_freed, defer_tree);
 | |
| 	} else {
 | |
| 		range_tree_vacate(msp->ms_freed,
 | |
| 		    msp->ms_loaded ? range_tree_add : NULL,
 | |
| 		    msp->ms_allocatable);
 | |
| 	}
 | |
| 
 | |
| 	msp->ms_synced_length = space_map_length(msp->ms_sm);
 | |
| 
 | |
| 	msp->ms_deferspace += defer_delta;
 | |
| 	ASSERT3S(msp->ms_deferspace, >=, 0);
 | |
| 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
 | |
| 	if (msp->ms_deferspace != 0) {
 | |
| 		/*
 | |
| 		 * Keep syncing this metaslab until all deferred frees
 | |
| 		 * are back in circulation.
 | |
| 		 */
 | |
| 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
 | |
| 	}
 | |
| 	metaslab_aux_histograms_update_done(msp, defer_allowed);
 | |
| 
 | |
| 	if (msp->ms_new) {
 | |
| 		msp->ms_new = B_FALSE;
 | |
| 		mutex_enter(&mg->mg_lock);
 | |
| 		mg->mg_ms_ready++;
 | |
| 		mutex_exit(&mg->mg_lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Re-sort metaslab within its group now that we've adjusted
 | |
| 	 * its allocatable space.
 | |
| 	 */
 | |
| 	metaslab_recalculate_weight_and_sort(msp);
 | |
| 
 | |
| 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
 | |
| 	ASSERT0(range_tree_space(msp->ms_freeing));
 | |
| 	ASSERT0(range_tree_space(msp->ms_freed));
 | |
| 	ASSERT0(range_tree_space(msp->ms_checkpointing));
 | |
| 	msp->ms_allocating_total -= msp->ms_allocated_this_txg;
 | |
| 	msp->ms_allocated_this_txg = 0;
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_sync_reassess(metaslab_group_t *mg)
 | |
| {
 | |
| 	spa_t *spa = mg->mg_class->mc_spa;
 | |
| 
 | |
| 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
 | |
| 	metaslab_group_alloc_update(mg);
 | |
| 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Preload the next potential metaslabs but only on active
 | |
| 	 * metaslab groups. We can get into a state where the metaslab
 | |
| 	 * is no longer active since we dirty metaslabs as we remove a
 | |
| 	 * a device, thus potentially making the metaslab group eligible
 | |
| 	 * for preloading.
 | |
| 	 */
 | |
| 	if (mg->mg_activation_count > 0) {
 | |
| 		metaslab_group_preload(mg);
 | |
| 	}
 | |
| 	spa_config_exit(spa, SCL_ALLOC, FTAG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When writing a ditto block (i.e. more than one DVA for a given BP) on
 | |
|  * the same vdev as an existing DVA of this BP, then try to allocate it
 | |
|  * on a different metaslab than existing DVAs (i.e. a unique metaslab).
 | |
|  */
 | |
| static boolean_t
 | |
| metaslab_is_unique(metaslab_t *msp, dva_t *dva)
 | |
| {
 | |
| 	uint64_t dva_ms_id;
 | |
| 
 | |
| 	if (DVA_GET_ASIZE(dva) == 0)
 | |
| 		return (B_TRUE);
 | |
| 
 | |
| 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
 | |
| 		return (B_TRUE);
 | |
| 
 | |
| 	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
 | |
| 
 | |
| 	return (msp->ms_id != dva_ms_id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * Metaslab allocation tracing facility
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Add an allocation trace element to the allocation tracing list.
 | |
|  */
 | |
| static void
 | |
| metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
 | |
|     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
 | |
|     int allocator)
 | |
| {
 | |
| 	metaslab_alloc_trace_t *mat;
 | |
| 
 | |
| 	if (!metaslab_trace_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * When the tracing list reaches its maximum we remove
 | |
| 	 * the second element in the list before adding a new one.
 | |
| 	 * By removing the second element we preserve the original
 | |
| 	 * entry as a clue to what allocations steps have already been
 | |
| 	 * performed.
 | |
| 	 */
 | |
| 	if (zal->zal_size == metaslab_trace_max_entries) {
 | |
| 		metaslab_alloc_trace_t *mat_next;
 | |
| #ifdef ZFS_DEBUG
 | |
| 		panic("too many entries in allocation list");
 | |
| #endif
 | |
| 		METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
 | |
| 		zal->zal_size--;
 | |
| 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
 | |
| 		list_remove(&zal->zal_list, mat_next);
 | |
| 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
 | |
| 	}
 | |
| 
 | |
| 	mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
 | |
| 	list_link_init(&mat->mat_list_node);
 | |
| 	mat->mat_mg = mg;
 | |
| 	mat->mat_msp = msp;
 | |
| 	mat->mat_size = psize;
 | |
| 	mat->mat_dva_id = dva_id;
 | |
| 	mat->mat_offset = offset;
 | |
| 	mat->mat_weight = 0;
 | |
| 	mat->mat_allocator = allocator;
 | |
| 
 | |
| 	if (msp != NULL)
 | |
| 		mat->mat_weight = msp->ms_weight;
 | |
| 
 | |
| 	/*
 | |
| 	 * The list is part of the zio so locking is not required. Only
 | |
| 	 * a single thread will perform allocations for a given zio.
 | |
| 	 */
 | |
| 	list_insert_tail(&zal->zal_list, mat);
 | |
| 	zal->zal_size++;
 | |
| 
 | |
| 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_trace_init(zio_alloc_list_t *zal)
 | |
| {
 | |
| 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
 | |
| 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
 | |
| 	zal->zal_size = 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_trace_fini(zio_alloc_list_t *zal)
 | |
| {
 | |
| 	metaslab_alloc_trace_t *mat;
 | |
| 
 | |
| 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
 | |
| 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
 | |
| 	list_destroy(&zal->zal_list);
 | |
| 	zal->zal_size = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * Metaslab block operations
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| static void
 | |
| metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
 | |
|     int flags, int allocator)
 | |
| {
 | |
| 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
 | |
| 	    (flags & METASLAB_DONT_THROTTLE))
 | |
| 		return;
 | |
| 
 | |
| 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
 | |
| 	if (!mg->mg_class->mc_alloc_throttle_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
 | |
| 	(void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
 | |
| {
 | |
| 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
 | |
| 	metaslab_class_allocator_t *mca =
 | |
| 	    &mg->mg_class->mc_allocator[allocator];
 | |
| 	uint64_t max = mg->mg_max_alloc_queue_depth;
 | |
| 	uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
 | |
| 	while (cur < max) {
 | |
| 		if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
 | |
| 		    cur, cur + 1) == cur) {
 | |
| 			atomic_inc_64(&mca->mca_alloc_max_slots);
 | |
| 			return;
 | |
| 		}
 | |
| 		cur = mga->mga_cur_max_alloc_queue_depth;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
 | |
|     int flags, int allocator, boolean_t io_complete)
 | |
| {
 | |
| 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
 | |
| 	    (flags & METASLAB_DONT_THROTTLE))
 | |
| 		return;
 | |
| 
 | |
| 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
 | |
| 	if (!mg->mg_class->mc_alloc_throttle_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
 | |
| 	(void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
 | |
| 	if (io_complete)
 | |
| 		metaslab_group_increment_qdepth(mg, allocator);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
 | |
|     int allocator)
 | |
| {
 | |
| #ifdef ZFS_DEBUG
 | |
| 	const dva_t *dva = bp->blk_dva;
 | |
| 	int ndvas = BP_GET_NDVAS(bp);
 | |
| 
 | |
| 	for (int d = 0; d < ndvas; d++) {
 | |
| 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
 | |
| 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
 | |
| 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
 | |
| 		VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static uint64_t
 | |
| metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
 | |
| {
 | |
| 	uint64_t start;
 | |
| 	range_tree_t *rt = msp->ms_allocatable;
 | |
| 	metaslab_class_t *mc = msp->ms_group->mg_class;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 	VERIFY(!msp->ms_condensing);
 | |
| 	VERIFY0(msp->ms_disabled);
 | |
| 	VERIFY0(msp->ms_new);
 | |
| 
 | |
| 	start = mc->mc_ops->msop_alloc(msp, size);
 | |
| 	if (start != -1ULL) {
 | |
| 		metaslab_group_t *mg = msp->ms_group;
 | |
| 		vdev_t *vd = mg->mg_vd;
 | |
| 
 | |
| 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
 | |
| 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
 | |
| 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
 | |
| 		range_tree_remove(rt, start, size);
 | |
| 		range_tree_clear(msp->ms_trim, start, size);
 | |
| 
 | |
| 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
 | |
| 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
 | |
| 
 | |
| 		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
 | |
| 		msp->ms_allocating_total += size;
 | |
| 
 | |
| 		/* Track the last successful allocation */
 | |
| 		msp->ms_alloc_txg = txg;
 | |
| 		metaslab_verify_space(msp, txg);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we've attempted the allocation we need to update the
 | |
| 	 * metaslab's maximum block size since it may have changed.
