mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-11-04 11:08:14 +00:00 
			
		
		
		
	ZFS_READONLY represents the "DOS R/O" attribute. When that flag is set, we should behave as if write access were not granted by anything in the ACL. In particular: We _must_ allow writes after opening the file r/w, then setting the DOS R/O attribute, and writing some more. (Similar to how you can write after fchmod(fd, 0444).) Restore these semantics which were lost on FreeBSD when refactoring zfs_write. To my knowledge Linux does not actually expose this flag, but we'll need it to eventually so I've added the supporting checks. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ryan Moeller <ryan@iXsystems.com> Closes #11693
		
			
				
	
	
		
			900 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			900 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * CDDL HEADER START
 | 
						|
 *
 | 
						|
 * The contents of this file are subject to the terms of the
 | 
						|
 * Common Development and Distribution License (the "License").
 | 
						|
 * You may not use this file except in compliance with the License.
 | 
						|
 *
 | 
						|
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | 
						|
 * or http://www.opensolaris.org/os/licensing.
 | 
						|
 * See the License for the specific language governing permissions
 | 
						|
 * and limitations under the License.
 | 
						|
 *
 | 
						|
 * When distributing Covered Code, include this CDDL HEADER in each
 | 
						|
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | 
						|
 * If applicable, add the following below this CDDL HEADER, with the
 | 
						|
 * fields enclosed by brackets "[]" replaced with your own identifying
 | 
						|
 * information: Portions Copyright [yyyy] [name of copyright owner]
 | 
						|
 *
 | 
						|
 * CDDL HEADER END
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | 
						|
 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
 | 
						|
 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
 | 
						|
 * Copyright 2017 Nexenta Systems, Inc.
 | 
						|
 */
 | 
						|
 | 
						|
/* Portions Copyright 2007 Jeremy Teo */
 | 
						|
/* Portions Copyright 2010 Robert Milkowski */
 | 
						|
 | 
						|
#include <sys/types.h>
 | 
						|
#include <sys/param.h>
 | 
						|
#include <sys/time.h>
 | 
						|
#include <sys/sysmacros.h>
 | 
						|
#include <sys/vfs.h>
 | 
						|
#include <sys/uio_impl.h>
 | 
						|
#include <sys/file.h>
 | 
						|
#include <sys/stat.h>
 | 
						|
#include <sys/kmem.h>
 | 
						|
#include <sys/cmn_err.h>
 | 
						|
#include <sys/errno.h>
 | 
						|
#include <sys/zfs_dir.h>
 | 
						|
#include <sys/zfs_acl.h>
 | 
						|
#include <sys/zfs_ioctl.h>
 | 
						|
#include <sys/fs/zfs.h>
 | 
						|
#include <sys/dmu.h>
 | 
						|
#include <sys/dmu_objset.h>
 | 
						|
#include <sys/spa.h>
 | 
						|
#include <sys/txg.h>
 | 
						|
#include <sys/dbuf.h>
 | 
						|
#include <sys/policy.h>
 | 
						|
#include <sys/zfs_vnops.h>
 | 
						|
#include <sys/zfs_quota.h>
 | 
						|
#include <sys/zfs_vfsops.h>
 | 
						|
#include <sys/zfs_znode.h>
 | 
						|
 | 
						|
 | 
						|
static ulong_t zfs_fsync_sync_cnt = 4;
 | 
						|
 | 
						|
int
 | 
						|
zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | 
						|
 | 
						|
	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
 | 
						|
 | 
						|
	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
 | 
						|
		ZFS_ENTER(zfsvfs);
 | 
						|
		ZFS_VERIFY_ZP(zp);
 | 
						|
		zil_commit(zfsvfs->z_log, zp->z_id);
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
	}
 | 
						|
	tsd_set(zfs_fsyncer_key, NULL);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#if defined(SEEK_HOLE) && defined(SEEK_DATA)
 | 
						|
/*
 | 
						|
 * Lseek support for finding holes (cmd == SEEK_HOLE) and
 | 
						|
 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
 | 
						|
 */
 | 
						|
static int
 | 
						|
zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
 | 
						|
{
 | 
						|
	uint64_t noff = (uint64_t)*off; /* new offset */
 | 
						|
	uint64_t file_sz;
 | 
						|
	int error;
 | 
						|
	boolean_t hole;
 | 
						|
 | 
						|
	file_sz = zp->z_size;
 | 
						|
	if (noff >= file_sz)  {
 | 
						|
		return (SET_ERROR(ENXIO));
 | 
						|
	}
 | 
						|
 | 
						|
	if (cmd == F_SEEK_HOLE)
 | 
						|
		hole = B_TRUE;
 | 
						|
	else
 | 
						|
		hole = B_FALSE;
 | 
						|
 | 
						|
	error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
 | 
						|
 | 
						|
	if (error == ESRCH)
 | 
						|
		return (SET_ERROR(ENXIO));
 | 
						|
 | 
						|
	/* file was dirty, so fall back to using generic logic */
 | 
						|
	if (error == EBUSY) {
 | 
						|
		if (hole)
 | 
						|
			*off = file_sz;
 | 
						|
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We could find a hole that begins after the logical end-of-file,
 | 
						|
	 * because dmu_offset_next() only works on whole blocks.  If the
 | 
						|
	 * EOF falls mid-block, then indicate that the "virtual hole"
 | 
						|
	 * at the end of the file begins at the logical EOF, rather than
 | 
						|
	 * at the end of the last block.
