mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 00:28:53 +00:00 
			
		
		
		
	 9a1c7240ba
			
		
	
	
		9a1c7240ba
		
	
	
	
	
		
			
			Sponsored-by: https://despairlabs.com/sponsor/ Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de> Signed-off-by: Rob Norris <robn@despairlabs.com> Closes #16479
		
			
				
	
	
		
			2348 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2348 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
 | |
|  */
 | |
| 
 | |
| /* Portions Copyright 2007 Jeremy Teo */
 | |
| 
 | |
| #ifdef _KERNEL
 | |
| #include <sys/types.h>
 | |
| #include <sys/param.h>
 | |
| #include <sys/time.h>
 | |
| #include <sys/sysmacros.h>
 | |
| #include <sys/mntent.h>
 | |
| #include <sys/u8_textprep.h>
 | |
| #include <sys/dsl_dataset.h>
 | |
| #include <sys/vfs.h>
 | |
| #include <sys/vnode.h>
 | |
| #include <sys/file.h>
 | |
| #include <sys/kmem.h>
 | |
| #include <sys/errno.h>
 | |
| #include <sys/atomic.h>
 | |
| #include <sys/zfs_dir.h>
 | |
| #include <sys/zfs_acl.h>
 | |
| #include <sys/zfs_ioctl.h>
 | |
| #include <sys/zfs_rlock.h>
 | |
| #include <sys/zfs_fuid.h>
 | |
| #include <sys/zfs_vnops.h>
 | |
| #include <sys/zfs_ctldir.h>
 | |
| #include <sys/dnode.h>
 | |
| #include <sys/fs/zfs.h>
 | |
| #include <sys/zpl.h>
 | |
| #endif /* _KERNEL */
 | |
| 
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/dmu_objset.h>
 | |
| #include <sys/dmu_tx.h>
 | |
| #include <sys/zfs_refcount.h>
 | |
| #include <sys/stat.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/zfs_znode.h>
 | |
| #include <sys/sa.h>
 | |
| #include <sys/zfs_sa.h>
 | |
| #include <sys/zfs_stat.h>
 | |
| 
 | |
| #include "zfs_prop.h"
 | |
| #include "zfs_comutil.h"
 | |
| 
 | |
| /*
 | |
|  * Functions needed for userland (ie: libzpool) are not put under
 | |
|  * #ifdef_KERNEL; the rest of the functions have dependencies
 | |
|  * (such as VFS logic) that will not compile easily in userland.
 | |
|  */
 | |
| #ifdef _KERNEL
 | |
| 
 | |
| static kmem_cache_t *znode_cache = NULL;
 | |
| static kmem_cache_t *znode_hold_cache = NULL;
 | |
| unsigned int zfs_object_mutex_size = ZFS_OBJ_MTX_SZ;
 | |
| 
 | |
| /*
 | |
|  * This is used by the test suite so that it can delay znodes from being
 | |
|  * freed in order to inspect the unlinked set.
 | |
|  */
 | |
| static int zfs_unlink_suspend_progress = 0;
 | |
| 
 | |
| /*
 | |
|  * This callback is invoked when acquiring a RL_WRITER or RL_APPEND lock on
 | |
|  * z_rangelock. It will modify the offset and length of the lock to reflect
 | |
|  * znode-specific information, and convert RL_APPEND to RL_WRITER.  This is
 | |
|  * called with the rangelock_t's rl_lock held, which avoids races.
 | |
|  */
 | |
| static void
 | |
| zfs_rangelock_cb(zfs_locked_range_t *new, void *arg)
 | |
| {
 | |
| 	znode_t *zp = arg;
 | |
| 
 | |
| 	/*
 | |
| 	 * If in append mode, convert to writer and lock starting at the
 | |
| 	 * current end of file.
 | |
| 	 */
 | |
| 	if (new->lr_type == RL_APPEND) {
 | |
| 		new->lr_offset = zp->z_size;
 | |
| 		new->lr_type = RL_WRITER;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we need to grow the block size then lock the whole file range.
 | |
| 	 */
 | |
| 	uint64_t end_size = MAX(zp->z_size, new->lr_offset + new->lr_length);
 | |
| 	if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
 | |
| 	    zp->z_blksz < ZTOZSB(zp)->z_max_blksz)) {
 | |
| 		new->lr_offset = 0;
 | |
| 		new->lr_length = UINT64_MAX;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
 | |
| {
 | |
| 	(void) arg, (void) kmflags;
 | |
| 	znode_t *zp = buf;
 | |
| 
 | |
| 	inode_init_once(ZTOI(zp));
 | |
| 	list_link_init(&zp->z_link_node);
 | |
| 
 | |
| 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
 | |
| 	rw_init(&zp->z_name_lock, NULL, RW_NOLOCKDEP, NULL);
 | |
| 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL);
 | |
| 
 | |
| 	zfs_rangelock_init(&zp->z_rangelock, zfs_rangelock_cb, zp);
 | |
| 
 | |
| 	zp->z_dirlocks = NULL;
 | |
| 	zp->z_acl_cached = NULL;
 | |
| 	zp->z_xattr_cached = NULL;
 | |
| 	zp->z_xattr_parent = 0;
 | |
| 	zp->z_sync_writes_cnt = 0;
 | |
| 	zp->z_async_writes_cnt = 0;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zfs_znode_cache_destructor(void *buf, void *arg)
 | |
| {
 | |
| 	(void) arg;
 | |
| 	znode_t *zp = buf;
 | |
| 
 | |
| 	ASSERT(!list_link_active(&zp->z_link_node));
 | |
| 	mutex_destroy(&zp->z_lock);
 | |
| 	rw_destroy(&zp->z_parent_lock);
 | |
| 	rw_destroy(&zp->z_name_lock);
 | |
| 	mutex_destroy(&zp->z_acl_lock);
 | |
| 	rw_destroy(&zp->z_xattr_lock);
 | |
| 	zfs_rangelock_fini(&zp->z_rangelock);
 | |
| 
 | |
| 	ASSERT3P(zp->z_dirlocks, ==, NULL);
 | |
| 	ASSERT3P(zp->z_acl_cached, ==, NULL);
 | |
| 	ASSERT3P(zp->z_xattr_cached, ==, NULL);
 | |
| 
 | |
| 	ASSERT0(atomic_load_32(&zp->z_sync_writes_cnt));
 | |
| 	ASSERT0(atomic_load_32(&zp->z_async_writes_cnt));
 | |
| }
 | |
| 
 | |
| static int
 | |
| zfs_znode_hold_cache_constructor(void *buf, void *arg, int kmflags)
 | |
| {
 | |
| 	(void) arg, (void) kmflags;
 | |
| 	znode_hold_t *zh = buf;
 | |
| 
 | |
| 	mutex_init(&zh->zh_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	zh->zh_refcount = 0;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zfs_znode_hold_cache_destructor(void *buf, void *arg)
 | |
| {
 | |
| 	(void) arg;
 | |
| 	znode_hold_t *zh = buf;
 | |
| 
 | |
| 	mutex_destroy(&zh->zh_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_znode_init(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Initialize zcache.  The KMC_SLAB hint is used in order that it be
 | |
| 	 * backed by kmalloc() when on the Linux slab in order that any
 | |
| 	 * wait_on_bit() operations on the related inode operate properly.
 | |
| 	 */
 | |
| 	ASSERT(znode_cache == NULL);
 | |
| 	znode_cache = kmem_cache_create("zfs_znode_cache",
 | |
| 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
 | |
| 	    zfs_znode_cache_destructor, NULL, NULL, NULL,
 | |
| 	    KMC_SLAB | KMC_RECLAIMABLE);
 | |
| 
 | |
| 	ASSERT(znode_hold_cache == NULL);
 | |
| 	znode_hold_cache = kmem_cache_create("zfs_znode_hold_cache",
 | |
| 	    sizeof (znode_hold_t), 0, zfs_znode_hold_cache_constructor,
 | |
| 	    zfs_znode_hold_cache_destructor, NULL, NULL, NULL, 0);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_znode_fini(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Cleanup zcache
 | |
| 	 */
 | |
| 	if (znode_cache)
 | |
| 		kmem_cache_destroy(znode_cache);
 | |
| 	znode_cache = NULL;
 | |
| 
 | |
| 	if (znode_hold_cache)
 | |
| 		kmem_cache_destroy(znode_hold_cache);
 | |
| 	znode_hold_cache = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The zfs_znode_hold_enter() / zfs_znode_hold_exit() functions are used to
 | |
|  * serialize access to a znode and its SA buffer while the object is being
 | |
|  * created or destroyed.  This kind of locking would normally reside in the
 | |
|  * znode itself but in this case that's impossible because the znode and SA
 | |
|  * buffer may not yet exist.  Therefore the locking is handled externally
 | |
|  * with an array of mutexes and AVLs trees which contain per-object locks.
 | |
|  *
 | |
|  * In zfs_znode_hold_enter() a per-object lock is created as needed, inserted
 | |
|  * in to the correct AVL tree and finally the per-object lock is held.  In
 | |
|  * zfs_znode_hold_exit() the process is reversed.  The per-object lock is
 | |
|  * released, removed from the AVL tree and destroyed if there are no waiters.
 | |
|  *
 | |
|  * This scheme has two important properties:
 | |
|  *
 | |
|  * 1) No memory allocations are performed while holding one of the z_hold_locks.
 | |
|  *    This ensures evict(), which can be called from direct memory reclaim, will
 | |
|  *    never block waiting on a z_hold_locks which just happens to have hashed
 | |
|  *    to the same index.
 | |
|  *
 | |
|  * 2) All locks used to serialize access to an object are per-object and never
 | |
|  *    shared.  This minimizes lock contention without creating a large number
 | |
|  *    of dedicated locks.
 | |
|  *
 | |
|  * On the downside it does require znode_lock_t structures to be frequently
 | |
|  * allocated and freed.  However, because these are backed by a kmem cache
 | |
|  * and very short lived this cost is minimal.
