mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 17:14:00 +00:00 
			
		
		
		
	 975a13259b
			
		
	
	
		975a13259b
		
	
	
	
	
		
			
			Changed spa_export_common() such that it no longer holds the spa_namespace_lock for the entire duration and instead sets spa_export_thread to indicate an import is in progress on the spa. This allows for an export to a diffent pool to proceed in parallel while an export is still processing potentially long operations like spa_unload_log_sm_flush_all(). Calls like spa_lookup() and spa_vdev_enter() that rely on the spa_namespace_lock to serialize them against a concurrent export, now wait for any in-progress export thread to complete before proceeding. The 'zpool import -a' sub-command also provides multi-threaded support, using a thread pool to submit the exports in parallel. Sponsored-By: Klara Inc. Sponsored-by: Wasabi Technology, Inc. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: George Wilson <gwilson@delphix.com> Signed-off-by: Don Brady <don.brady@klarasystems.com> Closes #16153
		
			
				
	
	
		
			833 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			833 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Copyright (c) 2016, 2024 by Delphix. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <sys/spa.h>
 | |
| #include <sys/spa_impl.h>
 | |
| #include <sys/txg.h>
 | |
| #include <sys/vdev_impl.h>
 | |
| #include <sys/metaslab_impl.h>
 | |
| #include <sys/dsl_synctask.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/dmu_tx.h>
 | |
| #include <sys/vdev_initialize.h>
 | |
| 
 | |
| /*
 | |
|  * Value that is written to disk during initialization.
 | |
|  */
 | |
| static uint64_t zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
 | |
| 
 | |
| /* maximum number of I/Os outstanding per leaf vdev */
 | |
| static const int zfs_initialize_limit = 1;
 | |
| 
 | |
| /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
 | |
| static uint64_t zfs_initialize_chunk_size = 1024 * 1024;
 | |
| 
 | |
| static boolean_t
 | |
| vdev_initialize_should_stop(vdev_t *vd)
 | |
| {
 | |
| 	return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
 | |
| 	    vd->vdev_detached || vd->vdev_top->vdev_removing ||
 | |
| 	    vd->vdev_top->vdev_rz_expanding);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	/*
 | |
| 	 * We pass in the guid instead of the vdev_t since the vdev may
 | |
| 	 * have been freed prior to the sync task being processed. This
 | |
| 	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
 | |
| 	 * stop the initializing thread, schedule the sync task, and free
 | |
| 	 * the vdev. Later when the scheduled sync task is invoked, it would
 | |
| 	 * find that the vdev has been freed.
 | |
| 	 */
 | |
| 	uint64_t guid = *(uint64_t *)arg;
 | |
| 	uint64_t txg = dmu_tx_get_txg(tx);
 | |
| 	kmem_free(arg, sizeof (uint64_t));
 | |
| 
 | |
| 	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
 | |
| 	if (vd == NULL || vd->vdev_top->vdev_removing ||
 | |
| 	    !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding)
 | |
| 		return;
 | |
| 
 | |
| 	uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
 | |
| 	vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
 | |
| 
 | |
| 	VERIFY(vd->vdev_leaf_zap != 0);
 | |
| 
 | |
| 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
 | |
| 
 | |
| 	if (last_offset > 0) {
 | |
| 		vd->vdev_initialize_last_offset = last_offset;
 | |
| 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
 | |
| 		    VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
 | |
| 		    sizeof (last_offset), 1, &last_offset, tx));
 | |
| 	}
 | |
| 	if (vd->vdev_initialize_action_time > 0) {
 | |
| 		uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
 | |
| 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
 | |
| 		    VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
 | |
| 		    1, &val, tx));
 | |
| 	}
 | |
| 
 | |
| 	uint64_t initialize_state = vd->vdev_initialize_state;
 | |
| 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