 | 
						|
	 */
 | 
						|
	if (noff > file_sz) {
 | 
						|
		ASSERT(hole);
 | 
						|
		noff = file_sz;
 | 
						|
	}
 | 
						|
 | 
						|
	if (noff < *off)
 | 
						|
		return (error);
 | 
						|
	*off = noff;
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | 
						|
	int error;
 | 
						|
 | 
						|
	ZFS_ENTER(zfsvfs);
 | 
						|
	ZFS_VERIFY_ZP(zp);
 | 
						|
 | 
						|
	error = zfs_holey_common(zp, cmd, off);
 | 
						|
 | 
						|
	ZFS_EXIT(zfsvfs);
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
#endif /* SEEK_HOLE && SEEK_DATA */
 | 
						|
 | 
						|
/*ARGSUSED*/
 | 
						|
int
 | 
						|
zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | 
						|
	int error;
 | 
						|
 | 
						|
	ZFS_ENTER(zfsvfs);
 | 
						|
	ZFS_VERIFY_ZP(zp);
 | 
						|
 | 
						|
	if (flag & V_ACE_MASK)
 | 
						|
		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
 | 
						|
	else
 | 
						|
		error = zfs_zaccess_rwx(zp, mode, flag, cr);
 | 
						|
 | 
						|
	ZFS_EXIT(zfsvfs);
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
 | 
						|
 | 
						|
/*
 | 
						|
 * Read bytes from specified file into supplied buffer.
 | 
						|
 *
 | 
						|
 *	IN:	zp	- inode of file to be read from.
 | 
						|
 *		uio	- structure supplying read location, range info,
 | 
						|
 *			  and return buffer.
 | 
						|
 *		ioflag	- O_SYNC flags; used to provide FRSYNC semantics.
 | 
						|
 *			  O_DIRECT flag; used to bypass page cache.
 | 
						|
 *		cr	- credentials of caller.
 | 
						|
 *
 | 
						|
 *	OUT:	uio	- updated offset and range, buffer filled.
 | 
						|
 *
 | 
						|
 *	RETURN:	0 on success, error code on failure.
 | 
						|
 *
 | 
						|
 * Side Effects:
 | 
						|
 *	inode - atime updated if byte count > 0
 | 
						|
 */
 | 
						|
/* ARGSUSED */
 | 
						|
int
 | 
						|
zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
 | 
						|
{
 | 
						|
	int error = 0;
 | 
						|
	boolean_t frsync = B_FALSE;
 | 
						|
 | 
						|
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | 
						|
	ZFS_ENTER(zfsvfs);
 | 
						|
	ZFS_VERIFY_ZP(zp);
 | 
						|
 | 
						|
	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (SET_ERROR(EACCES));
 | 
						|
	}
 | 
						|
 | 
						|
	/* We don't copy out anything useful for directories. */
 | 
						|
	if (Z_ISDIR(ZTOTYPE(zp))) {
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (SET_ERROR(EISDIR));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Validate file offset
 | 
						|
	 */
 | 
						|
	if (zfs_uio_offset(uio) < (offset_t)0) {
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (SET_ERROR(EINVAL));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Fasttrack empty reads
 | 
						|
	 */
 | 
						|
	if (zfs_uio_resid(uio) == 0) {
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef FRSYNC
 | 
						|
	/*
 | 
						|
	 * If we're in FRSYNC mode, sync out this znode before reading it.
