mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-11-04 08:36:37 +00:00 
			
		
		
		
	5911 ZFS "hangs" while deleting file Reviewed by: Bayard Bell <buffer.g.overflow@gmail.com> Reviewed by: Alek Pinchuk <alek@nexenta.com> Reviewed by: Simon Klinkert <simon.klinkert@gmail.com> Reviewed by: Dan McDonald <danmcd@omniti.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: https://www.illumos.org/issues/5911 https://github.com/illumos/illumos-gate/commit/46e1baa Porting notes: Resolved ISO C90 forbids mixed declarations and code wanting in the dnode_free_range() function. Ported-by: kernelOfTruth kerneloftruth@gmail.com Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3554
		
			
				
	
	
		
			1693 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1693 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * CDDL HEADER START
 | 
						|
 *
 | 
						|
 * The contents of this file are subject to the terms of the
 | 
						|
 * Common Development and Distribution License (the "License").
 | 
						|
 * You may not use this file except in compliance with the License.
 | 
						|
 *
 | 
						|
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | 
						|
 * or http://www.opensolaris.org/os/licensing.
 | 
						|
 * See the License for the specific language governing permissions
 | 
						|
 * and limitations under the License.
 | 
						|
 *
 | 
						|
 * When distributing Covered Code, include this CDDL HEADER in each
 | 
						|
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | 
						|
 * If applicable, add the following below this CDDL HEADER, with the
 | 
						|
 * fields enclosed by brackets "[]" replaced with your own identifying
 | 
						|
 * information: Portions Copyright [yyyy] [name of copyright owner]
 | 
						|
 *
 | 
						|
 * CDDL HEADER END
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | 
						|
 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
 | 
						|
 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
 | 
						|
 */
 | 
						|
 | 
						|
#include <sys/dmu.h>
 | 
						|
#include <sys/dmu_impl.h>
 | 
						|
#include <sys/dbuf.h>
 | 
						|
#include <sys/dmu_tx.h>
 | 
						|
#include <sys/dmu_objset.h>
 | 
						|
#include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */
 | 
						|
#include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */
 | 
						|
#include <sys/dsl_pool.h>
 | 
						|
#include <sys/zap_impl.h> /* for fzap_default_block_shift */
 | 
						|
#include <sys/spa.h>
 | 
						|
#include <sys/sa.h>
 | 
						|
#include <sys/sa_impl.h>
 | 
						|
#include <sys/zfs_context.h>
 | 
						|
#include <sys/varargs.h>
 | 
						|
#include <sys/trace_dmu.h>
 | 
						|
 | 
						|
typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
 | 
						|
    uint64_t arg1, uint64_t arg2);
 | 
						|
 | 
						|
dmu_tx_stats_t dmu_tx_stats = {
 | 
						|
	{ "dmu_tx_assigned",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "dmu_tx_delay",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "dmu_tx_error",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "dmu_tx_suspended",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "dmu_tx_group",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "dmu_tx_memory_reserve",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "dmu_tx_memory_reclaim",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "dmu_tx_dirty_throttle",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "dmu_tx_dirty_delay",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "dmu_tx_dirty_over_max",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "dmu_tx_quota",		KSTAT_DATA_UINT64 },
 | 
						|
};
 | 
						|
 | 
						|
static kstat_t *dmu_tx_ksp;
 | 
						|
 | 
						|
dmu_tx_t *
 | 
						|
dmu_tx_create_dd(dsl_dir_t *dd)
 | 
						|
{
 | 
						|
	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
 | 
						|
	tx->tx_dir = dd;
 | 
						|
	if (dd != NULL)
 | 
						|
		tx->tx_pool = dd->dd_pool;
 | 
						|
	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
 | 
						|
	    offsetof(dmu_tx_hold_t, txh_node));
 | 
						|
	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
 | 
						|
	    offsetof(dmu_tx_callback_t, dcb_node));
 | 
						|
	tx->tx_start = gethrtime();
 | 
						|
#ifdef DEBUG_DMU_TX
 | 
						|
	refcount_create(&tx->tx_space_written);
 | 
						|
	refcount_create(&tx->tx_space_freed);
 | 
						|
#endif
 | 
						|
	return (tx);
 | 
						|
}
 | 
						|
 | 
						|
dmu_tx_t *
 | 
						|
dmu_tx_create(objset_t *os)
 | 
						|
{
 | 
						|
	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
 | 
						|
	tx->tx_objset = os;
 | 
						|
	tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os_dsl_dataset);
 | 
						|
	return (tx);
 | 
						|
}
 | 
						|
 | 
						|
dmu_tx_t *
 | 
						|
dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
 | 
						|
{
 | 
						|
	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
 | 
						|
 | 
						|
	ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
 | 
						|
	tx->tx_pool = dp;
 | 
						|
	tx->tx_txg = txg;
 | 
						|
	tx->tx_anyobj = TRUE;
 | 
						|
 | 
						|
	return (tx);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_tx_is_syncing(dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	return (tx->tx_anyobj);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_tx_private_ok(dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	return (tx->tx_anyobj);
 | 
						|
}
 | 
						|
 | 
						|
static dmu_tx_hold_t *
 | 
						|
dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
 | 
						|
    enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
 | 
						|
{
 | 
						|
	dmu_tx_hold_t *txh;
 | 
						|
	dnode_t *dn = NULL;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (object != DMU_NEW_OBJECT) {
 | 
						|
		err = dnode_hold(os, object, tx, &dn);
 | 
						|
		if (err) {
 | 
						|
			tx->tx_err = err;
 | 
						|
			return (NULL);
 | 
						|
		}
 | 
						|
 | 
						|
		if (err == 0 && tx->tx_txg != 0) {
 | 
						|
			mutex_enter(&dn->dn_mtx);
 | 
						|
			/*
 | 
						|
			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
 | 
						|
			 * problem, but there's no way for it to happen (for
 | 
						|
			 * now, at least).
 | 
						|
			 */
 | 
						|
			ASSERT(dn->dn_assigned_txg == 0);
 | 
						|
			dn->dn_assigned_txg = tx->tx_txg;
 | 
						|
			(void) refcount_add(&dn->dn_tx_holds, tx);
 | 
						|
			mutex_exit(&dn->dn_mtx);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
 | 
						|
	txh->txh_tx = tx;
 | 
						|
	txh->txh_dnode = dn;
 | 
						|
#ifdef DEBUG_DMU_TX
 | 
						|
	txh->txh_type = type;
 | 
						|
	txh->txh_arg1 = arg1;
 | 
						|
	txh->txh_arg2 = arg2;
 | 
						|
#endif
 | 
						|
	list_insert_tail(&tx->tx_holds, txh);
 | 
						|
 | 
						|
	return (txh);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If we're syncing, they can manipulate any object anyhow, and
 | 
						|
	 * the hold on the dnode_t can cause problems.