 | |
| 	    VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
 | |
| 	    &initialize_state, tx));
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_initialize_zap_remove_sync(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	uint64_t guid = *(uint64_t *)arg;
 | |
| 
 | |
| 	kmem_free(arg, sizeof (uint64_t));
 | |
| 
 | |
| 	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
 | |
| 	if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
 | |
| 		return;
 | |
| 
 | |
| 	ASSERT3S(vd->vdev_initialize_state, ==, VDEV_INITIALIZE_NONE);
 | |
| 	ASSERT3U(vd->vdev_leaf_zap, !=, 0);
 | |
| 
 | |
| 	vd->vdev_initialize_last_offset = 0;
 | |
| 	vd->vdev_initialize_action_time = 0;
 | |
| 
 | |
| 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
 | |
| 	int error;
 | |
| 
 | |
| 	error = zap_remove(mos, vd->vdev_leaf_zap,
 | |
| 	    VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, tx);
 | |
| 	VERIFY(error == 0 || error == ENOENT);
 | |
| 
 | |
| 	error = zap_remove(mos, vd->vdev_leaf_zap,
 | |
| 	    VDEV_LEAF_ZAP_INITIALIZE_STATE, tx);
 | |
| 	VERIFY(error == 0 || error == ENOENT);
 | |
| 
 | |
| 	error = zap_remove(mos, vd->vdev_leaf_zap,
 | |
| 	    VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, tx);
 | |
| 	VERIFY(error == 0 || error == ENOENT);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 
 | |
| 	if (new_state == vd->vdev_initialize_state)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy the vd's guid, this will be freed by the sync task.
 | |
| 	 */
 | |
| 	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
 | |
| 	*guid = vd->vdev_guid;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're suspending, then preserving the original start time.
 | |
| 	 */
 | |
| 	if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
 | |
| 		vd->vdev_initialize_action_time = gethrestime_sec();
 | |
| 	}
 | |
| 
 | |
| 	vdev_initializing_state_t old_state = vd->vdev_initialize_state;
 | |
| 	vd->vdev_initialize_state = new_state;
 | |
| 
 | |
| 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
 | |
| 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
 | |
| 
 | |
| 	if (new_state != VDEV_INITIALIZE_NONE) {
 | |
| 		dsl_sync_task_nowait(spa_get_dsl(spa),
 | |
| 		    vdev_initialize_zap_update_sync, guid, tx);
 | |
| 	} else {
 | |
| 		dsl_sync_task_nowait(spa_get_dsl(spa),
 | |
| 		    vdev_initialize_zap_remove_sync, guid, tx);
 | |
| 	}
 | |
| 
 | |
| 	switch (new_state) {
 | |
| 	case VDEV_INITIALIZE_ACTIVE:
 | |
| 		spa_history_log_internal(spa, "initialize", tx,
 | |
| 		    "vdev=%s activated", vd->vdev_path);
 | |
| 		break;
 | |
| 	case VDEV_INITIALIZE_SUSPENDED:
 | |
| 		spa_history_log_internal(spa, "initialize", tx,
 | |
| 		    "vdev=%s suspended", vd->vdev_path);
 | |
| 		break;
 | |
| 	case VDEV_INITIALIZE_CANCELED:
 | |
| 		if (old_state == VDEV_INITIALIZE_ACTIVE ||
 | |
| 		    old_state == VDEV_INITIALIZE_SUSPENDED)
 | |
| 			spa_history_log_internal(spa, "initialize", tx,
 | |
| 			    "vdev=%s canceled", vd->vdev_path);
 | |
| 		break;
 | |
| 	case VDEV_INITIALIZE_COMPLETE:
 | |
| 		spa_history_log_internal(spa, "initialize", tx,
 | |
| 		    "vdev=%s complete", vd->vdev_path);
 | |
| 		break;
 | |
| 	case VDEV_INITIALIZE_NONE:
 | |
| 		spa_history_log_internal(spa, "uninitialize", tx,
 | |
| 		    "vdev=%s", vd->vdev_path);
 | |
| 		break;
 | |
| 	default:
 | |
| 		panic("invalid state %llu", (unsigned long long)new_state);
 | |
| 	}
 | |
| 
 | |
| 	dmu_tx_commit(tx);
 | |
| 
 | |
| 	if (new_state != VDEV_INITIALIZE_ACTIVE)
 | |
| 		spa_notify_waiters(spa);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_initialize_cb(zio_t *zio)
 | |
| {
 | |
| 	vdev_t *vd = zio->io_vd;
 | |
| 	mutex_enter(&vd->vdev_initialize_io_lock);
 | |
| 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
 | |
| 		/*
 | |
| 		 * The I/O failed because the vdev was unavailable; roll the
 | |
| 		 * last offset back. (This works because spa_sync waits on
 | |
| 		 * spa_txg_zio before it runs sync tasks.)
