mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 10:00:40 +00:00 
			
		
		
		
	 f0ad031cd9
			
		
	
	
		f0ad031cd9
		
	
	
	
	
		
			
			For spl-taskq to use the kstats infrastructure, it has to be available first. Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de> Signed-off-by: Rob Norris <rob.norris@klarasystems.com> Sponsored-by: Klara, Inc. Sponsored-by: Syneto Closes #16171
		
			
				
	
	
		
			932 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			932 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | ||
|  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
 | ||
|  *  Copyright (C) 2007 The Regents of the University of California.
 | ||
|  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 | ||
|  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
 | ||
|  *  UCRL-CODE-235197
 | ||
|  *
 | ||
|  *  This file is part of the SPL, Solaris Porting Layer.
 | ||
|  *
 | ||
|  *  The SPL is free software; you can redistribute it and/or modify it
 | ||
|  *  under the terms of the GNU General Public License as published by the
 | ||
|  *  Free Software Foundation; either version 2 of the License, or (at your
 | ||
|  *  option) any later version.
 | ||
|  *
 | ||
|  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
 | ||
|  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | ||
|  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | ||
|  *  for more details.
 | ||
|  *
 | ||
|  *  You should have received a copy of the GNU General Public License along
 | ||
|  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
 | ||
|  *
 | ||
|  *  Solaris Porting Layer (SPL) Generic Implementation.
 | ||
|  */
 | ||
| 
 | ||
| #include <sys/isa_defs.h>
 | ||
| #include <sys/sysmacros.h>
 | ||
| #include <sys/systeminfo.h>
 | ||
| #include <sys/vmsystm.h>
 | ||
| #include <sys/kmem.h>
 | ||
| #include <sys/kmem_cache.h>
 | ||
| #include <sys/vmem.h>
 | ||
| #include <sys/mutex.h>
 | ||
| #include <sys/rwlock.h>
 | ||
| #include <sys/taskq.h>
 | ||
| #include <sys/tsd.h>
 | ||
| #include <sys/zmod.h>
 | ||
| #include <sys/debug.h>
 | ||
| #include <sys/proc.h>
 | ||
| #include <sys/kstat.h>
 | ||
| #include <sys/file.h>
 | ||
| #include <sys/sunddi.h>
 | ||
| #include <linux/ctype.h>
 | ||
| #include <sys/disp.h>
 | ||
| #include <sys/random.h>
 | ||
| #include <sys/string.h>
 | ||
| #include <linux/kmod.h>
 | ||
| #include <linux/mod_compat.h>
 | ||
| #include <sys/cred.h>
 | ||
| #include <sys/vnode.h>
 | ||
| #include <sys/misc.h>
 | ||
| #include <linux/mod_compat.h>
 | ||
| 
 | ||
| unsigned long spl_hostid = 0;
 | ||
| EXPORT_SYMBOL(spl_hostid);
 | ||
| 
 | ||
| /* CSTYLED */
 | ||
| module_param(spl_hostid, ulong, 0644);
 | ||
| MODULE_PARM_DESC(spl_hostid, "The system hostid.");
 | ||
| 
 | ||
| proc_t p0;
 | ||
| EXPORT_SYMBOL(p0);
 | ||
| 
 | ||
| /*
 | ||
|  * xoshiro256++ 1.0 PRNG by David Blackman and Sebastiano Vigna
 | ||
|  *
 | ||
|  * "Scrambled Linear Pseudorandom Number Generators∗"
 | ||
|  * https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf
 | ||
|  *
 | ||
|  * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
 | ||
|  * is to provide bytes containing random numbers. It is mapped to /dev/urandom
 | ||
|  * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
 | ||
|  * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
 | ||
|  * we can implement it using a fast PRNG that we seed using Linux' actual
 | ||
|  * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
 | ||
|  * with an independent seed so that all calls to random_get_pseudo_bytes() are
 | ||
|  * free of atomic instructions.
 | ||
|  *
 | ||
|  * A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
 | ||
|  * to generate words larger than 256 bits will paradoxically be limited to
 | ||
|  * `2^256 - 1` possibilities. This is because we have a sequence of `2^256 - 1`
 | ||
|  * 256-bit words and selecting the first will implicitly select the second. If
 | ||
|  * a caller finds this behavior undesirable, random_get_bytes() should be used
 | ||
|  * instead.
 | ||
|  *
 | ||
|  * XXX: Linux interrupt handlers that trigger within the critical section
 | ||
|  * formed by `s[3] = xp[3];` and `xp[0] = s[0];` and call this function will
 | ||
|  * see the same numbers. Nothing in the code currently calls this in an
 | ||
|  * interrupt handler, so this is considered to be okay. If that becomes a
 | ||
|  * problem, we could create a set of per-cpu variables for interrupt handlers
 | ||
|  * and use them when in_interrupt() from linux/preempt_mask.h evaluates to
 | ||
|  * true.