 | |
|  */
 | |
| int
 | |
| zfs_znode_hold_compare(const void *a, const void *b)
 | |
| {
 | |
| 	const znode_hold_t *zh_a = (const znode_hold_t *)a;
 | |
| 	const znode_hold_t *zh_b = (const znode_hold_t *)b;
 | |
| 
 | |
| 	return (TREE_CMP(zh_a->zh_obj, zh_b->zh_obj));
 | |
| }
 | |
| 
 | |
| static boolean_t __maybe_unused
 | |
| zfs_znode_held(zfsvfs_t *zfsvfs, uint64_t obj)
 | |
| {
 | |
| 	znode_hold_t *zh, search;
 | |
| 	int i = ZFS_OBJ_HASH(zfsvfs, obj);
 | |
| 	boolean_t held;
 | |
| 
 | |
| 	search.zh_obj = obj;
 | |
| 
 | |
| 	mutex_enter(&zfsvfs->z_hold_locks[i]);
 | |
| 	zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
 | |
| 	held = (zh && MUTEX_HELD(&zh->zh_lock)) ? B_TRUE : B_FALSE;
 | |
| 	mutex_exit(&zfsvfs->z_hold_locks[i]);
 | |
| 
 | |
| 	return (held);
 | |
| }
 | |
| 
 | |
| znode_hold_t *
 | |
| zfs_znode_hold_enter(zfsvfs_t *zfsvfs, uint64_t obj)
 | |
| {
 | |
| 	znode_hold_t *zh, *zh_new, search;
 | |
| 	int i = ZFS_OBJ_HASH(zfsvfs, obj);
 | |
| 	boolean_t found = B_FALSE;
 | |
| 
 | |
| 	zh_new = kmem_cache_alloc(znode_hold_cache, KM_SLEEP);
 | |
| 	search.zh_obj = obj;
 | |
| 
 | |
| 	mutex_enter(&zfsvfs->z_hold_locks[i]);
 | |
| 	zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
 | |
| 	if (likely(zh == NULL)) {
 | |
| 		zh = zh_new;
 | |
| 		zh->zh_obj = obj;
 | |
| 		avl_add(&zfsvfs->z_hold_trees[i], zh);
 | |
| 	} else {
 | |
| 		ASSERT3U(zh->zh_obj, ==, obj);
 | |
| 		found = B_TRUE;
 | |
| 	}
 | |
| 	zh->zh_refcount++;
 | |
| 	ASSERT3S(zh->zh_refcount, >, 0);
 | |
| 	mutex_exit(&zfsvfs->z_hold_locks[i]);
 | |
| 
 | |
| 	if (found == B_TRUE)
 | |
| 		kmem_cache_free(znode_hold_cache, zh_new);
 | |
| 
 | |
| 	ASSERT(MUTEX_NOT_HELD(&zh->zh_lock));
 | |
| 	mutex_enter(&zh->zh_lock);
 | |
| 
 | |
| 	return (zh);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_znode_hold_exit(zfsvfs_t *zfsvfs, znode_hold_t *zh)
 | |
| {
 | |
| 	int i = ZFS_OBJ_HASH(zfsvfs, zh->zh_obj);
 | |
| 	boolean_t remove = B_FALSE;
 | |
| 
 | |
| 	ASSERT(zfs_znode_held(zfsvfs, zh->zh_obj));
 | |
| 	mutex_exit(&zh->zh_lock);
 | |
| 
 | |
| 	mutex_enter(&zfsvfs->z_hold_locks[i]);
 | |
| 	ASSERT3S(zh->zh_refcount, >, 0);
 | |
| 	if (--zh->zh_refcount == 0) {
 | |
| 		avl_remove(&zfsvfs->z_hold_trees[i], zh);
 | |
| 		remove = B_TRUE;
 | |
| 	}
 | |
| 	mutex_exit(&zfsvfs->z_hold_locks[i]);
 | |
| 
 | |
| 	if (remove == B_TRUE)
 | |
| 		kmem_cache_free(znode_hold_cache, zh);
 | |
| }
 | |
| 
 | |
| dev_t
 | |
| zfs_cmpldev(uint64_t dev)
 | |
| {
 | |
| 	return (dev);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
 | |
|     dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
 | |
| {
 | |
| 	ASSERT(zfs_znode_held(zfsvfs, zp->z_id));
 | |
| 
 | |
| 	mutex_enter(&zp->z_lock);
 | |
| 
 | |
| 	ASSERT(zp->z_sa_hdl == NULL);
 | |
| 	ASSERT(zp->z_acl_cached == NULL);
 | |
| 	if (sa_hdl == NULL) {
 | |
| 		VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
 | |
| 		    SA_HDL_SHARED, &zp->z_sa_hdl));
 | |
| 	} else {
 | |
| 		zp->z_sa_hdl = sa_hdl;
 | |
| 		sa_set_userp(sa_hdl, zp);
 | |
| 	}
 | |
| 
 | |
| 	zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
 | |
| 
 | |
| 	mutex_exit(&zp->z_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_znode_dmu_fini(znode_t *zp)
 | |
| {
 | |
| 	ASSERT(zfs_znode_held(ZTOZSB(zp), zp->z_id) ||
 | |
| 	    RW_WRITE_HELD(&ZTOZSB(zp)->z_teardown_inactive_lock));
 | |
| 
 | |
| 	sa_handle_destroy(zp->z_sa_hdl);
 | |
| 	zp->z_sa_hdl = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called by new_inode() to allocate a new inode.
 | |
|  */
 | |
| int
 | |
| zfs_inode_alloc(struct super_block *sb, struct inode **ip)
 | |
| {
 | |
| 	znode_t *zp;
 | |
| 
 | |
| 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
 | |
| 	*ip = ZTOI(zp);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called in multiple places when an inode should be destroyed.
 | |
|  */
 | |
| void
 | |
| zfs_inode_destroy(struct inode *ip)
 | |
| {
 | |
| 	znode_t *zp = ITOZ(ip);
 | |
| 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | |
| 
 | |
| 	mutex_enter(&zfsvfs->z_znodes_lock);
 | |
| 	if (list_link_active(&zp->z_link_node)) {
 | |
| 		list_remove(&zfsvfs->z_all_znodes, zp);
 | |
| 	}
 | |
| 	mutex_exit(&zfsvfs->z_znodes_lock);
 | |
| 
 | |
| 	if (zp->z_acl_cached) {
 | |
| 		zfs_acl_free(zp->z_acl_cached);
 | |
| 		zp->z_acl_cached = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (zp->z_xattr_cached) {
 | |
| 		nvlist_free(zp->z_xattr_cached);
 | |
| 		zp->z_xattr_cached = NULL;
 | |
| 	}
 | |
| 
 | |
| 	kmem_cache_free(znode_cache, zp);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zfs_inode_set_ops(zfsvfs_t *zfsvfs, struct inode *ip)
 | |
| {
 | |
| 	uint64_t rdev = 0;
 | |
| 
 | |
| 	switch (ip->i_mode & S_IFMT) {
 | |
| 	case S_IFREG:
 | |
| 		ip->i_op = &zpl_inode_operations;
 | |
| 		ip->i_fop = &zpl_file_operations;
 | |
| 		ip->i_mapping->a_ops = &zpl_address_space_operations;
 | |
| 		break;
 | |
| 
 | |
| 	case S_IFDIR:
 | |
| 		ip->i_op = &zpl_dir_inode_operations;
 | |
| 		ip->i_fop = &zpl_dir_file_operations;
 | |
| 		ITOZ(ip)->z_zn_prefetch = B_TRUE;
 | |
| 		break;
 | |
| 
 | |
| 	case S_IFLNK:
 | |
| 		ip->i_op = &zpl_symlink_inode_operations;
 | |
| 		break;
 | |
| 
 | |
| 	/*
 | |
| 	 * rdev is only stored in a SA only for device files.
 | |
| 	 */
 | |
| 	case S_IFCHR:
 | |
| 	case S_IFBLK:
 | |
| 		(void) sa_lookup(ITOZ(ip)->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), &rdev,
 | |
| 		    sizeof (rdev));
 | |
| 		zfs_fallthrough;
 | |
| 	case S_IFIFO:
 | |
| 	case S_IFSOCK:
 | |
| 		init_special_inode(ip, ip->i_mode, rdev);
 | |
| 		ip->i_op = &zpl_special_inode_operations;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		zfs_panic_recover("inode %llu has invalid mode: 0x%x\n",
 | |
| 		    (u_longlong_t)ip->i_ino, ip->i_mode);
 | |
| 
 | |
| 		/* Assume the inode is a file and attempt to continue */
 | |
| 		ip->i_mode = S_IFREG | 0644;
 | |
| 		ip->i_op = &zpl_inode_operations;
 | |
| 		ip->i_fop = &zpl_file_operations;
 | |
| 		ip->i_mapping->a_ops = &zpl_address_space_operations;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| zfs_set_inode_flags(znode_t *zp, struct inode *ip)
 | |
| {
 | |
| 	/*
 | |
| 	 * Linux and Solaris have different sets of file attributes, so we
 | |
| 	 * restrict this conversion to the intersection of the two.
 | |
| 	 */
 | |
| 	unsigned int flags = 0;
 | |
| 	if (zp->z_pflags & ZFS_IMMUTABLE)
 | |
| 		flags |= S_IMMUTABLE;
 | |
| 	if (zp->z_pflags & ZFS_APPENDONLY)
 | |
| 		flags |= S_APPEND;
 | |
| 
 | |
| 	inode_set_flags(ip, flags, S_IMMUTABLE|S_APPEND);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the embedded inode given the znode.
 | |
|  */
 | |
| void
 | |
| zfs_znode_update_vfs(znode_t *zp)
 | |
| {
 | |
| 	struct inode	*ip;
 | |
| 	uint32_t	blksize;
 | |
| 	u_longlong_t	i_blocks;
 | |
| 
 | |
| 	ASSERT(zp != NULL);
 | |
| 	ip = ZTOI(zp);
 | |
| 
 | |
| 	/* Skip .zfs control nodes which do not exist on disk. */
 | |
| 	if (zfsctl_is_node(ip))
 | |
| 		return;
 | |
| 
 | |
| 	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &blksize, &i_blocks);
 | |
| 
 | |
| 	spin_lock(&ip->i_lock);
 | |
| 	ip->i_mode = zp->z_mode;
 | |
| 	ip->i_blocks = i_blocks;
 | |
| 	i_size_write(ip, zp->z_size);
 | |
| 	spin_unlock(&ip->i_lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Construct a znode+inode and initialize.
