mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 20:33:04 +00:00 
			
		
		
		
	 7ada752a93
			
		
	
	
		7ada752a93
		
	
	
	
	
		
			
			69 CSTYLED BEGINs remain, appx. 30 of which can be removed if cstyle(1) had a useful policy regarding CALL(ARG1, ARG2, ARG3); above 2 lines. As it stands, it spits out *both* sysctl_os.c: 385: continuation line should be indented by 4 spaces sysctl_os.c: 385: indent by spaces instead of tabs which is very cool Another >10 could be fixed by removing "ulong" &al. handling. I don't foresee anyone actually using it intentionally (does it even exist in modern headers? why did it in the first place?). Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Closes #12993
		
			
				
	
	
		
			632 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			632 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
 | |
|  *  Copyright (C) 2007 The Regents of the University of California.
 | |
|  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 | |
|  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
 | |
|  *  UCRL-CODE-235197
 | |
|  *
 | |
|  *  This file is part of the SPL, Solaris Porting Layer.
 | |
|  *
 | |
|  *  The SPL is free software; you can redistribute it and/or modify it
 | |
|  *  under the terms of the GNU General Public License as published by the
 | |
|  *  Free Software Foundation; either version 2 of the License, or (at your
 | |
|  *  option) any later version.
 | |
|  *
 | |
|  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
 | |
|  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | |
|  *  for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License along
 | |
|  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include <sys/debug.h>
 | |
| #include <sys/sysmacros.h>
 | |
| #include <sys/kmem.h>
 | |
| #include <sys/vmem.h>
 | |
| 
 | |
| /* BEGIN CSTYLED */
 | |
| /*
 | |
|  * As a general rule kmem_alloc() allocations should be small, preferably
 | |
|  * just a few pages since they must by physically contiguous.  Therefore, a
 | |
|  * rate limited warning will be printed to the console for any kmem_alloc()
 | |
|  * which exceeds a reasonable threshold.
 | |
|  *
 | |
|  * The default warning threshold is set to sixteen pages but capped at 64K to
 | |
|  * accommodate systems using large pages.  This value was selected to be small
 | |
|  * enough to ensure the largest allocations are quickly noticed and fixed.
 | |
|  * But large enough to avoid logging any warnings when a allocation size is
 | |
|  * larger than optimal but not a serious concern.  Since this value is tunable,
 | |
|  * developers are encouraged to set it lower when testing so any new largish
 | |
|  * allocations are quickly caught.  These warnings may be disabled by setting
 | |
|  * the threshold to zero.
 | |
|  */
 | |
| unsigned int spl_kmem_alloc_warn = MIN(16 * PAGE_SIZE, 64 * 1024);
 | |
| module_param(spl_kmem_alloc_warn, uint, 0644);
 | |
| MODULE_PARM_DESC(spl_kmem_alloc_warn,
 | |
| 	"Warning threshold in bytes for a kmem_alloc()");
 | |
| EXPORT_SYMBOL(spl_kmem_alloc_warn);
 | |
| 
 | |
| /*
 | |
|  * Large kmem_alloc() allocations will fail if they exceed KMALLOC_MAX_SIZE.
 | |
|  * Allocations which are marginally smaller than this limit may succeed but
 | |
|  * should still be avoided due to the expense of locating a contiguous range
 | |
|  * of free pages.  Therefore, a maximum kmem size with reasonable safely
 | |
|  * margin of 4x is set.  Kmem_alloc() allocations larger than this maximum
 | |
|  * will quickly fail.  Vmem_alloc() allocations less than or equal to this
 | |
|  * value will use kmalloc(), but shift to vmalloc() when exceeding this value.
 | |
|  */