 | 
						|
	 * Only do this for non-snapshots.
 | 
						|
	 *
 | 
						|
	 * Some platforms do not support FRSYNC and instead map it
 | 
						|
	 * to O_SYNC, which results in unnecessary calls to zil_commit. We
 | 
						|
	 * only honor FRSYNC requests on platforms which support it.
 | 
						|
	 */
 | 
						|
	frsync = !!(ioflag & FRSYNC);
 | 
						|
#endif
 | 
						|
	if (zfsvfs->z_log &&
 | 
						|
	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
 | 
						|
		zil_commit(zfsvfs->z_log, zp->z_id);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Lock the range against changes.
 | 
						|
	 */
 | 
						|
	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
 | 
						|
	    zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are reading past end-of-file we can skip
 | 
						|
	 * to the end; but we might still need to set atime.
 | 
						|
	 */
 | 
						|
	if (zfs_uio_offset(uio) >= zp->z_size) {
 | 
						|
		error = 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(zfs_uio_offset(uio) < zp->z_size);
 | 
						|
	ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
 | 
						|
	ssize_t start_resid = n;
 | 
						|
 | 
						|
	while (n > 0) {
 | 
						|
		ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
 | 
						|
		    P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
 | 
						|
#ifdef UIO_NOCOPY
 | 
						|
		if (zfs_uio_segflg(uio) == UIO_NOCOPY)
 | 
						|
			error = mappedread_sf(zp, nbytes, uio);
 | 
						|
		else
 | 
						|
#endif
 | 
						|
		if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) {
 | 
						|
			error = mappedread(zp, nbytes, uio);
 | 
						|
		} else {
 | 
						|
			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 | 
						|
			    uio, nbytes);
 | 
						|
		}
 | 
						|
 | 
						|
		if (error) {
 | 
						|
			/* convert checksum errors into IO errors */
 | 
						|
			if (error == ECKSUM)
 | 
						|
				error = SET_ERROR(EIO);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		n -= nbytes;
 | 
						|
	}
 | 
						|
 | 
						|
	int64_t nread = start_resid - n;
 | 
						|
	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
 | 
						|
	task_io_account_read(nread);
 | 
						|
out:
 | 
						|
	zfs_rangelock_exit(lr);
 | 
						|
 | 
						|
	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
 | 
						|
	ZFS_EXIT(zfsvfs);
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Write the bytes to a file.
 | 
						|
 *
 | 
						|
 *	IN:	zp	- znode of file to be written to.
 | 
						|
 *		uio	- structure supplying write location, range info,
 | 
						|
 *			  and data buffer.
 | 
						|
 *		ioflag	- O_APPEND flag set if in append mode.
 | 
						|
 *			  O_DIRECT flag; used to bypass page cache.
 | 
						|
 *		cr	- credentials of caller.
 | 
						|
 *
 | 
						|
 *	OUT:	uio	- updated offset and range.
 | 
						|
 *
 | 
						|
 *	RETURN:	0 if success
 | 
						|
 *		error code if failure
 | 
						|
 *
 | 
						|
 * Timestamps:
 | 
						|
 *	ip - ctime|mtime updated if byte count > 0
 | 
						|
 */
 | 
						|
 | 
						|
/* ARGSUSED */
 | 
						|
int
 | 
						|
zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
 | 
						|
{
 | 
						|
	int error = 0;
 | 
						|
	ssize_t start_resid = zfs_uio_resid(uio);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Fasttrack empty write
 | 
						|
	 */
 | 
						|
	ssize_t n = start_resid;
 | 
						|
	if (n == 0)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | 
						|
	ZFS_ENTER(zfsvfs);
 | 
						|
	ZFS_VERIFY_ZP(zp);
 | 
						|
 | 
						|
	sa_bulk_attr_t bulk[4];
 | 
						|
	int count = 0;
 | 
						|
	uint64_t mtime[2], ctime[2];
 | 
						|
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
 | 
						|
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
 | 
						|
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
 | 
						|
	    &zp->z_size, 8);
 | 
						|
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
 | 
						|
	    &zp->z_pflags, 8);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Callers might not be able to detect properly that we are read-only,
 | 
						|
	 * so check it explicitly here.