 | |
| 	 */
 | |
| 	msp->ms_max_size = metaslab_largest_allocatable(msp);
 | |
| 	return (start);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the metaslab with the highest weight that is less than what we've
 | |
|  * already tried.  In the common case, this means that we will examine each
 | |
|  * metaslab at most once. Note that concurrent callers could reorder metaslabs
 | |
|  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
 | |
|  * activated by another thread, and we fail to allocate from the metaslab we
 | |
|  * have selected, we may not try the newly-activated metaslab, and instead
 | |
|  * activate another metaslab.  This is not optimal, but generally does not cause
 | |
|  * any problems (a possible exception being if every metaslab is completely full
 | |
|  * except for the newly-activated metaslab which we fail to examine).
 | |
|  */
 | |
| static metaslab_t *
 | |
| find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
 | |
|     dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
 | |
|     boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
 | |
|     boolean_t *was_active)
 | |
| {
 | |
| 	avl_index_t idx;
 | |
| 	avl_tree_t *t = &mg->mg_metaslab_tree;
 | |
| 	metaslab_t *msp = avl_find(t, search, &idx);
 | |
| 	if (msp == NULL)
 | |
| 		msp = avl_nearest(t, idx, AVL_AFTER);
 | |
| 
 | |
| 	uint_t tries = 0;
 | |
| 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
 | |
| 		int i;
 | |
| 
 | |
| 		if (!try_hard && tries > zfs_metaslab_find_max_tries) {
 | |
| 			METASLABSTAT_BUMP(metaslabstat_too_many_tries);
 | |
| 			return (NULL);
 | |
| 		}
 | |
| 		tries++;
 | |
| 
 | |
| 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
 | |
| 			metaslab_trace_add(zal, mg, msp, asize, d,
 | |
| 			    TRACE_TOO_SMALL, allocator);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the selected metaslab is condensing or disabled, or
 | |
| 		 * hasn't gone through a metaslab_sync_done(), then skip it.
 | |
| 		 */
 | |
| 		if (msp->ms_condensing || msp->ms_disabled > 0 || msp->ms_new)
 | |
| 			continue;
 | |
| 
 | |
| 		*was_active = msp->ms_allocator != -1;
 | |
| 		/*
 | |
| 		 * If we're activating as primary, this is our first allocation
 | |
| 		 * from this disk, so we don't need to check how close we are.
 | |
| 		 * If the metaslab under consideration was already active,
 | |
| 		 * we're getting desperate enough to steal another allocator's
 | |
| 		 * metaslab, so we still don't care about distances.
 | |
| 		 */
 | |
| 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
 | |
| 			break;
 | |
| 
 | |
| 		for (i = 0; i < d; i++) {
 | |
| 			if (want_unique &&
 | |
| 			    !metaslab_is_unique(msp, &dva[i]))
 | |
| 				break;  /* try another metaslab */
 | |
| 		}
 | |
| 		if (i == d)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (msp != NULL) {
 | |
| 		search->ms_weight = msp->ms_weight;
 | |
| 		search->ms_start = msp->ms_start + 1;
 | |
| 		search->ms_allocator = msp->ms_allocator;
 | |
| 		search->ms_primary = msp->ms_primary;
 | |
| 	}
 | |
| 	return (msp);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_active_mask_verify(metaslab_t *msp)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | |
| 
 | |
| 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
 | |
| 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
 | |
| 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
 | |
| 		VERIFY3S(msp->ms_allocator, !=, -1);
 | |
| 		VERIFY(msp->ms_primary);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
 | |
| 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
 | |
| 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
 | |
| 		VERIFY3S(msp->ms_allocator, !=, -1);
 | |
| 		VERIFY(!msp->ms_primary);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
 | |
| 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
 | |
| 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
 | |
| 		VERIFY3S(msp->ms_allocator, ==, -1);
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static uint64_t
 | |
| metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
 | |
|     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
 | |
|     int allocator, boolean_t try_hard)
 | |
| {
 | |
| 	metaslab_t *msp = NULL;
 | |
| 	uint64_t offset = -1ULL;
 | |
| 
 | |
| 	uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
 | |
| 	for (int i = 0; i < d; i++) {
 | |
| 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
 | |
| 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
 | |
| 			activation_weight = METASLAB_WEIGHT_SECONDARY;
 | |
| 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
 | |
| 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
 | |
| 			activation_weight = METASLAB_WEIGHT_CLAIM;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we don't have enough metaslabs active to fill the entire array, we
 | |
| 	 * just use the 0th slot.
 | |
| 	 */
 | |
| 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
 | |
| 		allocator = 0;
 | |
| 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
 | |
| 
 | |
| 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
 | |
| 
 | |
| 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
 | |
| 	search->ms_weight = UINT64_MAX;
 | |
| 	search->ms_start = 0;
 | |
| 	/*
 | |
| 	 * At the end of the metaslab tree are the already-active metaslabs,
 | |
| 	 * first the primaries, then the secondaries. When we resume searching
 | |
| 	 * through the tree, we need to consider ms_allocator and ms_primary so
 | |
| 	 * we start in the location right after where we left off, and don't
 | |
| 	 * accidentally loop forever considering the same metaslabs.
 | |
| 	 */
 | |
| 	search->ms_allocator = -1;
 | |
| 	search->ms_primary = B_TRUE;
 | |
| 	for (;;) {
 | |
| 		boolean_t was_active = B_FALSE;
 | |
| 
 | |
| 		mutex_enter(&mg->mg_lock);
 | |
| 
 | |
| 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
 | |
| 		    mga->mga_primary != NULL) {
 | |
| 			msp = mga->mga_primary;
 | |
| 
 | |
| 			/*
 | |
| 			 * Even though we don't hold the ms_lock for the
 | |
| 			 * primary metaslab, those fields should not
 | |
| 			 * change while we hold the mg_lock. Thus it is
 | |
| 			 * safe to make assertions on them.
 | |
| 			 */
 | |
| 			ASSERT(msp->ms_primary);
 | |
| 			ASSERT3S(msp->ms_allocator, ==, allocator);
 | |
| 			ASSERT(msp->ms_loaded);
 | |
| 
 | |
| 			was_active = B_TRUE;
 | |
| 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
 | |
| 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
 | |
| 		    mga->mga_secondary != NULL) {
 | |
| 			msp = mga->mga_secondary;
 | |
| 
 | |
| 			/*
 | |
| 			 * See comment above about the similar assertions
 | |
| 			 * for the primary metaslab.
 | |
| 			 */
 | |
| 			ASSERT(!msp->ms_primary);
 | |
| 			ASSERT3S(msp->ms_allocator, ==, allocator);
 | |
| 			ASSERT(msp->ms_loaded);
 | |
| 
 | |
| 			was_active = B_TRUE;
 | |
| 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
 | |
| 		} else {
 | |
| 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
 | |
| 			    want_unique, asize, allocator, try_hard, zal,
 | |
| 			    search, &was_active);
 | |
| 		}
 | |
| 
 | |
| 		mutex_exit(&mg->mg_lock);
 | |
| 		if (msp == NULL) {
 | |
| 			kmem_free(search, sizeof (*search));
 | |
| 			return (-1ULL);
 | |
| 		}
 | |
| 		mutex_enter(&msp->ms_lock);
 | |
| 
 | |
| 		metaslab_active_mask_verify(msp);
 | |
| 
 | |
| 		/*
 | |
| 		 * This code is disabled out because of issues with
 | |
| 		 * tracepoints in non-gpl kernel modules.
 | |
| 		 */
 | |
| #if 0
 | |
| 		DTRACE_PROBE3(ms__activation__attempt,
 | |
| 		    metaslab_t *, msp, uint64_t, activation_weight,
 | |
| 		    boolean_t, was_active);
 | |
| #endif
 | |
| 
 | |
| 		/*
 | |
| 		 * Ensure that the metaslab we have selected is still
 | |
| 		 * capable of handling our request. It's possible that
 | |
| 		 * another thread may have changed the weight while we
 | |
| 		 * were blocked on the metaslab lock. We check the
 | |
| 		 * active status first to see if we need to set_selected_txg
 | |
| 		 * a new metaslab.