 | |
| unsigned int spl_kmem_alloc_max = (KMALLOC_MAX_SIZE >> 2);
 | |
| module_param(spl_kmem_alloc_max, uint, 0644);
 | |
| MODULE_PARM_DESC(spl_kmem_alloc_max,
 | |
| 	"Maximum size in bytes for a kmem_alloc()");
 | |
| EXPORT_SYMBOL(spl_kmem_alloc_max);
 | |
| /* END CSTYLED */
 | |
| 
 | |
| int
 | |
| kmem_debugging(void)
 | |
| {
 | |
| 	return (0);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_debugging);
 | |
| 
 | |
| char *
 | |
| kmem_vasprintf(const char *fmt, va_list ap)
 | |
| {
 | |
| 	va_list aq;
 | |
| 	char *ptr;
 | |
| 
 | |
| 	do {
 | |
| 		va_copy(aq, ap);
 | |
| 		ptr = kvasprintf(kmem_flags_convert(KM_SLEEP), fmt, aq);
 | |
| 		va_end(aq);
 | |
| 	} while (ptr == NULL);
 | |
| 
 | |
| 	return (ptr);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_vasprintf);
 | |
| 
 | |
| char *
 | |
| kmem_asprintf(const char *fmt, ...)
 | |
| {
 | |
| 	va_list ap;
 | |
| 	char *ptr;
 | |
| 
 | |
| 	do {
 | |
| 		va_start(ap, fmt);
 | |
| 		ptr = kvasprintf(kmem_flags_convert(KM_SLEEP), fmt, ap);
 | |
| 		va_end(ap);
 | |
| 	} while (ptr == NULL);
 | |
| 
 | |
| 	return (ptr);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_asprintf);
 | |
| 
 | |
| static char *
 | |
| __strdup(const char *str, int flags)
 | |
| {
 | |
| 	char *ptr;
 | |
| 	int n;
 | |
| 
 | |
| 	n = strlen(str);
 | |
| 	ptr = kmalloc(n + 1, kmem_flags_convert(flags));
 | |
| 	if (ptr)
 | |
| 		memcpy(ptr, str, n + 1);
 | |
| 
 | |
| 	return (ptr);
 | |
| }
 | |
| 
 | |
| char *
 | |
| kmem_strdup(const char *str)
 | |
| {
 | |
| 	return (__strdup(str, KM_SLEEP));
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_strdup);
 | |
| 
 | |
| void
 | |
| kmem_strfree(char *str)
 | |
| {
 | |
| 	kfree(str);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_strfree);
 | |
| 
 | |
| void *
 | |
| spl_kvmalloc(size_t size, gfp_t lflags)
 | |
| {
 | |
| #ifdef HAVE_KVMALLOC
 | |
| 	/*
 | |
| 	 * GFP_KERNEL allocations can safely use kvmalloc which may
 | |
| 	 * improve performance by avoiding a) high latency caused by
 | |
| 	 * vmalloc's on-access allocation, b) performance loss due to
 | |
| 	 * MMU memory address mapping and c) vmalloc locking overhead.
 | |
| 	 * This has the side-effect that the slab statistics will
 | |
| 	 * incorrectly report this as a vmem allocation, but that is
 | |
| 	 * purely cosmetic.
 | |
| 	 */
 | |
| 	if ((lflags & GFP_KERNEL) == GFP_KERNEL)
 | |
| 		return (kvmalloc(size, lflags));
 | |
| #endif
 | |
| 
 | |
| 	gfp_t kmalloc_lflags = lflags;
 | |
| 
 | |
| 	if (size > PAGE_SIZE) {
 | |
| 		/*
 | |
| 		 * We need to set __GFP_NOWARN here since spl_kvmalloc is not
 | |
| 		 * only called by spl_kmem_alloc_impl but can be called
 | |
| 		 * directly with custom lflags, too. In that case
 | |
| 		 * kmem_flags_convert does not get called, which would
 | |
| 		 * implicitly set __GFP_NOWARN.
 | |
| 		 */
 | |
| 		kmalloc_lflags |= __GFP_NOWARN;
 | |
| 
 | |
| 		/*
 | |
| 		 * N.B. __GFP_RETRY_MAYFAIL is supported only for large
 | |
| 		 * e (>32kB) allocations.
 | |
| 		 *
 | |
| 		 * We have to override __GFP_RETRY_MAYFAIL by __GFP_NORETRY
 | |
| 		 * for !costly requests because there is no other way to tell
 | |
| 		 * the allocator that we want to fail rather than retry
 | |
| 		 * endlessly.
 | |
| 		 */
 | |
| 		if (!(kmalloc_lflags & __GFP_RETRY_MAYFAIL) ||
 | |
| 		    (size <= PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
 | |
| 			kmalloc_lflags |= __GFP_NORETRY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We first try kmalloc - even for big sizes - and fall back to
 | |
| 	 * spl_vmalloc if that fails.
 | |
| 	 *
 | |
| 	 * For non-__GFP-RECLAIM allocations we always stick to
 | |