 | ||
|  */
 | ||
| static void __percpu *spl_pseudo_entropy;
 | ||
| 
 | ||
| /*
 | ||
|  * rotl()/spl_rand_next()/spl_rand_jump() are copied from the following CC-0
 | ||
|  * licensed file:
 | ||
|  *
 | ||
|  * https://prng.di.unimi.it/xoshiro256plusplus.c
 | ||
|  */
 | ||
| 
 | ||
| static inline uint64_t rotl(const uint64_t x, int k)
 | ||
| {
 | ||
| 	return ((x << k) | (x >> (64 - k)));
 | ||
| }
 | ||
| 
 | ||
| static inline uint64_t
 | ||
| spl_rand_next(uint64_t *s)
 | ||
| {
 | ||
| 	const uint64_t result = rotl(s[0] + s[3], 23) + s[0];
 | ||
| 
 | ||
| 	const uint64_t t = s[1] << 17;
 | ||
| 
 | ||
| 	s[2] ^= s[0];
 | ||
| 	s[3] ^= s[1];
 | ||
| 	s[1] ^= s[2];
 | ||
| 	s[0] ^= s[3];
 | ||
| 
 | ||
| 	s[2] ^= t;
 | ||
| 
 | ||
| 	s[3] = rotl(s[3], 45);
 | ||
| 
 | ||
| 	return (result);
 | ||
| }
 | ||
| 
 | ||
| static inline void
 | ||
| spl_rand_jump(uint64_t *s)
 | ||
| {
 | ||
| 	static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba,
 | ||
| 	    0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };
 | ||
| 
 | ||
| 	uint64_t s0 = 0;
 | ||
| 	uint64_t s1 = 0;
 | ||
| 	uint64_t s2 = 0;
 | ||
| 	uint64_t s3 = 0;
 | ||
| 	int i, b;
 | ||
| 	for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++)
 | ||
| 		for (b = 0; b < 64; b++) {
 | ||
| 			if (JUMP[i] & 1ULL << b) {
 | ||
| 				s0 ^= s[0];
 | ||
| 				s1 ^= s[1];
 | ||
| 				s2 ^= s[2];
 | ||
| 				s3 ^= s[3];
 | ||
| 			}
 | ||
| 			(void) spl_rand_next(s);
 | ||
| 		}
 | ||
| 
 | ||
| 	s[0] = s0;
 | ||
| 	s[1] = s1;
 | ||
| 	s[2] = s2;
 | ||
| 	s[3] = s3;
 | ||
| }
 | ||
| 
 | ||
| int
 | ||
| random_get_pseudo_bytes(uint8_t *ptr, size_t len)
 | ||
| {
 | ||
| 	uint64_t *xp, s[4];
 | ||
| 
 | ||
| 	ASSERT(ptr);
 | ||
| 
 | ||
| 	xp = get_cpu_ptr(spl_pseudo_entropy);
 | ||
| 
 | ||
| 	s[0] = xp[0];
 | ||
| 	s[1] = xp[1];
 | ||
| 	s[2] = xp[2];
 | ||
| 	s[3] = xp[3];
 | ||
| 
 | ||
| 	while (len) {
 | ||
| 		union {
 | ||
| 			uint64_t ui64;
 | ||
| 			uint8_t byte[sizeof (uint64_t)];
 | ||
| 		}entropy;
 | ||
| 		int i = MIN(len, sizeof (uint64_t));
 | ||
| 
 | ||
| 		len -= i;
 | ||
| 		entropy.ui64 = spl_rand_next(s);
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * xoshiro256++ has low entropy lower bytes, so we copy the
 | ||
| 		 * higher order bytes first.
 | ||
| 		 */
 | ||
| 		while (i--)
 | ||
| #ifdef _ZFS_BIG_ENDIAN
 | ||
| 			*ptr++ = entropy.byte[i];
 | ||
| #else
 | ||
| 			*ptr++ = entropy.byte[7 - i];
 | ||
| #endif
 | ||
| 	}
 | ||
| 
 | ||
| 	xp[0] = s[0];
 | ||
| 	xp[1] = s[1];
 | ||
| 	xp[2] = s[2];
 | ||
| 	xp[3] = s[3];
 | ||
| 
 | ||
| 	put_cpu_ptr(spl_pseudo_entropy);
 | ||
| 
 | ||
| 	return (0);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| EXPORT_SYMBOL(random_get_pseudo_bytes);
 | ||
| 
 | ||
| #if BITS_PER_LONG == 32
 | ||
| 
 | ||
| /*
 | ||
|  * Support 64/64 => 64 division on a 32-bit platform.  While the kernel
 | ||
|  * provides a div64_u64() function for this we do not use it because the
 | ||
|  * implementation is flawed.  There are cases which return incorrect
 | ||
|  * results as late as linux-2.6.35.  Until this is fixed upstream the
 | ||
|  * spl must provide its own implementation.
 | ||
|  *
 | ||
|  * This implementation is a slightly modified version of the algorithm
 | ||
|  * proposed by the book 'Hacker's Delight'.  The original source can be
 | ||
|  * found here and is available for use without restriction.
 | ||
|  *
 | ||
|  * http://www.hackersdelight.org/HDcode/newCode/divDouble.c
 | ||
|  */
 | ||
| 
 | ||
| /*
 | ||
|  * Calculate number of leading of zeros for a 64-bit value.