 | |
| 		 */
 | |
| 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
 | |
| 			ASSERT3S(msp->ms_allocator, ==, -1);
 | |
| 			mutex_exit(&msp->ms_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the metaslab was activated for another allocator
 | |
| 		 * while we were waiting in the ms_lock above, or it's
 | |
| 		 * a primary and we're seeking a secondary (or vice versa),
 | |
| 		 * we go back and select a new metaslab.
 | |
| 		 */
 | |
| 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
 | |
| 		    (msp->ms_allocator != -1) &&
 | |
| 		    (msp->ms_allocator != allocator || ((activation_weight ==
 | |
| 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
 | |
| 			ASSERT(msp->ms_loaded);
 | |
| 			ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
 | |
| 			    msp->ms_allocator != -1);
 | |
| 			mutex_exit(&msp->ms_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This metaslab was used for claiming regions allocated
 | |
| 		 * by the ZIL during pool import. Once these regions are
 | |
| 		 * claimed we don't need to keep the CLAIM bit set
 | |
| 		 * anymore. Passivate this metaslab to zero its activation
 | |
| 		 * mask.
 | |
| 		 */
 | |
| 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
 | |
| 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
 | |
| 			ASSERT(msp->ms_loaded);
 | |
| 			ASSERT3S(msp->ms_allocator, ==, -1);
 | |
| 			metaslab_passivate(msp, msp->ms_weight &
 | |
| 			    ~METASLAB_WEIGHT_CLAIM);
 | |
| 			mutex_exit(&msp->ms_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		metaslab_set_selected_txg(msp, txg);
 | |
| 
 | |
| 		int activation_error =
 | |
| 		    metaslab_activate(msp, allocator, activation_weight);
 | |
| 		metaslab_active_mask_verify(msp);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the metaslab was activated by another thread for
 | |
| 		 * another allocator or activation_weight (EBUSY), or it
 | |
| 		 * failed because another metaslab was assigned as primary
 | |
| 		 * for this allocator (EEXIST) we continue using this
 | |
| 		 * metaslab for our allocation, rather than going on to a
 | |
| 		 * worse metaslab (we waited for that metaslab to be loaded
 | |
| 		 * after all).
 | |
| 		 *
 | |
| 		 * If the activation failed due to an I/O error or ENOSPC we
 | |
| 		 * skip to the next metaslab.
 | |
| 		 */
 | |
| 		boolean_t activated;
 | |
| 		if (activation_error == 0) {
 | |
| 			activated = B_TRUE;
 | |
| 		} else if (activation_error == EBUSY ||
 | |
| 		    activation_error == EEXIST) {
 | |
| 			activated = B_FALSE;
 | |
| 		} else {
 | |
| 			mutex_exit(&msp->ms_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		ASSERT(msp->ms_loaded);
 | |
| 
 | |
| 		/*
 | |
| 		 * Now that we have the lock, recheck to see if we should
 | |
| 		 * continue to use this metaslab for this allocation. The
 | |
| 		 * the metaslab is now loaded so metaslab_should_allocate()
 | |
| 		 * can accurately determine if the allocation attempt should
 | |
| 		 * proceed.
 | |
| 		 */
 | |
| 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
 | |
| 			/* Passivate this metaslab and select a new one. */
 | |
| 			metaslab_trace_add(zal, mg, msp, asize, d,
 | |
| 			    TRACE_TOO_SMALL, allocator);
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If this metaslab is currently condensing then pick again
 | |
| 		 * as we can't manipulate this metaslab until it's committed
 | |
| 		 * to disk. If this metaslab is being initialized, we shouldn't
 | |
| 		 * allocate from it since the allocated region might be
 | |
| 		 * overwritten after allocation.
 | |
| 		 */
 | |
| 		if (msp->ms_condensing) {
 | |
| 			metaslab_trace_add(zal, mg, msp, asize, d,
 | |
| 			    TRACE_CONDENSING, allocator);
 | |
| 			if (activated) {
 | |
| 				metaslab_passivate(msp, msp->ms_weight &
 | |
| 				    ~METASLAB_ACTIVE_MASK);
 | |
| 			}
 | |
| 			mutex_exit(&msp->ms_lock);
 | |
| 			continue;
 | |
| 		} else if (msp->ms_disabled > 0) {
 | |
| 			metaslab_trace_add(zal, mg, msp, asize, d,
 | |
| 			    TRACE_DISABLED, allocator);
 | |
| 			if (activated) {
 | |
| 				metaslab_passivate(msp, msp->ms_weight &
 | |
| 				    ~METASLAB_ACTIVE_MASK);
 | |
| 			}
 | |
| 			mutex_exit(&msp->ms_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		offset = metaslab_block_alloc(msp, asize, txg);
 | |
| 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
 | |
| 
 | |
| 		if (offset != -1ULL) {
 | |
| 			/* Proactively passivate the metaslab, if needed */
 | |
| 			if (activated)
 | |
| 				metaslab_segment_may_passivate(msp);
 | |
| 			break;
 | |
| 		}
 | |
| next:
 | |
| 		ASSERT(msp->ms_loaded);
 | |
| 
 | |
| 		/*
 | |
| 		 * This code is disabled out because of issues with
 | |
| 		 * tracepoints in non-gpl kernel modules.
 | |
| 		 */
 | |
| #if 0
 | |
| 		DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
 | |
| 		    uint64_t, asize);
 | |
| #endif
 | |
| 
 | |
| 		/*
 | |
| 		 * We were unable to allocate from this metaslab so determine
 | |
| 		 * a new weight for this metaslab. Now that we have loaded
 | |
| 		 * the metaslab we can provide a better hint to the metaslab
 | |
| 		 * selector.
 | |
| 		 *
 | |
| 		 * For space-based metaslabs, we use the maximum block size.
 | |
| 		 * This information is only available when the metaslab
 | |
| 		 * is loaded and is more accurate than the generic free
 | |
| 		 * space weight that was calculated by metaslab_weight().
 | |
| 		 * This information allows us to quickly compare the maximum
 | |
| 		 * available allocation in the metaslab to the allocation
 | |
| 		 * size being requested.
 | |
| 		 *
 | |
| 		 * For segment-based metaslabs, determine the new weight
 | |
| 		 * based on the highest bucket in the range tree. We
 | |
| 		 * explicitly use the loaded segment weight (i.e. the range
 | |
| 		 * tree histogram) since it contains the space that is
 | |
| 		 * currently available for allocation and is accurate
 | |
| 		 * even within a sync pass.
 | |
| 		 */
 | |
| 		uint64_t weight;
 | |
| 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
 | |
| 			weight = metaslab_largest_allocatable(msp);
 | |
| 			WEIGHT_SET_SPACEBASED(weight);
 | |
| 		} else {
 | |
| 			weight = metaslab_weight_from_range_tree(msp);
 | |
| 		}
 | |
| 
 | |
| 		if (activated) {
 | |
| 			metaslab_passivate(msp, weight);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * For the case where we use the metaslab that is
 | |
| 			 * active for another allocator we want to make
 | |
| 			 * sure that we retain the activation mask.
 | |
| 			 *
 | |
| 			 * Note that we could attempt to use something like
 | |
| 			 * metaslab_recalculate_weight_and_sort() that
 | |
| 			 * retains the activation mask here. That function
 | |
| 			 * uses metaslab_weight() to set the weight though
 | |
| 			 * which is not as accurate as the calculations
 | |
| 			 * above.
 | |
| 			 */
 | |
| 			weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
 | |
| 			metaslab_group_sort(mg, msp, weight);
 | |
| 		}
 | |
| 		metaslab_active_mask_verify(msp);
 | |
| 
 | |
| 		/*
 | |
| 		 * We have just failed an allocation attempt, check
 | |
| 		 * that metaslab_should_allocate() agrees. Otherwise,
 | |
| 		 * we may end up in an infinite loop retrying the same
 | |
| 		 * metaslab.