 | 
						|
	 */
 | 
						|
	if (zfs_is_readonly(zfsvfs)) {
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (SET_ERROR(EROFS));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If immutable or not appending then return EPERM.
 | 
						|
	 * Intentionally allow ZFS_READONLY through here.
 | 
						|
	 * See zfs_zaccess_common()
 | 
						|
	 */
 | 
						|
	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
 | 
						|
	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
 | 
						|
	    (zfs_uio_offset(uio) < zp->z_size))) {
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (SET_ERROR(EPERM));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Validate file offset
 | 
						|
	 */
 | 
						|
	offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
 | 
						|
	if (woff < 0) {
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (SET_ERROR(EINVAL));
 | 
						|
	}
 | 
						|
 | 
						|
	const uint64_t max_blksz = zfsvfs->z_max_blksz;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Pre-fault the pages to ensure slow (eg NFS) pages
 | 
						|
	 * don't hold up txg.
 | 
						|
	 * Skip this if uio contains loaned arc_buf.
 | 
						|
	 */
 | 
						|
	if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (SET_ERROR(EFAULT));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If in append mode, set the io offset pointer to eof.
 | 
						|
	 */
 | 
						|
	zfs_locked_range_t *lr;
 | 
						|
	if (ioflag & O_APPEND) {
 | 
						|
		/*
 | 
						|
		 * Obtain an appending range lock to guarantee file append
 | 
						|
		 * semantics.  We reset the write offset once we have the lock.
 | 
						|
		 */
 | 
						|
		lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
 | 
						|
		woff = lr->lr_offset;
 | 
						|
		if (lr->lr_length == UINT64_MAX) {
 | 
						|
			/*
 | 
						|
			 * We overlocked the file because this write will cause
 | 
						|
			 * the file block size to increase.
 | 
						|
			 * Note that zp_size cannot change with this lock held.
 | 
						|
			 */
 | 
						|
			woff = zp->z_size;
 | 
						|
		}
 | 
						|
		zfs_uio_setoffset(uio, woff);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Note that if the file block size will change as a result of
 | 
						|
		 * this write, then this range lock will lock the entire file
 | 
						|
		 * so that we can re-write the block safely.
 | 
						|
		 */
 | 
						|
		lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
 | 
						|
	}
 | 
						|
 | 
						|
	if (zn_rlimit_fsize(zp, uio)) {
 | 
						|
		zfs_rangelock_exit(lr);
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (SET_ERROR(EFBIG));
 | 
						|
	}
 | 
						|
 | 
						|
	const rlim64_t limit = MAXOFFSET_T;
 | 
						|
 | 
						|
	if (woff >= limit) {
 | 
						|
		zfs_rangelock_exit(lr);
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (SET_ERROR(EFBIG));
 | 
						|
	}
 | 
						|
 | 
						|
	if (n > limit - woff)
 | 
						|
		n = limit - woff;
 | 
						|
 | 
						|
	uint64_t end_size = MAX(zp->z_size, woff + n);
 | 
						|
	zilog_t *zilog = zfsvfs->z_log;
 | 
						|
 | 
						|
	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
 | 
						|
	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
 | 
						|
	const uint64_t projid = zp->z_projid;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Write the file in reasonable size chunks.  Each chunk is written
 | 
						|
	 * in a separate transaction; this keeps the intent log records small
 | 
						|
	 * and allows us to do more fine-grained space accounting.
 | 
						|
	 */
 | 
						|
	while (n > 0) {
 | 
						|
		woff = zfs_uio_offset(uio);
 | 
						|
 | 
						|
		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
 | 
						|
		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
 | 
						|
		    (projid != ZFS_DEFAULT_PROJID &&
 | 
						|
		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
 | 
						|
		    projid))) {
 | 
						|
			error = SET_ERROR(EDQUOT);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		arc_buf_t *abuf = NULL;
 | 
						|
		if (n >= max_blksz && woff >= zp->z_size &&
 | 
						|
		    P2PHASE(woff, max_blksz) == 0 &&
 | 
						|
		    zp->z_blksz == max_blksz) {
 | 
						|
			/*
 | 
						|
			 * This write covers a full block.  "Borrow" a buffer
 | 
						|
			 * from the dmu so that we can fill it before we enter
 | 
						|
			 * a transaction.  This avoids the possibility of
 | 
						|
			 * holding up the transaction if the data copy hangs
 | 
						|
			 * up on a pagefault (e.g., from an NFS server mapping).