 | |
| 		 */
 | |
| 		uint64_t *off =
 | |
| 		    &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
 | |
| 		*off = MIN(*off, zio->io_offset);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Since initializing is best-effort, we ignore I/O errors and
 | |
| 		 * rely on vdev_probe to determine if the errors are more
 | |
| 		 * critical.
 | |
| 		 */
 | |
| 		if (zio->io_error != 0)
 | |
| 			vd->vdev_stat.vs_initialize_errors++;
 | |
| 
 | |
| 		vd->vdev_initialize_bytes_done += zio->io_orig_size;
 | |
| 	}
 | |
| 	ASSERT3U(vd->vdev_initialize_inflight, >, 0);
 | |
| 	vd->vdev_initialize_inflight--;
 | |
| 	cv_broadcast(&vd->vdev_initialize_io_cv);
 | |
| 	mutex_exit(&vd->vdev_initialize_io_lock);
 | |
| 
 | |
| 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
 | |
| }
 | |
| 
 | |
| /* Takes care of physical writing and limiting # of concurrent ZIOs. */
 | |
| static int
 | |
| vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
 | |
| {
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 
 | |
| 	/* Limit inflight initializing I/Os */
 | |
| 	mutex_enter(&vd->vdev_initialize_io_lock);
 | |
| 	while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
 | |
| 		cv_wait(&vd->vdev_initialize_io_cv,
 | |
| 		    &vd->vdev_initialize_io_lock);
 | |
| 	}
 | |
| 	vd->vdev_initialize_inflight++;
 | |
| 	mutex_exit(&vd->vdev_initialize_io_lock);
 | |
| 
 | |
| 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
 | |
| 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
 | |
| 	uint64_t txg = dmu_tx_get_txg(tx);
 | |
| 
 | |
| 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
 | |
| 	mutex_enter(&vd->vdev_initialize_lock);
 | |
| 
 | |
| 	if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
 | |
| 		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
 | |
| 		*guid = vd->vdev_guid;
 | |
| 
 | |
| 		/* This is the first write of this txg. */
 | |
| 		dsl_sync_task_nowait(spa_get_dsl(spa),
 | |
| 		    vdev_initialize_zap_update_sync, guid, tx);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We know the vdev struct will still be around since all
 | |
| 	 * consumers of vdev_free must stop the initialization first.
 | |
| 	 */
 | |
| 	if (vdev_initialize_should_stop(vd)) {
 | |
| 		mutex_enter(&vd->vdev_initialize_io_lock);
 | |
| 		ASSERT3U(vd->vdev_initialize_inflight, >, 0);
 | |
| 		vd->vdev_initialize_inflight--;
 | |
| 		mutex_exit(&vd->vdev_initialize_io_lock);
 | |
| 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
 | |
| 		mutex_exit(&vd->vdev_initialize_lock);
 | |
| 		dmu_tx_commit(tx);
 | |
| 		return (SET_ERROR(EINTR));
 | |
| 	}
 | |
| 	mutex_exit(&vd->vdev_initialize_lock);
 | |
| 
 | |
| 	vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
 | |
| 	zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
 | |
| 	    size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
 | |
| 	    ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
 | |
| 	/* vdev_initialize_cb releases SCL_STATE_ALL */
 | |
| 
 | |
| 	dmu_tx_commit(tx);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Callback to fill each ABD chunk with zfs_initialize_value. len must be
 | |
|  * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
 | |
|  * allocation will guarantee these for us.