 | |
|  *
 | |
|  * This does not do a call to dmu_set_user() that is
 | |
|  * up to the caller to do, in case you don't want to
 | |
|  * return the znode
 | |
|  */
 | |
| static znode_t *
 | |
| zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
 | |
|     dmu_object_type_t obj_type, sa_handle_t *hdl)
 | |
| {
 | |
| 	znode_t	*zp;
 | |
| 	struct inode *ip;
 | |
| 	uint64_t mode;
 | |
| 	uint64_t parent;
 | |
| 	uint64_t tmp_gen;
 | |
| 	uint64_t links;
 | |
| 	uint64_t z_uid, z_gid;
 | |
| 	uint64_t atime[2], mtime[2], ctime[2], btime[2];
 | |
| 	inode_timespec_t tmp_ts;
 | |
| 	uint64_t projid = ZFS_DEFAULT_PROJID;
 | |
| 	sa_bulk_attr_t bulk[12];
 | |
| 	int count = 0;
 | |
| 
 | |
| 	ASSERT(zfsvfs != NULL);
 | |
| 
 | |
| 	ip = new_inode(zfsvfs->z_sb);
 | |
| 	if (ip == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	zp = ITOZ(ip);
 | |
| 	ASSERT(zp->z_dirlocks == NULL);
 | |
| 	ASSERT3P(zp->z_acl_cached, ==, NULL);
 | |
| 	ASSERT3P(zp->z_xattr_cached, ==, NULL);
 | |
| 	zp->z_unlinked = B_FALSE;
 | |
| 	zp->z_atime_dirty = B_FALSE;
 | |
| #if !defined(HAVE_FILEMAP_RANGE_HAS_PAGE)
 | |
| 	zp->z_is_mapped = B_FALSE;
 | |
| #endif
 | |
| 	zp->z_is_ctldir = B_FALSE;
 | |
| 	zp->z_suspended = B_FALSE;
 | |
| 	zp->z_sa_hdl = NULL;
 | |
| 	zp->z_mapcnt = 0;
 | |
| 	zp->z_id = db->db_object;
 | |
| 	zp->z_blksz = blksz;
 | |
| 	zp->z_seq = 0x7A4653;
 | |
| 	zp->z_sync_cnt = 0;
 | |
| 	zp->z_sync_writes_cnt = 0;
 | |
| 	zp->z_async_writes_cnt = 0;
 | |
| 
 | |
| 	zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
 | |
| 
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &tmp_gen, 8);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
 | |
| 	    &zp->z_size, 8);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
 | |
| 	    &zp->z_pflags, 8);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
 | |
| 	    &parent, 8);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &z_uid, 8);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &z_gid, 8);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &btime, 16);
 | |
| 
 | |
| 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || tmp_gen == 0 ||
 | |
| 	    (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
 | |
| 	    (zp->z_pflags & ZFS_PROJID) &&
 | |
| 	    sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs), &projid, 8) != 0)) {
 | |
| 		if (hdl == NULL)
 | |
| 			sa_handle_destroy(zp->z_sa_hdl);
 | |
| 		zp->z_sa_hdl = NULL;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	zp->z_projid = projid;
 | |
| 	zp->z_mode = ip->i_mode = mode;
 | |
| 	ip->i_generation = (uint32_t)tmp_gen;
 | |
| 	ip->i_blkbits = SPA_MINBLOCKSHIFT;
 | |
| 	set_nlink(ip, (uint32_t)links);
 | |
| 	zfs_uid_write(ip, z_uid);
 | |
| 	zfs_gid_write(ip, z_gid);
 | |
| 	zfs_set_inode_flags(zp, ip);
 | |
| 
 | |
| 	/* Cache the xattr parent id */
 | |
| 	if (zp->z_pflags & ZFS_XATTR)
 | |
| 		zp->z_xattr_parent = parent;
 | |
| 
 | |
| 	ZFS_TIME_DECODE(&tmp_ts, atime);
 | |
| 	zpl_inode_set_atime_to_ts(ip, tmp_ts);
 | |
| 	ZFS_TIME_DECODE(&tmp_ts, mtime);
 | |
| 	zpl_inode_set_mtime_to_ts(ip, tmp_ts);
 | |
| 	ZFS_TIME_DECODE(&tmp_ts, ctime);
 | |
| 	zpl_inode_set_ctime_to_ts(ip, tmp_ts);
 | |
| 	ZFS_TIME_DECODE(&zp->z_btime, btime);
 | |
| 
 | |
| 	ip->i_ino = zp->z_id;
 | |
| 	zfs_znode_update_vfs(zp);
 | |
| 	zfs_inode_set_ops(zfsvfs, ip);
 | |
| 
 | |
| 	/*
 | |
| 	 * The only way insert_inode_locked() can fail is if the ip->i_ino
 | |
| 	 * number is already hashed for this super block.  This can never
 | |
| 	 * happen because the inode numbers map 1:1 with the object numbers.
 | |
| 	 *
 | |
| 	 * Exceptions include rolling back a mounted file system, either
 | |
| 	 * from the zfs rollback or zfs recv command.
 | |
| 	 *
 | |
| 	 * Active inodes are unhashed during the rollback, but since zrele
 | |
| 	 * can happen asynchronously, we can't guarantee they've been
 | |
| 	 * unhashed.  This can cause hash collisions in unlinked drain
 | |
| 	 * processing so do not hash unlinked znodes.
 | |
| 	 */
 | |
| 	if (links > 0)
 | |
| 		VERIFY3S(insert_inode_locked(ip), ==, 0);
 | |
| 
 | |
| 	mutex_enter(&zfsvfs->z_znodes_lock);
 | |
| 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
 | |
| 	mutex_exit(&zfsvfs->z_znodes_lock);
 | |
| 
 | |
| 	if (links > 0)
 | |
| 		unlock_new_inode(ip);
 | |
| 	return (zp);
 | |
| 
 | |
| error:
 | |
| 	iput(ip);
 | |
| 	return (NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Safely mark an inode dirty.  Inodes which are part of a read-only
 | |
|  * file system or snapshot may not be dirtied.
 | |
|  */
 | |
| void
 | |
| zfs_mark_inode_dirty(struct inode *ip)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = ITOZSB(ip);
 | |
| 
 | |
| 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
 | |
| 		return;
 | |
| 
 | |
| 	mark_inode_dirty(ip);
 | |
| }
 | |
| 
 | |
| static uint64_t empty_xattr;
 | |
| static uint64_t pad[4];
 | |
| static zfs_acl_phys_t acl_phys;
 | |
| /*
 | |
|  * Create a new DMU object to hold a zfs znode.
 | |
|  *
 | |
|  *	IN:	dzp	- parent directory for new znode
 | |
|  *		vap	- file attributes for new znode
 | |
|  *		tx	- dmu transaction id for zap operations
 | |
|  *		cr	- credentials of caller
 | |
|  *		flag	- flags:
 | |
|  *			  IS_ROOT_NODE	- new object will be root
 | |
|  *			  IS_TMPFILE	- new object is of O_TMPFILE
 | |
|  *			  IS_XATTR	- new object is an attribute
 | |
|  *		acl_ids	- ACL related attributes
 | |
|  *
 | |
|  *	OUT:	zpp	- allocated znode (set to dzp if IS_ROOT_NODE)
 | |
|  *
 | |
|  */
 | |
| void
 | |
| zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
 | |
|     uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
 | |
| {
 | |
| 	uint64_t	crtime[2], atime[2], mtime[2], ctime[2];
 | |
| 	uint64_t	mode, size, links, parent, pflags;
 | |
| 	uint64_t	projid = ZFS_DEFAULT_PROJID;
 | |
| 	uint64_t	rdev = 0;
 | |
| 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
 | |
| 	dmu_buf_t	*db;
 | |
| 	inode_timespec_t now;
 | |
| 	uint64_t	gen, obj;
 | |
| 	int		bonuslen;
 | |
| 	int		dnodesize;
 | |
| 	sa_handle_t	*sa_hdl;
 | |
| 	dmu_object_type_t obj_type;
 | |
| 	sa_bulk_attr_t	*sa_attrs;
 | |
| 	int		cnt = 0;
 | |
| 	zfs_acl_locator_cb_t locate = { 0 };
 | |
| 	znode_hold_t	*zh;
 | |
| 
 | |
| 	if (zfsvfs->z_replay) {
 | |
| 		obj = vap->va_nodeid;
 | |
| 		now = vap->va_ctime;		/* see zfs_replay_create() */
 | |
| 		gen = vap->va_nblocks;		/* ditto */
 | |
| 		dnodesize = vap->va_fsid;	/* ditto */
 | |
| 	} else {
 | |
| 		obj = 0;
 | |
| 		gethrestime(&now);
 | |
| 		gen = dmu_tx_get_txg(tx);
 | |
| 		dnodesize = dmu_objset_dnodesize(zfsvfs->z_os);
 | |
| 	}
 | |
| 
 | |
| 	if (dnodesize == 0)
 | |
| 		dnodesize = DNODE_MIN_SIZE;
 | |
| 
 | |
| 	obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
 | |
| 
 | |
| 	bonuslen = (obj_type == DMU_OT_SA) ?
 | |
| 	    DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Create a new DMU object.
 | |
| 	 */
 | |
| 	/*
 | |
| 	 * There's currently no mechanism for pre-reading the blocks that will
 | |
| 	 * be needed to allocate a new object, so we accept the small chance
 | |
| 	 * that there will be an i/o error and we will fail one of the
 | |
| 	 * assertions below.
 | |
| 	 */
 | |
| 	if (S_ISDIR(vap->va_mode)) {
 | |
| 		if (zfsvfs->z_replay) {
 | |
| 			VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj,
 | |
| 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
 | |
| 			    obj_type, bonuslen, dnodesize, tx));
 | |
| 		} else {
 | |
| 			obj = zap_create_norm_dnsize(zfsvfs->z_os,
 | |
| 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
 | |
| 			    obj_type, bonuslen, dnodesize, tx);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (zfsvfs->z_replay) {
 | |
| 			VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj,
 | |
| 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
 | |
| 			    obj_type, bonuslen, dnodesize, tx));
 | |
| 		} else {
 | |
| 			obj = dmu_object_alloc_dnsize(zfsvfs->z_os,
 | |
| 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
 | |
| 			    obj_type, bonuslen, dnodesize, tx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	zh = zfs_znode_hold_enter(zfsvfs, obj);
 | |
| 	VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is the root, fix up the half-initialized parent pointer
 | |
| 	 * to reference the just-allocated physical data area.
 | |
| 	 */
 | |
| 	if (flag & IS_ROOT_NODE) {
 | |
| 		dzp->z_id = obj;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If parent is an xattr, so am I.
 | |
| 	 */
 | |
| 	if (dzp->z_pflags & ZFS_XATTR) {
 | |
| 		flag |= IS_XATTR;
 | |
| 	}
 | |
| 
 | |
| 	if (zfsvfs->z_use_fuids)
 | |
| 		pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
 | |
| 	else
 | |
| 		pflags = 0;
 | |
| 
 | |
| 	if (S_ISDIR(vap->va_mode)) {
 | |
| 		size = 2;		/* contents ("." and "..") */
 | |
| 		links = 2;
 | |
| 	} else {
 | |
| 		size = 0;
 | |
| 		links = (flag & IS_TMPFILE) ? 0 : 1;
 | |
| 	}
 | |
| 
 | |
| 	if (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))
 | |
| 		rdev = vap->va_rdev;
 | |
| 
 | |
| 	parent = dzp->z_id;
 | |
| 	mode = acl_ids->z_mode;
 | |
| 	if (flag & IS_XATTR)
 | |
| 		pflags |= ZFS_XATTR;
 | |
| 
 | |
| 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) {
 | |
| 		/*
 | |
| 		 * With ZFS_PROJID flag, we can easily know whether there is
 | |
| 		 * project ID stored on disk or not. See zfs_space_delta_cb().
