mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 19:05:26 +00:00 
			
		
		
		
	 7384ec65cd
			
		
	
	
		7384ec65cd
		
	
	
	
	
		
			
			The Linux 5.16.14 kernel's coccicheck caught these. The semantic patch that caught them was: ./scripts/coccinelle/api/alloc/alloc_cast.cocci Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #14372
		
			
				
	
	
		
			905 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			905 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * BSD 3-Clause New License (https://spdx.org/licenses/BSD-3-Clause.html)
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice,
 | |
|  * this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  * this list of conditions and the following disclaimer in the documentation
 | |
|  * and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * 3. Neither the name of the copyright holder nor the names of its
 | |
|  * contributors may be used to endorse or promote products derived from this
 | |
|  * software without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 | |
|  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
|  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
|  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
|  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
|  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
|  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
|  * POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Copyright (c) 2016-2018, Klara Inc.
 | |
|  * Copyright (c) 2016-2018, Allan Jude
 | |
|  * Copyright (c) 2018-2020, Sebastian Gottschall
 | |
|  * Copyright (c) 2019-2020, Michael Niewöhner
 | |
|  * Copyright (c) 2020, The FreeBSD Foundation [1]
 | |
|  *
 | |
|  * [1] Portions of this software were developed by Allan Jude
 | |
|  *     under sponsorship from the FreeBSD Foundation.
 | |
|  */
 | |
| 
 | |
| #include <sys/param.h>
 | |
| #include <sys/sysmacros.h>
 | |
| #include <sys/zfs_context.h>
 | |
| #include <sys/zio_compress.h>
 | |
| #include <sys/spa.h>
 | |
| #include <sys/zstd/zstd.h>
 | |
| 
 | |
| #define	ZSTD_STATIC_LINKING_ONLY
 | |
| #include "lib/zstd.h"
 | |
| #include "lib/common/zstd_errors.h"
 | |
| 
 | |
| static uint_t zstd_earlyabort_pass = 1;
 | |
| static int zstd_cutoff_level = ZIO_ZSTD_LEVEL_3;
 | |
| static unsigned int zstd_abort_size = (128 * 1024);
 | |
| 
 | |
| static kstat_t *zstd_ksp = NULL;
 | |
| 
 | |
| typedef struct zstd_stats {
 | |
| 	kstat_named_t	zstd_stat_alloc_fail;
 | |
| 	kstat_named_t	zstd_stat_alloc_fallback;
 | |
| 	kstat_named_t	zstd_stat_com_alloc_fail;
 | |
| 	kstat_named_t	zstd_stat_dec_alloc_fail;
 | |
| 	kstat_named_t	zstd_stat_com_inval;
 | |
| 	kstat_named_t	zstd_stat_dec_inval;
 | |
| 	kstat_named_t	zstd_stat_dec_header_inval;
 | |
| 	kstat_named_t	zstd_stat_com_fail;
 | |
| 	kstat_named_t	zstd_stat_dec_fail;
 | |
| 	/*
 | |
| 	 * LZ4 first-pass early abort verdict
 | |
| 	 */
 | |
| 	kstat_named_t	zstd_stat_lz4pass_allowed;
 | |
| 	kstat_named_t	zstd_stat_lz4pass_rejected;
 | |
| 	/*
 | |
| 	 * zstd-1 second-pass early abort verdict
 | |
| 	 */
 | |
| 	kstat_named_t	zstd_stat_zstdpass_allowed;
 | |
| 	kstat_named_t	zstd_stat_zstdpass_rejected;
 | |
| 	/*
 | |
| 	 * We excluded this from early abort for some reason
 | |
| 	 */
 | |
| 	kstat_named_t	zstd_stat_passignored;
 | |
| 	kstat_named_t	zstd_stat_passignored_size;
 | |
| 	kstat_named_t	zstd_stat_buffers;
 | |
| 	kstat_named_t	zstd_stat_size;
 | |
| } zstd_stats_t;
 | |
| 
 | |
| static zstd_stats_t zstd_stats = {
 | |
| 	{ "alloc_fail",			KSTAT_DATA_UINT64 },
 | |
| 	{ "alloc_fallback",		KSTAT_DATA_UINT64 },
 | |
| 	{ "compress_alloc_fail",	KSTAT_DATA_UINT64 },
 | |
| 	{ "decompress_alloc_fail",	KSTAT_DATA_UINT64 },
 | |
| 	{ "compress_level_invalid",	KSTAT_DATA_UINT64 },
 | |
| 	{ "decompress_level_invalid",	KSTAT_DATA_UINT64 },
 | |
| 	{ "decompress_header_invalid",	KSTAT_DATA_UINT64 },
 | |
| 	{ "compress_failed",		KSTAT_DATA_UINT64 },
 | |
| 	{ "decompress_failed",		KSTAT_DATA_UINT64 },
 | |
| 	{ "lz4pass_allowed",		KSTAT_DATA_UINT64 },
 | |
| 	{ "lz4pass_rejected",		KSTAT_DATA_UINT64 },
 | |
| 	{ "zstdpass_allowed",		KSTAT_DATA_UINT64 },
 | |
| 	{ "zstdpass_rejected",		KSTAT_DATA_UINT64 },