 | |
| 		 */
 | |
| 		ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
 | |
| 
 | |
| 		mutex_exit(&msp->ms_lock);
 | |
| 	}
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| 	kmem_free(search, sizeof (*search));
 | |
| 	return (offset);
 | |
| }
 | |
| 
 | |
| static uint64_t
 | |
| metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
 | |
|     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
 | |
|     int allocator, boolean_t try_hard)
 | |
| {
 | |
| 	uint64_t offset;
 | |
| 
 | |
| 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
 | |
| 	    dva, d, allocator, try_hard);
 | |
| 
 | |
| 	mutex_enter(&mg->mg_lock);
 | |
| 	if (offset == -1ULL) {
 | |
| 		mg->mg_failed_allocations++;
 | |
| 		metaslab_trace_add(zal, mg, NULL, asize, d,
 | |
| 		    TRACE_GROUP_FAILURE, allocator);
 | |
| 		if (asize == SPA_GANGBLOCKSIZE) {
 | |
| 			/*
 | |
| 			 * This metaslab group was unable to allocate
 | |
| 			 * the minimum gang block size so it must be out of
 | |
| 			 * space. We must notify the allocation throttle
 | |
| 			 * to start skipping allocation attempts to this
 | |
| 			 * metaslab group until more space becomes available.
 | |
| 			 * Note: this failure cannot be caused by the
 | |
| 			 * allocation throttle since the allocation throttle
 | |
| 			 * is only responsible for skipping devices and
 | |
| 			 * not failing block allocations.
 | |
| 			 */
 | |
| 			mg->mg_no_free_space = B_TRUE;
 | |
| 		}
 | |
| 	}
 | |
| 	mg->mg_allocations++;
 | |
| 	mutex_exit(&mg->mg_lock);
 | |
| 	return (offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a block for the specified i/o.
 | |
|  */
 | |
| int
 | |
| metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
 | |
|     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
 | |
|     zio_alloc_list_t *zal, int allocator)
 | |
| {
 | |
| 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
 | |
| 	metaslab_group_t *mg, *rotor;
 | |
| 	vdev_t *vd;
 | |
| 	boolean_t try_hard = B_FALSE;
 | |
| 
 | |
| 	ASSERT(!DVA_IS_VALID(&dva[d]));
 | |
| 
 | |
| 	/*
 | |
| 	 * For testing, make some blocks above a certain size be gang blocks.
 | |
| 	 * This will result in more split blocks when using device removal,
 | |
| 	 * and a large number of split blocks coupled with ztest-induced
 | |
| 	 * damage can result in extremely long reconstruction times.  This
 | |
| 	 * will also test spilling from special to normal.
 | |
| 	 */
 | |
| 	if (psize >= metaslab_force_ganging &&
 | |
| 	    metaslab_force_ganging_pct > 0 &&
 | |
| 	    (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
 | |
| 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
 | |
| 		    allocator);
 | |
| 		return (SET_ERROR(ENOSPC));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Start at the rotor and loop through all mgs until we find something.
 | |
| 	 * Note that there's no locking on mca_rotor or mca_aliquot because
 | |
| 	 * nothing actually breaks if we miss a few updates -- we just won't
 | |
| 	 * allocate quite as evenly.  It all balances out over time.
 | |
| 	 *
 | |
| 	 * If we are doing ditto or log blocks, try to spread them across
 | |
| 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
 | |
| 	 * allocated all of our ditto blocks, then try and spread them out on
 | |
| 	 * that vdev as much as possible.  If it turns out to not be possible,
 | |
| 	 * gradually lower our standards until anything becomes acceptable.
 | |
| 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
 | |
| 	 * gives us hope of containing our fault domains to something we're
 | |
| 	 * able to reason about.  Otherwise, any two top-level vdev failures
 | |
| 	 * will guarantee the loss of data.  With consecutive allocation,
 | |
| 	 * only two adjacent top-level vdev failures will result in data loss.
 | |
| 	 *
 | |
| 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
 | |
| 	 * ourselves on the same vdev as our gang block header.  That
 | |
| 	 * way, we can hope for locality in vdev_cache, plus it makes our
 | |
| 	 * fault domains something tractable.
 | |
| 	 */
 | |
| 	if (hintdva) {
 | |
| 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
 | |
| 
 | |
| 		/*
 | |
| 		 * It's possible the vdev we're using as the hint no
 | |
| 		 * longer exists or its mg has been closed (e.g. by
 | |
| 		 * device removal).  Consult the rotor when
 | |
| 		 * all else fails.
 | |
| 		 */
 | |
| 		if (vd != NULL && vd->vdev_mg != NULL) {
 | |
| 			mg = vdev_get_mg(vd, mc);
 | |
| 
 | |
| 			if (flags & METASLAB_HINTBP_AVOID)
 | |
| 				mg = mg->mg_next;
 | |
| 		} else {
 | |
| 			mg = mca->mca_rotor;
 | |
| 		}
 | |
| 	} else if (d != 0) {
 | |
| 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
 | |
| 		mg = vd->vdev_mg->mg_next;
 | |
| 	} else {
 | |
| 		ASSERT(mca->mca_rotor != NULL);
 | |
| 		mg = mca->mca_rotor;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the hint put us into the wrong metaslab class, or into a
 | |
| 	 * metaslab group that has been passivated, just follow the rotor.
 | |
| 	 */
 | |
| 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
 | |
| 		mg = mca->mca_rotor;
 | |
| 
 | |
| 	rotor = mg;
 | |
| top:
 | |
| 	do {
 | |
| 		boolean_t allocatable;
 | |
| 
 | |
| 		ASSERT(mg->mg_activation_count == 1);
 | |
| 		vd = mg->mg_vd;
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't allocate from faulted devices.
 | |
| 		 */
 | |
| 		if (try_hard) {
 | |
| 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
 | |
| 			allocatable = vdev_allocatable(vd);
 | |
| 			spa_config_exit(spa, SCL_ZIO, FTAG);
 | |
| 		} else {
 | |
| 			allocatable = vdev_allocatable(vd);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Determine if the selected metaslab group is eligible
 | |
| 		 * for allocations. If we're ganging then don't allow
 | |
| 		 * this metaslab group to skip allocations since that would
 | |
| 		 * inadvertently return ENOSPC and suspend the pool
 | |
| 		 * even though space is still available.
 | |
| 		 */
 | |
| 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
 | |
| 			allocatable = metaslab_group_allocatable(mg, rotor,
 | |
| 			    flags, psize, allocator, d);
 | |
| 		}
 | |
| 
 | |
| 		if (!allocatable) {
 | |
| 			metaslab_trace_add(zal, mg, NULL, psize, d,
 | |
| 			    TRACE_NOT_ALLOCATABLE, allocator);
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Avoid writing single-copy data to an unhealthy,
 | |
| 		 * non-redundant vdev, unless we've already tried all
 | |
| 		 * other vdevs.
 | |
| 		 */
 | |
| 		if (vd->vdev_state < VDEV_STATE_HEALTHY &&
 | |
| 		    d == 0 && !try_hard && vd->vdev_children == 0) {
 | |
| 			metaslab_trace_add(zal, mg, NULL, psize, d,
 | |
| 			    TRACE_VDEV_ERROR, allocator);
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		ASSERT(mg->mg_class == mc);
 | |
| 
 | |
| 		uint64_t asize = vdev_psize_to_asize_txg(vd, psize, txg);
 | |
| 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we don't need to try hard, then require that the
 | |
| 		 * block be on a different metaslab from any other DVAs
 | |
| 		 * in this BP (unique=true).  If we are trying hard, then
 | |
| 		 * allow any metaslab to be used (unique=false).
 | |
| 		 */
 | |
| 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
 | |
| 		    !try_hard, dva, d, allocator, try_hard);
 | |
| 
 | |
| 		if (offset != -1ULL) {
 | |
| 			/*
 | |
| 			 * If we've just selected this metaslab group,
 | |
| 			 * figure out whether the corresponding vdev is
 | |
| 			 * over- or under-used relative to the pool,
 | |
| 			 * and set an allocation bias to even it out.
 | |
| 			 *
 | |
| 			 * Bias is also used to compensate for unequally
 | |
| 			 * sized vdevs so that space is allocated fairly.
 | |
| 			 */
 | |
| 			if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
 | |
| 				vdev_stat_t *vs = &vd->vdev_stat;
 | |
| 				int64_t vs_free = vs->vs_space - vs->vs_alloc;
 | |
| 				int64_t mc_free = mc->mc_space - mc->mc_alloc;
 | |
| 				int64_t ratio;
 | |
| 
 | |
| 				/*
 | |
| 				 * Calculate how much more or less we should
 | |
| 				 * try to allocate from this device during
 | |
| 				 * this iteration around the rotor.
 | |
| 				 *
 | |
| 				 * This basically introduces a zero-centered
 | |
| 				 * bias towards the devices with the most
 | |
| 				 * free space, while compensating for vdev
 | |
| 				 * size differences.