 | |
|  */
 | |
| static int
 | |
| vdev_initialize_block_fill(void *buf, size_t len, void *unused)
 | |
| {
 | |
| 	(void) unused;
 | |
| 
 | |
| 	ASSERT0(len % sizeof (uint64_t));
 | |
| 	for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
 | |
| 		*(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
 | |
| 	}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static abd_t *
 | |
| vdev_initialize_block_alloc(void)
 | |
| {
 | |
| 	/* Allocate ABD for filler data */
 | |
| 	abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
 | |
| 
 | |
| 	ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
 | |
| 	(void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
 | |
| 	    vdev_initialize_block_fill, NULL);
 | |
| 
 | |
| 	return (data);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_initialize_block_free(abd_t *data)
 | |
| {
 | |
| 	abd_free(data);
 | |
| }
 | |
| 
 | |
| static int
 | |
| vdev_initialize_ranges(vdev_t *vd, abd_t *data)
 | |
| {
 | |
| 	range_tree_t *rt = vd->vdev_initialize_tree;
 | |
| 	zfs_btree_t *bt = &rt->rt_root;
 | |
| 	zfs_btree_index_t where;
 | |
| 
 | |
| 	for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
 | |
| 	    rs = zfs_btree_next(bt, &where, &where)) {
 | |
| 		uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
 | |
| 
 | |
| 		/* Split range into legally-sized physical chunks */
 | |
| 		uint64_t writes_required =
 | |
| 		    ((size - 1) / zfs_initialize_chunk_size) + 1;
 | |
| 
 | |
| 		for (uint64_t w = 0; w < writes_required; w++) {
 | |
| 			int error;
 | |
| 
 | |
| 			error = vdev_initialize_write(vd,
 | |
| 			    VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
 | |
| 			    (w * zfs_initialize_chunk_size),
 | |
| 			    MIN(size - (w * zfs_initialize_chunk_size),
 | |
| 			    zfs_initialize_chunk_size), data);
 | |
| 			if (error != 0)
 | |
| 				return (error);
 | |
| 		}
 | |
| 	}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
 | |
| {
 | |
| 	uint64_t *last_rs_end = (uint64_t *)arg;
 | |
| 
 | |
| 	if (physical_rs->rs_end > *last_rs_end)
 | |
| 		*last_rs_end = physical_rs->rs_end;
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs)
 | |
| {
 | |
| 	vdev_t *vd = (vdev_t *)arg;
 | |
| 
 | |
| 	uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
 | |
| 	vd->vdev_initialize_bytes_est += size;
 | |
| 
 | |
| 	if (vd->vdev_initialize_last_offset > physical_rs->rs_end) {
 | |
| 		vd->vdev_initialize_bytes_done += size;
 | |
| 	} else if (vd->vdev_initialize_last_offset > physical_rs->rs_start &&
 | |
| 	    vd->vdev_initialize_last_offset < physical_rs->rs_end) {
 | |
| 		vd->vdev_initialize_bytes_done +=
 | |
| 		    vd->vdev_initialize_last_offset - physical_rs->rs_start;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_initialize_calculate_progress(vdev_t *vd)
 | |
| {
 | |
| 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
 | |
| 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
 | |
| 	ASSERT(vd->vdev_leaf_zap != 0);
 | |
| 
 | |
| 	vd->vdev_initialize_bytes_est = 0;
 | |
| 	vd->vdev_initialize_bytes_done = 0;
 | |
| 
 | |
| 	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
 | |
| 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
 | |
| 		mutex_enter(&msp->ms_lock);
 | |
| 
 | |
| 		uint64_t ms_free = (msp->ms_size -
 | |
| 		    metaslab_allocated_space(msp)) /
 | |
| 		    vdev_get_ndisks(vd->vdev_top);
 | |
| 
 | |
| 		/*
 | |
| 		 * Convert the metaslab range to a physical range
 | |
| 		 * on our vdev. We use this to determine if we are
 | |
| 		 * in the middle of this metaslab range.