 | 
						|
	 */
 | 
						|
	if (!dmu_tx_is_syncing(tx)) {
 | 
						|
		(void) dmu_tx_hold_object_impl(tx, os,
 | 
						|
		    object, THT_NEWOBJECT, 0, 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	dmu_buf_impl_t *db;
 | 
						|
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
	db = dbuf_hold_level(dn, level, blkid, FTAG);
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
	if (db == NULL)
 | 
						|
		return (SET_ERROR(EIO));
 | 
						|
	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
 | 
						|
	dbuf_rele(db, FTAG);
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dmu_tx_count_twig(dmu_tx_hold_t *txh, dnode_t *dn, dmu_buf_impl_t *db,
 | 
						|
    int level, uint64_t blkid, boolean_t freeable, uint64_t *history)
 | 
						|
{
 | 
						|
	objset_t *os = dn->dn_objset;
 | 
						|
	dsl_dataset_t *ds = os->os_dsl_dataset;
 | 
						|
	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
 | 
						|
	dmu_buf_impl_t *parent = NULL;
 | 
						|
	blkptr_t *bp = NULL;
 | 
						|
	uint64_t space;
 | 
						|
 | 
						|
	if (level >= dn->dn_nlevels || history[level] == blkid)
 | 
						|
		return;
 | 
						|
 | 
						|
	history[level] = blkid;
 | 
						|
 | 
						|
	space = (level == 0) ? dn->dn_datablksz : (1ULL << dn->dn_indblkshift);
 | 
						|
 | 
						|
	if (db == NULL || db == dn->dn_dbuf) {
 | 
						|
		ASSERT(level != 0);
 | 
						|
		db = NULL;
 | 
						|
	} else {
 | 
						|
		ASSERT(DB_DNODE(db) == dn);
 | 
						|
		ASSERT(db->db_level == level);
 | 
						|
		ASSERT(db->db.db_size == space);
 | 
						|
		ASSERT(db->db_blkid == blkid);
 | 
						|
		bp = db->db_blkptr;
 | 
						|
		parent = db->db_parent;
 | 
						|
	}
 | 
						|
 | 
						|
	freeable = (bp && (freeable ||
 | 
						|
	    dsl_dataset_block_freeable(ds, bp, bp->blk_birth)));
 | 
						|
 | 
						|
	if (freeable)
 | 
						|
		txh->txh_space_tooverwrite += space;
 | 
						|
	else
 | 
						|
		txh->txh_space_towrite += space;
 | 
						|
	if (bp)
 | 
						|
		txh->txh_space_tounref += bp_get_dsize(os->os_spa, bp);
 | 
						|
 | 
						|
	dmu_tx_count_twig(txh, dn, parent, level + 1,
 | 
						|
	    blkid >> epbs, freeable, history);
 | 
						|
}
 | 
						|
 | 
						|
/* ARGSUSED */
 | 
						|
static void
 | 
						|
dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
 | 
						|
{
 | 
						|
	dnode_t *dn = txh->txh_dnode;
 | 
						|
	uint64_t start, end, i;
 | 
						|
	int min_bs, max_bs, min_ibs, max_ibs, epbs, bits;
 | 
						|
	int err = 0;
 | 
						|
	int l;
 | 
						|
 | 
						|
	if (len == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	min_bs = SPA_MINBLOCKSHIFT;
 | 
						|
	max_bs = highbit64(txh->txh_tx->tx_objset->os_recordsize) - 1;
 | 
						|
	min_ibs = DN_MIN_INDBLKSHIFT;
 | 
						|
	max_ibs = DN_MAX_INDBLKSHIFT;
 | 
						|
 | 
						|
	if (dn) {
 | 
						|
		uint64_t history[DN_MAX_LEVELS];
 | 
						|
		int nlvls = dn->dn_nlevels;
 | 
						|
		int delta;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * For i/o error checking, read the first and last level-0
 | 
						|
		 * blocks (if they are not aligned), and all the level-1 blocks.
 | 
						|
		 */
 | 
						|
		if (dn->dn_maxblkid == 0) {
 | 
						|
			delta = dn->dn_datablksz;
 | 
						|
			start = (off < dn->dn_datablksz) ? 0 : 1;
 | 
						|
			end = (off+len <= dn->dn_datablksz) ? 0 : 1;
 | 
						|
			if (start == 0 && (off > 0 || len < dn->dn_datablksz)) {
 | 
						|
				err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
 | 
						|
				if (err)
 | 
						|
					goto out;
 | 
						|
				delta -= off;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			zio_t *zio = zio_root(dn->dn_objset->os_spa,
 | 
						|
			    NULL, NULL, ZIO_FLAG_CANFAIL);
 | 
						|
 | 
						|
			/* first level-0 block */
 | 
						|
			start = off >> dn->dn_datablkshift;
 | 
						|
			if (P2PHASE(off, dn->dn_datablksz) ||
 | 
						|
			    len < dn->dn_datablksz) {
 | 
						|
				err = dmu_tx_check_ioerr(zio, dn, 0, start);
 | 
						|
				if (err)
 | 
						|
					goto out;
 | 
						|
			}
 | 
						|
 | 
						|
			/* last level-0 block */
 | 
						|
			end = (off+len-1) >> dn->dn_datablkshift;
 | 
						|
			if (end != start && end <= dn->dn_maxblkid &&
 | 
						|
			    P2PHASE(off+len, dn->dn_datablksz)) {
 | 
						|
				err = dmu_tx_check_ioerr(zio, dn, 0, end);
 | 
						|
				if (err)
 | 
						|
					goto out;
 | 
						|
			}
 | 
						|
 | 
						|
			/* level-1 blocks */
 | 
						|
			if (nlvls > 1) {
 | 
						|
				int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
 | 
						|
				for (i = (start>>shft)+1; i < end>>shft; i++) {
 | 
						|
					err = dmu_tx_check_ioerr(zio, dn, 1, i);
 | 
						|
					if (err)
 | 
						|
						goto out;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			err = zio_wait(zio);
 | 
						|
			if (err)
 | 
						|
				goto out;
 | 
						|
			delta = P2NPHASE(off, dn->dn_datablksz);
 | 
						|
		}
 | 
						|
 | 
						|
		min_ibs = max_ibs = dn->dn_indblkshift;
 | 
						|
		if (dn->dn_maxblkid > 0) {
 | 
						|
			/*
 | 
						|
			 * The blocksize can't change,
 | 
						|
			 * so we can make a more precise estimate.
 | 
						|
			 */
 | 
						|
			ASSERT(dn->dn_datablkshift != 0);
 | 
						|
			min_bs = max_bs = dn->dn_datablkshift;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * The blocksize can increase up to the recordsize,
 | 
						|
			 * or if it is already more than the recordsize,
 | 
						|
			 * up to the next power of 2.
 | 
						|
			 */
 | 
						|
			min_bs = highbit64(dn->dn_datablksz - 1);
 | 
						|
			max_bs = MAX(max_bs, highbit64(dn->dn_datablksz - 1));
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If this write is not off the end of the file
 | 
						|
		 * we need to account for overwrites/unref.
 | 
						|
		 */
 | 
						|
		if (start <= dn->dn_maxblkid) {
 | 
						|
			for (l = 0; l < DN_MAX_LEVELS; l++)
 | 
						|
				history[l] = -1ULL;
 | 
						|
		}
 | 
						|
		while (start <= dn->dn_maxblkid) {
 | 
						|
			dmu_buf_impl_t *db;
 | 
						|
 | 
						|
			rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
			err = dbuf_hold_impl(dn, 0, start, FALSE, FTAG, &db);
 | 
						|
			rw_exit(&dn->dn_struct_rwlock);
 | 
						|
 | 
						|
			if (err) {
 | 
						|
				txh->txh_tx->tx_err = err;
 | 
						|
				return;
 | 
						|
			}
 | 
						|
 | 
						|
			dmu_tx_count_twig(txh, dn, db, 0, start, B_FALSE,
 | 
						|
			    history);
 | 
						|
			dbuf_rele(db, FTAG);
 | 
						|
			if (++start > end) {
 | 
						|
				/*
 | 
						|
				 * Account for new indirects appearing
 | 
						|
				 * before this IO gets assigned into a txg.
 | 
						|
				 */
 | 
						|
				bits = 64 - min_bs;
 | 
						|
				epbs = min_ibs - SPA_BLKPTRSHIFT;
 | 
						|
				for (bits -= epbs * (nlvls - 1);
 | 
						|
				    bits >= 0; bits -= epbs)
 | 
						|
					txh->txh_fudge += 1ULL << max_ibs;
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			off += delta;
 | 
						|
			if (len >= delta)
 | 
						|
				len -= delta;
 | 
						|
			delta = dn->dn_datablksz;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * 'end' is the last thing we will access, not one past.
 | 
						|
	 * This way we won't overflow when accessing the last byte.
 | 
						|
	 */
 | 
						|
	start = P2ALIGN(off, 1ULL << max_bs);
 | 
						|
	end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1;
 | 
						|
	txh->txh_space_towrite += end - start + 1;
 | 
						|
 | 
						|
	start >>= min_bs;
 | 
						|
	end >>= min_bs;
 | 
						|
 | 
						|
	epbs = min_ibs - SPA_BLKPTRSHIFT;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The object contains at most 2^(64 - min_bs) blocks,
 | 
						|
	 * and each indirect level maps 2^epbs.
 | 
						|
	 */
 | 
						|
	for (bits = 64 - min_bs; bits >= 0; bits -= epbs) {
 | 
						|
		start >>= epbs;
 | 
						|
		end >>= epbs;
 | 
						|
		ASSERT3U(end, >=, start);
 | 
						|
		txh->txh_space_towrite += (end - start + 1) << max_ibs;
 | 
						|
		if (start != 0) {
 | 
						|
			/*
 | 
						|
			 * We also need a new blkid=0 indirect block
 | 
						|
			 * to reference any existing file data.