 | ||
|  */
 | ||
| static int
 | ||
| nlz64(uint64_t x)
 | ||
| {
 | ||
| 	register int n = 0;
 | ||
| 
 | ||
| 	if (x == 0)
 | ||
| 		return (64);
 | ||
| 
 | ||
| 	if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; }
 | ||
| 	if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; }
 | ||
| 	if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n +  8; x = x <<  8; }
 | ||
| 	if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n +  4; x = x <<  4; }
 | ||
| 	if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n +  2; x = x <<  2; }
 | ||
| 	if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n +  1; }
 | ||
| 
 | ||
| 	return (n);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Newer kernels have a div_u64() function but we define our own
 | ||
|  * to simplify portability between kernel versions.
 | ||
|  */
 | ||
| static inline uint64_t
 | ||
| __div_u64(uint64_t u, uint32_t v)
 | ||
| {
 | ||
| 	(void) do_div(u, v);
 | ||
| 	return (u);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Turn off missing prototypes warning for these functions. They are
 | ||
|  * replacements for libgcc-provided functions and will never be called
 | ||
|  * directly.
 | ||
|  */
 | ||
| #if defined(__GNUC__) && !defined(__clang__)
 | ||
| #pragma GCC diagnostic push
 | ||
| #pragma GCC diagnostic ignored "-Wmissing-prototypes"
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|  * Implementation of 64-bit unsigned division for 32-bit machines.
 | ||
|  *
 | ||
|  * First the procedure takes care of the case in which the divisor is a
 | ||
|  * 32-bit quantity. There are two subcases: (1) If the left half of the
 | ||
|  * dividend is less than the divisor, one execution of do_div() is all that
 | ||
|  * is required (overflow is not possible). (2) Otherwise it does two
 | ||
|  * divisions, using the grade school method.
 | ||
|  */
 | ||
| uint64_t
 | ||
| __udivdi3(uint64_t u, uint64_t v)
 | ||
| {
 | ||
| 	uint64_t u0, u1, v1, q0, q1, k;
 | ||
| 	int n;
 | ||
| 
 | ||
| 	if (v >> 32 == 0) {			// If v < 2**32:
 | ||
| 		if (u >> 32 < v) {		// If u/v cannot overflow,
 | ||
| 			return (__div_u64(u, v)); // just do one division.
 | ||
| 		} else {			// If u/v would overflow:
 | ||
| 			u1 = u >> 32;		// Break u into two halves.
 | ||
| 			u0 = u & 0xFFFFFFFF;
 | ||
| 			q1 = __div_u64(u1, v);	// First quotient digit.
 | ||
| 			k  = u1 - q1 * v;	// First remainder, < v.
 | ||
| 			u0 += (k << 32);
 | ||
| 			q0 = __div_u64(u0, v);	// Seconds quotient digit.
 | ||
| 			return ((q1 << 32) + q0);
 | ||
| 		}
 | ||
| 	} else {				// If v >= 2**32:
 | ||
| 		n = nlz64(v);			// 0 <= n <= 31.
 | ||
| 		v1 = (v << n) >> 32;		// Normalize divisor, MSB is 1.
 | ||
| 		u1 = u >> 1;			// To ensure no overflow.
 | ||
| 		q1 = __div_u64(u1, v1);		// Get quotient from
 | ||
| 		q0 = (q1 << n) >> 31;		// Undo normalization and
 | ||
| 						// division of u by 2.
 | ||
| 		if (q0 != 0)			// Make q0 correct or
 | ||
| 			q0 = q0 - 1;		// too small by 1.
 | ||
| 		if ((u - q0 * v) >= v)
 | ||
| 			q0 = q0 + 1;		// Now q0 is correct.
 | ||
| 
 | ||
| 		return (q0);
 | ||
| 	}
 | ||
| }
 | ||
| EXPORT_SYMBOL(__udivdi3);
 | ||
| 
 | ||
| #ifndef abs64
 | ||
| /* CSTYLED */
 | ||
| #define	abs64(x)	({ uint64_t t = (x) >> 63; ((x) ^ t) - t; })
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|  * Implementation of 64-bit signed division for 32-bit machines.
 | ||
|  */
 | ||
| int64_t
 | ||
| __divdi3(int64_t u, int64_t v)
 | ||
| {
 | ||
| 	int64_t q, t;
 | ||
| 	q = __udivdi3(abs64(u), abs64(v));
 | ||
| 	t = (u ^ v) >> 63;	// If u, v have different
 | ||
| 	return ((q ^ t) - t);	// signs, negate q.
 | ||
| }
 | ||
| EXPORT_SYMBOL(__divdi3);
 | ||
| 
 | ||
| /*
 | ||
|  * Implementation of 64-bit unsigned modulo for 32-bit machines.