 | |
| 		 */
 | |
| 		range_seg64_t logical_rs, physical_rs, remain_rs;
 | |
| 		logical_rs.rs_start = msp->ms_start;
 | |
| 		logical_rs.rs_end = msp->ms_start + msp->ms_size;
 | |
| 
 | |
| 		/* Metaslab space after this offset has not been initialized */
 | |
| 		vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
 | |
| 		if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
 | |
| 			vd->vdev_initialize_bytes_est += ms_free;
 | |
| 			mutex_exit(&msp->ms_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Metaslab space before this offset has been initialized */
 | |
| 		uint64_t last_rs_end = physical_rs.rs_end;
 | |
| 		if (!vdev_xlate_is_empty(&remain_rs)) {
 | |
| 			vdev_xlate_walk(vd, &remain_rs,
 | |
| 			    vdev_initialize_xlate_last_rs_end, &last_rs_end);
 | |
| 		}
 | |
| 
 | |
| 		if (vd->vdev_initialize_last_offset > last_rs_end) {
 | |
| 			vd->vdev_initialize_bytes_done += ms_free;
 | |
| 			vd->vdev_initialize_bytes_est += ms_free;
 | |
| 			mutex_exit(&msp->ms_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If we get here, we're in the middle of initializing this
 | |
| 		 * metaslab. Load it and walk the free tree for more accurate
 | |
| 		 * progress estimation.
 | |
| 		 */
 | |
| 		VERIFY0(metaslab_load(msp));
 | |
| 
 | |
| 		zfs_btree_index_t where;
 | |
| 		range_tree_t *rt = msp->ms_allocatable;
 | |
| 		for (range_seg_t *rs =
 | |
| 		    zfs_btree_first(&rt->rt_root, &where); rs;
 | |
| 		    rs = zfs_btree_next(&rt->rt_root, &where,
 | |
| 		    &where)) {
 | |
| 			logical_rs.rs_start = rs_get_start(rs, rt);
 | |
| 			logical_rs.rs_end = rs_get_end(rs, rt);
 | |
| 
 | |
| 			vdev_xlate_walk(vd, &logical_rs,
 | |
| 			    vdev_initialize_xlate_progress, vd);
 | |
| 		}
 | |
| 		mutex_exit(&msp->ms_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| vdev_initialize_load(vdev_t *vd)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
 | |
| 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
 | |
| 	ASSERT(vd->vdev_leaf_zap != 0);
 | |
| 
 | |
| 	if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
 | |
| 	    vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
 | |
| 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
 | |
| 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
 | |
| 		    sizeof (vd->vdev_initialize_last_offset), 1,
 | |
| 		    &vd->vdev_initialize_last_offset);
 | |
| 		if (err == ENOENT) {
 | |
| 			vd->vdev_initialize_last_offset = 0;
 | |
| 			err = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	vdev_initialize_calculate_progress(vd);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs)
 | |
| {
 | |
| 	vdev_t *vd = arg;
 | |
| 
 | |
| 	/* Only add segments that we have not visited yet */
 | |
| 	if (physical_rs->rs_end <= vd->vdev_initialize_last_offset)
 | |
| 		return;
 | |
| 
 | |
| 	/* Pick up where we left off mid-range. */
 | |
| 	if (vd->vdev_initialize_last_offset > physical_rs->rs_start) {
 | |
| 		zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
 | |
| 		    "(%llu, %llu)", vd->vdev_path,
 | |
| 		    (u_longlong_t)physical_rs->rs_start,
 | |
| 		    (u_longlong_t)physical_rs->rs_end,
 | |
| 		    (u_longlong_t)vd->vdev_initialize_last_offset,
 | |
| 		    (u_longlong_t)physical_rs->rs_end);
 | |
| 		ASSERT3U(physical_rs->rs_end, >,
 | |
| 		    vd->vdev_initialize_last_offset);
 | |
| 		physical_rs->rs_start = vd->vdev_initialize_last_offset;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
 | |
| 
 | |
| 	range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start,
 | |
| 	    physical_rs->rs_end - physical_rs->rs_start);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert the logical range into a physical range and add it to our
 | |
|  * avl tree.