| 	 * kmalloc_node, and fail when kmalloc is not successful (returns
 | |
| 	 * NULL).
 | |
| 	 * We cannot fall back to spl_vmalloc in this case because spl_vmalloc
 | |
| 	 * internally uses GPF_KERNEL allocations.
 | |
| 	 */
 | |
| 	void *ptr = kmalloc_node(size, kmalloc_lflags, NUMA_NO_NODE);
 | |
| 	if (ptr || size <= PAGE_SIZE ||
 | |
| 	    (lflags & __GFP_RECLAIM) != __GFP_RECLAIM) {
 | |
| 		return (ptr);
 | |
| 	}
 | |
| 
 | |
| 	return (spl_vmalloc(size, lflags | __GFP_HIGHMEM));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * General purpose unified implementation of kmem_alloc(). It is an
 | |
|  * amalgamation of Linux and Illumos allocator design. It should never be
 | |
|  * exported to ensure that code using kmem_alloc()/kmem_zalloc() remains
 | |
|  * relatively portable.  Consumers may only access this function through
 | |
|  * wrappers that enforce the common flags to ensure portability.
 | |
|  */
 | |
| inline void *
 | |
| spl_kmem_alloc_impl(size_t size, int flags, int node)
 | |
| {
 | |
| 	gfp_t lflags = kmem_flags_convert(flags);
 | |
| 	void *ptr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Log abnormally large allocations and rate limit the console output.
 | |
| 	 * Allocations larger than spl_kmem_alloc_warn should be performed
 | |
| 	 * through the vmem_alloc()/vmem_zalloc() interfaces.
 | |
| 	 */
 | |
| 	if ((spl_kmem_alloc_warn > 0) && (size > spl_kmem_alloc_warn) &&
 | |
| 	    !(flags & KM_VMEM)) {
 | |
| 		printk(KERN_WARNING
 | |
| 		    "Large kmem_alloc(%lu, 0x%x), please file an issue at:\n"
 | |
| 		    "https://github.com/openzfs/zfs/issues/new\n",
 | |
| 		    (unsigned long)size, flags);
 | |
| 		dump_stack();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use a loop because kmalloc_node() can fail when GFP_KERNEL is used
 | |
| 	 * unlike kmem_alloc() with KM_SLEEP on Illumos.
 | |
| 	 */
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * Calling kmalloc_node() when the size >= spl_kmem_alloc_max
 | |
| 		 * is unsafe.  This must fail for all for kmem_alloc() and
 | |
| 		 * kmem_zalloc() callers.
 | |
| 		 *
 | |
| 		 * For vmem_alloc() and vmem_zalloc() callers it is permissible
 | |
| 		 * to use spl_vmalloc().  However, in general use of
 | |
| 		 * spl_vmalloc() is strongly discouraged because a global lock
 | |
| 		 * must be acquired.  Contention on this lock can significantly
 | |
| 		 * impact performance so frequently manipulating the virtual
 | |
| 		 * address space is strongly discouraged.
 | |
| 		 */
 | |
| 		if (size > spl_kmem_alloc_max) {
 | |
| 			if (flags & KM_VMEM) {
 | |
| 				ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
 | |
| 			} else {
 | |
| 				return (NULL);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * We use kmalloc when doing kmem_alloc(KM_NOSLEEP),
 | |
| 			 * because kvmalloc/vmalloc may sleep.  We also use
 | |
| 			 * kmalloc on systems with limited kernel VA space (e.g.
 | |
| 			 * 32-bit), which have HIGHMEM.  Otherwise we use
 | |
| 			 * kvmalloc, which tries to get contiguous physical
 | |
| 			 * memory (fast, like kmalloc) and falls back on using
 | |
| 			 * virtual memory to stitch together pages (slow, like
 | |
| 			 * vmalloc).
 | |
| 			 */
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 			if (flags & KM_VMEM) {
 | |
| #else
 | |
| 			if ((flags & KM_VMEM) || !(flags & KM_NOSLEEP)) {
 | |
| #endif
 | |
| 				ptr = spl_kvmalloc(size, lflags);
 | |
| 			} else {
 | |
| 				ptr = kmalloc_node(size, lflags, node);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (likely(ptr) || (flags & KM_NOSLEEP))
 | |
| 			return (ptr);
 | |
| 
 | |
| 		/*
 | |
| 		 * Try hard to satisfy the allocation. However, when progress