 | 
						|
			 */
 | 
						|
			txh->txh_space_towrite += 1ULL << max_ibs;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	if (txh->txh_space_towrite + txh->txh_space_tooverwrite >
 | 
						|
	    2 * DMU_MAX_ACCESS)
 | 
						|
		err = SET_ERROR(EFBIG);
 | 
						|
 | 
						|
	if (err)
 | 
						|
		txh->txh_tx->tx_err = err;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dmu_tx_count_dnode(dmu_tx_hold_t *txh)
 | 
						|
{
 | 
						|
	dnode_t *dn = txh->txh_dnode;
 | 
						|
	dnode_t *mdn = DMU_META_DNODE(txh->txh_tx->tx_objset);
 | 
						|
	uint64_t space = mdn->dn_datablksz +
 | 
						|
	    ((mdn->dn_nlevels-1) << mdn->dn_indblkshift);
 | 
						|
 | 
						|
	if (dn && dn->dn_dbuf->db_blkptr &&
 | 
						|
	    dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
 | 
						|
	    dn->dn_dbuf->db_blkptr, dn->dn_dbuf->db_blkptr->blk_birth)) {
 | 
						|
		txh->txh_space_tooverwrite += space;
 | 
						|
		txh->txh_space_tounref += space;
 | 
						|
	} else {
 | 
						|
		txh->txh_space_towrite += space;
 | 
						|
		if (dn && dn->dn_dbuf->db_blkptr)
 | 
						|
			txh->txh_space_tounref += space;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
 | 
						|
{
 | 
						|
	dmu_tx_hold_t *txh;
 | 
						|
 | 
						|
	ASSERT(tx->tx_txg == 0);
 | 
						|
	ASSERT(len <= DMU_MAX_ACCESS);
 | 
						|
	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
 | 
						|
 | 
						|
	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
 | 
						|
	    object, THT_WRITE, off, len);
 | 
						|
	if (txh == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	dmu_tx_count_write(txh, off, len);
 | 
						|
	dmu_tx_count_dnode(txh);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
 | 
						|
{
 | 
						|
	uint64_t blkid, nblks, lastblk;
 | 
						|
	uint64_t space = 0, unref = 0, skipped = 0;
 | 
						|
	dnode_t *dn = txh->txh_dnode;
 | 
						|
	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
 | 
						|
	spa_t *spa = txh->txh_tx->tx_pool->dp_spa;
 | 
						|
	int epbs;
 | 
						|
	uint64_t l0span = 0, nl1blks = 0;
 | 
						|
 | 
						|
	if (dn->dn_nlevels == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The struct_rwlock protects us against dn_nlevels
 | 
						|
	 * changing, in case (against all odds) we manage to dirty &
 | 
						|
	 * sync out the changes after we check for being dirty.
 | 
						|
	 * Also, dbuf_hold_impl() wants us to have the struct_rwlock.
 | 
						|
	 */
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
 | 
						|
	if (dn->dn_maxblkid == 0) {
 | 
						|
		if (off == 0 && len >= dn->dn_datablksz) {
 | 
						|
			blkid = 0;
 | 
						|
			nblks = 1;
 | 
						|
		} else {
 | 
						|
			rw_exit(&dn->dn_struct_rwlock);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		blkid = off >> dn->dn_datablkshift;
 | 
						|
		nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift;
 | 
						|
 | 
						|
		if (blkid > dn->dn_maxblkid) {
 | 
						|
			rw_exit(&dn->dn_struct_rwlock);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		if (blkid + nblks > dn->dn_maxblkid)
 | 
						|
			nblks = dn->dn_maxblkid - blkid + 1;
 | 
						|
 | 
						|
	}
 | 
						|
	l0span = nblks;    /* save for later use to calc level > 1 overhead */
 | 
						|
	if (dn->dn_nlevels == 1) {
 | 
						|
		int i;
 | 
						|
		for (i = 0; i < nblks; i++) {
 | 
						|
			blkptr_t *bp = dn->dn_phys->dn_blkptr;
 | 
						|
			ASSERT3U(blkid + i, <, dn->dn_nblkptr);
 | 
						|
			bp += blkid + i;
 | 
						|
			if (dsl_dataset_block_freeable(ds, bp, bp->blk_birth)) {
 | 
						|
				dprintf_bp(bp, "can free old%s", "");
 | 
						|
				space += bp_get_dsize(spa, bp);
 | 
						|
			}
 | 
						|
			unref += BP_GET_ASIZE(bp);
 | 
						|
		}
 | 
						|
		nl1blks = 1;
 | 
						|
		nblks = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	lastblk = blkid + nblks - 1;
 | 
						|
	while (nblks) {
 | 
						|
		dmu_buf_impl_t *dbuf;
 | 
						|
		uint64_t ibyte, new_blkid;
 | 
						|
		int epb = 1 << epbs;
 | 
						|
		int err, i, blkoff, tochk;
 | 
						|
		blkptr_t *bp;
 | 
						|
 | 
						|
		ibyte = blkid << dn->dn_datablkshift;
 | 
						|
		err = dnode_next_offset(dn,
 | 
						|
		    DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0);
 | 
						|
		new_blkid = ibyte >> dn->dn_datablkshift;
 | 
						|
		if (err == ESRCH) {
 | 
						|
			skipped += (lastblk >> epbs) - (blkid >> epbs) + 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (err) {
 | 
						|
			txh->txh_tx->tx_err = err;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (new_blkid > lastblk) {
 | 
						|
			skipped += (lastblk >> epbs) - (blkid >> epbs) + 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (new_blkid > blkid) {
 | 
						|
			ASSERT((new_blkid >> epbs) > (blkid >> epbs));
 | 
						|
			skipped += (new_blkid >> epbs) - (blkid >> epbs) - 1;
 | 
						|
			nblks -= new_blkid - blkid;
 | 
						|
			blkid = new_blkid;
 | 
						|
		}
 | 
						|
		blkoff = P2PHASE(blkid, epb);
 | 
						|
		tochk = MIN(epb - blkoff, nblks);
 | 
						|
 | 
						|
		err = dbuf_hold_impl(dn, 1, blkid >> epbs, FALSE, FTAG, &dbuf);
 | 
						|
		if (err) {
 | 
						|
			txh->txh_tx->tx_err = err;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		txh->txh_memory_tohold += dbuf->db.db_size;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We don't check memory_tohold against DMU_MAX_ACCESS because
 | 
						|
		 * memory_tohold is an over-estimation (especially the >L1
 | 
						|
		 * indirect blocks), so it could fail.  Callers should have
 | 
						|
		 * already verified that they will not be holding too much
 | 
						|
		 * memory.
 | 
						|
		 */
 | 
						|
 | 
						|
		err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL);
 | 
						|
		if (err != 0) {
 | 
						|
			txh->txh_tx->tx_err = err;
 | 
						|
			dbuf_rele(dbuf, FTAG);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		bp = dbuf->db.db_data;
 | 
						|
		bp += blkoff;
 | 
						|
 | 
						|
		for (i = 0; i < tochk; i++) {
 | 
						|
			if (dsl_dataset_block_freeable(ds, &bp[i],
 | 
						|
			    bp[i].blk_birth)) {
 | 
						|
				dprintf_bp(&bp[i], "can free old%s", "");
 | 
						|
				space += bp_get_dsize(spa, &bp[i]);
 | 
						|
			}
 | 
						|
			unref += BP_GET_ASIZE(bp);
 | 
						|
		}
 | 
						|
		dbuf_rele(dbuf, FTAG);
 | 
						|
 | 
						|
		++nl1blks;
 | 
						|
		blkid += tochk;
 | 
						|
		nblks -= tochk;
 | 
						|
	}
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Add in memory requirements of higher-level indirects.
 | 
						|
	 * This assumes a worst-possible scenario for dn_nlevels and a
 | 
						|
	 * worst-possible distribution of l1-blocks over the region to free.
 | 
						|
	 */
 | 
						|
	{
 | 
						|
		uint64_t blkcnt = 1 + ((l0span >> epbs) >> epbs);
 | 
						|
		int level = 2;
 | 
						|
		/*
 | 
						|
		 * Here we don't use DN_MAX_LEVEL, but calculate it with the
 | 
						|
		 * given datablkshift and indblkshift. This makes the
 | 
						|
		 * difference between 19 and 8 on large files.
 | 
						|
		 */
 | 
						|
		int maxlevel = 2 + (DN_MAX_OFFSET_SHIFT - dn->dn_datablkshift) /
 | 
						|
		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
 | 
						|
 | 
						|
		while (level++ < maxlevel) {
 | 
						|
			txh->txh_memory_tohold += MAX(MIN(blkcnt, nl1blks), 1)
 | 
						|
			    << dn->dn_indblkshift;
 | 
						|
			blkcnt = 1 + (blkcnt >> epbs);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* account for new level 1 indirect blocks that might show up */
 | 
						|
	if (skipped > 0) {
 | 
						|
		txh->txh_fudge += skipped << dn->dn_indblkshift;
 | 
						|
		skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs);
 | 
						|
		txh->txh_memory_tohold += skipped << dn->dn_indblkshift;
 | 
						|
	}
 | 
						|
	txh->txh_space_tofree += space;
 | 
						|
	txh->txh_space_tounref += unref;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
 | 
						|
{
 | 
						|
	dmu_tx_hold_t *txh;
 | 
						|
	dnode_t *dn;
 | 
						|
	int err;
 | 
						|
	zio_t *zio;
 | 
						|
 | 
						|
	ASSERT(tx->tx_txg == 0);
 | 
						|
 | 
						|
	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
 | 
						|
	    object, THT_FREE, off, len);
 | 
						|
	if (txh == NULL)
 | 
						|
		return;
 | 
						|
	dn = txh->txh_dnode;
 | 
						|
	dmu_tx_count_dnode(txh);
 | 
						|
 | 
						|
	if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz)
 | 
						|
		return;
 | 
						|
	if (len == DMU_OBJECT_END)
 | 
						|
		len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off;
 | 
						|
 | 
						|
	dmu_tx_count_dnode(txh);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For i/o error checking, we read the first and last level-0
 | 
						|
	 * blocks if they are not aligned, and all the level-1 blocks.