 | |
|  */
 | |
| static void
 | |
| vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
 | |
| {
 | |
| 	vdev_t *vd = arg;
 | |
| 	range_seg64_t logical_rs;
 | |
| 	logical_rs.rs_start = start;
 | |
| 	logical_rs.rs_end = start + size;
 | |
| 
 | |
| 	ASSERT(vd->vdev_ops->vdev_op_leaf);
 | |
| 	vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg);
 | |
| }
 | |
| 
 | |
| static __attribute__((noreturn)) void
 | |
| vdev_initialize_thread(void *arg)
 | |
| {
 | |
| 	vdev_t *vd = arg;
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 	int error = 0;
 | |
| 	uint64_t ms_count = 0;
 | |
| 
 | |
| 	ASSERT(vdev_is_concrete(vd));
 | |
| 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 | |
| 
 | |
| 	vd->vdev_initialize_last_offset = 0;
 | |
| 	VERIFY0(vdev_initialize_load(vd));
 | |
| 
 | |
| 	abd_t *deadbeef = vdev_initialize_block_alloc();
 | |
| 
 | |
| 	vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
 | |
| 	    0, 0);
 | |
| 
 | |
| 	for (uint64_t i = 0; !vd->vdev_detached &&
 | |
| 	    i < vd->vdev_top->vdev_ms_count; i++) {
 | |
| 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
 | |
| 		boolean_t unload_when_done = B_FALSE;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we've expanded the top-level vdev or it's our
 | |
| 		 * first pass, calculate our progress.
 | |
| 		 */
 | |
| 		if (vd->vdev_top->vdev_ms_count != ms_count) {
 | |
| 			vdev_initialize_calculate_progress(vd);
 | |
| 			ms_count = vd->vdev_top->vdev_ms_count;
 | |
| 		}
 | |
| 
 | |
| 		spa_config_exit(spa, SCL_CONFIG, FTAG);
 | |
| 		metaslab_disable(msp);
 | |
| 		mutex_enter(&msp->ms_lock);
 | |
| 		if (!msp->ms_loaded && !msp->ms_loading)
 | |
| 			unload_when_done = B_TRUE;
 | |
| 		VERIFY0(metaslab_load(msp));
 | |
| 
 | |
| 		range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
 | |
| 		    vd);
 | |
| 		mutex_exit(&msp->ms_lock);
 | |
| 
 | |
| 		error = vdev_initialize_ranges(vd, deadbeef);
 | |
| 		metaslab_enable(msp, B_TRUE, unload_when_done);
 | |
| 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 | |
| 
 | |
| 		range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
 | |
| 		if (error != 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	spa_config_exit(spa, SCL_CONFIG, FTAG);
 | |
| 	mutex_enter(&vd->vdev_initialize_io_lock);
 | |
| 	while (vd->vdev_initialize_inflight > 0) {
 | |
| 		cv_wait(&vd->vdev_initialize_io_cv,
 | |
| 		    &vd->vdev_initialize_io_lock);
 | |
| 	}
 | |
| 	mutex_exit(&vd->vdev_initialize_io_lock);
 | |
| 
 | |
| 	range_tree_destroy(vd->vdev_initialize_tree);
 | |
| 	vdev_initialize_block_free(deadbeef);
 | |
| 	vd->vdev_initialize_tree = NULL;
 | |
| 
 | |
| 	mutex_enter(&vd->vdev_initialize_lock);
 | |
| 	if (!vd->vdev_initialize_exit_wanted) {
 | |
| 		if (vdev_writeable(vd)) {
 | |
| 			vdev_initialize_change_state(vd,
 | |
| 			    VDEV_INITIALIZE_COMPLETE);
 | |
| 		} else if (vd->vdev_faulted) {
 | |
| 			vdev_initialize_change_state(vd,
 | |
| 			    VDEV_INITIALIZE_CANCELED);
 | |
| 		}
 | |
| 	}
 | |
| 	ASSERT(vd->vdev_initialize_thread != NULL ||
 | |
| 	    vd->vdev_initialize_inflight == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop the vdev_initialize_lock while we sync out the
 | |
| 	 * txg since it's possible that a device might be trying to
 | |
| 	 * come online and must check to see if it needs to restart an
 | |
| 	 * initialization. That thread will be holding the spa_config_lock
 | |
| 	 * which would prevent the txg_wait_synced from completing.