 | |
| 		 * cannot be made, the allocation is allowed to fail.
 | |
| 		 */
 | |
| 		if ((lflags & GFP_KERNEL) == GFP_KERNEL)
 | |
| 			lflags |= __GFP_RETRY_MAYFAIL;
 | |
| 
 | |
| 		/*
 | |
| 		 * Use cond_resched() instead of congestion_wait() to avoid
 | |
| 		 * deadlocking systems where there are no block devices.
 | |
| 		 */
 | |
| 		cond_resched();
 | |
| 	} while (1);
 | |
| 
 | |
| 	return (NULL);
 | |
| }
 | |
| 
 | |
| inline void
 | |
| spl_kmem_free_impl(const void *buf, size_t size)
 | |
| {
 | |
| 	if (is_vmalloc_addr(buf))
 | |
| 		vfree(buf);
 | |
| 	else
 | |
| 		kfree(buf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Memory allocation and accounting for kmem_* * style allocations.  When
 | |
|  * DEBUG_KMEM is enabled the total memory allocated will be tracked and
 | |
|  * any memory leaked will be reported during module unload.
 | |
|  *
 | |
|  * ./configure --enable-debug-kmem
 | |
|  */
 | |
| #ifdef DEBUG_KMEM
 | |
| 
 | |
| /* Shim layer memory accounting */
 | |
| #ifdef HAVE_ATOMIC64_T
 | |
| atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
 | |
| unsigned long long kmem_alloc_max = 0;
 | |
| #else  /* HAVE_ATOMIC64_T */
 | |
| atomic_t kmem_alloc_used = ATOMIC_INIT(0);
 | |
| unsigned long long kmem_alloc_max = 0;
 | |
| #endif /* HAVE_ATOMIC64_T */
 | |
| 
 | |
| EXPORT_SYMBOL(kmem_alloc_used);
 | |
| EXPORT_SYMBOL(kmem_alloc_max);
 | |
| 
 | |
| inline void *
 | |
| spl_kmem_alloc_debug(size_t size, int flags, int node)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	ptr = spl_kmem_alloc_impl(size, flags, node);
 | |
| 	if (ptr) {
 | |
| 		kmem_alloc_used_add(size);
 | |
| 		if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
 | |
| 			kmem_alloc_max = kmem_alloc_used_read();
 | |
| 	}
 | |
| 
 | |
| 	return (ptr);
 | |
| }
 | |
| 
 | |
| inline void
 | |
| spl_kmem_free_debug(const void *ptr, size_t size)
 | |
| {
 | |
| 	kmem_alloc_used_sub(size);
 | |
| 	spl_kmem_free_impl(ptr, size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
 | |
|  * but also the location of every alloc and free.  When the SPL module is
 | |
|  * unloaded a list of all leaked addresses and where they were allocated
 | |
|  * will be dumped to the console.  Enabling this feature has a significant
 | |
|  * impact on performance but it makes finding memory leaks straight forward.
 | |
|  *
 | |
|  * Not surprisingly with debugging enabled the xmem_locks are very highly
 | |
|  * contended particularly on xfree().  If we want to run with this detailed
 | |
|  * debugging enabled for anything other than debugging  we need to minimize
 | |
|  * the contention by moving to a lock per xmem_table entry model.
 | |
|  *
 | |
|  * ./configure --enable-debug-kmem-tracking
 | |
|  */
 | |
| #ifdef DEBUG_KMEM_TRACKING
 | |
| 
 | |
| #include <linux/hash.h>
 | |
| #include <linux/ctype.h>
 | |
| 
 | |
| #define	KMEM_HASH_BITS		10
 | |
| #define	KMEM_TABLE_SIZE		(1 << KMEM_HASH_BITS)
 | |
| 
 | |
| typedef struct kmem_debug {
 | |
| 	struct hlist_node kd_hlist;	/* Hash node linkage */
 | |
| 	struct list_head kd_list;	/* List of all allocations */
 | |
| 	void *kd_addr;			/* Allocation pointer */
 | |
| 	size_t kd_size;			/* Allocation size */
 | |
| 	const char *kd_func;		/* Allocation function */
 | |
| 	int kd_line;			/* Allocation line */
 | |
| } kmem_debug_t;
 | |
| 
 | |
| static spinlock_t kmem_lock;
 | |
| static struct hlist_head kmem_table[KMEM_TABLE_SIZE];
 | |
| static struct list_head kmem_list;
 | |
| 
 | |
| static kmem_debug_t *
 | |
| kmem_del_init(spinlock_t *lock, struct hlist_head *table,
 | |
|     int bits, const void *addr)
 | |
| {
 | |
| 	struct hlist_head *head;