 | |
| 		 */
 | |
| 		if (obj_type != DMU_OT_ZNODE &&
 | |
| 		    dmu_objset_projectquota_enabled(zfsvfs->z_os))
 | |
| 			pflags |= ZFS_PROJID;
 | |
| 
 | |
| 		/*
 | |
| 		 * Inherit project ID from parent if required.
 | |
| 		 */
 | |
| 		projid = zfs_inherit_projid(dzp);
 | |
| 		if (dzp->z_pflags & ZFS_PROJINHERIT)
 | |
| 			pflags |= ZFS_PROJINHERIT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No execs denied will be determined when zfs_mode_compute() is called.
 | |
| 	 */
 | |
| 	pflags |= acl_ids->z_aclp->z_hints &
 | |
| 	    (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
 | |
| 	    ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
 | |
| 
 | |
| 	ZFS_TIME_ENCODE(&now, crtime);
 | |
| 	ZFS_TIME_ENCODE(&now, ctime);
 | |
| 
 | |
| 	if (vap->va_mask & ATTR_ATIME) {
 | |
| 		ZFS_TIME_ENCODE(&vap->va_atime, atime);
 | |
| 	} else {
 | |
| 		ZFS_TIME_ENCODE(&now, atime);
 | |
| 	}
 | |
| 
 | |
| 	if (vap->va_mask & ATTR_MTIME) {
 | |
| 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
 | |
| 	} else {
 | |
| 		ZFS_TIME_ENCODE(&now, mtime);
 | |
| 	}
 | |
| 
 | |
| 	/* Now add in all of the "SA" attributes */
 | |
| 	VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
 | |
| 	    &sa_hdl));
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup the array of attributes to be replaced/set on the new file
 | |
| 	 *
 | |
| 	 * order for  DMU_OT_ZNODE is critical since it needs to be constructed
 | |
| 	 * in the old znode_phys_t format.  Don't change this ordering
 | |
| 	 */
 | |
| 	sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP);
 | |
| 
 | |
| 	if (obj_type == DMU_OT_ZNODE) {
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
 | |
| 		    NULL, &atime, 16);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
 | |
| 		    NULL, &mtime, 16);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
 | |
| 		    NULL, &ctime, 16);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
 | |
| 		    NULL, &crtime, 16);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
 | |
| 		    NULL, &gen, 8);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
 | |
| 		    NULL, &mode, 8);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
 | |
| 		    NULL, &size, 8);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
 | |
| 		    NULL, &parent, 8);
 | |
| 	} else {
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
 | |
| 		    NULL, &mode, 8);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
 | |
| 		    NULL, &size, 8);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
 | |
| 		    NULL, &gen, 8);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs),
 | |
| 		    NULL, &acl_ids->z_fuid, 8);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs),
 | |
| 		    NULL, &acl_ids->z_fgid, 8);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
 | |
| 		    NULL, &parent, 8);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
 | |
| 		    NULL, &pflags, 8);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
 | |
| 		    NULL, &atime, 16);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
 | |
| 		    NULL, &mtime, 16);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
 | |
| 		    NULL, &ctime, 16);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
 | |
| 		    NULL, &crtime, 16);
 | |
| 	}
 | |
| 
 | |
| 	SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
 | |
| 
 | |
| 	if (obj_type == DMU_OT_ZNODE) {
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
 | |
| 		    &empty_xattr, 8);
 | |
| 	} else if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
 | |
| 	    pflags & ZFS_PROJID) {
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PROJID(zfsvfs),
 | |
| 		    NULL, &projid, 8);
 | |
| 	}
 | |
| 	if (obj_type == DMU_OT_ZNODE ||
 | |
| 	    (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))) {
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
 | |
| 		    NULL, &rdev, 8);
 | |
| 	}
 | |
| 	if (obj_type == DMU_OT_ZNODE) {
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
 | |
| 		    NULL, &pflags, 8);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
 | |
| 		    &acl_ids->z_fuid, 8);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
 | |
| 		    &acl_ids->z_fgid, 8);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
 | |
| 		    sizeof (uint64_t) * 4);
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
 | |
| 		    &acl_phys, sizeof (zfs_acl_phys_t));
 | |
| 	} else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
 | |
| 		    &acl_ids->z_aclp->z_acl_count, 8);
 | |
| 		locate.cb_aclp = acl_ids->z_aclp;
 | |
| 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
 | |
| 		    zfs_acl_data_locator, &locate,
 | |
| 		    acl_ids->z_aclp->z_acl_bytes);
 | |
| 		mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
 | |
| 		    acl_ids->z_fuid, acl_ids->z_fgid);
 | |
| 	}
 | |
| 
 | |
| 	VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
 | |
| 
 | |
| 	if (!(flag & IS_ROOT_NODE)) {
 | |
| 		/*
 | |
| 		 * The call to zfs_znode_alloc() may fail if memory is low
 | |
| 		 * via the call path: alloc_inode() -> inode_init_always() ->
 | |
| 		 * security_inode_alloc() -> inode_alloc_security().  Since
 | |
| 		 * the existing code is written such that zfs_mknode() can
 | |
| 		 * not fail retry until sufficient memory has been reclaimed.
 | |
| 		 */
 | |
| 		do {
 | |
| 			*zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
 | |
| 		} while (*zpp == NULL);
 | |
| 
 | |
| 		VERIFY(*zpp != NULL);
 | |
| 		VERIFY(dzp != NULL);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If we are creating the root node, the "parent" we
 | |
| 		 * passed in is the znode for the root.
 | |
| 		 */
 | |
| 		*zpp = dzp;
 | |
| 
 | |
| 		(*zpp)->z_sa_hdl = sa_hdl;
 | |
| 	}
 | |
| 
 | |
| 	(*zpp)->z_pflags = pflags;
 | |
| 	(*zpp)->z_mode = ZTOI(*zpp)->i_mode = mode;
 | |
| 	(*zpp)->z_dnodesize = dnodesize;
 | |
| 	(*zpp)->z_projid = projid;
 | |
| 
 | |
| 	if (obj_type == DMU_OT_ZNODE ||
 | |
| 	    acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
 | |
| 		VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
 | |
| 	}
 | |
| 	kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END);
 | |
| 	zfs_znode_hold_exit(zfsvfs, zh);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update in-core attributes.  It is assumed the caller will be doing an
 | |
|  * sa_bulk_update to push the changes out.
 | |
|  */
 | |
| void
 | |
| zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
 | |
| {
 | |
| 	xoptattr_t *xoap;
 | |
| 	boolean_t update_inode = B_FALSE;
 | |
| 
 | |
| 	xoap = xva_getxoptattr(xvap);
 | |
| 	ASSERT(xoap);
 | |
| 
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
 | |
| 		uint64_t times[2];
 | |
| 		ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
 | |
| 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)),
 | |
| 		    ×, sizeof (times), tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_CREATETIME);
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
 | |
| 		    zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_READONLY);
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
 | |
| 		    zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_HIDDEN);
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
 | |
| 		    zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_SYSTEM);
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
 | |
| 		    zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_ARCHIVE);
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
 | |
| 		    zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
 | |
| 
 | |
| 		update_inode = B_TRUE;
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
 | |
| 		    zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_NOUNLINK);
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
 | |
| 		    zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_APPENDONLY);
 | |
| 
 | |
| 		update_inode = B_TRUE;
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
 | |
| 		    zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_NODUMP);
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
 | |
| 		    zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_OPAQUE);
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
 | |
| 		    xoap->xoa_av_quarantined, zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
 | |
| 		    zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
 | |
| 		zfs_sa_set_scanstamp(zp, xvap, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
 | |
| 		    zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_REPARSE);
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
 | |
| 		    zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_OFFLINE);
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
 | |
| 		    zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_SPARSE);
 | |
| 	}
 | |
| 	if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
 | |
| 		ZFS_ATTR_SET(zp, ZFS_PROJINHERIT, xoap->xoa_projinherit,
 | |
| 		    zp->z_pflags, tx);
 | |
| 		XVA_SET_RTN(xvap, XAT_PROJINHERIT);
 | |
| 	}
 | |
| 
 | |
| 	if (update_inode)
 | |
| 		zfs_set_inode_flags(zp, ZTOI(zp));
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
 | |
| {
 | |
| 	dmu_object_info_t doi;
 | |
| 	dmu_buf_t	*db;
 | |
| 	znode_t		*zp;
 | |
| 	znode_hold_t	*zh;
 | |
| 	int err;
 | |
| 	sa_handle_t	*hdl;
 | |
| 
 | |
| 	*zpp = NULL;
 | |
| 
 | |
| again:
 | |
| 	zh = zfs_znode_hold_enter(zfsvfs, obj_num);
 | |
| 
 | |
| 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
 | |
| 	if (err) {
 | |
| 		zfs_znode_hold_exit(zfsvfs, zh);
 | |
| 		return (err);
 | |
| 	}
 | |
| 
 | |
| 	dmu_object_info_from_db(db, &doi);
 | |
| 	if (doi.doi_bonus_type != DMU_OT_SA &&
 | |
| 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
 | |
| 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
 | |
| 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
 | |
| 		sa_buf_rele(db, NULL);
 | |
| 		zfs_znode_hold_exit(zfsvfs, zh);
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	hdl = dmu_buf_get_user(db);
 | |
| 	if (hdl != NULL) {
 | |
| 		zp = sa_get_userdata(hdl);
 | |
| 
 | |
| 
 | |
| 		/*
 | |
| 		 * Since "SA" does immediate eviction we
 | |
| 		 * should never find a sa handle that doesn't
 | |
| 		 * know about the znode.
 | |
| 		 */
 | |
| 
 | |
| 		ASSERT3P(zp, !=, NULL);
 | |
| 
 | |
| 		mutex_enter(&zp->z_lock);
 | |
| 		ASSERT3U(zp->z_id, ==, obj_num);
 | |
| 		/*
 | |
| 		 * If zp->z_unlinked is set, the znode is already marked
 | |
| 		 * for deletion and should not be discovered. Check this
 | |
| 		 * after checking igrab() due to fsetxattr() & O_TMPFILE.
 | |
| 		 *
 | |
| 		 * If igrab() returns NULL the VFS has independently
 | |
| 		 * determined the inode should be evicted and has
 | |
| 		 * called iput_final() to start the eviction process.
 | |
| 		 * The SA handle is still valid but because the VFS
 | |
| 		 * requires that the eviction succeed we must drop
 | |
| 		 * our locks and references to allow the eviction to
 | |
| 		 * complete.  The zfs_zget() may then be retried.
 | |
| 		 *
 | |
| 		 * This unlikely case could be optimized by registering
 | |
| 		 * a sops->drop_inode() callback.  The callback would
 | |
| 		 * need to detect the active SA hold thereby informing
 | |
| 		 * the VFS that this inode should not be evicted.