 | 
						|
	 *
 | 
						|
	 * Note:  dbuf_free_range() assumes that we have not instantiated
 | 
						|
	 * any level-0 dbufs that will be completely freed.  Therefore we must
 | 
						|
	 * exercise care to not read or count the first and last blocks
 | 
						|
	 * if they are blocksize-aligned.
 | 
						|
	 */
 | 
						|
	if (dn->dn_datablkshift == 0) {
 | 
						|
		if (off != 0 || len < dn->dn_datablksz)
 | 
						|
			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
 | 
						|
	} else {
 | 
						|
		/* first block will be modified if it is not aligned */
 | 
						|
		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
 | 
						|
			dmu_tx_count_write(txh, off, 1);
 | 
						|
		/* last block will be modified if it is not aligned */
 | 
						|
		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
 | 
						|
			dmu_tx_count_write(txh, off+len, 1);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check level-1 blocks.
 | 
						|
	 */
 | 
						|
	if (dn->dn_nlevels > 1) {
 | 
						|
		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
 | 
						|
		    SPA_BLKPTRSHIFT;
 | 
						|
		uint64_t start = off >> shift;
 | 
						|
		uint64_t end = (off + len) >> shift;
 | 
						|
		uint64_t i;
 | 
						|
 | 
						|
		ASSERT(dn->dn_indblkshift != 0);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * dnode_reallocate() can result in an object with indirect
 | 
						|
		 * blocks having an odd data block size.  In this case,
 | 
						|
		 * just check the single block.
 | 
						|
		 */
 | 
						|
		if (dn->dn_datablkshift == 0)
 | 
						|
			start = end = 0;
 | 
						|
 | 
						|
		zio = zio_root(tx->tx_pool->dp_spa,
 | 
						|
		    NULL, NULL, ZIO_FLAG_CANFAIL);
 | 
						|
		for (i = start; i <= end; i++) {
 | 
						|
			uint64_t ibyte = i << shift;
 | 
						|
			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
 | 
						|
			i = ibyte >> shift;
 | 
						|
			if (err == ESRCH || i > end)
 | 
						|
				break;
 | 
						|
			if (err) {
 | 
						|
				tx->tx_err = err;
 | 
						|
				return;
 | 
						|
			}
 | 
						|
 | 
						|
			err = dmu_tx_check_ioerr(zio, dn, 1, i);
 | 
						|
			if (err) {
 | 
						|
				tx->tx_err = err;
 | 
						|
				return;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		err = zio_wait(zio);
 | 
						|
		if (err) {
 | 
						|
			tx->tx_err = err;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	dmu_tx_count_free(txh, off, len);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
 | 
						|
{
 | 
						|
	dmu_tx_hold_t *txh;
 | 
						|
	dnode_t *dn;
 | 
						|
	dsl_dataset_phys_t *ds_phys;
 | 
						|
	uint64_t nblocks;
 | 
						|
	int epbs, err;
 | 
						|
 | 
						|
	ASSERT(tx->tx_txg == 0);
 | 
						|
 | 
						|
	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
 | 
						|
	    object, THT_ZAP, add, (uintptr_t)name);
 | 
						|
	if (txh == NULL)
 | 
						|
		return;
 | 
						|
	dn = txh->txh_dnode;
 | 
						|
 | 
						|
	dmu_tx_count_dnode(txh);
 | 
						|
 | 
						|
	if (dn == NULL) {
 | 
						|
		/*
 | 
						|
		 * We will be able to fit a new object's entries into one leaf
 | 
						|
		 * block.  So there will be at most 2 blocks total,
 | 
						|
		 * including the header block.
 | 
						|
		 */
 | 
						|
		dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
 | 
						|
 | 
						|
	if (dn->dn_maxblkid == 0 && !add) {
 | 
						|
		blkptr_t *bp;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If there is only one block  (i.e. this is a micro-zap)
 | 
						|
		 * and we are not adding anything, the accounting is simple.
 | 
						|
		 */
 | 
						|
		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
 | 
						|
		if (err) {
 | 
						|
			tx->tx_err = err;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Use max block size here, since we don't know how much
 | 
						|
		 * the size will change between now and the dbuf dirty call.
 | 
						|
		 */
 | 
						|
		bp = &dn->dn_phys->dn_blkptr[0];
 | 
						|
		if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
 | 
						|
		    bp, bp->blk_birth))
 | 
						|
			txh->txh_space_tooverwrite += MZAP_MAX_BLKSZ;
 | 
						|
		else
 | 
						|
			txh->txh_space_towrite += MZAP_MAX_BLKSZ;
 | 
						|
		if (!BP_IS_HOLE(bp))
 | 
						|
			txh->txh_space_tounref += MZAP_MAX_BLKSZ;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dn->dn_maxblkid > 0 && name) {
 | 
						|
		/*
 | 
						|
		 * access the name in this fat-zap so that we'll check
 | 
						|
		 * for i/o errors to the leaf blocks, etc.
 | 
						|
		 */
 | 
						|
		err = zap_lookup(dn->dn_objset, dn->dn_object, name,
 | 
						|
		    8, 0, NULL);
 | 
						|
		if (err == EIO) {
 | 
						|
			tx->tx_err = err;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	err = zap_count_write(dn->dn_objset, dn->dn_object, name, add,
 | 
						|
	    &txh->txh_space_towrite, &txh->txh_space_tooverwrite);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the modified blocks are scattered to the four winds,
 | 
						|
	 * we'll have to modify an indirect twig for each.
 | 
						|
	 */
 | 
						|
	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
 | 
						|
	ds_phys = dsl_dataset_phys(dn->dn_objset->os_dsl_dataset);
 | 
						|
	for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs)
 | 
						|
		if (ds_phys->ds_prev_snap_obj)
 | 
						|
			txh->txh_space_towrite += 3 << dn->dn_indblkshift;
 | 
						|
		else
 | 
						|
			txh->txh_space_tooverwrite += 3 << dn->dn_indblkshift;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
 | 
						|
{
 | 
						|
	dmu_tx_hold_t *txh;
 | 
						|
 | 
						|
	ASSERT(tx->tx_txg == 0);
 | 
						|
 | 
						|
	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
 | 
						|
	    object, THT_BONUS, 0, 0);
 | 
						|
	if (txh)
 | 
						|
		dmu_tx_count_dnode(txh);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
 | 
						|
{
 | 
						|
	dmu_tx_hold_t *txh;
 | 
						|
 | 
						|
	ASSERT(tx->tx_txg == 0);
 | 
						|
 | 
						|
	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
 | 
						|
	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
 | 
						|
	if (txh)
 | 
						|
		txh->txh_space_towrite += space;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_tx_holds(dmu_tx_t *tx, uint64_t object)
 | 
						|
{
 | 
						|
	dmu_tx_hold_t *txh;
 | 
						|
	int holds = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * By asserting that the tx is assigned, we're counting the
 | 
						|
	 * number of dn_tx_holds, which is the same as the number of
 | 
						|
	 * dn_holds.  Otherwise, we'd be counting dn_holds, but
 | 
						|
	 * dn_tx_holds could be 0.