 | |
| 				 *
 | |
| 				 * Examples:
 | |
| 				 *  vdev V1 = 16M/128M
 | |
| 				 *  vdev V2 = 16M/128M
 | |
| 				 *  ratio(V1) = 100% ratio(V2) = 100%
 | |
| 				 *
 | |
| 				 *  vdev V1 = 16M/128M
 | |
| 				 *  vdev V2 = 64M/128M
 | |
| 				 *  ratio(V1) = 127% ratio(V2) =  72%
 | |
| 				 *
 | |
| 				 *  vdev V1 = 16M/128M
 | |
| 				 *  vdev V2 = 64M/512M
 | |
| 				 *  ratio(V1) =  40% ratio(V2) = 160%
 | |
| 				 */
 | |
| 				ratio = (vs_free * mc->mc_alloc_groups * 100) /
 | |
| 				    (mc_free + 1);
 | |
| 				mg->mg_bias = ((ratio - 100) *
 | |
| 				    (int64_t)mg->mg_aliquot) / 100;
 | |
| 			} else if (!metaslab_bias_enabled) {
 | |
| 				mg->mg_bias = 0;
 | |
| 			}
 | |
| 
 | |
| 			if ((flags & METASLAB_ZIL) ||
 | |
| 			    atomic_add_64_nv(&mca->mca_aliquot, asize) >=
 | |
| 			    mg->mg_aliquot + mg->mg_bias) {
 | |
| 				mca->mca_rotor = mg->mg_next;
 | |
| 				mca->mca_aliquot = 0;
 | |
| 			}
 | |
| 
 | |
| 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
 | |
| 			DVA_SET_OFFSET(&dva[d], offset);
 | |
| 			DVA_SET_GANG(&dva[d],
 | |
| 			    ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
 | |
| 			DVA_SET_ASIZE(&dva[d], asize);
 | |
| 
 | |
| 			return (0);
 | |
| 		}
 | |
| next:
 | |
| 		mca->mca_rotor = mg->mg_next;
 | |
| 		mca->mca_aliquot = 0;
 | |
| 	} while ((mg = mg->mg_next) != rotor);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we haven't tried hard, perhaps do so now.
 | |
| 	 */
 | |
| 	if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
 | |
| 	    GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
 | |
| 	    psize <= 1 << spa->spa_min_ashift)) {
 | |
| 		METASLABSTAT_BUMP(metaslabstat_try_hard);
 | |
| 		try_hard = B_TRUE;
 | |
| 		goto top;
 | |
| 	}
 | |
| 
 | |
| 	memset(&dva[d], 0, sizeof (dva_t));
 | |
| 
 | |
| 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
 | |
| 	return (SET_ERROR(ENOSPC));
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
 | |
|     boolean_t checkpoint)
 | |
| {
 | |
| 	metaslab_t *msp;
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 
 | |
| 	ASSERT(vdev_is_concrete(vd));
 | |
| 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 | |
| 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
 | |
| 
 | |
| 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 | |
| 
 | |
| 	VERIFY(!msp->ms_condensing);
 | |
| 	VERIFY3U(offset, >=, msp->ms_start);
 | |
| 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
 | |
| 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
 | |
| 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
 | |
| 
 | |
| 	metaslab_check_free_impl(vd, offset, asize);
 | |
| 
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 	if (range_tree_is_empty(msp->ms_freeing) &&
 | |
| 	    range_tree_is_empty(msp->ms_checkpointing)) {
 | |
| 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
 | |
| 	}
 | |
| 
 | |
| 	if (checkpoint) {
 | |
| 		ASSERT(spa_has_checkpoint(spa));
 | |
| 		range_tree_add(msp->ms_checkpointing, offset, asize);
 | |
| 	} else {
 | |
| 		range_tree_add(msp->ms_freeing, offset, asize);
 | |
| 	}
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
 | |
|     uint64_t size, void *arg)
 | |
| {
 | |
| 	(void) inner_offset;
 | |
| 	boolean_t *checkpoint = arg;
 | |
| 
 | |
| 	ASSERT3P(checkpoint, !=, NULL);
 | |
| 
 | |
| 	if (vd->vdev_ops->vdev_op_remap != NULL)
 | |
| 		vdev_indirect_mark_obsolete(vd, offset, size);
 | |
| 	else
 | |
| 		metaslab_free_impl(vd, offset, size, *checkpoint);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
 | |
|     boolean_t checkpoint)
 | |
| {
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 
 | |
| 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 | |
| 
 | |
| 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
 | |
| 		return;
 | |
| 
 | |
| 	if (spa->spa_vdev_removal != NULL &&
 | |
| 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
 | |
| 	    vdev_is_concrete(vd)) {
 | |
| 		/*
 | |
| 		 * Note: we check if the vdev is concrete because when
 | |
| 		 * we complete the removal, we first change the vdev to be
 | |
| 		 * an indirect vdev (in open context), and then (in syncing
 | |
| 		 * context) clear spa_vdev_removal.
 | |
| 		 */
 | |
| 		free_from_removing_vdev(vd, offset, size);
 | |
| 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
 | |
| 		vdev_indirect_mark_obsolete(vd, offset, size);
 | |
| 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
 | |
| 		    metaslab_free_impl_cb, &checkpoint);
 | |
| 	} else {
 | |
| 		metaslab_free_concrete(vd, offset, size, checkpoint);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| typedef struct remap_blkptr_cb_arg {
 | |
| 	blkptr_t *rbca_bp;
 | |
| 	spa_remap_cb_t rbca_cb;
 | |
| 	vdev_t *rbca_remap_vd;
 | |
| 	uint64_t rbca_remap_offset;
 | |
| 	void *rbca_cb_arg;
 | |
| } remap_blkptr_cb_arg_t;
 | |
| 
 | |
| static void
 | |
| remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
 | |
|     uint64_t size, void *arg)
 | |
| {
 | |
| 	remap_blkptr_cb_arg_t *rbca = arg;
 | |
| 	blkptr_t *bp = rbca->rbca_bp;
 | |
| 
 | |
| 	/* We can not remap split blocks. */
 | |
| 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
 | |
| 		return;
 | |
| 	ASSERT0(inner_offset);
 | |
| 
 | |
| 	if (rbca->rbca_cb != NULL) {
 | |
| 		/*
 | |
| 		 * At this point we know that we are not handling split
 | |
| 		 * blocks and we invoke the callback on the previous
 | |
| 		 * vdev which must be indirect.
 | |
| 		 */
 | |
| 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
 | |
| 
 | |
| 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
 | |
| 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
 | |
| 
 | |
| 		/* set up remap_blkptr_cb_arg for the next call */
 | |
| 		rbca->rbca_remap_vd = vd;
 | |
| 		rbca->rbca_remap_offset = offset;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The phys birth time is that of dva[0].  This ensures that we know
 | |
| 	 * when each dva was written, so that resilver can determine which
 | |
| 	 * blocks need to be scrubbed (i.e. those written during the time
 | |
| 	 * the vdev was offline).  It also ensures that the key used in
 | |
| 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
 | |
| 	 * we didn't change the phys_birth, a lookup in the ARC for a
 | |
| 	 * remapped BP could find the data that was previously stored at
 | |
| 	 * this vdev + offset.
 | |
| 	 */
 | |
| 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
 | |
| 	    DVA_GET_VDEV(&bp->blk_dva[0]));
 | |
| 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
 | |
| 	uint64_t physical_birth = vdev_indirect_births_physbirth(vib,
 | |
| 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
 | |
| 	BP_SET_PHYSICAL_BIRTH(bp, physical_birth);
 | |
| 
 | |
| 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
 | |
| 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the block pointer contains any indirect DVAs, modify them to refer to
 | |
|  * concrete DVAs.  Note that this will sometimes not be possible, leaving
 | |
|  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
 | |
|  * segments in the mapping (i.e. it is a "split block").
 | |
|  *
 | |
|  * If the BP was remapped, calls the callback on the original dva (note the
 | |
|  * callback can be called multiple times if the original indirect DVA refers
 | |
|  * to another indirect DVA, etc).
 | |
|  *
 | |
|  * Returns TRUE if the BP was remapped.
 | |
|  */
 | |
| boolean_t
 | |
| spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
 | |
| {
 | |
| 	remap_blkptr_cb_arg_t rbca;
 | |
| 
 | |
| 	if (!zfs_remap_blkptr_enable)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
 | |
| 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
 | |
| 	 */
 | |
| 	if (BP_GET_DEDUP(bp))
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Gang blocks can not be remapped, because
 | |
| 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
 | |
| 	 * the BP used to read the gang block header (GBH) being the same
 | |
| 	 * as the DVA[0] that we allocated for the GBH.