 | |
| 		 */
 | |
| 		if (igrab(ZTOI(zp)) == NULL) {
 | |
| 			if (zp->z_unlinked)
 | |
| 				err = SET_ERROR(ENOENT);
 | |
| 			else
 | |
| 				err = SET_ERROR(EAGAIN);
 | |
| 		} else {
 | |
| 			*zpp = zp;
 | |
| 			err = 0;
 | |
| 		}
 | |
| 
 | |
| 		mutex_exit(&zp->z_lock);
 | |
| 		sa_buf_rele(db, NULL);
 | |
| 		zfs_znode_hold_exit(zfsvfs, zh);
 | |
| 
 | |
| 		if (err == EAGAIN) {
 | |
| 			/* inode might need this to finish evict */
 | |
| 			cond_resched();
 | |
| 			goto again;
 | |
| 		}
 | |
| 		return (err);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Not found create new znode/vnode but only if file exists.
 | |
| 	 *
 | |
| 	 * There is a small window where zfs_vget() could
 | |
| 	 * find this object while a file create is still in
 | |
| 	 * progress.  This is checked for in zfs_znode_alloc()
 | |
| 	 *
 | |
| 	 * if zfs_znode_alloc() fails it will drop the hold on the
 | |
| 	 * bonus buffer.
 | |
| 	 */
 | |
| 	zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
 | |
| 	    doi.doi_bonus_type, NULL);
 | |
| 	if (zp == NULL) {
 | |
| 		err = SET_ERROR(ENOENT);
 | |
| 	} else {
 | |
| 		*zpp = zp;
 | |
| 	}
 | |
| 	zfs_znode_hold_exit(zfsvfs, zh);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_rezget(znode_t *zp)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | |
| 	dmu_object_info_t doi;
 | |
| 	dmu_buf_t *db;
 | |
| 	uint64_t obj_num = zp->z_id;
 | |
| 	uint64_t mode;
 | |
| 	uint64_t links;
 | |
| 	sa_bulk_attr_t bulk[11];
 | |
| 	int err;
 | |
| 	int count = 0;
 | |
| 	uint64_t gen;
 | |
| 	uint64_t z_uid, z_gid;
 | |
| 	uint64_t atime[2], mtime[2], ctime[2], btime[2];
 | |
| 	inode_timespec_t tmp_ts;
 | |
| 	uint64_t projid = ZFS_DEFAULT_PROJID;
 | |
| 	znode_hold_t *zh;
 | |
| 
 | |
| 	/*
 | |
| 	 * skip ctldir, otherwise they will always get invalidated. This will
 | |
| 	 * cause funny behaviour for the mounted snapdirs. Especially for
 | |
| 	 * Linux >= 3.18, d_invalidate will detach the mountpoint and prevent
 | |
| 	 * anyone automount it again as long as someone is still using the
 | |
| 	 * detached mount.
 | |
| 	 */
 | |
| 	if (zp->z_is_ctldir)
 | |
| 		return (0);
 | |
| 
 | |
| 	zh = zfs_znode_hold_enter(zfsvfs, obj_num);
 | |
| 
 | |
| 	mutex_enter(&zp->z_acl_lock);
 | |
| 	if (zp->z_acl_cached) {
 | |
| 		zfs_acl_free(zp->z_acl_cached);
 | |
| 		zp->z_acl_cached = NULL;
 | |
| 	}
 | |
| 	mutex_exit(&zp->z_acl_lock);
 | |
| 
 | |
| 	rw_enter(&zp->z_xattr_lock, RW_WRITER);
 | |
| 	if (zp->z_xattr_cached) {
 | |
| 		nvlist_free(zp->z_xattr_cached);
 | |
| 		zp->z_xattr_cached = NULL;
 | |
| 	}
 | |
| 	rw_exit(&zp->z_xattr_lock);
 | |
| 
 | |
| 	ASSERT(zp->z_sa_hdl == NULL);
 | |
| 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
 | |
| 	if (err) {
 | |
| 		zfs_znode_hold_exit(zfsvfs, zh);
 | |
| 		return (err);
 | |
| 	}
 | |
| 
 | |
| 	dmu_object_info_from_db(db, &doi);
 | |
| 	if (doi.doi_bonus_type != DMU_OT_SA &&
 | |
| 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
 | |
| 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
 | |
| 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
 | |
| 		sa_buf_rele(db, NULL);
 | |
| 		zfs_znode_hold_exit(zfsvfs, zh);
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
 | |
| 
 | |
| 	/* reload cached values */
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
 | |
| 	    &gen, sizeof (gen));
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
 | |
| 	    &zp->z_size, sizeof (zp->z_size));
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
 | |
| 	    &links, sizeof (links));
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
 | |
| 	    &zp->z_pflags, sizeof (zp->z_pflags));
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
 | |
| 	    &z_uid, sizeof (z_uid));
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
 | |
| 	    &z_gid, sizeof (z_gid));
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
 | |
| 	    &mode, sizeof (mode));
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
 | |
| 	    &atime, 16);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
 | |
| 	    &mtime, 16);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
 | |
| 	    &ctime, 16);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &btime, 16);
 | |
| 
 | |
| 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
 | |
| 		zfs_znode_dmu_fini(zp);
 | |
| 		zfs_znode_hold_exit(zfsvfs, zh);
 | |
| 		return (SET_ERROR(EIO));
 | |
| 	}
 | |
| 
 | |
| 	if (dmu_objset_projectquota_enabled(zfsvfs->z_os)) {
 | |
| 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs),
 | |
| 		    &projid, 8);
 | |
| 		if (err != 0 && err != ENOENT) {
 | |
| 			zfs_znode_dmu_fini(zp);
 | |
| 			zfs_znode_hold_exit(zfsvfs, zh);
 | |
| 			return (SET_ERROR(err));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	zp->z_projid = projid;
 | |
| 	zp->z_mode = ZTOI(zp)->i_mode = mode;
 | |
| 	zfs_uid_write(ZTOI(zp), z_uid);
 | |
| 	zfs_gid_write(ZTOI(zp), z_gid);
 | |
| 
 | |
| 	ZFS_TIME_DECODE(&tmp_ts, atime);
 | |
| 	zpl_inode_set_atime_to_ts(ZTOI(zp), tmp_ts);
 | |
| 	ZFS_TIME_DECODE(&tmp_ts, mtime);
 | |
| 	zpl_inode_set_mtime_to_ts(ZTOI(zp), tmp_ts);
 | |
| 	ZFS_TIME_DECODE(&tmp_ts, ctime);
 | |
| 	zpl_inode_set_ctime_to_ts(ZTOI(zp), tmp_ts);
 | |
| 	ZFS_TIME_DECODE(&zp->z_btime, btime);
 | |
| 
 | |
| 	if ((uint32_t)gen != ZTOI(zp)->i_generation) {
 | |
| 		zfs_znode_dmu_fini(zp);
 | |
| 		zfs_znode_hold_exit(zfsvfs, zh);
 | |
| 		return (SET_ERROR(EIO));
 | |
| 	}
 | |
| 
 | |
| 	set_nlink(ZTOI(zp), (uint32_t)links);
 | |
| 	zfs_set_inode_flags(zp, ZTOI(zp));
 | |
| 
 | |
| 	zp->z_blksz = doi.doi_data_block_size;
 | |
| 	zp->z_atime_dirty = B_FALSE;
 | |
| 	zfs_znode_update_vfs(zp);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the file has zero links, then it has been unlinked on the send
 | |
| 	 * side and it must be in the received unlinked set.
 | |
| 	 * We call zfs_znode_dmu_fini() now to prevent any accesses to the
 | |
| 	 * stale data and to prevent automatic removal of the file in
 | |
| 	 * zfs_zinactive().  The file will be removed either when it is removed
 | |
| 	 * on the send side and the next incremental stream is received or
 | |
| 	 * when the unlinked set gets processed.
 | |
| 	 */
 | |
| 	zp->z_unlinked = (ZTOI(zp)->i_nlink == 0);
 | |
| 	if (zp->z_unlinked)
 | |
| 		zfs_znode_dmu_fini(zp);
 | |
| 
 | |
| 	zfs_znode_hold_exit(zfsvfs, zh);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | |
| 	objset_t *os = zfsvfs->z_os;
 | |
| 	uint64_t obj = zp->z_id;
 | |
| 	uint64_t acl_obj = zfs_external_acl(zp);
 | |
| 	znode_hold_t *zh;
 | |
| 
 | |
| 	zh = zfs_znode_hold_enter(zfsvfs, obj);
 | |
| 	if (acl_obj) {
 | |
| 		VERIFY(!zp->z_is_sa);
 | |
| 		VERIFY(0 == dmu_object_free(os, acl_obj, tx));
 | |
| 	}
 | |
| 	VERIFY(0 == dmu_object_free(os, obj, tx));
 | |
| 	zfs_znode_dmu_fini(zp);
 | |
| 	zfs_znode_hold_exit(zfsvfs, zh);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_zinactive(znode_t *zp)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | |
| 	uint64_t z_id = zp->z_id;
 | |
| 	znode_hold_t *zh;
 | |
| 
 | |
| 	ASSERT(zp->z_sa_hdl);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't allow a zfs_zget() while were trying to release this znode.
 | |
| 	 */
 | |
| 	zh = zfs_znode_hold_enter(zfsvfs, z_id);
 | |
| 
 | |
| 	mutex_enter(&zp->z_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this was the last reference to a file with no links, remove
 | |
| 	 * the file from the file system unless the file system is mounted
 | |
| 	 * read-only.  That can happen, for example, if the file system was
 | |
| 	 * originally read-write, the file was opened, then unlinked and
 | |
| 	 * the file system was made read-only before the file was finally
 | |
| 	 * closed.  The file will remain in the unlinked set.
 | |
| 	 */
 | |
| 	if (zp->z_unlinked) {
 | |
| 		ASSERT(!zfsvfs->z_issnap);
 | |
| 		if (!zfs_is_readonly(zfsvfs) && !zfs_unlink_suspend_progress) {
 | |
| 			mutex_exit(&zp->z_lock);
 | |
| 			zfs_znode_hold_exit(zfsvfs, zh);
 | |
| 			zfs_rmnode(zp);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_exit(&zp->z_lock);
 | |
| 	zfs_znode_dmu_fini(zp);
 | |
| 
 | |
| 	zfs_znode_hold_exit(zfsvfs, zh);
 | |
| }
 | |
| 
 | |
| #if defined(HAVE_INODE_TIMESPEC64_TIMES)
 | |
| #define	zfs_compare_timespec timespec64_compare
 | |
| #else
 | |
| #define	zfs_compare_timespec timespec_compare
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Determine whether the znode's atime must be updated.  The logic mostly
 | |
|  * duplicates the Linux kernel's relatime_need_update() functionality.
 | |
|  * This function is only called if the underlying filesystem actually has
 | |
|  * atime updates enabled.