 | 
						|
	 */
 | 
						|
	ASSERT(tx->tx_txg != 0);
 | 
						|
 | 
						|
	/* if (tx->tx_anyobj == TRUE) */
 | 
						|
		/* return (0); */
 | 
						|
 | 
						|
	for (txh = list_head(&tx->tx_holds); txh;
 | 
						|
	    txh = list_next(&tx->tx_holds, txh)) {
 | 
						|
		if (txh->txh_dnode && txh->txh_dnode->dn_object == object)
 | 
						|
			holds++;
 | 
						|
	}
 | 
						|
 | 
						|
	return (holds);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef DEBUG_DMU_TX
 | 
						|
void
 | 
						|
dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
 | 
						|
{
 | 
						|
	dmu_tx_hold_t *txh;
 | 
						|
	int match_object = FALSE, match_offset = FALSE;
 | 
						|
	dnode_t *dn;
 | 
						|
 | 
						|
	DB_DNODE_ENTER(db);
 | 
						|
	dn = DB_DNODE(db);
 | 
						|
	ASSERT(dn != NULL);
 | 
						|
	ASSERT(tx->tx_txg != 0);
 | 
						|
	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
 | 
						|
	ASSERT3U(dn->dn_object, ==, db->db.db_object);
 | 
						|
 | 
						|
	if (tx->tx_anyobj) {
 | 
						|
		DB_DNODE_EXIT(db);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* XXX No checking on the meta dnode for now */
 | 
						|
	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
 | 
						|
		DB_DNODE_EXIT(db);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	for (txh = list_head(&tx->tx_holds); txh;
 | 
						|
	    txh = list_next(&tx->tx_holds, txh)) {
 | 
						|
		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
 | 
						|
		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
 | 
						|
			match_object = TRUE;
 | 
						|
		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
 | 
						|
			int datablkshift = dn->dn_datablkshift ?
 | 
						|
			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
 | 
						|
			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
 | 
						|
			int shift = datablkshift + epbs * db->db_level;
 | 
						|
			uint64_t beginblk = shift >= 64 ? 0 :
 | 
						|
			    (txh->txh_arg1 >> shift);
 | 
						|
			uint64_t endblk = shift >= 64 ? 0 :
 | 
						|
			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
 | 
						|
			uint64_t blkid = db->db_blkid;
 | 
						|
 | 
						|
			/* XXX txh_arg2 better not be zero... */
 | 
						|
 | 
						|
			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
 | 
						|
			    txh->txh_type, beginblk, endblk);
 | 
						|
 | 
						|
			switch (txh->txh_type) {
 | 
						|
			case THT_WRITE:
 | 
						|
				if (blkid >= beginblk && blkid <= endblk)
 | 
						|
					match_offset = TRUE;
 | 
						|
				/*
 | 
						|
				 * We will let this hold work for the bonus
 | 
						|
				 * or spill buffer so that we don't need to
 | 
						|
				 * hold it when creating a new object.
 | 
						|
				 */
 | 
						|
				if (blkid == DMU_BONUS_BLKID ||
 | 
						|
				    blkid == DMU_SPILL_BLKID)
 | 
						|
					match_offset = TRUE;
 | 
						|
				/*
 | 
						|
				 * They might have to increase nlevels,
 | 
						|
				 * thus dirtying the new TLIBs.  Or the
 | 
						|
				 * might have to change the block size,
 | 
						|
				 * thus dirying the new lvl=0 blk=0.
 | 
						|
				 */
 | 
						|
				if (blkid == 0)
 | 
						|
					match_offset = TRUE;
 | 
						|
				break;
 | 
						|
			case THT_FREE:
 | 
						|
				/*
 | 
						|
				 * We will dirty all the level 1 blocks in
 | 
						|
				 * the free range and perhaps the first and
 | 
						|
				 * last level 0 block.
 | 
						|
				 */
 | 
						|
				if (blkid >= beginblk && (blkid <= endblk ||
 | 
						|
				    txh->txh_arg2 == DMU_OBJECT_END))
 | 
						|
					match_offset = TRUE;
 | 
						|
				break;
 | 
						|
			case THT_SPILL:
 | 
						|
				if (blkid == DMU_SPILL_BLKID)
 | 
						|
					match_offset = TRUE;
 | 
						|
				break;
 | 
						|
			case THT_BONUS:
 | 
						|
				if (blkid == DMU_BONUS_BLKID)
 | 
						|
					match_offset = TRUE;
 | 
						|
				break;
 | 
						|
			case THT_ZAP:
 | 
						|
				match_offset = TRUE;
 | 
						|
				break;
 | 
						|
			case THT_NEWOBJECT:
 | 
						|
				match_object = TRUE;
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				cmn_err(CE_PANIC, "bad txh_type %d",
 | 
						|
				    txh->txh_type);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (match_object && match_offset) {
 | 
						|
			DB_DNODE_EXIT(db);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	DB_DNODE_EXIT(db);
 | 
						|
	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
 | 
						|
	    (u_longlong_t)db->db.db_object, db->db_level,
 | 
						|
	    (u_longlong_t)db->db_blkid);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * If we can't do 10 iops, something is wrong.  Let us go ahead
 | 
						|
 * and hit zfs_dirty_data_max.
 | 
						|
 */
 | 
						|
hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
 | 
						|
int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
 | 
						|
 | 
						|
/*
 | 
						|
 * We delay transactions when we've determined that the backend storage
 | 
						|
 * isn't able to accommodate the rate of incoming writes.
 | 
						|
 *
 | 
						|
 * If there is already a transaction waiting, we delay relative to when
 | 
						|
 * that transaction finishes waiting.  This way the calculated min_time
 | 
						|
 * is independent of the number of threads concurrently executing
 | 
						|
 * transactions.
 | 
						|
 *
 | 
						|
 * If we are the only waiter, wait relative to when the transaction
 | 
						|
 * started, rather than the current time.  This credits the transaction for
 | 
						|
 * "time already served", e.g. reading indirect blocks.
 | 
						|
 *
 | 
						|
 * The minimum time for a transaction to take is calculated as:
 | 
						|
 *     min_time = scale * (dirty - min) / (max - dirty)
 | 
						|
 *     min_time is then capped at zfs_delay_max_ns.
 | 
						|
 *
 | 
						|
 * The delay has two degrees of freedom that can be adjusted via tunables.
 | 
						|
 * The percentage of dirty data at which we start to delay is defined by
 | 
						|
 * zfs_delay_min_dirty_percent. This should typically be at or above
 | 
						|
 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
 | 
						|
 * delay after writing at full speed has failed to keep up with the incoming
 | 
						|
 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
 | 
						|
 * speaking, this variable determines the amount of delay at the midpoint of
 | 
						|
 * the curve.
 | 
						|
 *
 | 
						|
 * delay
 | 
						|
 *  10ms +-------------------------------------------------------------*+
 | 
						|
 *       |                                                             *|
 | 
						|
 *   9ms +                                                             *+
 | 
						|
 *       |                                                             *|
 | 
						|
 *   8ms +                                                             *+
 | 
						|
 *       |                                                            * |
 | 
						|
 *   7ms +                                                            * +
 | 
						|
 *       |                                                            * |
 | 
						|
 *   6ms +                                                            * +
 | 
						|
 *       |                                                            * |
 | 
						|
 *   5ms +                                                           *  +
 | 
						|
 *       |                                                           *  |
 | 
						|
 *   4ms +                                                           *  +
 | 
						|
 *       |                                                           *  |
 | 
						|
 *   3ms +                                                          *   +
 | 
						|
 *       |                                                          *   |
 | 
						|
 *   2ms +                                              (midpoint) *    +
 | 
						|
 *       |                                                  |    **     |
 | 
						|
 *   1ms +                                                  v ***       +
 | 
						|
 *       |             zfs_delay_scale ---------->     ********         |
 | 
						|
 *     0 +-------------------------------------*********----------------+
 | 
						|
 *       0%                    <- zfs_dirty_data_max ->               100%
 | 
						|
 *
 | 
						|
 * Note that since the delay is added to the outstanding time remaining on the
 | 
						|
 * most recent transaction, the delay is effectively the inverse of IOPS.
 | 
						|
 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
 | 
						|
 * was chosen such that small changes in the amount of accumulated dirty data
 | 
						|
 * in the first 3/4 of the curve yield relatively small differences in the
 | 
						|
 * amount of delay.
 | 
						|
 *
 | 
						|
 * The effects can be easier to understand when the amount of delay is
 | 
						|
 * represented on a log scale:
 | 
						|
 *
 | 
						|
 * delay
 | 
						|
 * 100ms +-------------------------------------------------------------++
 | 
						|
 *       +                                                              +
 | 
						|
 *       |                                                              |
 | 
						|
 *       +                                                             *+
 | 
						|
 *  10ms +                                                             *+
 | 
						|
 *       +                                                           ** +
 | 
						|
 *       |                                              (midpoint)  **  |
 | 
						|
 *       +                                                  |     **    +
 | 
						|
 *   1ms +                                                  v ****      +
 | 
						|
 *       +             zfs_delay_scale ---------->        *****         +
 | 
						|
 *       |                                             ****             |
 | 
						|
 *       +                                          ****                +
 | 
						|
 * 100us +                                        **                    +
 | 
						|
 *       +                                       *                      +
 | 
						|
 *       |                                      *                       |
 | 
						|
 *       +                                     *                        +
 | 
						|
 *  10us +                                     *                        +
 | 
						|
 *       +                                                              +
 | 
						|
 *       |                                                              |
 | 
						|
 *       +                                                              +
 | 
						|
 *       +--------------------------------------------------------------+
 | 
						|
 *       0%                    <- zfs_dirty_data_max ->               100%
 | 
						|
 *
 | 
						|
 * Note here that only as the amount of dirty data approaches its limit does
 | 
						|
 * the delay start to increase rapidly. The goal of a properly tuned system
 | 
						|
 * should be to keep the amount of dirty data out of that range by first
 | 
						|
 * ensuring that the appropriate limits are set for the I/O scheduler to reach
 | 
						|
 * optimal throughput on the backend storage, and then by changing the value
 | 
						|
 * of zfs_delay_scale to increase the steepness of the curve.