 | |
| 	 */
 | |
| 	if (BP_IS_GANG(bp))
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Embedded BP's have no DVA to remap.
 | |
| 	 */
 | |
| 	if (BP_GET_NDVAS(bp) < 1)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: we only remap dva[0].  If we remapped other dvas, we
 | |
| 	 * would no longer know what their phys birth txg is.
 | |
| 	 */
 | |
| 	dva_t *dva = &bp->blk_dva[0];
 | |
| 
 | |
| 	uint64_t offset = DVA_GET_OFFSET(dva);
 | |
| 	uint64_t size = DVA_GET_ASIZE(dva);
 | |
| 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
 | |
| 
 | |
| 	if (vd->vdev_ops->vdev_op_remap == NULL)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	rbca.rbca_bp = bp;
 | |
| 	rbca.rbca_cb = callback;
 | |
| 	rbca.rbca_remap_vd = vd;
 | |
| 	rbca.rbca_remap_offset = offset;
 | |
| 	rbca.rbca_cb_arg = arg;
 | |
| 
 | |
| 	/*
 | |
| 	 * remap_blkptr_cb() will be called in order for each level of
 | |
| 	 * indirection, until a concrete vdev is reached or a split block is
 | |
| 	 * encountered. old_vd and old_offset are updated within the callback
 | |
| 	 * as we go from the one indirect vdev to the next one (either concrete
 | |
| 	 * or indirect again) in that order.
 | |
| 	 */
 | |
| 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
 | |
| 
 | |
| 	/* Check if the DVA wasn't remapped because it is a split block */
 | |
| 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	return (B_TRUE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Undo the allocation of a DVA which happened in the given transaction group.
 | |
|  */
 | |
| void
 | |
| metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
 | |
| {
 | |
| 	metaslab_t *msp;
 | |
| 	vdev_t *vd;
 | |
| 	uint64_t vdev = DVA_GET_VDEV(dva);
 | |
| 	uint64_t offset = DVA_GET_OFFSET(dva);
 | |
| 	uint64_t size = DVA_GET_ASIZE(dva);
 | |
| 
 | |
| 	ASSERT(DVA_IS_VALID(dva));
 | |
| 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 | |
| 
 | |
| 	if (txg > spa_freeze_txg(spa))
 | |
| 		return;
 | |
| 
 | |
| 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
 | |
| 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
 | |
| 		zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
 | |
| 		    (u_longlong_t)vdev, (u_longlong_t)offset,
 | |
| 		    (u_longlong_t)size);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(!vd->vdev_removing);
 | |
| 	ASSERT(vdev_is_concrete(vd));
 | |
| 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
 | |
| 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
 | |
| 
 | |
| 	if (DVA_GET_GANG(dva))
 | |
| 		size = vdev_gang_header_asize(vd);
 | |
| 
 | |
| 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 | |
| 
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
 | |
| 	    offset, size);
 | |
| 	msp->ms_allocating_total -= size;
 | |
| 
 | |
| 	VERIFY(!msp->ms_condensing);
 | |
| 	VERIFY3U(offset, >=, msp->ms_start);
 | |
| 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
 | |
| 	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
 | |
| 	    msp->ms_size);
 | |
| 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
 | |
| 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
 | |
| 	range_tree_add(msp->ms_allocatable, offset, size);
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the block represented by the given DVA.
 | |
|  */
 | |
| void
 | |
| metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
 | |
| {
 | |
| 	uint64_t vdev = DVA_GET_VDEV(dva);
 | |
| 	uint64_t offset = DVA_GET_OFFSET(dva);
 | |
| 	uint64_t size = DVA_GET_ASIZE(dva);
 | |
| 	vdev_t *vd = vdev_lookup_top(spa, vdev);
 | |
| 
 | |
| 	ASSERT(DVA_IS_VALID(dva));
 | |
| 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 | |
| 
 | |
| 	if (DVA_GET_GANG(dva)) {
 | |
| 		size = vdev_gang_header_asize(vd);
 | |
| 	}
 | |
| 
 | |
| 	metaslab_free_impl(vd, offset, size, checkpoint);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reserve some allocation slots. The reservation system must be called
 | |
|  * before we call into the allocator. If there aren't any available slots
 | |
|  * then the I/O will be throttled until an I/O completes and its slots are
 | |
|  * freed up. The function returns true if it was successful in placing
 | |
|  * the reservation.
 | |
|  */
 | |
| boolean_t
 | |
| metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
 | |
|     zio_t *zio, int flags)
 | |
| {
 | |
| 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
 | |
| 	uint64_t max = mca->mca_alloc_max_slots;
 | |
| 
 | |
| 	ASSERT(mc->mc_alloc_throttle_enabled);
 | |
| 	if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
 | |
| 	    zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
 | |
| 		/*
 | |
| 		 * The potential race between _count() and _add() is covered
 | |
| 		 * by the allocator lock in most cases, or irrelevant due to
 | |
| 		 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
 | |
| 		 * But even if we assume some other non-existing scenario, the
 | |
| 		 * worst that can happen is few more I/Os get to allocation
 | |
| 		 * earlier, that is not a problem.
 | |
| 		 *
 | |
| 		 * We reserve the slots individually so that we can unreserve
 | |
| 		 * them individually when an I/O completes.
 | |
| 		 */
 | |
| 		zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio);
 | |
| 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
 | |
| 		return (B_TRUE);
 | |
| 	}
 | |
| 	return (B_FALSE);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
 | |
|     int allocator, zio_t *zio)
 | |
| {
 | |
| 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
 | |
| 
 | |
| 	ASSERT(mc->mc_alloc_throttle_enabled);
 | |
| 	zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio);
 | |
| }
 | |
| 
 | |
| static int
 | |
| metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
 | |
|     uint64_t txg)
 | |
| {
 | |
| 	metaslab_t *msp;
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
 | |
| 		return (SET_ERROR(ENXIO));
 | |
| 
 | |
| 	ASSERT3P(vd->vdev_ms, !=, NULL);
 | |
| 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 | |
| 
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 
 | |
| 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
 | |
| 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
 | |
| 		if (error == EBUSY) {
 | |
| 			ASSERT(msp->ms_loaded);
 | |
| 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
 | |
| 			error = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (error == 0 &&
 | |
| 	    !range_tree_contains(msp->ms_allocatable, offset, size))
 | |
| 		error = SET_ERROR(ENOENT);
 | |
| 
 | |
| 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
 | |
| 		mutex_exit(&msp->ms_lock);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	VERIFY(!msp->ms_condensing);
 | |
| 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
 | |
| 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
 | |
| 	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
 | |
| 	    msp->ms_size);
 | |
| 	range_tree_remove(msp->ms_allocatable, offset, size);
 | |
| 	range_tree_clear(msp->ms_trim, offset, size);
 | |
| 
 | |
| 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(8) */
 | |
| 		metaslab_class_t *mc = msp->ms_group->mg_class;
 | |
| 		multilist_sublist_t *mls =
 | |
| 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
 | |
| 		if (!multilist_link_active(&msp->ms_class_txg_node)) {
 | |
| 			msp->ms_selected_txg = txg;
 | |
| 			multilist_sublist_insert_head(mls, msp);
 | |
| 		}
 | |
| 		multilist_sublist_unlock(mls);
 | |
| 
 | |
| 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
 | |
| 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
 | |
| 		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
 | |
| 		    offset, size);
 | |
| 		msp->ms_allocating_total += size;
 | |
| 	}
 | |
| 
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| typedef struct metaslab_claim_cb_arg_t {
 | |
| 	uint64_t	mcca_txg;
 | |
| 	int		mcca_error;
 | |
| } metaslab_claim_cb_arg_t;
 | |
| 
 | |
| static void
 | |
| metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
 | |
|     uint64_t size, void *arg)
 | |
| {
 | |
| 	(void) inner_offset;
 | |
| 	metaslab_claim_cb_arg_t *mcca_arg = arg;
 | |
| 
 | |
| 	if (mcca_arg->mcca_error == 0) {
 | |
| 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
 | |
| 		    size, mcca_arg->mcca_txg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
 | |
| {
 | |
| 	if (vd->vdev_ops->vdev_op_remap != NULL) {
 | |
| 		metaslab_claim_cb_arg_t arg;
 | |
| 
 | |
| 		/*
 | |
| 		 * Only zdb(8) can claim on indirect vdevs.  This is used
 | |
| 		 * to detect leaks of mapped space (that are not accounted
 | |
| 		 * for in the obsolete counts, spacemap, or bpobj).