 | |
|  */
 | |
| boolean_t
 | |
| zfs_relatime_need_update(const struct inode *ip)
 | |
| {
 | |
| 	inode_timespec_t now, tmp_atime, tmp_ts;
 | |
| 
 | |
| 	gethrestime(&now);
 | |
| 	tmp_atime = zpl_inode_get_atime(ip);
 | |
| 	/*
 | |
| 	 * In relatime mode, only update the atime if the previous atime
 | |
| 	 * is earlier than either the ctime or mtime or if at least a day
 | |
| 	 * has passed since the last update of atime.
 | |
| 	 */
 | |
| 	tmp_ts = zpl_inode_get_mtime(ip);
 | |
| 	if (zfs_compare_timespec(&tmp_ts, &tmp_atime) >= 0)
 | |
| 		return (B_TRUE);
 | |
| 
 | |
| 	tmp_ts = zpl_inode_get_ctime(ip);
 | |
| 	if (zfs_compare_timespec(&tmp_ts, &tmp_atime) >= 0)
 | |
| 		return (B_TRUE);
 | |
| 
 | |
| 	if ((hrtime_t)now.tv_sec - (hrtime_t)tmp_atime.tv_sec >= 24*60*60)
 | |
| 		return (B_TRUE);
 | |
| 
 | |
| 	return (B_FALSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepare to update znode time stamps.
 | |
|  *
 | |
|  *	IN:	zp	- znode requiring timestamp update
 | |
|  *		flag	- ATTR_MTIME, ATTR_CTIME flags
 | |
|  *
 | |
|  *	OUT:	zp	- z_seq
 | |
|  *		mtime	- new mtime
 | |
|  *		ctime	- new ctime
 | |
|  *
 | |
|  *	Note: We don't update atime here, because we rely on Linux VFS to do
 | |
|  *	atime updating.
 | |
|  */
 | |
| void
 | |
| zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
 | |
|     uint64_t ctime[2])
 | |
| {
 | |
| 	inode_timespec_t now, tmp_ts;
 | |
| 
 | |
| 	gethrestime(&now);
 | |
| 
 | |
| 	zp->z_seq++;
 | |
| 
 | |
| 	if (flag & ATTR_MTIME) {
 | |
| 		ZFS_TIME_ENCODE(&now, mtime);
 | |
| 		ZFS_TIME_DECODE(&tmp_ts, mtime);
 | |
| 		zpl_inode_set_mtime_to_ts(ZTOI(zp), tmp_ts);
 | |
| 		if (ZTOZSB(zp)->z_use_fuids) {
 | |
| 			zp->z_pflags |= (ZFS_ARCHIVE |
 | |
| 			    ZFS_AV_MODIFIED);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (flag & ATTR_CTIME) {
 | |
| 		ZFS_TIME_ENCODE(&now, ctime);
 | |
| 		ZFS_TIME_DECODE(&tmp_ts, ctime);
 | |
| 		zpl_inode_set_ctime_to_ts(ZTOI(zp), tmp_ts);
 | |
| 		if (ZTOZSB(zp)->z_use_fuids)
 | |
| 			zp->z_pflags |= ZFS_ARCHIVE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Grow the block size for a file.
 | |
|  *
 | |
|  *	IN:	zp	- znode of file to free data in.
 | |
|  *		size	- requested block size
 | |
|  *		tx	- open transaction.
 | |
|  *
 | |
|  * NOTE: this function assumes that the znode is write locked.
 | |
|  */
 | |
| void
 | |
| zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
 | |
| {
 | |
| 	int		error;
 | |
| 	u_longlong_t	dummy;
 | |
| 
 | |
| 	if (size <= zp->z_blksz)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * If the file size is already greater than the current blocksize,
 | |
| 	 * we will not grow.  If there is more than one block in a file,
 | |
| 	 * the blocksize cannot change.
 | |
| 	 */
 | |
| 	if (zp->z_blksz && zp->z_size > zp->z_blksz)
 | |
| 		return;
 | |
| 
 | |
| 	error = dmu_object_set_blocksize(ZTOZSB(zp)->z_os, zp->z_id,
 | |
| 	    size, 0, tx);
 | |
| 
 | |
| 	if (error == ENOTSUP)
 | |
| 		return;
 | |
| 	ASSERT0(error);
 | |
| 
 | |
| 	/* What blocksize did we actually get? */
 | |
| 	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increase the file length
 | |
|  *
 | |
|  *	IN:	zp	- znode of file to free data in.
 | |
|  *		end	- new end-of-file
 | |
|  *
 | |
|  *	RETURN:	0 on success, error code on failure
 | |
|  */
 | |
| static int
 | |
| zfs_extend(znode_t *zp, uint64_t end)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | |
| 	dmu_tx_t *tx;
 | |
| 	zfs_locked_range_t *lr;
 | |
| 	uint64_t newblksz;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * We will change zp_size, lock the whole file.
 | |
| 	 */
 | |
| 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
 | |
| 
 | |
| 	/*
 | |
| 	 * Nothing to do if file already at desired length.
 | |
| 	 */
 | |
| 	if (end <= zp->z_size) {
 | |
| 		zfs_rangelock_exit(lr);
 | |
| 		return (0);
 | |
| 	}
 | |
| 	tx = dmu_tx_create(zfsvfs->z_os);
 | |
| 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
 | |
| 	zfs_sa_upgrade_txholds(tx, zp);
 | |
| 	if (end > zp->z_blksz &&
 | |
| 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
 | |
| 		/*
 | |
| 		 * We are growing the file past the current block size.
 | |
| 		 */
 | |
| 		if (zp->z_blksz > ZTOZSB(zp)->z_max_blksz) {
 | |
| 			/*
 | |
| 			 * File's blocksize is already larger than the
 | |
| 			 * "recordsize" property.  Only let it grow to
 | |
| 			 * the next power of 2.
 | |
| 			 */
 | |
| 			ASSERT(!ISP2(zp->z_blksz));
 | |
| 			newblksz = MIN(end, 1 << highbit64(zp->z_blksz));
 | |
| 		} else {
 | |
| 			newblksz = MIN(end, ZTOZSB(zp)->z_max_blksz);
 | |
| 		}
 | |
| 		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
 | |
| 	} else {
 | |
| 		newblksz = 0;
 | |
| 	}
 | |
| 
 | |
| 	error = dmu_tx_assign(tx, TXG_WAIT);
 | |
| 	if (error) {
 | |
| 		dmu_tx_abort(tx);
 | |
| 		zfs_rangelock_exit(lr);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	if (newblksz)
 | |
| 		zfs_grow_blocksize(zp, newblksz, tx);
 | |
| 
 | |
| 	zp->z_size = end;
 | |
| 
 | |
| 	VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(ZTOZSB(zp)),
 | |
| 	    &zp->z_size, sizeof (zp->z_size), tx));
 | |
| 
 | |
| 	zfs_rangelock_exit(lr);
 | |
| 
 | |
| 	dmu_tx_commit(tx);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * zfs_zero_partial_page - Modeled after update_pages() but
 | |
|  * with different arguments and semantics for use by zfs_freesp().
 | |
|  *
 | |
|  * Zeroes a piece of a single page cache entry for zp at offset
 | |
|  * start and length len.
 | |
|  *
 | |
|  * Caller must acquire a range lock on the file for the region
 | |
|  * being zeroed in order that the ARC and page cache stay in sync.
 | |
|  */
 | |
| static void
 | |
| zfs_zero_partial_page(znode_t *zp, uint64_t start, uint64_t len)
 | |
| {
 | |
| 	struct address_space *mp = ZTOI(zp)->i_mapping;
 | |
| 	struct page *pp;
 | |
| 	int64_t	off;
 | |
| 	void *pb;
 | |
| 
 | |
| 	ASSERT((start & PAGE_MASK) == ((start + len - 1) & PAGE_MASK));
 | |
| 
 | |
| 	off = start & (PAGE_SIZE - 1);
 | |
| 	start &= PAGE_MASK;
 | |
| 
 | |
| 	pp = find_lock_page(mp, start >> PAGE_SHIFT);
 | |
| 	if (pp) {
 | |
| 		if (mapping_writably_mapped(mp))
 | |
| 			flush_dcache_page(pp);
 | |
| 
 | |
| 		pb = kmap(pp);
 | |
| 		memset(pb + off, 0, len);
 | |
| 		kunmap(pp);
 | |
| 
 | |
| 		if (mapping_writably_mapped(mp))
 | |
| 			flush_dcache_page(pp);
 | |
| 
 | |
| 		mark_page_accessed(pp);
 | |
| 		SetPageUptodate(pp);
 | |
| 		ClearPageError(pp);
 | |
| 		unlock_page(pp);
 | |
| 		put_page(pp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free space in a file.
 | |
|  *
 | |
|  *	IN:	zp	- znode of file to free data in.
 | |
|  *		off	- start of section to free.
 | |
|  *		len	- length of section to free.
 | |
|  *
 | |
|  *	RETURN:	0 on success, error code on failure
 | |
|  */
 | |
| static int
 | |
| zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | |
| 	zfs_locked_range_t *lr;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock the range being freed.
 | |
| 	 */
 | |
| 	lr = zfs_rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER);
 | |
| 
 | |
| 	/*
 | |
| 	 * Nothing to do if file already at desired length.
 | |
| 	 */
 | |
| 	if (off >= zp->z_size) {
 | |
| 		zfs_rangelock_exit(lr);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	if (off + len > zp->z_size)
 | |
| 		len = zp->z_size - off;
 | |
| 
 | |
| 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Zero partial page cache entries.  This must be done under a
 | |
| 	 * range lock in order to keep the ARC and page cache in sync.
 | |
| 	 */
 | |
| 	if (zn_has_cached_data(zp, off, off + len - 1)) {
 | |
| 		loff_t first_page, last_page, page_len;
 | |
| 		loff_t first_page_offset, last_page_offset;
 | |
| 
 | |
| 		/* first possible full page in hole */
 | |
| 		first_page = (off + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 		/* last page of hole */
 | |
| 		last_page = (off + len) >> PAGE_SHIFT;
 | |
| 
 | |
| 		/* offset of first_page */
 | |
| 		first_page_offset = first_page << PAGE_SHIFT;
 | |
| 		/* offset of last_page */
 | |
| 		last_page_offset = last_page << PAGE_SHIFT;
 | |
| 
 | |
| 		/* truncate whole pages */
 | |
| 		if (last_page_offset > first_page_offset) {
 | |
| 			truncate_inode_pages_range(ZTOI(zp)->i_mapping,
 | |
| 			    first_page_offset, last_page_offset - 1);
 | |
| 		}
 | |
| 
 | |
| 		/* truncate sub-page ranges */
 | |
| 		if (first_page > last_page) {
 | |
| 			/* entire punched area within a single page */
 | |
| 			zfs_zero_partial_page(zp, off, len);
 | |
| 		} else {
 | |
| 			/* beginning of punched area at the end of a page */
 | |
| 			page_len  = first_page_offset - off;
 | |
| 			if (page_len > 0)
 | |
| 				zfs_zero_partial_page(zp, off, page_len);
 | |
| 
 | |
| 			/* end of punched area at the beginning of a page */
 | |
| 			page_len = off + len - last_page_offset;
 | |
| 			if (page_len > 0)
 | |
| 				zfs_zero_partial_page(zp, last_page_offset,
 | |
| 				    page_len);
 | |
| 		}
 | |
| 	}
 | |
| 	zfs_rangelock_exit(lr);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Truncate a file
 | |
|  *
 | |
|  *	IN:	zp	- znode of file to free data in.