 | 
						|
			 */
 | 
						|
			size_t cbytes;
 | 
						|
 | 
						|
			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 | 
						|
			    max_blksz);
 | 
						|
			ASSERT(abuf != NULL);
 | 
						|
			ASSERT(arc_buf_size(abuf) == max_blksz);
 | 
						|
			if ((error = zfs_uiocopy(abuf->b_data, max_blksz,
 | 
						|
			    UIO_WRITE, uio, &cbytes))) {
 | 
						|
				dmu_return_arcbuf(abuf);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			ASSERT3S(cbytes, ==, max_blksz);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Start a transaction.
 | 
						|
		 */
 | 
						|
		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
 | 
						|
		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
 | 
						|
		dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
 | 
						|
		DB_DNODE_ENTER(db);
 | 
						|
		dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
 | 
						|
		    MIN(n, max_blksz));
 | 
						|
		DB_DNODE_EXIT(db);
 | 
						|
		zfs_sa_upgrade_txholds(tx, zp);
 | 
						|
		error = dmu_tx_assign(tx, TXG_WAIT);
 | 
						|
		if (error) {
 | 
						|
			dmu_tx_abort(tx);
 | 
						|
			if (abuf != NULL)
 | 
						|
				dmu_return_arcbuf(abuf);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If rangelock_enter() over-locked we grow the blocksize
 | 
						|
		 * and then reduce the lock range.  This will only happen
 | 
						|
		 * on the first iteration since rangelock_reduce() will
 | 
						|
		 * shrink down lr_length to the appropriate size.
 | 
						|
		 */
 | 
						|
		if (lr->lr_length == UINT64_MAX) {
 | 
						|
			uint64_t new_blksz;
 | 
						|
 | 
						|
			if (zp->z_blksz > max_blksz) {
 | 
						|
				/*
 | 
						|
				 * File's blocksize is already larger than the
 | 
						|
				 * "recordsize" property.  Only let it grow to
 | 
						|
				 * the next power of 2.
 | 
						|
				 */
 | 
						|
				ASSERT(!ISP2(zp->z_blksz));
 | 
						|
				new_blksz = MIN(end_size,
 | 
						|
				    1 << highbit64(zp->z_blksz));
 | 
						|
			} else {
 | 
						|
				new_blksz = MIN(end_size, max_blksz);
 | 
						|
			}
 | 
						|
			zfs_grow_blocksize(zp, new_blksz, tx);
 | 
						|
			zfs_rangelock_reduce(lr, woff, n);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * XXX - should we really limit each write to z_max_blksz?
 | 
						|
		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
 | 
						|
		 */
 | 
						|
		const ssize_t nbytes =
 | 
						|
		    MIN(n, max_blksz - P2PHASE(woff, max_blksz));
 | 
						|
 | 
						|
		ssize_t tx_bytes;
 | 
						|
		if (abuf == NULL) {
 | 
						|
			tx_bytes = zfs_uio_resid(uio);
 | 
						|
			zfs_uio_fault_disable(uio, B_TRUE);
 | 
						|
			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 | 
						|
			    uio, nbytes, tx);
 | 
						|
			zfs_uio_fault_disable(uio, B_FALSE);
 | 
						|
#ifdef __linux__
 | 
						|
			if (error == EFAULT) {
 | 
						|
				dmu_tx_commit(tx);
 | 
						|
				/*
 | 
						|
				 * Account for partial writes before
 | 
						|
				 * continuing the loop.
 | 
						|
				 * Update needs to occur before the next
 | 
						|
				 * zfs_uio_prefaultpages, or prefaultpages may
 | 
						|
				 * error, and we may break the loop early.
 | 
						|
				 */
 | 
						|
				if (tx_bytes != zfs_uio_resid(uio))
 | 
						|
					n -= tx_bytes - zfs_uio_resid(uio);
 | 
						|
				if (zfs_uio_prefaultpages(MIN(n, max_blksz),
 | 
						|
				    uio)) {
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
#endif
 | 
						|
			if (error != 0) {
 | 
						|
				dmu_tx_commit(tx);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			tx_bytes -= zfs_uio_resid(uio);
 | 
						|
		} else {
 | 
						|
			/* Implied by abuf != NULL: */
 | 
						|
			ASSERT3S(n, >=, max_blksz);
 | 
						|
			ASSERT0(P2PHASE(woff, max_blksz));
 | 
						|
			/*
 | 
						|
			 * We can simplify nbytes to MIN(n, max_blksz) since
 | 
						|
			 * P2PHASE(woff, max_blksz) is 0, and knowing
 | 
						|
			 * n >= max_blksz lets us simplify further:
 | 
						|
			 */
 | 
						|
			ASSERT3S(nbytes, ==, max_blksz);
 | 
						|
			/*
 | 
						|
			 * Thus, we're writing a full block at a block-aligned
 | 
						|
			 * offset and extending the file past EOF.