 | |
| 	 */
 | |
| 	mutex_exit(&vd->vdev_initialize_lock);
 | |
| 	txg_wait_synced(spa_get_dsl(spa), 0);
 | |
| 	mutex_enter(&vd->vdev_initialize_lock);
 | |
| 
 | |
| 	vd->vdev_initialize_thread = NULL;
 | |
| 	cv_broadcast(&vd->vdev_initialize_cv);
 | |
| 	mutex_exit(&vd->vdev_initialize_lock);
 | |
| 
 | |
| 	thread_exit();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initiates a device. Caller must hold vdev_initialize_lock.
 | |
|  * Device must be a leaf and not already be initializing.
 | |
|  */
 | |
| void
 | |
| vdev_initialize(vdev_t *vd)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
 | |
| 	ASSERT(vd->vdev_ops->vdev_op_leaf);
 | |
| 	ASSERT(vdev_is_concrete(vd));
 | |
| 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
 | |
| 	ASSERT(!vd->vdev_detached);
 | |
| 	ASSERT(!vd->vdev_initialize_exit_wanted);
 | |
| 	ASSERT(!vd->vdev_top->vdev_removing);
 | |
| 	ASSERT(!vd->vdev_top->vdev_rz_expanding);
 | |
| 
 | |
| 	vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
 | |
| 	vd->vdev_initialize_thread = thread_create(NULL, 0,
 | |
| 	    vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Uninitializes a device. Caller must hold vdev_initialize_lock.
 | |
|  * Device must be a leaf and not already be initializing.
 | |
|  */
 | |
| void
 | |
| vdev_uninitialize(vdev_t *vd)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
 | |
| 	ASSERT(vd->vdev_ops->vdev_op_leaf);
 | |
| 	ASSERT(vdev_is_concrete(vd));
 | |
| 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
 | |
| 	ASSERT(!vd->vdev_detached);
 | |
| 	ASSERT(!vd->vdev_initialize_exit_wanted);
 | |
| 	ASSERT(!vd->vdev_top->vdev_removing);
 | |
| 
 | |
| 	vdev_initialize_change_state(vd, VDEV_INITIALIZE_NONE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for the initialize thread to be terminated (cancelled or stopped).
 | |
|  */
 | |
| static void
 | |
| vdev_initialize_stop_wait_impl(vdev_t *vd)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
 | |
| 
 | |
| 	while (vd->vdev_initialize_thread != NULL)
 | |
| 		cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
 | |
| 
 | |
| 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
 | |
| 	vd->vdev_initialize_exit_wanted = B_FALSE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for vdev initialize threads which were either to cleanly exit.
 | |
|  */
 | |
| void
 | |
| vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
 | |
| {
 | |
| 	(void) spa;
 | |
| 	vdev_t *vd;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
 | |
| 	    spa->spa_export_thread == curthread);
 | |
| 
 | |
| 	while ((vd = list_remove_head(vd_list)) != NULL) {
 | |
| 		mutex_enter(&vd->vdev_initialize_lock);
 | |
| 		vdev_initialize_stop_wait_impl(vd);
 | |
| 		mutex_exit(&vd->vdev_initialize_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stop initializing a device, with the resultant initializing state being
 | |
|  * tgt_state.  For blocking behavior pass NULL for vd_list.  Otherwise, when
 | |
|  * a list_t is provided the stopping vdev is inserted in to the list.  Callers
 | |
|  * are then required to call vdev_initialize_stop_wait() to block for all the
 | |
|  * initialization threads to exit.  The caller must hold vdev_initialize_lock
 | |
|  * and must not be writing to the spa config, as the initializing thread may
 | |
|  * try to enter the config as a reader before exiting.
 | |
|  */
 | |
| void
 | |
| vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
 | |
|     list_t *vd_list)
 | |
| {
 | |
| 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
 | |
| 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
 | |
| 	ASSERT(vd->vdev_ops->vdev_op_leaf);
 | |
| 	ASSERT(vdev_is_concrete(vd));
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow cancel requests to proceed even if the initialize thread
 | |
| 	 * has stopped.