 | |
| 		 */
 | |
| 		ASSERT(!spa_writeable(vd->vdev_spa));
 | |
| 		arg.mcca_error = 0;
 | |
| 		arg.mcca_txg = txg;
 | |
| 
 | |
| 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
 | |
| 		    metaslab_claim_impl_cb, &arg);
 | |
| 
 | |
| 		if (arg.mcca_error == 0) {
 | |
| 			arg.mcca_error = metaslab_claim_concrete(vd,
 | |
| 			    offset, size, txg);
 | |
| 		}
 | |
| 		return (arg.mcca_error);
 | |
| 	} else {
 | |
| 		return (metaslab_claim_concrete(vd, offset, size, txg));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Intent log support: upon opening the pool after a crash, notify the SPA
 | |
|  * of blocks that the intent log has allocated for immediate write, but
 | |
|  * which are still considered free by the SPA because the last transaction
 | |
|  * group didn't commit yet.
 | |
|  */
 | |
| static int
 | |
| metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
 | |
| {
 | |
| 	uint64_t vdev = DVA_GET_VDEV(dva);
 | |
| 	uint64_t offset = DVA_GET_OFFSET(dva);
 | |
| 	uint64_t size = DVA_GET_ASIZE(dva);
 | |
| 	vdev_t *vd;
 | |
| 
 | |
| 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
 | |
| 		return (SET_ERROR(ENXIO));
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(DVA_IS_VALID(dva));
 | |
| 
 | |
| 	if (DVA_GET_GANG(dva))
 | |
| 		size = vdev_gang_header_asize(vd);
 | |
| 
 | |
| 	return (metaslab_claim_impl(vd, offset, size, txg));
 | |
| }
 | |
| 
 | |
| int
 | |
| metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
 | |
|     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
 | |
|     zio_alloc_list_t *zal, zio_t *zio, int allocator)
 | |
| {
 | |
| 	dva_t *dva = bp->blk_dva;
 | |
| 	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	ASSERT0(BP_GET_LOGICAL_BIRTH(bp));
 | |
| 	ASSERT0(BP_GET_PHYSICAL_BIRTH(bp));
 | |
| 
 | |
| 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
 | |
| 
 | |
| 	if (mc->mc_allocator[allocator].mca_rotor == NULL) {
 | |
| 		/* no vdevs in this class */
 | |
| 		spa_config_exit(spa, SCL_ALLOC, FTAG);
 | |
| 		return (SET_ERROR(ENOSPC));
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
 | |
| 	ASSERT(BP_GET_NDVAS(bp) == 0);
 | |
| 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
 | |
| 	ASSERT3P(zal, !=, NULL);
 | |
| 
 | |
| 	for (int d = 0; d < ndvas; d++) {
 | |
| 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
 | |
| 		    txg, flags, zal, allocator);
 | |
| 		if (error != 0) {
 | |
| 			for (d--; d >= 0; d--) {
 | |
| 				metaslab_unalloc_dva(spa, &dva[d], txg);
 | |
| 				metaslab_group_alloc_decrement(spa,
 | |
| 				    DVA_GET_VDEV(&dva[d]), zio, flags,
 | |
| 				    allocator, B_FALSE);
 | |
| 				memset(&dva[d], 0, sizeof (dva_t));
 | |
| 			}
 | |
| 			spa_config_exit(spa, SCL_ALLOC, FTAG);
 | |
| 			return (error);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Update the metaslab group's queue depth
 | |
| 			 * based on the newly allocated dva.
 | |
| 			 */
 | |
| 			metaslab_group_alloc_increment(spa,
 | |
| 			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
 | |
| 		}
 | |
| 	}
 | |
| 	ASSERT(error == 0);
 | |
| 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
 | |
| 
 | |
| 	spa_config_exit(spa, SCL_ALLOC, FTAG);
 | |
| 
 | |
| 	BP_SET_BIRTH(bp, txg, 0);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
 | |
| {
 | |
| 	const dva_t *dva = bp->blk_dva;
 | |
| 	int ndvas = BP_GET_NDVAS(bp);
 | |
| 
 | |
| 	ASSERT(!BP_IS_HOLE(bp));
 | |
| 	ASSERT(!now || BP_GET_LOGICAL_BIRTH(bp) >= spa_syncing_txg(spa));
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have a checkpoint for the pool we need to make sure that
 | |
| 	 * the blocks that we free that are part of the checkpoint won't be
 | |
| 	 * reused until the checkpoint is discarded or we revert to it.
 | |
| 	 *
 | |
| 	 * The checkpoint flag is passed down the metaslab_free code path
 | |
| 	 * and is set whenever we want to add a block to the checkpoint's
 | |
| 	 * accounting. That is, we "checkpoint" blocks that existed at the
 | |
| 	 * time the checkpoint was created and are therefore referenced by
 | |
| 	 * the checkpointed uberblock.
 | |
| 	 *
 | |
| 	 * Note that, we don't checkpoint any blocks if the current
 | |
| 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
 | |
| 	 * normally as they will be referenced by the checkpointed uberblock.
 | |
| 	 */
 | |
| 	boolean_t checkpoint = B_FALSE;
 | |
| 	if (BP_GET_LOGICAL_BIRTH(bp) <= spa->spa_checkpoint_txg &&
 | |
| 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
 | |
| 		/*
 | |
| 		 * At this point, if the block is part of the checkpoint
 | |
| 		 * there is no way it was created in the current txg.
 | |
| 		 */
 | |
| 		ASSERT(!now);
 | |
| 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
 | |
| 		checkpoint = B_TRUE;
 | |
| 	}
 | |
| 
 | |
| 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
 | |
| 
 | |
| 	for (int d = 0; d < ndvas; d++) {
 | |
| 		if (now) {
 | |
| 			metaslab_unalloc_dva(spa, &dva[d], txg);
 | |
| 		} else {
 | |
| 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
 | |
| 			metaslab_free_dva(spa, &dva[d], checkpoint);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spa_config_exit(spa, SCL_FREE, FTAG);
 | |
| }
 | |
| 
 | |
| int
 | |
| metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
 | |
| {
 | |
| 	const dva_t *dva = bp->blk_dva;
 | |
| 	int ndvas = BP_GET_NDVAS(bp);
 | |
| 	int error = 0;
 | |
| 
 | |
| 	ASSERT(!BP_IS_HOLE(bp));
 | |
| 
 | |
| 	if (txg != 0) {
 | |
| 		/*
 | |
| 		 * First do a dry run to make sure all DVAs are claimable,
 | |
| 		 * so we don't have to unwind from partial failures below.
 | |
| 		 */
 | |
| 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
 | |
| 			return (error);
 | |
| 	}
 | |
| 
 | |
| 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
 | |
| 
 | |
| 	for (int d = 0; d < ndvas; d++) {
 | |
| 		error = metaslab_claim_dva(spa, &dva[d], txg);
 | |
| 		if (error != 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	spa_config_exit(spa, SCL_ALLOC, FTAG);
 | |
| 
 | |
| 	ASSERT(error == 0 || txg == 0);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
 | |
|     uint64_t size, void *arg)
 | |
| {
 | |
| 	(void) inner, (void) arg;
 | |
| 
 | |
| 	if (vd->vdev_ops == &vdev_indirect_ops)
 | |
| 		return;
 | |
| 
 | |
| 	metaslab_check_free_impl(vd, offset, size);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
 | |
| {
 | |
| 	metaslab_t *msp;
 | |
| 	spa_t *spa __maybe_unused = vd->vdev_spa;
 | |
| 
 | |
| 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (vd->vdev_ops->vdev_op_remap != NULL) {
 | |
| 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
 | |
| 		    metaslab_check_free_impl_cb, NULL);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(vdev_is_concrete(vd));
 | |
| 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
 | |
| 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 | |
| 
 | |
| 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 | |
| 
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 	if (msp->ms_loaded) {
 | |
| 		range_tree_verify_not_present(msp->ms_allocatable,
 | |
| 		    offset, size);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check all segments that currently exist in the freeing pipeline.
 | |
| 	 *
 | |
| 	 * It would intuitively make sense to also check the current allocating
 | |
| 	 * tree since metaslab_unalloc_dva() exists for extents that are
 | |
| 	 * allocated and freed in the same sync pass within the same txg.