 | 
						|
			 *
 | 
						|
			 * dmu_assign_arcbuf_by_dbuf() will directly assign the
 | 
						|
			 * arc buffer to a dbuf.
 | 
						|
			 */
 | 
						|
			error = dmu_assign_arcbuf_by_dbuf(
 | 
						|
			    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
 | 
						|
			if (error != 0) {
 | 
						|
				dmu_return_arcbuf(abuf);
 | 
						|
				dmu_tx_commit(tx);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
 | 
						|
			zfs_uioskip(uio, nbytes);
 | 
						|
			tx_bytes = nbytes;
 | 
						|
		}
 | 
						|
		if (tx_bytes && zn_has_cached_data(zp) &&
 | 
						|
		    !(ioflag & O_DIRECT)) {
 | 
						|
			update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we made no progress, we're done.  If we made even
 | 
						|
		 * partial progress, update the znode and ZIL accordingly.
 | 
						|
		 */
 | 
						|
		if (tx_bytes == 0) {
 | 
						|
			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
 | 
						|
			    (void *)&zp->z_size, sizeof (uint64_t), tx);
 | 
						|
			dmu_tx_commit(tx);
 | 
						|
			ASSERT(error != 0);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Clear Set-UID/Set-GID bits on successful write if not
 | 
						|
		 * privileged and at least one of the execute bits is set.
 | 
						|
		 *
 | 
						|
		 * It would be nice to do this after all writes have
 | 
						|
		 * been done, but that would still expose the ISUID/ISGID
 | 
						|
		 * to another app after the partial write is committed.
 | 
						|
		 *
 | 
						|
		 * Note: we don't call zfs_fuid_map_id() here because
 | 
						|
		 * user 0 is not an ephemeral uid.
 | 
						|
		 */
 | 
						|
		mutex_enter(&zp->z_acl_lock);
 | 
						|
		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
 | 
						|
		    (S_IXUSR >> 6))) != 0 &&
 | 
						|
		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
 | 
						|
		    secpolicy_vnode_setid_retain(zp, cr,
 | 
						|
		    ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
 | 
						|
			uint64_t newmode;
 | 
						|
			zp->z_mode &= ~(S_ISUID | S_ISGID);
 | 
						|
			newmode = zp->z_mode;
 | 
						|
			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
 | 
						|
			    (void *)&newmode, sizeof (uint64_t), tx);
 | 
						|
		}
 | 
						|
		mutex_exit(&zp->z_acl_lock);
 | 
						|
 | 
						|
		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Update the file size (zp_size) if it has changed;
 | 
						|
		 * account for possible concurrent updates.
 | 
						|
		 */
 | 
						|
		while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
 | 
						|
			(void) atomic_cas_64(&zp->z_size, end_size,
 | 
						|
			    zfs_uio_offset(uio));
 | 
						|
			ASSERT(error == 0);
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * If we are replaying and eof is non zero then force
 | 
						|
		 * the file size to the specified eof. Note, there's no
 | 
						|
		 * concurrency during replay.
 | 
						|
		 */
 | 
						|
		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
 | 
						|
			zp->z_size = zfsvfs->z_replay_eof;
 | 
						|
 | 
						|
		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
 | 
						|
 | 
						|
		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
 | 
						|
		    NULL, NULL);
 | 
						|
		dmu_tx_commit(tx);
 | 
						|
 | 
						|
		if (error != 0)
 | 
						|
			break;
 | 
						|
		ASSERT3S(tx_bytes, ==, nbytes);
 | 
						|
		n -= nbytes;
 | 
						|
 | 
						|
		if (n > 0) {
 | 
						|
			if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
 | 
						|
				error = SET_ERROR(EFAULT);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	zfs_znode_update_vfs(zp);
 | 
						|
	zfs_rangelock_exit(lr);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we're in replay mode, or we made no progress, or the
 | 
						|
	 * uio data is inaccessible return an error.  Otherwise, it's
 | 
						|
	 * at least a partial write, so it's successful.