 | |
|  *		end	- new end-of-file.
 | |
|  *
 | |
|  *	RETURN:	0 on success, error code on failure
 | |
|  */
 | |
| static int
 | |
| zfs_trunc(znode_t *zp, uint64_t end)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | |
| 	dmu_tx_t *tx;
 | |
| 	zfs_locked_range_t *lr;
 | |
| 	int error;
 | |
| 	sa_bulk_attr_t bulk[2];
 | |
| 	int count = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We will change zp_size, lock the whole file.
 | |
| 	 */
 | |
| 	lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
 | |
| 
 | |
| 	/*
 | |
| 	 * Nothing to do if file already at desired length.
 | |
| 	 */
 | |
| 	if (end >= zp->z_size) {
 | |
| 		zfs_rangelock_exit(lr);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,
 | |
| 	    DMU_OBJECT_END);
 | |
| 	if (error) {
 | |
| 		zfs_rangelock_exit(lr);
 | |
| 		return (error);
 | |
| 	}
 | |
| 	tx = dmu_tx_create(zfsvfs->z_os);
 | |
| 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
 | |
| 	zfs_sa_upgrade_txholds(tx, zp);
 | |
| 	dmu_tx_mark_netfree(tx);
 | |
| 	error = dmu_tx_assign(tx, TXG_WAIT);
 | |
| 	if (error) {
 | |
| 		dmu_tx_abort(tx);
 | |
| 		zfs_rangelock_exit(lr);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	zp->z_size = end;
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
 | |
| 	    NULL, &zp->z_size, sizeof (zp->z_size));
 | |
| 
 | |
| 	if (end == 0) {
 | |
| 		zp->z_pflags &= ~ZFS_SPARSE;
 | |
| 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
 | |
| 		    NULL, &zp->z_pflags, 8);
 | |
| 	}
 | |
| 	VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
 | |
| 
 | |
| 	dmu_tx_commit(tx);
 | |
| 	zfs_rangelock_exit(lr);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free space in a file
 | |
|  *
 | |
|  *	IN:	zp	- znode of file to free data in.
 | |
|  *		off	- start of range
 | |
|  *		len	- end of range (0 => EOF)
 | |
|  *		flag	- current file open mode flags.
 | |
|  *		log	- TRUE if this action should be logged
 | |
|  *
 | |
|  *	RETURN:	0 on success, error code on failure
 | |
|  */
 | |
| int
 | |
| zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
 | |
| {
 | |
| 	dmu_tx_t *tx;
 | |
| 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | |
| 	zilog_t *zilog = zfsvfs->z_log;
 | |
| 	uint64_t mode;
 | |
| 	uint64_t mtime[2], ctime[2];
 | |
| 	sa_bulk_attr_t bulk[3];
 | |
| 	int count = 0;
 | |
| 	int error;
 | |
| 
 | |
| 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
 | |
| 	    sizeof (mode))) != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	if (off > zp->z_size) {
 | |
| 		error =  zfs_extend(zp, off+len);
 | |
| 		if (error == 0 && log)
 | |
| 			goto log;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (len == 0) {
 | |
| 		error = zfs_trunc(zp, off);
 | |
| 	} else {
 | |
| 		if ((error = zfs_free_range(zp, off, len)) == 0 &&
 | |
| 		    off + len > zp->z_size)
 | |
| 			error = zfs_extend(zp, off+len);
 | |
| 	}
 | |
| 	if (error || !log)
 | |
| 		goto out;
 | |
| log:
 | |
| 	tx = dmu_tx_create(zfsvfs->z_os);
 | |
| 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
 | |
| 	zfs_sa_upgrade_txholds(tx, zp);
 | |
| 	error = dmu_tx_assign(tx, TXG_WAIT);
 | |
| 	if (error) {
 | |
| 		dmu_tx_abort(tx);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
 | |
| 	    NULL, &zp->z_pflags, 8);
 | |
| 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
 | |
| 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
 | |
| 	ASSERT(error == 0);
 | |
| 
 | |
| 	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
 | |
| 
 | |
| 	dmu_tx_commit(tx);
 | |
| 
 | |
| 	zfs_znode_update_vfs(zp);
 | |
| 	error = 0;
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * Truncate the page cache - for file truncate operations, use
 | |
| 	 * the purpose-built API for truncations.  For punching operations,
 | |
| 	 * the truncation is handled under a range lock in zfs_free_range.
 | |
| 	 */
 | |
| 	if (len == 0)
 | |
| 		truncate_setsize(ZTOI(zp), off);
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
 | |
| {
 | |
| 	struct super_block *sb;
 | |
| 	zfsvfs_t	*zfsvfs;
 | |
| 	uint64_t	moid, obj, sa_obj, version;
 | |
| 	uint64_t	sense = ZFS_CASE_SENSITIVE;
 | |
| 	uint64_t	norm = 0;
 | |
| 	nvpair_t	*elem;
 | |
| 	int		size;
 | |
| 	int		error;
 | |
| 	int		i;
 | |
| 	znode_t		*rootzp = NULL;
 | |
| 	vattr_t		vattr;
 | |
| 	znode_t		*zp;
 | |
| 	zfs_acl_ids_t	acl_ids;
 | |
| 
 | |
| 	/*
 | |
| 	 * First attempt to create master node.
 | |
| 	 */
 | |
| 	/*
 | |
| 	 * In an empty objset, there are no blocks to read and thus
 | |
| 	 * there can be no i/o errors (which we assert below).
 | |
| 	 */
 | |
| 	moid = MASTER_NODE_OBJ;
 | |
| 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
 | |
| 	    DMU_OT_NONE, 0, tx);
 | |
| 	ASSERT(error == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set starting attributes.
 | |
| 	 */
 | |
| 	version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
 | |
| 	elem = NULL;
 | |
| 	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
 | |
| 		/* For the moment we expect all zpl props to be uint64_ts */
 | |
| 		uint64_t val;
 | |
| 		const char *name;
 | |
| 
 | |
| 		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
 | |
| 		VERIFY(nvpair_value_uint64(elem, &val) == 0);
 | |
| 		name = nvpair_name(elem);
 | |
| 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
 | |
| 			if (val < version)
 | |
| 				version = val;
 | |
| 		} else {
 | |
| 			error = zap_update(os, moid, name, 8, 1, &val, tx);
 | |
| 		}
 | |
| 		ASSERT(error == 0);
 | |
| 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
 | |
| 			norm = val;
 | |
| 		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
 | |
| 			sense = val;
 | |
| 	}
 | |
| 	ASSERT(version != 0);
 | |
| 	error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
 | |
| 	ASSERT(error == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Create zap object used for SA attribute registration
 | |
| 	 */
 | |
| 
 | |
| 	if (version >= ZPL_VERSION_SA) {
 | |
| 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
 | |
| 		    DMU_OT_NONE, 0, tx);
 | |
| 		error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
 | |
| 		ASSERT(error == 0);
 | |
| 	} else {
 | |
| 		sa_obj = 0;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Create a delete queue.
 | |
| 	 */
 | |
| 	obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
 | |
| 
 | |
| 	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
 | |
| 	ASSERT(error == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Create root znode.  Create minimal znode/inode/zfsvfs/sb
 | |
| 	 * to allow zfs_mknode to work.
 | |
| 	 */
 | |
| 	vattr.va_mask = ATTR_MODE|ATTR_UID|ATTR_GID;
 | |
| 	vattr.va_mode = S_IFDIR|0755;
 | |
| 	vattr.va_uid = crgetuid(cr);
 | |
| 	vattr.va_gid = crgetgid(cr);
 | |
| 
 | |
| 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
 | |
| 	rootzp->z_unlinked = B_FALSE;
 | |
| 	rootzp->z_atime_dirty = B_FALSE;
 | |
| 	rootzp->z_is_sa = USE_SA(version, os);
 | |
| 	rootzp->z_pflags = 0;
 | |
| 
 | |
| 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
 | |
| 	zfsvfs->z_os = os;
 | |
| 	zfsvfs->z_parent = zfsvfs;
 | |
| 	zfsvfs->z_version = version;
 | |
| 	zfsvfs->z_use_fuids = USE_FUIDS(version, os);
 | |
| 	zfsvfs->z_use_sa = USE_SA(version, os);
 | |
| 	zfsvfs->z_norm = norm;
 | |
| 
 | |
| 	sb = kmem_zalloc(sizeof (struct super_block), KM_SLEEP);
 | |
| 	sb->s_fs_info = zfsvfs;
 | |
| 
 | |
| 	ZTOI(rootzp)->i_sb = sb;
 | |
| 
 | |
| 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
 | |
| 	    &zfsvfs->z_attr_table);
 | |
| 
 | |
| 	ASSERT(error == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Fold case on file systems that are always or sometimes case
 | |
| 	 * insensitive.