 | 
						|
 */
 | 
						|
static void
 | 
						|
dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
 | 
						|
{
 | 
						|
	dsl_pool_t *dp = tx->tx_pool;
 | 
						|
	uint64_t delay_min_bytes =
 | 
						|
	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
 | 
						|
	hrtime_t wakeup, min_tx_time, now;
 | 
						|
 | 
						|
	if (dirty <= delay_min_bytes)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The caller has already waited until we are under the max.
 | 
						|
	 * We make them pass us the amount of dirty data so we don't
 | 
						|
	 * have to handle the case of it being >= the max, which could
 | 
						|
	 * cause a divide-by-zero if it's == the max.
 | 
						|
	 */
 | 
						|
	ASSERT3U(dirty, <, zfs_dirty_data_max);
 | 
						|
 | 
						|
	now = gethrtime();
 | 
						|
	min_tx_time = zfs_delay_scale *
 | 
						|
	    (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
 | 
						|
	min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
 | 
						|
	if (now > tx->tx_start + min_tx_time)
 | 
						|
		return;
 | 
						|
 | 
						|
	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
 | 
						|
	    uint64_t, min_tx_time);
 | 
						|
 | 
						|
	mutex_enter(&dp->dp_lock);
 | 
						|
	wakeup = MAX(tx->tx_start + min_tx_time,
 | 
						|
	    dp->dp_last_wakeup + min_tx_time);
 | 
						|
	dp->dp_last_wakeup = wakeup;
 | 
						|
	mutex_exit(&dp->dp_lock);
 | 
						|
 | 
						|
	zfs_sleep_until(wakeup);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how)
 | 
						|
{
 | 
						|
	dmu_tx_hold_t *txh;
 | 
						|
	spa_t *spa = tx->tx_pool->dp_spa;
 | 
						|
	uint64_t memory, asize, fsize, usize;
 | 
						|
	uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge;
 | 
						|
 | 
						|
	ASSERT0(tx->tx_txg);
 | 
						|
 | 
						|
	if (tx->tx_err) {
 | 
						|
		DMU_TX_STAT_BUMP(dmu_tx_error);
 | 
						|
		return (tx->tx_err);
 | 
						|
	}
 | 
						|
 | 
						|
	if (spa_suspended(spa)) {
 | 
						|
		DMU_TX_STAT_BUMP(dmu_tx_suspended);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the user has indicated a blocking failure mode
 | 
						|
		 * then return ERESTART which will block in dmu_tx_wait().
 | 
						|
		 * Otherwise, return EIO so that an error can get
 | 
						|
		 * propagated back to the VOP calls.
 | 
						|
		 *
 | 
						|
		 * Note that we always honor the txg_how flag regardless
 | 
						|
		 * of the failuremode setting.
 | 
						|
		 */
 | 
						|
		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
 | 
						|
		    txg_how != TXG_WAIT)
 | 
						|
			return (SET_ERROR(EIO));
 | 
						|
 | 
						|
		return (SET_ERROR(ERESTART));
 | 
						|
	}
 | 
						|
 | 
						|
	if (!tx->tx_waited &&
 | 
						|
	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
 | 
						|
		tx->tx_wait_dirty = B_TRUE;
 | 
						|
		DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
 | 
						|
		return (ERESTART);
 | 
						|
	}
 | 
						|
 | 
						|
	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
 | 
						|
	tx->tx_needassign_txh = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * NB: No error returns are allowed after txg_hold_open, but
 | 
						|
	 * before processing the dnode holds, due to the
 | 
						|
	 * dmu_tx_unassign() logic.
 | 
						|
	 */
 | 
						|
 | 
						|
	towrite = tofree = tooverwrite = tounref = tohold = fudge = 0;
 | 
						|
	for (txh = list_head(&tx->tx_holds); txh;
 | 
						|
	    txh = list_next(&tx->tx_holds, txh)) {
 | 
						|
		dnode_t *dn = txh->txh_dnode;
 | 
						|
		if (dn != NULL) {
 | 
						|
			mutex_enter(&dn->dn_mtx);
 | 
						|
			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
 | 
						|
				mutex_exit(&dn->dn_mtx);
 | 
						|
				tx->tx_needassign_txh = txh;
 | 
						|
				DMU_TX_STAT_BUMP(dmu_tx_group);
 | 
						|
				return (SET_ERROR(ERESTART));
 | 
						|
			}
 | 
						|
			if (dn->dn_assigned_txg == 0)
 | 
						|
				dn->dn_assigned_txg = tx->tx_txg;
 | 
						|
			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
 | 
						|
			(void) refcount_add(&dn->dn_tx_holds, tx);
 | 
						|
			mutex_exit(&dn->dn_mtx);
 | 
						|
		}
 | 
						|
		towrite += txh->txh_space_towrite;
 | 
						|
		tofree += txh->txh_space_tofree;
 | 
						|
		tooverwrite += txh->txh_space_tooverwrite;
 | 
						|
		tounref += txh->txh_space_tounref;
 | 
						|
		tohold += txh->txh_memory_tohold;
 | 
						|
		fudge += txh->txh_fudge;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If a snapshot has been taken since we made our estimates,
 | 
						|
	 * assume that we won't be able to free or overwrite anything.
 | 
						|
	 */
 | 
						|
	if (tx->tx_objset &&
 | 
						|
	    dsl_dataset_prev_snap_txg(tx->tx_objset->os_dsl_dataset) >
 | 
						|
	    tx->tx_lastsnap_txg) {
 | 
						|
		towrite += tooverwrite;
 | 
						|
		tooverwrite = tofree = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* needed allocation: worst-case estimate of write space */
 | 
						|
	asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite);
 | 
						|
	/* freed space estimate: worst-case overwrite + free estimate */
 | 
						|
	fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree;
 | 
						|
	/* convert unrefd space to worst-case estimate */
 | 
						|
	usize = spa_get_asize(tx->tx_pool->dp_spa, tounref);
 | 
						|
	/* calculate memory footprint estimate */
 | 
						|
	memory = towrite + tooverwrite + tohold;
 | 
						|
 | 
						|
#ifdef DEBUG_DMU_TX
 | 
						|
	/*
 | 
						|
	 * Add in 'tohold' to account for our dirty holds on this memory
 | 
						|
	 * XXX - the "fudge" factor is to account for skipped blocks that
 | 
						|
	 * we missed because dnode_next_offset() misses in-core-only blocks.
 | 
						|
	 */
 | 
						|
	tx->tx_space_towrite = asize +
 | 
						|
	    spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge);
 | 
						|
	tx->tx_space_tofree = tofree;
 | 
						|
	tx->tx_space_tooverwrite = tooverwrite;
 | 
						|
	tx->tx_space_tounref = tounref;
 | 
						|
#endif
 | 
						|
 | 
						|
	if (tx->tx_dir && asize != 0) {
 | 
						|
		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
 | 
						|
		    asize, fsize, usize, &tx->tx_tempreserve_cookie, tx);
 | 
						|
		if (err)
 | 
						|
			return (err);
 | 
						|
	}
 | 
						|
 | 
						|
	DMU_TX_STAT_BUMP(dmu_tx_assigned);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dmu_tx_unassign(dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dmu_tx_hold_t *txh;
 | 
						|
 | 
						|
	if (tx->tx_txg == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	txg_rele_to_quiesce(&tx->tx_txgh);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Walk the transaction's hold list, removing the hold on the
 | 
						|
	 * associated dnode, and notifying waiters if the refcount drops to 0.