 | |
| 	struct hlist_node *node = NULL;
 | |
| 	struct kmem_debug *p;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(lock, flags);
 | |
| 
 | |
| 	head = &table[hash_ptr((void *)addr, bits)];
 | |
| 	hlist_for_each(node, head) {
 | |
| 		p = list_entry(node, struct kmem_debug, kd_hlist);
 | |
| 		if (p->kd_addr == addr) {
 | |
| 			hlist_del_init(&p->kd_hlist);
 | |
| 			list_del_init(&p->kd_list);
 | |
| 			spin_unlock_irqrestore(lock, flags);
 | |
| 			return (p);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(lock, flags);
 | |
| 
 | |
| 	return (NULL);
 | |
| }
 | |
| 
 | |
| inline void *
 | |
| spl_kmem_alloc_track(size_t size, int flags,
 | |
|     const char *func, int line, int node)
 | |
| {
 | |
| 	void *ptr = NULL;
 | |
| 	kmem_debug_t *dptr;
 | |
| 	unsigned long irq_flags;
 | |
| 
 | |
| 	dptr = kmalloc(sizeof (kmem_debug_t), kmem_flags_convert(flags));
 | |
| 	if (dptr == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	dptr->kd_func = __strdup(func, flags);
 | |
| 	if (dptr->kd_func == NULL) {
 | |
| 		kfree(dptr);
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	ptr = spl_kmem_alloc_debug(size, flags, node);
 | |
| 	if (ptr == NULL) {
 | |
| 		kfree(dptr->kd_func);
 | |
| 		kfree(dptr);
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	INIT_HLIST_NODE(&dptr->kd_hlist);
 | |
| 	INIT_LIST_HEAD(&dptr->kd_list);
 | |
| 
 | |
| 	dptr->kd_addr = ptr;
 | |
| 	dptr->kd_size = size;
 | |
| 	dptr->kd_line = line;
 | |
| 
 | |
| 	spin_lock_irqsave(&kmem_lock, irq_flags);
 | |
| 	hlist_add_head(&dptr->kd_hlist,
 | |
| 	    &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
 | |
| 	list_add_tail(&dptr->kd_list, &kmem_list);
 | |
| 	spin_unlock_irqrestore(&kmem_lock, irq_flags);
 | |
| 
 | |
| 	return (ptr);
 | |
| }
 | |
| 
 | |
| inline void
 | |
| spl_kmem_free_track(const void *ptr, size_t size)
 | |
| {
 | |
| 	kmem_debug_t *dptr;
 | |
| 
 | |
| 	/* Ignore NULL pointer since we haven't tracked it at all */
 | |
| 	if (ptr == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	/* Must exist in hash due to kmem_alloc() */
 | |
| 	dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
 | |
| 	ASSERT3P(dptr, !=, NULL);
 | |
| 	ASSERT3S(dptr->kd_size, ==, size);
 | |
| 
 | |
| 	kfree(dptr->kd_func);
 | |
| 	kfree(dptr);
 | |
| 
 | |
| 	spl_kmem_free_debug(ptr, size);
 | |
| }
 | |
| #endif /* DEBUG_KMEM_TRACKING */
 | |
| #endif /* DEBUG_KMEM */
 | |
| 
 | |
| /*
 | |
|  * Public kmem_alloc(), kmem_zalloc() and kmem_free() interfaces.
 | |
|  */
 | |
| void *
 | |
| spl_kmem_alloc(size_t size, int flags, const char *func, int line)
 | |
| {
 | |
| 	ASSERT0(flags & ~KM_PUBLIC_MASK);
 | |
| 
 | |
| #if !defined(DEBUG_KMEM)
 | |
| 	return (spl_kmem_alloc_impl(size, flags, NUMA_NO_NODE));
 | |
| #elif !defined(DEBUG_KMEM_TRACKING)
 | |
| 	return (spl_kmem_alloc_debug(size, flags, NUMA_NO_NODE));
 | |
| #else
 | |
| 	return (spl_kmem_alloc_track(size, flags, func, line, NUMA_NO_NODE));
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(spl_kmem_alloc);
 | |
| 
 | |
| void *
 | |
| spl_kmem_zalloc(size_t size, int flags, const char *func, int line)
 | |
| {
 | |
| 	ASSERT0(flags & ~KM_PUBLIC_MASK);
 | |
| 
 | |
| 	flags |= KM_ZERO;
 | |
| 
 | |
| #if !defined(DEBUG_KMEM)
 | |
| 	return (spl_kmem_alloc_impl(size, flags, NUMA_NO_NODE));
 | |
| #elif !defined(DEBUG_KMEM_TRACKING)
 | |
| 	return (spl_kmem_alloc_debug(size, flags, NUMA_NO_NODE));
 | |
| #else
 | |
| 	return (spl_kmem_alloc_track(size, flags, func, line, NUMA_NO_NODE));
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(spl_kmem_zalloc);
 | |
| 
 | |
| void
 | |
| spl_kmem_free(const void *buf, size_t size)
 | |
| {
 | |