 | 
						|
	 */
 | 
						|
	if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
 | 
						|
	    error == EFAULT) {
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (error);
 | 
						|
	}
 | 
						|
 | 
						|
	if (ioflag & (O_SYNC | O_DSYNC) ||
 | 
						|
	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
 | 
						|
		zil_commit(zilog, zp->z_id);
 | 
						|
 | 
						|
	const int64_t nwritten = start_resid - zfs_uio_resid(uio);
 | 
						|
	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
 | 
						|
	task_io_account_write(nwritten);
 | 
						|
 | 
						|
	ZFS_EXIT(zfsvfs);
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*ARGSUSED*/
 | 
						|
int
 | 
						|
zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | 
						|
	int error;
 | 
						|
	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
 | 
						|
 | 
						|
	ZFS_ENTER(zfsvfs);
 | 
						|
	ZFS_VERIFY_ZP(zp);
 | 
						|
	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
 | 
						|
	ZFS_EXIT(zfsvfs);
 | 
						|
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
/*ARGSUSED*/
 | 
						|
int
 | 
						|
zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
 | 
						|
	int error;
 | 
						|
	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
 | 
						|
	zilog_t	*zilog = zfsvfs->z_log;
 | 
						|
 | 
						|
	ZFS_ENTER(zfsvfs);
 | 
						|
	ZFS_VERIFY_ZP(zp);
 | 
						|
 | 
						|
	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
 | 
						|
 | 
						|
	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
 | 
						|
		zil_commit(zilog, 0);
 | 
						|
 | 
						|
	ZFS_EXIT(zfsvfs);
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef ZFS_DEBUG
 | 
						|
static int zil_fault_io = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
static void zfs_get_done(zgd_t *zgd, int error);
 | 
						|
 | 
						|
/*
 | 
						|
 * Get data to generate a TX_WRITE intent log record.
 | 
						|
 */
 | 
						|
int
 | 
						|
zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = arg;
 | 
						|
	objset_t *os = zfsvfs->z_os;
 | 
						|
	znode_t *zp;
 | 
						|
	uint64_t object = lr->lr_foid;
 | 
						|
	uint64_t offset = lr->lr_offset;
 | 
						|
	uint64_t size = lr->lr_length;
 | 
						|
	dmu_buf_t *db;
 | 
						|
	zgd_t *zgd;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	ASSERT3P(lwb, !=, NULL);
 | 
						|
	ASSERT3P(zio, !=, NULL);
 | 
						|
	ASSERT3U(size, !=, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Nothing to do if the file has been removed
 | 
						|
	 */
 | 
						|
	if (zfs_zget(zfsvfs, object, &zp) != 0)
 | 
						|
		return (SET_ERROR(ENOENT));
 | 
						|
	if (zp->z_unlinked) {
 | 
						|
		/*
 | 
						|
		 * Release the vnode asynchronously as we currently have the
 | 
						|
		 * txg stopped from syncing.
 | 
						|
		 */
 | 
						|
		zfs_zrele_async(zp);
 | 
						|
		return (SET_ERROR(ENOENT));
 | 
						|
	}
 | 
						|
 | 
						|
	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
 | 
						|
	zgd->zgd_lwb = lwb;
 | 
						|
	zgd->zgd_private = zp;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Write records come in two flavors: immediate and indirect.
 | 
						|
	 * For small writes it's cheaper to store the data with the
 | 
						|
	 * log record (immediate); for large writes it's cheaper to
 | 
						|
	 * sync the data and get a pointer to it (indirect) so that
 | 
						|
	 * we don't have to write the data twice.
 | 
						|
	 */
 | 
						|
	if (buf != NULL) { /* immediate write */
 | 
						|
		zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
 | 
						|
		    offset, size, RL_READER);
 | 
						|
		/* test for truncation needs to be done while range locked */
 | 
						|
		if (offset >= zp->z_size) {
 | 
						|
			error = SET_ERROR(ENOENT);
 | 
						|
		} else {
 | 
						|
			error = dmu_read(os, object, offset, size, buf,
 | 
						|
			    DMU_READ_NO_PREFETCH);
 | 
						|
		}
 | 
						|
		ASSERT(error == 0 || error == ENOENT);
 | 
						|
	} else { /* indirect write */
 | 
						|
		/*
 | 
						|
		 * Have to lock the whole block to ensure when it's
 | 
						|
		 * written out and its checksum is being calculated
 | 
						|
		 * that no one can change the data. We need to re-check
 | 
						|
		 * blocksize after we get the lock in case it's changed!