 | |
| 	 */
 | |
| 	if (vd->vdev_initialize_thread == NULL &&
 | |
| 	    tgt_state != VDEV_INITIALIZE_CANCELED) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	vdev_initialize_change_state(vd, tgt_state);
 | |
| 	vd->vdev_initialize_exit_wanted = B_TRUE;
 | |
| 
 | |
| 	if (vd_list == NULL) {
 | |
| 		vdev_initialize_stop_wait_impl(vd);
 | |
| 	} else {
 | |
| 		ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
 | |
| 		    vd->vdev_spa->spa_export_thread == curthread);
 | |
| 		list_insert_tail(vd_list, vd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
 | |
|     list_t *vd_list)
 | |
| {
 | |
| 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
 | |
| 		mutex_enter(&vd->vdev_initialize_lock);
 | |
| 		vdev_initialize_stop(vd, tgt_state, vd_list);
 | |
| 		mutex_exit(&vd->vdev_initialize_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
 | |
| 		vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
 | |
| 		    vd_list);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convenience function to stop initializing of a vdev tree and set all
 | |
|  * initialize thread pointers to NULL.
 | |
|  */
 | |
| void
 | |
| vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
 | |
| {
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 	list_t vd_list;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
 | |
| 	    spa->spa_export_thread == curthread);
 | |
| 
 | |
| 	list_create(&vd_list, sizeof (vdev_t),
 | |
| 	    offsetof(vdev_t, vdev_initialize_node));
 | |
| 
 | |
| 	vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
 | |
| 	vdev_initialize_stop_wait(spa, &vd_list);
 | |
| 
 | |
| 	if (vd->vdev_spa->spa_sync_on) {
 | |
| 		/* Make sure that our state has been synced to disk */
 | |
| 		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
 | |
| 	}
 | |
| 
 | |
| 	list_destroy(&vd_list);
 | |
| }
 | |
| 
 | |
| void
 | |
| vdev_initialize_restart(vdev_t *vd)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
 | |
| 	    vd->vdev_spa->spa_load_thread == curthread);
 | |
| 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
 | |
| 
 | |
| 	if (vd->vdev_leaf_zap != 0) {
 | |
| 		mutex_enter(&vd->vdev_initialize_lock);
 | |
| 		uint64_t initialize_state = VDEV_INITIALIZE_NONE;
 | |
| 		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
 | |
| 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
 | |
| 		    sizeof (initialize_state), 1, &initialize_state);
 | |
| 		ASSERT(err == 0 || err == ENOENT);
 | |
| 		vd->vdev_initialize_state = initialize_state;
 | |
| 
 | |
| 		uint64_t timestamp = 0;
 | |
| 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
 | |
| 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
 | |
| 		    sizeof (timestamp), 1, ×tamp);
 | |
| 		ASSERT(err == 0 || err == ENOENT);
 | |
| 		vd->vdev_initialize_action_time = timestamp;
 | |
| 
 | |
| 		if ((vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
 | |
| 		    vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) {
 | |
| 			/* load progress for reporting, but don't resume */
 | |
| 			VERIFY0(vdev_initialize_load(vd));
 | |
| 		} else if (vd->vdev_initialize_state ==
 | |
| 		    VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
 | |
| 		    !vd->vdev_top->vdev_removing &&
 | |
| 		    !vd->vdev_top->vdev_rz_expanding &&
 | |
| 		    vd->vdev_initialize_thread == NULL) {
 | |
| 			vdev_initialize(vd);
 | |
| 		}
 | |
| 
 | |
| 		mutex_exit(&vd->vdev_initialize_lock);
 | |
| 	}
 | |
| 
 | |
| 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
 | |
| 		vdev_initialize_restart(vd->vdev_child[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(vdev_initialize);
 | |
| EXPORT_SYMBOL(vdev_uninitialize);
 | |
| EXPORT_SYMBOL(vdev_initialize_stop);
 | |
| EXPORT_SYMBOL(vdev_initialize_stop_all);
 | |
| EXPORT_SYMBOL(vdev_initialize_stop_wait);
 | |
| EXPORT_SYMBOL(vdev_initialize_restart);
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, U64, ZMOD_RW,
 | |
| 	"Value written during zpool initialize");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, U64, ZMOD_RW,
 | |
| 	"Size in bytes of writes by zpool initialize");
 |