 | ||
|  */
 | ||
| uint64_t
 | ||
| __umoddi3(uint64_t dividend, uint64_t divisor)
 | ||
| {
 | ||
| 	return (dividend - (divisor * __udivdi3(dividend, divisor)));
 | ||
| }
 | ||
| EXPORT_SYMBOL(__umoddi3);
 | ||
| 
 | ||
| /* 64-bit signed modulo for 32-bit machines. */
 | ||
| int64_t
 | ||
| __moddi3(int64_t n, int64_t d)
 | ||
| {
 | ||
| 	int64_t q;
 | ||
| 	boolean_t nn = B_FALSE;
 | ||
| 
 | ||
| 	if (n < 0) {
 | ||
| 		nn = B_TRUE;
 | ||
| 		n = -n;
 | ||
| 	}
 | ||
| 	if (d < 0)
 | ||
| 		d = -d;
 | ||
| 
 | ||
| 	q = __umoddi3(n, d);
 | ||
| 
 | ||
| 	return (nn ? -q : q);
 | ||
| }
 | ||
| EXPORT_SYMBOL(__moddi3);
 | ||
| 
 | ||
| /*
 | ||
|  * Implementation of 64-bit unsigned division/modulo for 32-bit machines.
 | ||
|  */
 | ||
| uint64_t
 | ||
| __udivmoddi4(uint64_t n, uint64_t d, uint64_t *r)
 | ||
| {
 | ||
| 	uint64_t q = __udivdi3(n, d);
 | ||
| 	if (r)
 | ||
| 		*r = n - d * q;
 | ||
| 	return (q);
 | ||
| }
 | ||
| EXPORT_SYMBOL(__udivmoddi4);
 | ||
| 
 | ||
| /*
 | ||
|  * Implementation of 64-bit signed division/modulo for 32-bit machines.
 | ||
|  */
 | ||
| int64_t
 | ||
| __divmoddi4(int64_t n, int64_t d, int64_t *r)
 | ||
| {
 | ||
| 	int64_t q, rr;
 | ||
| 	boolean_t nn = B_FALSE;
 | ||
| 	boolean_t nd = B_FALSE;
 | ||
| 	if (n < 0) {
 | ||
| 		nn = B_TRUE;
 | ||
| 		n = -n;
 | ||
| 	}
 | ||
| 	if (d < 0) {
 | ||
| 		nd = B_TRUE;
 | ||
| 		d = -d;
 | ||
| 	}
 | ||
| 
 | ||
| 	q = __udivmoddi4(n, d, (uint64_t *)&rr);
 | ||
| 
 | ||
| 	if (nn != nd)
 | ||
| 		q = -q;
 | ||
| 	if (nn)
 | ||
| 		rr = -rr;
 | ||
| 	if (r)
 | ||
| 		*r = rr;
 | ||
| 	return (q);
 | ||
| }
 | ||
| EXPORT_SYMBOL(__divmoddi4);
 | ||
| 
 | ||
| #if defined(__arm) || defined(__arm__)
 | ||
| /*
 | ||
|  * Implementation of 64-bit (un)signed division for 32-bit arm machines.
 | ||
|  *
 | ||
|  * Run-time ABI for the ARM Architecture (page 20).  A pair of (unsigned)
 | ||
|  * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
 | ||
|  * and the remainder in {r2, r3}.  The return type is specifically left
 | ||
|  * set to 'void' to ensure the compiler does not overwrite these registers
 | ||
|  * during the return.  All results are in registers as per ABI
 | ||
|  */
 | ||
| void
 | ||
| __aeabi_uldivmod(uint64_t u, uint64_t v)
 | ||
| {
 | ||
| 	uint64_t res;
 | ||
| 	uint64_t mod;
 | ||
| 
 | ||
| 	res = __udivdi3(u, v);
 | ||
| 	mod = __umoddi3(u, v);
 | ||
| 	{
 | ||
| 		register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
 | ||
| 		register uint32_t r1 asm("r1") = (res >> 32);
 | ||
| 		register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
 | ||
| 		register uint32_t r3 asm("r3") = (mod >> 32);
 | ||
| 
 | ||
| 		asm volatile(""
 | ||
| 		    : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3)  /* output */
 | ||
| 		    : "r"(r0), "r"(r1), "r"(r2), "r"(r3));    /* input */
 | ||
| 
 | ||
| 		return; /* r0; */
 | ||
| 	}
 | ||
| }
 | ||
| EXPORT_SYMBOL(__aeabi_uldivmod);
 | ||
| 
 | ||
| void
 | ||
| __aeabi_ldivmod(int64_t u, int64_t v)
 | ||
| {
 | ||
| 	int64_t res;
 | ||
| 	uint64_t mod;
 | ||
| 
 | ||
| 	res =  __divdi3(u, v);
 | ||
| 	mod = __umoddi3(u, v);
 | ||
| 	{
 | ||
| 		register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
 | ||
| 		register uint32_t r1 asm("r1") = (res >> 32);
 | ||
| 		register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
 | ||
| 		register uint32_t r3 asm("r3") = (mod >> 32);
 | ||
| 
 | ||
| 		asm volatile(""
 | ||
| 		    : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3)  /* output */
 | ||
| 		    : "r"(r0), "r"(r1), "r"(r2), "r"(r3));    /* input */
 | ||
| 
 | ||
| 		return; /* r0; */
 | ||
| 	}
 | ||
| }
 | ||
| EXPORT_SYMBOL(__aeabi_ldivmod);
 | ||
| #endif /* __arm || __arm__ */
 | ||
| 
 | ||
| #if defined(__GNUC__) && !defined(__clang__)
 | ||
| #pragma GCC diagnostic pop
 | ||
| #endif
 | ||
| 
 | ||
| #endif /* BITS_PER_LONG */
 | ||
| 
 | ||
| /*
 | ||
|  * NOTE: The strtoxx behavior is solely based on my reading of the Solaris
 | ||
|  * ddi_strtol(9F) man page.  I have not verified the behavior of these
 | ||
|  * functions against their Solaris counterparts.  It is possible that I
 | ||
|  * may have misinterpreted the man page or the man page is incorrect.