| #if !defined(DEBUG_KMEM)
 | |
| 	return (spl_kmem_free_impl(buf, size));
 | |
| #elif !defined(DEBUG_KMEM_TRACKING)
 | |
| 	return (spl_kmem_free_debug(buf, size));
 | |
| #else
 | |
| 	return (spl_kmem_free_track(buf, size));
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(spl_kmem_free);
 | |
| 
 | |
| #if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
 | |
| static char *
 | |
| spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
 | |
| {
 | |
| 	int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
 | |
| 	int i, flag = 1;
 | |
| 
 | |
| 	ASSERT(str != NULL && len >= 17);
 | |
| 	memset(str, 0, len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for a fully printable string, and while we are at
 | |
| 	 * it place the printable characters in the passed buffer.
 | |
| 	 */
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		str[i] = ((char *)(kd->kd_addr))[i];
 | |
| 		if (isprint(str[i])) {
 | |
| 			continue;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Minimum number of printable characters found
 | |
| 			 * to make it worthwhile to print this as ascii.
 | |
| 			 */
 | |
| 			if (i > min)
 | |
| 				break;
 | |
| 
 | |
| 			flag = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!flag) {
 | |
| 		sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
 | |
| 		    *((uint8_t *)kd->kd_addr),
 | |
| 		    *((uint8_t *)kd->kd_addr + 2),
 | |
| 		    *((uint8_t *)kd->kd_addr + 4),
 | |
| 		    *((uint8_t *)kd->kd_addr + 6),
 | |
| 		    *((uint8_t *)kd->kd_addr + 8),
 | |
| 		    *((uint8_t *)kd->kd_addr + 10),
 | |
| 		    *((uint8_t *)kd->kd_addr + 12),
 | |
| 		    *((uint8_t *)kd->kd_addr + 14));
 | |
| 	}
 | |
| 
 | |
| 	return (str);
 | |
| }
 | |
| 
 | |
| static int
 | |
| spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_init(lock);
 | |
| 	INIT_LIST_HEAD(list);
 | |
| 
 | |
| 	for (i = 0; i < size; i++)
 | |
| 		INIT_HLIST_HEAD(&kmem_table[i]);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	kmem_debug_t *kd = NULL;
 | |
| 	char str[17];
 | |
| 
 | |
| 	spin_lock_irqsave(lock, flags);
 | |
| 	if (!list_empty(list))
 | |
| 		printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
 | |
| 		    "size", "data", "func", "line");
 | |
| 
 | |
| 	list_for_each_entry(kd, list, kd_list) {
 | |
| 		printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
 | |
| 		    (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
 | |
| 		    kd->kd_func, kd->kd_line);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(lock, flags);
 | |
| }
 | |
| #endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
 | |
| 
 | |
| int
 | |
| spl_kmem_init(void)
 | |
| {
 | |
| 
 | |
| #ifdef DEBUG_KMEM
 | |
| 	kmem_alloc_used_set(0);
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifdef DEBUG_KMEM_TRACKING
 | |
| 	spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
 | |
| #endif /* DEBUG_KMEM_TRACKING */
 | |
| #endif /* DEBUG_KMEM */
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| void
 | |
| spl_kmem_fini(void)
 | |
| {
 | |
| #ifdef DEBUG_KMEM
 | |
| 	/*
 | |
| 	 * Display all unreclaimed memory addresses, including the
 | |
| 	 * allocation size and the first few bytes of what's located
 | |
| 	 * at that address to aid in debugging.  Performance is not
 | |
| 	 * a serious concern here since it is module unload time.
 | |
| 	 */
 | |
| 	if (kmem_alloc_used_read() != 0)
 | |
| 		printk(KERN_WARNING "kmem leaked %ld/%llu bytes\n",
 | |
| 		    (unsigned long)kmem_alloc_used_read(), kmem_alloc_max);
 | |
| 
 | |
| #ifdef DEBUG_KMEM_TRACKING
 | |
| 	spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
 | |
| #endif /* DEBUG_KMEM_TRACKING */
 | |
| #endif /* DEBUG_KMEM */
 | |
| }
 |