 | 
						|
	 */
 | 
						|
	for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh;
 | 
						|
	    txh = list_next(&tx->tx_holds, txh)) {
 | 
						|
		dnode_t *dn = txh->txh_dnode;
 | 
						|
 | 
						|
		if (dn == NULL)
 | 
						|
			continue;
 | 
						|
		mutex_enter(&dn->dn_mtx);
 | 
						|
		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
 | 
						|
 | 
						|
		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
 | 
						|
			dn->dn_assigned_txg = 0;
 | 
						|
			cv_broadcast(&dn->dn_notxholds);
 | 
						|
		}
 | 
						|
		mutex_exit(&dn->dn_mtx);
 | 
						|
	}
 | 
						|
 | 
						|
	txg_rele_to_sync(&tx->tx_txgh);
 | 
						|
 | 
						|
	tx->tx_lasttried_txg = tx->tx_txg;
 | 
						|
	tx->tx_txg = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Assign tx to a transaction group.  txg_how can be one of:
 | 
						|
 *
 | 
						|
 * (1)	TXG_WAIT.  If the current open txg is full, waits until there's
 | 
						|
 *	a new one.  This should be used when you're not holding locks.
 | 
						|
 *	It will only fail if we're truly out of space (or over quota).
 | 
						|
 *
 | 
						|
 * (2)	TXG_NOWAIT.  If we can't assign into the current open txg without
 | 
						|
 *	blocking, returns immediately with ERESTART.  This should be used
 | 
						|
 *	whenever you're holding locks.  On an ERESTART error, the caller
 | 
						|
 *	should drop locks, do a dmu_tx_wait(tx), and try again.
 | 
						|
 *
 | 
						|
 * (3)	TXG_WAITED.  Like TXG_NOWAIT, but indicates that dmu_tx_wait()
 | 
						|
 *	has already been called on behalf of this operation (though
 | 
						|
 *	most likely on a different tx).
 | 
						|
 */
 | 
						|
int
 | 
						|
dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	ASSERT(tx->tx_txg == 0);
 | 
						|
	ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT ||
 | 
						|
	    txg_how == TXG_WAITED);
 | 
						|
	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
 | 
						|
 | 
						|
	if (txg_how == TXG_WAITED)
 | 
						|
		tx->tx_waited = B_TRUE;
 | 
						|
 | 
						|
	/* If we might wait, we must not hold the config lock. */
 | 
						|
	ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool));
 | 
						|
 | 
						|
	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
 | 
						|
		dmu_tx_unassign(tx);
 | 
						|
 | 
						|
		if (err != ERESTART || txg_how != TXG_WAIT)
 | 
						|
			return (err);
 | 
						|
 | 
						|
		dmu_tx_wait(tx);
 | 
						|
	}
 | 
						|
 | 
						|
	txg_rele_to_quiesce(&tx->tx_txgh);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_wait(dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	spa_t *spa = tx->tx_pool->dp_spa;
 | 
						|
	dsl_pool_t *dp = tx->tx_pool;
 | 
						|
	hrtime_t before;
 | 
						|
 | 
						|
	ASSERT(tx->tx_txg == 0);
 | 
						|
	ASSERT(!dsl_pool_config_held(tx->tx_pool));
 | 
						|
 | 
						|
	before = gethrtime();
 | 
						|
 | 
						|
	if (tx->tx_wait_dirty) {
 | 
						|
		uint64_t dirty;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * dmu_tx_try_assign() has determined that we need to wait
 | 
						|
		 * because we've consumed much or all of the dirty buffer
 | 
						|
		 * space.
 | 
						|
		 */
 | 
						|
		mutex_enter(&dp->dp_lock);
 | 
						|
		if (dp->dp_dirty_total >= zfs_dirty_data_max)
 | 
						|
			DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
 | 
						|
		while (dp->dp_dirty_total >= zfs_dirty_data_max)
 | 
						|
			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
 | 
						|
		dirty = dp->dp_dirty_total;
 | 
						|
		mutex_exit(&dp->dp_lock);
 | 
						|
 | 
						|
		dmu_tx_delay(tx, dirty);
 | 
						|
 | 
						|
		tx->tx_wait_dirty = B_FALSE;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Note: setting tx_waited only has effect if the caller
 | 
						|
		 * used TX_WAIT.  Otherwise they are going to destroy
 | 
						|
		 * this tx and try again.  The common case, zfs_write(),
 | 
						|
		 * uses TX_WAIT.
 | 
						|
		 */
 | 
						|
		tx->tx_waited = B_TRUE;
 | 
						|
	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
 | 
						|
		/*
 | 
						|
		 * If the pool is suspended we need to wait until it
 | 
						|
		 * is resumed.  Note that it's possible that the pool
 | 
						|
		 * has become active after this thread has tried to
 | 
						|
		 * obtain a tx.  If that's the case then tx_lasttried_txg
 | 
						|
		 * would not have been set.
 | 
						|
		 */
 | 
						|
		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
 | 
						|
	} else if (tx->tx_needassign_txh) {
 | 
						|
		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
 | 
						|
 | 
						|
		mutex_enter(&dn->dn_mtx);
 | 
						|
		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
 | 
						|
			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
 | 
						|
		mutex_exit(&dn->dn_mtx);
 | 
						|
		tx->tx_needassign_txh = NULL;
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * A dnode is assigned to the quiescing txg.  Wait for its
 | 
						|
		 * transaction to complete.
 | 
						|
		 */
 | 
						|
		txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
 | 
						|
	}
 | 
						|
 | 
						|
	spa_tx_assign_add_nsecs(spa, gethrtime() - before);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta)
 | 
						|
{
 | 
						|
#ifdef DEBUG_DMU_TX
 | 
						|
	if (tx->tx_dir == NULL || delta == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (delta > 0) {
 | 
						|
		ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=,
 | 
						|
		    tx->tx_space_towrite);
 | 
						|
		(void) refcount_add_many(&tx->tx_space_written, delta, NULL);
 | 
						|
	} else {
 | 
						|
		(void) refcount_add_many(&tx->tx_space_freed, -delta, NULL);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_commit(dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dmu_tx_hold_t *txh;
 | 
						|
 | 
						|
	ASSERT(tx->tx_txg != 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Go through the transaction's hold list and remove holds on
 | 
						|
	 * associated dnodes, notifying waiters if no holds remain.
 | 
						|
	 */
 | 
						|
	while ((txh = list_head(&tx->tx_holds))) {
 | 
						|
		dnode_t *dn = txh->txh_dnode;
 | 
						|
 | 
						|
		list_remove(&tx->tx_holds, txh);
 | 
						|
		kmem_free(txh, sizeof (dmu_tx_hold_t));
 | 
						|
		if (dn == NULL)
 | 
						|
			continue;
 | 
						|
		mutex_enter(&dn->dn_mtx);
 | 
						|
		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
 | 
						|
 | 
						|
		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
 | 
						|
			dn->dn_assigned_txg = 0;
 | 
						|
			cv_broadcast(&dn->dn_notxholds);
 | 
						|
		}
 | 
						|
		mutex_exit(&dn->dn_mtx);
 | 
						|
		dnode_rele(dn, tx);
 | 
						|
	}
 | 
						|
 | 
						|
	if (tx->tx_tempreserve_cookie)
 | 
						|
		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
 | 
						|
 | 
						|
	if (!list_is_empty(&tx->tx_callbacks))
 | 
						|
		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
 | 
						|
 | 
						|
	if (tx->tx_anyobj == FALSE)
 | 
						|
		txg_rele_to_sync(&tx->tx_txgh);
 | 
						|
 | 
						|
	list_destroy(&tx->tx_callbacks);
 | 
						|
	list_destroy(&tx->tx_holds);
 | 
						|
#ifdef DEBUG_DMU_TX
 | 
						|
	dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n",
 | 
						|
	    tx->tx_space_towrite, refcount_count(&tx->tx_space_written),
 | 
						|
	    tx->tx_space_tofree, refcount_count(&tx->tx_space_freed));
 | 
						|
	refcount_destroy_many(&tx->tx_space_written,
 | 
						|
	    refcount_count(&tx->tx_space_written));
 | 
						|
	refcount_destroy_many(&tx->tx_space_freed,
 | 
						|
	    refcount_count(&tx->tx_space_freed));
 | 
						|
#endif
 | 
						|
	kmem_free(tx, sizeof (dmu_tx_t));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_abort(dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dmu_tx_hold_t *txh;
 | 
						|
 | 
						|
	ASSERT(tx->tx_txg == 0);
 | 
						|
 | 
						|
	while ((txh = list_head(&tx->tx_holds))) {
 | 
						|
		dnode_t *dn = txh->txh_dnode;
 | 
						|
 | 
						|
		list_remove(&tx->tx_holds, txh);
 | 
						|
		kmem_free(txh, sizeof (dmu_tx_hold_t));
 | 
						|
		if (dn != NULL)
 | 
						|
			dnode_rele(dn, tx);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Call any registered callbacks with an error code.