 | ||
|  */
 | ||
| int ddi_strtol(const char *, char **, int, long *);
 | ||
| int ddi_strtoull(const char *, char **, int, unsigned long long *);
 | ||
| int ddi_strtoll(const char *, char **, int, long long *);
 | ||
| 
 | ||
| #define	define_ddi_strtox(type, valtype)				\
 | ||
| int ddi_strto##type(const char *str, char **endptr,			\
 | ||
|     int base, valtype *result)						\
 | ||
| {									\
 | ||
| 	valtype last_value, value = 0;					\
 | ||
| 	char *ptr = (char *)str;					\
 | ||
| 	int digit, minus = 0;						\
 | ||
| 									\
 | ||
| 	while (strchr(" \t\n\r\f", *ptr))				\
 | ||
| 		++ptr;							\
 | ||
| 									\
 | ||
| 	if (strlen(ptr) == 0)						\
 | ||
| 		return (EINVAL);					\
 | ||
| 									\
 | ||
| 	switch (*ptr) {							\
 | ||
| 	case '-':							\
 | ||
| 		minus = 1;						\
 | ||
| 		zfs_fallthrough;					\
 | ||
| 	case '+':							\
 | ||
| 		++ptr;							\
 | ||
| 		break;							\
 | ||
| 	}								\
 | ||
| 									\
 | ||
| 	/* Auto-detect base based on prefix */				\
 | ||
| 	if (!base) {							\
 | ||
| 		if (str[0] == '0') {					\
 | ||
| 			if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \
 | ||
| 				base = 16; /* hex */			\
 | ||
| 				ptr += 2;				\
 | ||
| 			} else if (str[1] >= '0' && str[1] < '8') {	\
 | ||
| 				base = 8; /* octal */			\
 | ||
| 				ptr += 1;				\
 | ||
| 			} else {					\
 | ||
| 				return (EINVAL);			\
 | ||
| 			}						\
 | ||
| 		} else {						\
 | ||
| 			base = 10; /* decimal */			\
 | ||
| 		}							\
 | ||
| 	}								\
 | ||
| 									\
 | ||
| 	while (1) {							\
 | ||
| 		if (isdigit(*ptr))					\
 | ||
| 			digit = *ptr - '0';				\
 | ||
| 		else if (isalpha(*ptr))					\
 | ||
| 			digit = tolower(*ptr) - 'a' + 10;		\
 | ||
| 		else							\
 | ||
| 			break;						\
 | ||
| 									\
 | ||
| 		if (digit >= base)					\
 | ||
| 			break;						\
 | ||
| 									\
 | ||
| 		last_value = value;					\
 | ||
| 		value = value * base + digit;				\
 | ||
| 		if (last_value > value) /* Overflow */			\
 | ||
| 			return (ERANGE);				\
 | ||
| 									\
 | ||
| 		ptr++;							\
 | ||
| 	}								\
 | ||
| 									\
 | ||
| 	*result = minus ? -value : value;				\
 | ||
| 									\
 | ||
| 	if (endptr)							\
 | ||
| 		*endptr = ptr;						\
 | ||
| 									\
 | ||
| 	return (0);							\
 | ||
| }									\
 | ||
| 
 | ||
| define_ddi_strtox(l, long)
 | ||
| define_ddi_strtox(ull, unsigned long long)
 | ||
| define_ddi_strtox(ll, long long)
 | ||
| 
 | ||
| EXPORT_SYMBOL(ddi_strtol);
 | ||
| EXPORT_SYMBOL(ddi_strtoll);
 | ||
| EXPORT_SYMBOL(ddi_strtoull);
 | ||
| 
 | ||
| int
 | ||
| ddi_copyin(const void *from, void *to, size_t len, int flags)
 | ||
| {
 | ||
| 	/* Fake ioctl() issued by kernel, 'from' is a kernel address */
 | ||
| 	if (flags & FKIOCTL) {
 | ||
| 		memcpy(to, from, len);
 | ||
| 		return (0);
 | ||
| 	}
 | ||
| 
 | ||
| 	return (copyin(from, to, len));
 | ||
| }
 | ||
| EXPORT_SYMBOL(ddi_copyin);
 | ||
| 
 | ||
| #define	define_spl_param(type, fmt)					\
 | ||
| int									\
 | ||
| spl_param_get_##type(char *buf, zfs_kernel_param_t *kp)			\
 | ||
| {									\
 | ||
| 	return (scnprintf(buf, PAGE_SIZE, fmt "\n",			\
 | ||
| 	    *(type *)kp->arg));						\
 | ||
| }									\
 | ||
| int									\
 | ||
| spl_param_set_##type(const char *buf, zfs_kernel_param_t *kp)		\
 | ||
| {									\
 | ||
| 	return (kstrto##type(buf, 0, (type *)kp->arg));			\
 | ||
| }									\
 | ||
| const struct kernel_param_ops spl_param_ops_##type = {			\
 | ||
| 	.set = spl_param_set_##type,					\
 | ||
| 	.get = spl_param_get_##type,					\
 | ||
| };									\
 | ||
| EXPORT_SYMBOL(spl_param_get_##type);					\
 | ||
| EXPORT_SYMBOL(spl_param_set_##type);					\
 | ||
| EXPORT_SYMBOL(spl_param_ops_##type);
 | ||
| 
 | ||
| define_spl_param(s64, "%lld")
 | ||
| define_spl_param(u64, "%llu")
 | ||
| 
 | ||
| /*
 | ||
|  * Post a uevent to userspace whenever a new vdev adds to the pool. It is
 | ||
|  * necessary to sync blkid information with udev, which zed daemon uses
 | ||
|  * during device hotplug to identify the vdev.