 | |
| 	 */
 | |
| 	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
 | |
| 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
 | |
| 
 | |
| 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
 | |
| 	    offsetof(znode_t, z_link_node));
 | |
| 
 | |
| 	size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
 | |
| 	zfsvfs->z_hold_size = size;
 | |
| 	zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
 | |
| 	    KM_SLEEP);
 | |
| 	zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
 | |
| 	for (i = 0; i != size; i++) {
 | |
| 		avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
 | |
| 		    sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
 | |
| 		mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
 | |
| 	}
 | |
| 
 | |
| 	VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
 | |
| 	    cr, NULL, &acl_ids, zfs_init_idmap));
 | |
| 	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
 | |
| 	ASSERT3P(zp, ==, rootzp);
 | |
| 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
 | |
| 	ASSERT(error == 0);
 | |
| 	zfs_acl_ids_free(&acl_ids);
 | |
| 
 | |
| 	atomic_set(&ZTOI(rootzp)->i_count, 0);
 | |
| 	sa_handle_destroy(rootzp->z_sa_hdl);
 | |
| 	kmem_cache_free(znode_cache, rootzp);
 | |
| 
 | |
| 	for (i = 0; i != size; i++) {
 | |
| 		avl_destroy(&zfsvfs->z_hold_trees[i]);
 | |
| 		mutex_destroy(&zfsvfs->z_hold_locks[i]);
 | |
| 	}
 | |
| 
 | |
| 	mutex_destroy(&zfsvfs->z_znodes_lock);
 | |
| 
 | |
| 	vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
 | |
| 	vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
 | |
| 	kmem_free(sb, sizeof (struct super_block));
 | |
| 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
 | |
| }
 | |
| #endif /* _KERNEL */
 | |
| 
 | |
| static int
 | |
| zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
 | |
| {
 | |
| 	uint64_t sa_obj = 0;
 | |
| 	int error;
 | |
| 
 | |
| 	error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
 | |
| 	if (error != 0 && error != ENOENT)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
 | |
|     dmu_buf_t **db, const void *tag)
 | |
| {
 | |
| 	dmu_object_info_t doi;
 | |
| 	int error;
 | |
| 
 | |
| 	if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	dmu_object_info_from_db(*db, &doi);
 | |
| 	if ((doi.doi_bonus_type != DMU_OT_SA &&
 | |
| 	    doi.doi_bonus_type != DMU_OT_ZNODE) ||
 | |
| 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
 | |
| 	    doi.doi_bonus_size < sizeof (znode_phys_t))) {
 | |
| 		sa_buf_rele(*db, tag);
 | |
| 		return (SET_ERROR(ENOTSUP));
 | |
| 	}
 | |
| 
 | |
| 	error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
 | |
| 	if (error != 0) {
 | |
| 		sa_buf_rele(*db, tag);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, const void *tag)
 | |
| {
 | |
| 	sa_handle_destroy(hdl);
 | |
| 	sa_buf_rele(db, tag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given an object number, return its parent object number and whether
 | |
|  * or not the object is an extended attribute directory.
 | |
|  */
 | |
| static int
 | |
| zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table,
 | |
|     uint64_t *pobjp, int *is_xattrdir)
 | |
| {
 | |
| 	uint64_t parent;
 | |
| 	uint64_t pflags;
 | |
| 	uint64_t mode;
 | |
| 	uint64_t parent_mode;
 | |
| 	sa_bulk_attr_t bulk[3];
 | |
| 	sa_handle_t *sa_hdl;
 | |
| 	dmu_buf_t *sa_db;
 | |
| 	int count = 0;
 | |
| 	int error;
 | |
| 
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
 | |
| 	    &parent, sizeof (parent));
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
 | |
| 	    &pflags, sizeof (pflags));
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
 | |
| 	    &mode, sizeof (mode));
 | |
| 
 | |
| 	if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	/*
 | |
| 	 * When a link is removed its parent pointer is not changed and will
 | |
| 	 * be invalid.  There are two cases where a link is removed but the
 | |
| 	 * file stays around, when it goes to the delete queue and when there
 | |
| 	 * are additional links.
 | |
| 	 */
 | |
| 	error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode));
 | |
| 	zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	*is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
 | |
| 
 | |
| 	/*
 | |
| 	 * Extended attributes can be applied to files, directories, etc.
 | |
| 	 * Otherwise the parent must be a directory.
 | |
| 	 */
 | |
| 	if (!*is_xattrdir && !S_ISDIR(parent_mode))
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	*pobjp = parent;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given an object number, return some zpl level statistics
 | |
|  */
 | |
| static int
 | |
| zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
 | |
|     zfs_stat_t *sb)
 | |
| {
 | |
| 	sa_bulk_attr_t bulk[4];
 | |
| 	int count = 0;
 | |
| 
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
 | |
| 	    &sb->zs_mode, sizeof (sb->zs_mode));
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
 | |
| 	    &sb->zs_gen, sizeof (sb->zs_gen));
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
 | |
| 	    &sb->zs_links, sizeof (sb->zs_links));
 | |
| 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
 | |
| 	    &sb->zs_ctime, sizeof (sb->zs_ctime));
 | |
| 
 | |
| 	return (sa_bulk_lookup(hdl, bulk, count));
 | |
| }
 | |
| 
 | |
| static int
 | |
| zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
 | |
|     sa_attr_type_t *sa_table, char *buf, int len)
 | |
| {
 | |
| 	sa_handle_t *sa_hdl;
 | |
| 	sa_handle_t *prevhdl = NULL;
 | |
| 	dmu_buf_t *prevdb = NULL;
 | |
| 	dmu_buf_t *sa_db = NULL;
 | |
| 	char *path = buf + len - 1;
 | |
| 	int error;
 | |
| 
 | |
| 	*path = '\0';
 | |
| 	sa_hdl = hdl;
 | |
| 
 | |
| 	uint64_t deleteq_obj;
 | |
| 	VERIFY0(zap_lookup(osp, MASTER_NODE_OBJ,
 | |
| 	    ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
 | |
| 	error = zap_lookup_int(osp, deleteq_obj, obj);
 | |
| 	if (error == 0) {
 | |
| 		return (ESTALE);
 | |
| 	} else if (error != ENOENT) {
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	for (;;) {
 | |
| 		uint64_t pobj = 0;
 | |
| 		char component[MAXNAMELEN + 2];
 | |
| 		size_t complen;
 | |
| 		int is_xattrdir = 0;
 | |
| 
 | |
| 		if (prevdb) {
 | |
| 			ASSERT(prevhdl != NULL);
 | |
| 			zfs_release_sa_handle(prevhdl, prevdb, FTAG);
 | |
| 		}
 | |
| 
 | |
| 		if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj,
 | |
| 		    &is_xattrdir)) != 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (pobj == obj) {
 | |
| 			if (path[0] != '/')
 | |
| 				*--path = '/';
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		component[0] = '/';
 | |
| 		if (is_xattrdir) {
 | |
| 			strcpy(component + 1, "<xattrdir>");
 | |
| 		} else {
 | |
| 			error = zap_value_search(osp, pobj, obj,
 | |
| 			    ZFS_DIRENT_OBJ(-1ULL), component + 1);
 | |
| 			if (error != 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		complen = strlen(component);
 | |
| 		path -= complen;
 | |
| 		ASSERT(path >= buf);
 | |
| 		memcpy(path, component, complen);
 | |
| 		obj = pobj;
 | |
| 
 | |
| 		if (sa_hdl != hdl) {
 | |
| 			prevhdl = sa_hdl;
 | |
| 			prevdb = sa_db;
 | |
| 		}
 | |
| 		error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
 | |
| 		if (error != 0) {
 | |
| 			sa_hdl = prevhdl;
 | |
| 			sa_db = prevdb;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sa_hdl != NULL && sa_hdl != hdl) {
 | |
| 		ASSERT(sa_db != NULL);
 | |
| 		zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
 | |
| 	}
 | |
| 
 | |
| 	if (error == 0)
 | |
| 		(void) memmove(buf, path, buf + len - path);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
 | |
| {
 | |
| 	sa_attr_type_t *sa_table;
 | |
| 	sa_handle_t *hdl;
 | |
| 	dmu_buf_t *db;
 | |
| 	int error;
 | |
| 
 | |
| 	error = zfs_sa_setup(osp, &sa_table);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
 | |
| 
 | |
| 	zfs_release_sa_handle(hdl, db, FTAG);
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
 | |
|     char *buf, int len)
 | |
| {
 | |
| 	char *path = buf + len - 1;
 | |
| 	sa_attr_type_t *sa_table;
 | |
| 	sa_handle_t *hdl;
 | |
| 	dmu_buf_t *db;
 | |
| 	int error;
 | |
| 
 | |
| 	*path = '\0';
 | |
| 
 | |
| 	error = zfs_sa_setup(osp, &sa_table);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
 | |
| 	if (error != 0) {
 | |
| 		zfs_release_sa_handle(hdl, db, FTAG);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
 | |
| 
 | |
| 	zfs_release_sa_handle(hdl, db, FTAG);
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a property stored within the master node.
 | |
|  */
 | |
| int
 | |
| zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
 | |
| {
 | |
| 	uint64_t *cached_copy = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out where in the objset_t the cached copy would live, if it
 | |
| 	 * is available for the requested property.
 | |
| 	 */
 | |
| 	if (os != NULL) {
 | |
| 		switch (prop) {
 | |
| 		case ZFS_PROP_VERSION:
 | |
| 			cached_copy = &os->os_version;
 | |
| 			break;
 | |
| 		case ZFS_PROP_NORMALIZE:
 | |
| 			cached_copy = &os->os_normalization;
 | |
| 			break;
 | |
| 		case ZFS_PROP_UTF8ONLY:
 | |
| 			cached_copy = &os->os_utf8only;
 | |
| 			break;
 | |
| 		case ZFS_PROP_CASE:
 | |
| 			cached_copy = &os->os_casesensitivity;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
 | |
| 		*value = *cached_copy;
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the property wasn't cached, look up the file system's value for
 | |
| 	 * the property. For the version property, we look up a slightly
 | |
| 	 * different string.
 | |
| 	 */
 | |
| 	const char *pname;
 | |
| 	int error = ENOENT;
 | |
| 	if (prop == ZFS_PROP_VERSION)
 | |
| 		pname = ZPL_VERSION_STR;
 | |
| 	else
 | |
| 		pname = zfs_prop_to_name(prop);
 | |
| 
 | |
| 	if (os != NULL) {
 | |
| 		ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
 | |
| 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
 | |
| 	}
 | |
| 
 | |
| 	if (error == ENOENT) {
 | |
| 		/* No value set, use the default value */
 | |
| 		switch (prop) {
 | |
| 		case ZFS_PROP_VERSION:
 | |
| 			*value = ZPL_VERSION;
 | |
| 			break;
 | |
| 		case ZFS_PROP_NORMALIZE:
 | |
| 		case ZFS_PROP_UTF8ONLY:
 | |
| 			*value = 0;
 | |
| 			break;
 | |
| 		case ZFS_PROP_CASE:
 | |
| 			*value = ZFS_CASE_SENSITIVE;
 | |
| 			break;
 | |
| 		case ZFS_PROP_ACLTYPE:
 | |
| 			*value = ZFS_ACLTYPE_OFF;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return (error);
 | |
| 		}
 | |
| 		error = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If one of the methods for getting the property value above worked,
 | |
| 	 * copy it into the objset_t's cache.
 | |
| 	 */
 | |
| 	if (error == 0 && cached_copy != NULL) {
 | |
| 		*cached_copy = *value;
 | |
| 	}
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| #if defined(_KERNEL)
 | |
| EXPORT_SYMBOL(zfs_create_fs);
 | |
| EXPORT_SYMBOL(zfs_obj_to_path);
 | |
| 
 | |
| /* CSTYLED */
 | |
| module_param(zfs_object_mutex_size, uint, 0644);
 | |
| MODULE_PARM_DESC(zfs_object_mutex_size, "Size of znode hold array");
 | |
| module_param(zfs_unlink_suspend_progress, int, 0644);
 | |
| MODULE_PARM_DESC(zfs_unlink_suspend_progress, "Set to prevent async unlinks "
 | |
| "(debug - leaks space into the unlinked set)");
 | |
| #endif
 |