 | |
| 	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
 | |
| 	 * segment but then we free part of it within the same txg
 | |
| 	 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
 | |
| 	 * current allocating tree.
 | |
| 	 */
 | |
| 	range_tree_verify_not_present(msp->ms_freeing, offset, size);
 | |
| 	range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
 | |
| 	range_tree_verify_not_present(msp->ms_freed, offset, size);
 | |
| 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
 | |
| 		range_tree_verify_not_present(msp->ms_defer[j], offset, size);
 | |
| 	range_tree_verify_not_present(msp->ms_trim, offset, size);
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_check_free(spa_t *spa, const blkptr_t *bp)
 | |
| {
 | |
| 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 | |
| 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
 | |
| 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
 | |
| 		vdev_t *vd = vdev_lookup_top(spa, vdev);
 | |
| 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
 | |
| 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
 | |
| 
 | |
| 		if (DVA_GET_GANG(&bp->blk_dva[i]))
 | |
| 			size = vdev_gang_header_asize(vd);
 | |
| 
 | |
| 		ASSERT3P(vd, !=, NULL);
 | |
| 
 | |
| 		metaslab_check_free_impl(vd, offset, size);
 | |
| 	}
 | |
| 	spa_config_exit(spa, SCL_VDEV, FTAG);
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_group_disable_wait(metaslab_group_t *mg)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
 | |
| 	while (mg->mg_disabled_updating) {
 | |
| 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_group_disabled_increment(metaslab_group_t *mg)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
 | |
| 	ASSERT(mg->mg_disabled_updating);
 | |
| 
 | |
| 	while (mg->mg_ms_disabled >= max_disabled_ms) {
 | |
| 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
 | |
| 	}
 | |
| 	mg->mg_ms_disabled++;
 | |
| 	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark the metaslab as disabled to prevent any allocations on this metaslab.
 | |
|  * We must also track how many metaslabs are currently disabled within a
 | |
|  * metaslab group and limit them to prevent allocation failures from
 | |
|  * occurring because all metaslabs are disabled.
 | |
|  */
 | |
| void
 | |
| metaslab_disable(metaslab_t *msp)
 | |
| {
 | |
| 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
 | |
| 	metaslab_group_t *mg = msp->ms_group;
 | |
| 
 | |
| 	mutex_enter(&mg->mg_ms_disabled_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * To keep an accurate count of how many threads have disabled
 | |
| 	 * a specific metaslab group, we only allow one thread to mark
 | |
| 	 * the metaslab group at a time. This ensures that the value of
 | |
| 	 * ms_disabled will be accurate when we decide to mark a metaslab
 | |
| 	 * group as disabled. To do this we force all other threads
 | |
| 	 * to wait till the metaslab's mg_disabled_updating flag is no
 | |
| 	 * longer set.
 | |
| 	 */
 | |
| 	metaslab_group_disable_wait(mg);
 | |
| 	mg->mg_disabled_updating = B_TRUE;
 | |
| 	if (msp->ms_disabled == 0) {
 | |
| 		metaslab_group_disabled_increment(mg);
 | |
| 	}
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 	msp->ms_disabled++;
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| 
 | |
| 	mg->mg_disabled_updating = B_FALSE;
 | |
| 	cv_broadcast(&mg->mg_ms_disabled_cv);
 | |
| 	mutex_exit(&mg->mg_ms_disabled_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
 | |
| {
 | |
| 	metaslab_group_t *mg = msp->ms_group;
 | |
| 	spa_t *spa = mg->mg_vd->vdev_spa;
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for the outstanding IO to be synced to prevent newly
 | |
| 	 * allocated blocks from being overwritten.  This used by
 | |
| 	 * initialize and TRIM which are modifying unallocated space.
 | |
| 	 */
 | |
| 	if (sync)
 | |
| 		txg_wait_synced(spa_get_dsl(spa), 0);
 | |
| 
 | |
| 	mutex_enter(&mg->mg_ms_disabled_lock);
 | |
| 	mutex_enter(&msp->ms_lock);
 | |
| 	if (--msp->ms_disabled == 0) {
 | |
| 		mg->mg_ms_disabled--;
 | |
| 		cv_broadcast(&mg->mg_ms_disabled_cv);
 | |
| 		if (unload)
 | |
| 			metaslab_unload(msp);
 | |
| 	}
 | |
| 	mutex_exit(&msp->ms_lock);
 | |
| 	mutex_exit(&mg->mg_ms_disabled_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
 | |
| {
 | |
| 	ms->ms_unflushed_dirty = dirty;
 | |
| }
 | |
| 
 | |
| static void
 | |
| metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
 | |
| {
 | |
| 	vdev_t *vd = ms->ms_group->mg_vd;
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 	objset_t *mos = spa_meta_objset(spa);
 | |
| 
 | |
| 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
 | |
| 
 | |
| 	metaslab_unflushed_phys_t entry = {
 | |
| 		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
 | |
| 	};
 | |
| 	uint64_t entry_size = sizeof (entry);
 | |
| 	uint64_t entry_offset = ms->ms_id * entry_size;
 | |
| 
 | |
| 	uint64_t object = 0;
 | |
| 	int err = zap_lookup(mos, vd->vdev_top_zap,
 | |
| 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
 | |
| 	    &object);
 | |
| 	if (err == ENOENT) {
 | |
| 		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
 | |
| 		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
 | |
| 		VERIFY0(zap_add(mos, vd->vdev_top_zap,
 | |
| 		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
 | |
| 		    &object, tx));
 | |
| 	} else {
 | |
| 		VERIFY0(err);
 | |
| 	}
 | |
| 
 | |
| 	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
 | |
| 	    &entry, tx);
 | |
| }
 | |
| 
 | |
| void
 | |
| metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
 | |
| {
 | |
| 	ms->ms_unflushed_txg = txg;
 | |
| 	metaslab_update_ondisk_flush_data(ms, tx);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| metaslab_unflushed_dirty(metaslab_t *ms)
 | |
| {
 | |
| 	return (ms->ms_unflushed_dirty);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| metaslab_unflushed_txg(metaslab_t *ms)
 | |
| {
 | |
| 	return (ms->ms_unflushed_txg);
 | |
| }
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
 | |
| 	"Allocation granularity (a.k.a. stripe size)");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
 | |
| 	"Load all metaslabs when pool is first opened");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
 | |
| 	"Prevent metaslabs from being unloaded");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
 | |
| 	"Preload potential metaslabs during reassessment");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW,
 | |
| 	"Max number of metaslabs per group to preload");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
 | |
| 	"Delay in txgs after metaslab was last used before unloading");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
 | |
| 	"Delay in milliseconds after metaslab was last used before unloading");
 | |
| 
 | |
| /* BEGIN CSTYLED */
 | |
| ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
 | |
| 	"Percentage of metaslab group size that should be free to make it "
 | |
| 	"eligible for allocation");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
 | |
| 	"Percentage of metaslab group size that should be considered eligible "
 | |
| 	"for allocations unless all metaslab groups within the metaslab class "
 | |
| 	"have also crossed this threshold");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
 | |
| 	ZMOD_RW,
 | |
| 	"Use the fragmentation metric to prefer less fragmented metaslabs");
 | |
| /* END CSTYLED */
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
 | |
| 	ZMOD_RW, "Fragmentation for metaslab to allow allocation");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
 | |
| 	"Prefer metaslabs with lower LBAs");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
 | |
| 	"Enable metaslab group biasing");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
 | |
| 	ZMOD_RW, "Enable segment-based metaslab selection");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
 | |
| 	"Segment-based metaslab selection maximum buckets before switching");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
 | |
| 	"Blocks larger than this size are sometimes forced to be gang blocks");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW,
 | |
| 	"Percentage of large blocks that will be forced to be gang blocks");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
 | |
| 	"Max distance (bytes) to search forward before using size tree");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
 | |
| 	"When looking in size tree, use largest segment instead of exact fit");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
 | |
| 	ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
 | |
| 	"Percentage of memory that can be used to store metaslab range trees");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
 | |
| 	ZMOD_RW, "Try hard to allocate before ganging");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
 | |
| 	"Normally only consider this many of the best metaslabs in each vdev");
 | |
| 
 | |
| /* BEGIN CSTYLED */
 | |
| ZFS_MODULE_PARAM_CALL(zfs, zfs_, active_allocator,
 | |
| 	param_set_active_allocator, param_get_charp, ZMOD_RW,
 | |
| 	"SPA active allocator");
 | |
| /* END CSTYLED */
 |