 | ||
|  */
 | ||
| void
 | ||
| spl_signal_kobj_evt(struct block_device *bdev)
 | ||
| {
 | ||
| #if defined(HAVE_BDEV_KOBJ) || defined(HAVE_PART_TO_DEV)
 | ||
| #ifdef HAVE_BDEV_KOBJ
 | ||
| 	struct kobject *disk_kobj = bdev_kobj(bdev);
 | ||
| #else
 | ||
| 	struct kobject *disk_kobj = &part_to_dev(bdev->bd_part)->kobj;
 | ||
| #endif
 | ||
| 	if (disk_kobj) {
 | ||
| 		int ret = kobject_uevent(disk_kobj, KOBJ_CHANGE);
 | ||
| 		if (ret) {
 | ||
| 			pr_warn("ZFS: Sending event '%d' to kobject: '%s'"
 | ||
| 			    " (%p): failed(ret:%d)\n", KOBJ_CHANGE,
 | ||
| 			    kobject_name(disk_kobj), disk_kobj, ret);
 | ||
| 		}
 | ||
| 	}
 | ||
| #else
 | ||
| /*
 | ||
|  * This is encountered if neither bdev_kobj() nor part_to_dev() is available
 | ||
|  * in the kernel - likely due to an API change that needs to be chased down.
 | ||
|  */
 | ||
| #error "Unsupported kernel: unable to get struct kobj from bdev"
 | ||
| #endif
 | ||
| }
 | ||
| EXPORT_SYMBOL(spl_signal_kobj_evt);
 | ||
| 
 | ||
| int
 | ||
| ddi_copyout(const void *from, void *to, size_t len, int flags)
 | ||
| {
 | ||
| 	/* Fake ioctl() issued by kernel, 'from' is a kernel address */
 | ||
| 	if (flags & FKIOCTL) {
 | ||
| 		memcpy(to, from, len);
 | ||
| 		return (0);
 | ||
| 	}
 | ||
| 
 | ||
| 	return (copyout(from, to, len));
 | ||
| }
 | ||
| EXPORT_SYMBOL(ddi_copyout);
 | ||
| 
 | ||
| static ssize_t
 | ||
| spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos)
 | ||
| {
 | ||
| #if defined(HAVE_KERNEL_READ_PPOS)
 | ||
| 	return (kernel_read(file, buf, count, pos));
 | ||
| #else
 | ||
| 	mm_segment_t saved_fs;
 | ||
| 	ssize_t ret;
 | ||
| 
 | ||
| 	saved_fs = get_fs();
 | ||
| 	set_fs(KERNEL_DS);
 | ||
| 
 | ||
| 	ret = vfs_read(file, (void __user *)buf, count, pos);
 | ||
| 
 | ||
| 	set_fs(saved_fs);
 | ||
| 
 | ||
| 	return (ret);
 | ||
| #endif
 | ||
| }
 | ||
| 
 | ||
| static int
 | ||
| spl_getattr(struct file *filp, struct kstat *stat)
 | ||
| {
 | ||
| 	int rc;
 | ||
| 
 | ||
| 	ASSERT(filp);
 | ||
| 	ASSERT(stat);
 | ||
| 
 | ||
| #if defined(HAVE_4ARGS_VFS_GETATTR)
 | ||
| 	rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS,
 | ||
| 	    AT_STATX_SYNC_AS_STAT);
 | ||
| #elif defined(HAVE_2ARGS_VFS_GETATTR)
 | ||
| 	rc = vfs_getattr(&filp->f_path, stat);
 | ||
| #elif defined(HAVE_3ARGS_VFS_GETATTR)
 | ||
| 	rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat);
 | ||
| #else
 | ||
| #error "No available vfs_getattr()"
 | ||
| #endif
 | ||
| 	if (rc)
 | ||
| 		return (-rc);
 | ||
| 
 | ||
| 	return (0);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Read the unique system identifier from the /etc/hostid file.
 | ||
|  *
 | ||
|  * The behavior of /usr/bin/hostid on Linux systems with the
 | ||
|  * regular eglibc and coreutils is:
 | ||
|  *
 | ||
|  *   1. Generate the value if the /etc/hostid file does not exist
 | ||
|  *      or if the /etc/hostid file is less than four bytes in size.