 | 
						|
		 */
 | 
						|
		for (;;) {
 | 
						|
			uint64_t blkoff;
 | 
						|
			size = zp->z_blksz;
 | 
						|
			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
 | 
						|
			offset -= blkoff;
 | 
						|
			zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
 | 
						|
			    offset, size, RL_READER);
 | 
						|
			if (zp->z_blksz == size)
 | 
						|
				break;
 | 
						|
			offset += blkoff;
 | 
						|
			zfs_rangelock_exit(zgd->zgd_lr);
 | 
						|
		}
 | 
						|
		/* test for truncation needs to be done while range locked */
 | 
						|
		if (lr->lr_offset >= zp->z_size)
 | 
						|
			error = SET_ERROR(ENOENT);
 | 
						|
#ifdef ZFS_DEBUG
 | 
						|
		if (zil_fault_io) {
 | 
						|
			error = SET_ERROR(EIO);
 | 
						|
			zil_fault_io = 0;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
		if (error == 0)
 | 
						|
			error = dmu_buf_hold(os, object, offset, zgd, &db,
 | 
						|
			    DMU_READ_NO_PREFETCH);
 | 
						|
 | 
						|
		if (error == 0) {
 | 
						|
			blkptr_t *bp = &lr->lr_blkptr;
 | 
						|
 | 
						|
			zgd->zgd_db = db;
 | 
						|
			zgd->zgd_bp = bp;
 | 
						|
 | 
						|
			ASSERT(db->db_offset == offset);
 | 
						|
			ASSERT(db->db_size == size);
 | 
						|
 | 
						|
			error = dmu_sync(zio, lr->lr_common.lrc_txg,
 | 
						|
			    zfs_get_done, zgd);
 | 
						|
			ASSERT(error || lr->lr_length <= size);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * On success, we need to wait for the write I/O
 | 
						|
			 * initiated by dmu_sync() to complete before we can
 | 
						|
			 * release this dbuf.  We will finish everything up
 | 
						|
			 * in the zfs_get_done() callback.
 | 
						|
			 */
 | 
						|
			if (error == 0)
 | 
						|
				return (0);
 | 
						|
 | 
						|
			if (error == EALREADY) {
 | 
						|
				lr->lr_common.lrc_txtype = TX_WRITE2;
 | 
						|
				/*
 | 
						|
				 * TX_WRITE2 relies on the data previously
 | 
						|
				 * written by the TX_WRITE that caused
 | 
						|
				 * EALREADY.  We zero out the BP because
 | 
						|
				 * it is the old, currently-on-disk BP.
 | 
						|
				 */
 | 
						|
				zgd->zgd_bp = NULL;
 | 
						|
				BP_ZERO(bp);
 | 
						|
				error = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	zfs_get_done(zgd, error);
 | 
						|
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* ARGSUSED */
 | 
						|
static void
 | 
						|
zfs_get_done(zgd_t *zgd, int error)
 | 
						|
{
 | 
						|
	znode_t *zp = zgd->zgd_private;
 | 
						|
 | 
						|
	if (zgd->zgd_db)
 | 
						|
		dmu_buf_rele(zgd->zgd_db, zgd);
 | 
						|
 | 
						|
	zfs_rangelock_exit(zgd->zgd_lr);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Release the vnode asynchronously as we currently have the
 | 
						|
	 * txg stopped from syncing.
 | 
						|
	 */
 | 
						|
	zfs_zrele_async(zp);
 | 
						|
 | 
						|
	kmem_free(zgd, sizeof (zgd_t));
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(zfs_access);
 | 
						|
EXPORT_SYMBOL(zfs_fsync);
 | 
						|
EXPORT_SYMBOL(zfs_holey);
 | 
						|
EXPORT_SYMBOL(zfs_read);
 | 
						|
EXPORT_SYMBOL(zfs_write);
 | 
						|
EXPORT_SYMBOL(zfs_getsecattr);
 | 
						|
EXPORT_SYMBOL(zfs_setsecattr);
 | 
						|
 | 
						|
ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, ULONG, ZMOD_RW,
 | 
						|
	"Bytes to read per chunk");
 |