 | 
						|
	 */
 | 
						|
	if (!list_is_empty(&tx->tx_callbacks))
 | 
						|
		dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);
 | 
						|
 | 
						|
	list_destroy(&tx->tx_callbacks);
 | 
						|
	list_destroy(&tx->tx_holds);
 | 
						|
#ifdef DEBUG_DMU_TX
 | 
						|
	refcount_destroy_many(&tx->tx_space_written,
 | 
						|
	    refcount_count(&tx->tx_space_written));
 | 
						|
	refcount_destroy_many(&tx->tx_space_freed,
 | 
						|
	    refcount_count(&tx->tx_space_freed));
 | 
						|
#endif
 | 
						|
	kmem_free(tx, sizeof (dmu_tx_t));
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
dmu_tx_get_txg(dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	ASSERT(tx->tx_txg != 0);
 | 
						|
	return (tx->tx_txg);
 | 
						|
}
 | 
						|
 | 
						|
dsl_pool_t *
 | 
						|
dmu_tx_pool(dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	ASSERT(tx->tx_pool != NULL);
 | 
						|
	return (tx->tx_pool);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
 | 
						|
{
 | 
						|
	dmu_tx_callback_t *dcb;
 | 
						|
 | 
						|
	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
 | 
						|
 | 
						|
	dcb->dcb_func = func;
 | 
						|
	dcb->dcb_data = data;
 | 
						|
 | 
						|
	list_insert_tail(&tx->tx_callbacks, dcb);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Call all the commit callbacks on a list, with a given error code.
 | 
						|
 */
 | 
						|
void
 | 
						|
dmu_tx_do_callbacks(list_t *cb_list, int error)
 | 
						|
{
 | 
						|
	dmu_tx_callback_t *dcb;
 | 
						|
 | 
						|
	while ((dcb = list_head(cb_list))) {
 | 
						|
		list_remove(cb_list, dcb);
 | 
						|
		dcb->dcb_func(dcb->dcb_data, error);
 | 
						|
		kmem_free(dcb, sizeof (dmu_tx_callback_t));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Interface to hold a bunch of attributes.
 | 
						|
 * used for creating new files.
 | 
						|
 * attrsize is the total size of all attributes
 | 
						|
 * to be added during object creation
 | 
						|
 *
 | 
						|
 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * hold necessary attribute name for attribute registration.
 | 
						|
 * should be a very rare case where this is needed.  If it does
 | 
						|
 * happen it would only happen on the first write to the file system.
 | 
						|
 */
 | 
						|
static void
 | 
						|
dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!sa->sa_need_attr_registration)
 | 
						|
		return;
 | 
						|
 | 
						|
	for (i = 0; i != sa->sa_num_attrs; i++) {
 | 
						|
		if (!sa->sa_attr_table[i].sa_registered) {
 | 
						|
			if (sa->sa_reg_attr_obj)
 | 
						|
				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
 | 
						|
				    B_TRUE, sa->sa_attr_table[i].sa_name);
 | 
						|
			else
 | 
						|
				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
 | 
						|
				    B_TRUE, sa->sa_attr_table[i].sa_name);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	dmu_tx_hold_t *txh;
 | 
						|
 | 
						|
	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
 | 
						|
	    THT_SPILL, 0, 0);
 | 
						|
	if (txh == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	dn = txh->txh_dnode;
 | 
						|
 | 
						|
	if (dn == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* If blkptr doesn't exist then add space to towrite */
 | 
						|
	if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
 | 
						|
		txh->txh_space_towrite += SPA_OLD_MAXBLOCKSIZE;
 | 
						|
	} else {
 | 
						|
		blkptr_t *bp;
 | 
						|
 | 
						|
		bp = &dn->dn_phys->dn_spill;
 | 
						|
		if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
 | 
						|
		    bp, bp->blk_birth))
 | 
						|
			txh->txh_space_tooverwrite += SPA_OLD_MAXBLOCKSIZE;
 | 
						|
		else
 | 
						|
			txh->txh_space_towrite += SPA_OLD_MAXBLOCKSIZE;
 | 
						|
		if (!BP_IS_HOLE(bp))
 | 
						|
			txh->txh_space_tounref += SPA_OLD_MAXBLOCKSIZE;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
 | 
						|
{
 | 
						|
	sa_os_t *sa = tx->tx_objset->os_sa;
 | 
						|
 | 
						|
	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
 | 
						|
 | 
						|
	if (tx->tx_objset->os_sa->sa_master_obj == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (tx->tx_objset->os_sa->sa_layout_attr_obj)
 | 
						|
		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
 | 
						|
	else {
 | 
						|
		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
 | 
						|
		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
 | 
						|
		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
 | 
						|
		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
 | 
						|
	}
 | 
						|
 | 
						|
	dmu_tx_sa_registration_hold(sa, tx);
 | 
						|
 | 
						|
	if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill)
 | 
						|
		return;
 | 
						|
 | 
						|
	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
 | 
						|
	    THT_SPILL, 0, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Hold SA attribute
 | 
						|
 *
 | 
						|
 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
 | 
						|
 *
 | 
						|
 * variable_size is the total size of all variable sized attributes
 | 
						|
 * passed to this function.  It is not the total size of all
 | 
						|
 * variable size attributes that *may* exist on this object.
 | 
						|
 */
 | 
						|
void
 | 
						|
dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
 | 
						|
{
 | 
						|
	uint64_t object;
 | 
						|
	sa_os_t *sa = tx->tx_objset->os_sa;
 | 
						|
 | 
						|
	ASSERT(hdl != NULL);
 | 
						|
 | 
						|
	object = sa_handle_object(hdl);
 | 
						|
 | 
						|
	dmu_tx_hold_bonus(tx, object);
 | 
						|
 | 
						|
	if (tx->tx_objset->os_sa->sa_master_obj == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
 | 
						|
	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
 | 
						|
		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
 | 
						|
		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
 | 
						|
		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
 | 
						|
		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
 | 
						|
	}
 | 
						|
 | 
						|
	dmu_tx_sa_registration_hold(sa, tx);
 | 
						|
 | 
						|
	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
 | 
						|
		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
 | 
						|
 | 
						|
	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
 | 
						|
		ASSERT(tx->tx_txg == 0);
 | 
						|
		dmu_tx_hold_spill(tx, object);
 | 
						|
	} else {
 | 
						|
		dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
 | 
						|
		dnode_t *dn;
 | 
						|
 | 
						|
		DB_DNODE_ENTER(db);
 | 
						|
		dn = DB_DNODE(db);
 | 
						|
		if (dn->dn_have_spill) {
 | 
						|
			ASSERT(tx->tx_txg == 0);
 | 
						|
			dmu_tx_hold_spill(tx, object);
 | 
						|
		}
 | 
						|
		DB_DNODE_EXIT(db);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_init(void)
 | 
						|
{
 | 
						|
	dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
 | 
						|
	    KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
 | 
						|
	    KSTAT_FLAG_VIRTUAL);
 | 
						|
 | 
						|
	if (dmu_tx_ksp != NULL) {
 | 
						|
		dmu_tx_ksp->ks_data = &dmu_tx_stats;
 | 
						|
		kstat_install(dmu_tx_ksp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_tx_fini(void)
 | 
						|
{
 | 
						|
	if (dmu_tx_ksp != NULL) {
 | 
						|
		kstat_delete(dmu_tx_ksp);
 | 
						|
		dmu_tx_ksp = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#if defined(_KERNEL) && defined(HAVE_SPL)
 | 
						|
EXPORT_SYMBOL(dmu_tx_create);
 | 
						|
EXPORT_SYMBOL(dmu_tx_hold_write);
 | 
						|
EXPORT_SYMBOL(dmu_tx_hold_free);
 | 
						|
EXPORT_SYMBOL(dmu_tx_hold_zap);
 | 
						|
EXPORT_SYMBOL(dmu_tx_hold_bonus);
 | 
						|
EXPORT_SYMBOL(dmu_tx_abort);
 | 
						|
EXPORT_SYMBOL(dmu_tx_assign);
 | 
						|
EXPORT_SYMBOL(dmu_tx_wait);
 | 
						|
EXPORT_SYMBOL(dmu_tx_commit);
 | 
						|
EXPORT_SYMBOL(dmu_tx_get_txg);
 | 
						|
EXPORT_SYMBOL(dmu_tx_callback_register);
 | 
						|
EXPORT_SYMBOL(dmu_tx_do_callbacks);
 | 
						|
EXPORT_SYMBOL(dmu_tx_hold_spill);
 | 
						|
EXPORT_SYMBOL(dmu_tx_hold_sa_create);
 | 
						|
EXPORT_SYMBOL(dmu_tx_hold_sa);
 | 
						|
#endif
 |