 | ||
|  *
 | ||
|  *   2. If the /etc/hostid file is at least 4 bytes, then return
 | ||
|  *      the first four bytes [0..3] in native endian order.
 | ||
|  *
 | ||
|  *   3. Always ignore bytes [4..] if they exist in the file.
 | ||
|  *
 | ||
|  * Only the first four bytes are significant, even on systems that
 | ||
|  * have a 64-bit word size.
 | ||
|  *
 | ||
|  * See:
 | ||
|  *
 | ||
|  *   eglibc: sysdeps/unix/sysv/linux/gethostid.c
 | ||
|  *   coreutils: src/hostid.c
 | ||
|  *
 | ||
|  * Notes:
 | ||
|  *
 | ||
|  * The /etc/hostid file on Solaris is a text file that often reads:
 | ||
|  *
 | ||
|  *   # DO NOT EDIT
 | ||
|  *   "0123456789"
 | ||
|  *
 | ||
|  * Directly copying this file to Linux results in a constant
 | ||
|  * hostid of 4f442023 because the default comment constitutes
 | ||
|  * the first four bytes of the file.
 | ||
|  *
 | ||
|  */
 | ||
| 
 | ||
| static char *spl_hostid_path = HW_HOSTID_PATH;
 | ||
| module_param(spl_hostid_path, charp, 0444);
 | ||
| MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");
 | ||
| 
 | ||
| static int
 | ||
| hostid_read(uint32_t *hostid)
 | ||
| {
 | ||
| 	uint64_t size;
 | ||
| 	uint32_t value = 0;
 | ||
| 	int error;
 | ||
| 	loff_t off;
 | ||
| 	struct file *filp;
 | ||
| 	struct kstat stat;
 | ||
| 
 | ||
| 	filp = filp_open(spl_hostid_path, 0, 0);
 | ||
| 
 | ||
| 	if (IS_ERR(filp))
 | ||
| 		return (ENOENT);
 | ||
| 
 | ||
| 	error = spl_getattr(filp, &stat);
 | ||
| 	if (error) {
 | ||
| 		filp_close(filp, 0);
 | ||
| 		return (error);
 | ||
| 	}
 | ||
| 	size = stat.size;
 | ||
| 	// cppcheck-suppress sizeofwithnumericparameter
 | ||
| 	if (size < sizeof (HW_HOSTID_MASK)) {
 | ||
| 		filp_close(filp, 0);
 | ||
| 		return (EINVAL);
 | ||
| 	}
 | ||
| 
 | ||
| 	off = 0;
 | ||
| 	/*
 | ||
| 	 * Read directly into the variable like eglibc does.
 | ||
| 	 * Short reads are okay; native behavior is preserved.
 | ||
| 	 */
 | ||
| 	error = spl_kernel_read(filp, &value, sizeof (value), &off);
 | ||
| 	if (error < 0) {
 | ||
| 		filp_close(filp, 0);
 | ||
| 		return (EIO);
 | ||
| 	}
 | ||
| 
 | ||
| 	/* Mask down to 32 bits like coreutils does. */
 | ||
| 	*hostid = (value & HW_HOSTID_MASK);
 | ||
| 	filp_close(filp, 0);
 | ||
| 
 | ||
| 	return (0);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Return the system hostid.  Preferentially use the spl_hostid module option
 | ||
|  * when set, otherwise use the value in the /etc/hostid file.
 | ||
|  */
 | ||
| uint32_t
 | ||
| zone_get_hostid(void *zone)
 | ||
| {
 | ||
| 	uint32_t hostid;
 | ||
| 
 | ||
| 	ASSERT3P(zone, ==, NULL);
 | ||
| 
 | ||
| 	if (spl_hostid != 0)
 | ||
| 		return ((uint32_t)(spl_hostid & HW_HOSTID_MASK));
 | ||
| 
 | ||
| 	if (hostid_read(&hostid) == 0)
 | ||
| 		return (hostid);
 | ||
| 
 | ||
| 	return (0);
 | ||
| }
 | ||
| EXPORT_SYMBOL(zone_get_hostid);
 | ||
| 
 | ||
| static int
 | ||
| spl_kvmem_init(void)
 | ||
| {
 | ||
| 	int rc = 0;
 | ||
| 
 | ||
| 	rc = spl_kmem_init();
 | ||
| 	if (rc)
 | ||
| 		return (rc);
 | ||
| 
 | ||
| 	rc = spl_vmem_init();
 | ||
| 	if (rc) {
 | ||
| 		spl_kmem_fini();
 | ||
| 		return (rc);
 | ||
| 	}
 | ||
| 
 | ||
| 	return (rc);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * We initialize the random number generator with 128 bits of entropy from the
 | ||
|  * system random number generator. In the improbable case that we have a zero
 | ||
|  * seed, we fallback to the system jiffies, unless it is also zero, in which
 | ||
|  * situation we use a preprogrammed seed. We step forward by 2^64 iterations to
 | ||
|  * initialize each of the per-cpu seeds so that the sequences generated on each
 | ||
|  * CPU are guaranteed to never overlap in practice.
 | ||
|  */
 | ||
| static int __init
 | ||
| spl_random_init(void)
 | ||
| {
 | ||
| 	uint64_t s[4];
 | ||
| 	int i = 0;
 | ||
| 
 | ||
| 	spl_pseudo_entropy = __alloc_percpu(4 * sizeof (uint64_t),
 | ||
| 	    sizeof (uint64_t));
 | ||
| 
 | ||
| 	if (!spl_pseudo_entropy)
 | ||
| 		return (-ENOMEM);
 | ||
| 
 | ||
| 	get_random_bytes(s, sizeof (s));
 | ||
| 
 | ||
| 	if (s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0) {
 | ||
| 		if (jiffies != 0) {
 | ||
| 			s[0] = jiffies;
 | ||
| 			s[1] = ~0 - jiffies;
 | ||
| 			s[2] = ~jiffies;
 | ||
| 			s[3] = jiffies - ~0;
 | ||
| 		} else {
 | ||
| 			(void) memcpy(s, "improbable seed", 16);
 | ||
| 		}
 | ||
| 		printk("SPL: get_random_bytes() returned 0 "
 | ||
| 		    "when generating random seed. Setting initial seed to "
 | ||
| 		    "0x%016llx%016llx%016llx%016llx.\n", cpu_to_be64(s[0]),
 | ||
| 		    cpu_to_be64(s[1]), cpu_to_be64(s[2]), cpu_to_be64(s[3]));
 | ||
| 	}
 | ||
| 
 | ||
| 	for_each_possible_cpu(i) {
 | ||
| 		uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i);
 | ||
| 
 | ||
| 		spl_rand_jump(s);
 | ||
| 
 | ||
| 		wordp[0] = s[0];
 | ||
| 		wordp[1] = s[1];
 | ||
| 		wordp[2] = s[2];
 | ||
| 		wordp[3] = s[3];
 | ||
| 	}
 | ||
| 
 | ||
| 	return (0);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| spl_random_fini(void)
 | ||
| {
 | ||
| 	free_percpu(spl_pseudo_entropy);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| spl_kvmem_fini(void)
 | ||
| {
 | ||
| 	spl_vmem_fini();
 | ||
| 	spl_kmem_fini();
 | ||
| }
 | ||
| 
 | ||
| static int __init
 | ||
| spl_init(void)
 | ||
| {
 | ||
| 	int rc = 0;
 | ||
| 
 | ||
| 	if ((rc = spl_random_init()))
 | ||
| 		goto out0;
 | ||
| 
 | ||
| 	if ((rc = spl_kvmem_init()))
 | ||
| 		goto out1;
 | ||
| 
 | ||
| 	if ((rc = spl_tsd_init()))
 | ||
| 		goto out2;
 | ||
| 
 | ||
| 	if ((rc = spl_proc_init()))
 | ||
| 		goto out3;
 | ||
| 
 | ||
| 	if ((rc = spl_kstat_init()))
 | ||
| 		goto out4;
 | ||
| 
 | ||
| 	if ((rc = spl_taskq_init()))
 | ||
| 		goto out5;
 | ||
| 
 | ||
| 	if ((rc = spl_kmem_cache_init()))
 | ||
| 		goto out6;
 | ||
| 
 | ||
| 	if ((rc = spl_zlib_init()))
 | ||
| 		goto out7;
 | ||
| 
 | ||
| 	if ((rc = spl_zone_init()))
 | ||
| 		goto out8;
 | ||
| 
 | ||
| 	return (rc);
 | ||
| 
 | ||
| out8:
 | ||
| 	spl_zlib_fini();
 | ||
| out7:
 | ||
| 	spl_kmem_cache_fini();
 | ||
| out6:
 | ||
| 	spl_taskq_fini();
 | ||
| out5:
 | ||
| 	spl_kstat_fini();
 | ||
| out4:
 | ||
| 	spl_proc_fini();
 | ||
| out3:
 | ||
| 	spl_tsd_fini();
 | ||
| out2:
 | ||
| 	spl_kvmem_fini();
 | ||
| out1:
 | ||
| 	spl_random_fini();
 | ||
| out0:
 | ||
| 	return (rc);
 | ||
| }
 | ||
| 
 | ||
| static void __exit
 | ||
| spl_fini(void)
 | ||
| {
 | ||
| 	spl_zone_fini();
 | ||
| 	spl_zlib_fini();
 | ||
| 	spl_kmem_cache_fini();
 | ||
| 	spl_taskq_fini();
 | ||
| 	spl_kstat_fini();
 | ||
| 	spl_proc_fini();
 | ||
| 	spl_tsd_fini();
 | ||
| 	spl_kvmem_fini();
 | ||
| 	spl_random_fini();
 | ||
| }
 | ||
| 
 | ||
| module_init(spl_init);
 | ||
| module_exit(spl_fini);
 | ||
| 
 | ||
| MODULE_DESCRIPTION("Solaris Porting Layer");
 | ||
| MODULE_AUTHOR(ZFS_META_AUTHOR);
 | ||
| MODULE_LICENSE("GPL");
 | ||
| MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
 |