 | |
| 	{ "passignored",		KSTAT_DATA_UINT64 },
 | |
| 	{ "passignored_size",		KSTAT_DATA_UINT64 },
 | |
| 	{ "buffers",			KSTAT_DATA_UINT64 },
 | |
| 	{ "size",			KSTAT_DATA_UINT64 },
 | |
| };
 | |
| 
 | |
| #ifdef _KERNEL
 | |
| static int
 | |
| kstat_zstd_update(kstat_t *ksp, int rw)
 | |
| {
 | |
| 	ASSERT(ksp != NULL);
 | |
| 
 | |
| 	if (rw == KSTAT_WRITE && ksp == zstd_ksp) {
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_alloc_fail);
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_alloc_fallback);
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_com_alloc_fail);
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_dec_alloc_fail);
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_com_inval);
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_dec_inval);
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_dec_header_inval);
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_com_fail);
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_dec_fail);
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_lz4pass_allowed);
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_lz4pass_rejected);
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_zstdpass_allowed);
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_zstdpass_rejected);
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_passignored);
 | |
| 		ZSTDSTAT_ZERO(zstd_stat_passignored_size);
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Enums describing the allocator type specified by kmem_type in zstd_kmem */
 | |
| enum zstd_kmem_type {
 | |
| 	ZSTD_KMEM_UNKNOWN = 0,
 | |
| 	/* Allocation type using kmem_vmalloc */
 | |
| 	ZSTD_KMEM_DEFAULT,
 | |
| 	/* Pool based allocation using mempool_alloc */
 | |
| 	ZSTD_KMEM_POOL,
 | |
| 	/* Reserved fallback memory for decompression only */
 | |
| 	ZSTD_KMEM_DCTX,
 | |
| 	ZSTD_KMEM_COUNT,
 | |
| };
 | |
| 
 | |
| /* Structure for pooled memory objects */
 | |
| struct zstd_pool {
 | |
| 	void *mem;
 | |
| 	size_t size;
 | |
| 	kmutex_t barrier;
 | |
| 	hrtime_t timeout;
 | |
| };
 | |
| 
 | |
| /* Global structure for handling memory allocations */
 | |
| struct zstd_kmem {
 | |
| 	enum zstd_kmem_type kmem_type;
 | |
| 	size_t kmem_size;
 | |
| 	struct zstd_pool *pool;
 | |
| };
 | |
| 
 | |
| /* Fallback memory structure used for decompression only if memory runs out */
 | |
| struct zstd_fallback_mem {
 | |
| 	size_t mem_size;
 | |
| 	void *mem;
 | |
| 	kmutex_t barrier;
 | |
| };
 | |
| 
 | |
| struct zstd_levelmap {
 | |
| 	int16_t zstd_level;
 | |
| 	enum zio_zstd_levels level;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * ZSTD memory handlers
 | |
|  *
 | |
|  * For decompression we use a different handler which also provides fallback
 | |
|  * memory allocation in case memory runs out.
 | |
|  *
 | |
|  * The ZSTD handlers were split up for the most simplified implementation.
 | |
|  */
 | |
| static void *zstd_alloc(void *opaque, size_t size);
 | |
| static void *zstd_dctx_alloc(void *opaque, size_t size);
 | |
| static void zstd_free(void *opaque, void *ptr);
 | |
| 
 | |
| /* Compression memory handler */
 | |
| static const ZSTD_customMem zstd_malloc = {
 | |
| 	zstd_alloc,
 | |
| 	zstd_free,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| /* Decompression memory handler */
 | |
| static const ZSTD_customMem zstd_dctx_malloc = {
 | |
| 	zstd_dctx_alloc,
 | |
| 	zstd_free,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| /* Level map for converting ZFS internal levels to ZSTD levels and vice versa */
 | |
| static struct zstd_levelmap zstd_levels[] = {
 | |
| 	{ZIO_ZSTD_LEVEL_1, ZIO_ZSTD_LEVEL_1},
 | |
| 	{ZIO_ZSTD_LEVEL_2, ZIO_ZSTD_LEVEL_2},
 | |
| 	{ZIO_ZSTD_LEVEL_3, ZIO_ZSTD_LEVEL_3},
 | |
| 	{ZIO_ZSTD_LEVEL_4, ZIO_ZSTD_LEVEL_4},
 | |
| 	{ZIO_ZSTD_LEVEL_5, ZIO_ZSTD_LEVEL_5},
 | |
| 	{ZIO_ZSTD_LEVEL_6, ZIO_ZSTD_LEVEL_6},
 | |
| 	{ZIO_ZSTD_LEVEL_7, ZIO_ZSTD_LEVEL_7},
 | |
| 	{ZIO_ZSTD_LEVEL_8, ZIO_ZSTD_LEVEL_8},
 | |
| 	{ZIO_ZSTD_LEVEL_9, ZIO_ZSTD_LEVEL_9},
 | |
| 	{ZIO_ZSTD_LEVEL_10, ZIO_ZSTD_LEVEL_10},
 | |
| 	{ZIO_ZSTD_LEVEL_11, ZIO_ZSTD_LEVEL_11},
 | |
| 	{ZIO_ZSTD_LEVEL_12, ZIO_ZSTD_LEVEL_12},
 | |
| 	{ZIO_ZSTD_LEVEL_13, ZIO_ZSTD_LEVEL_13},
 | |
| 	{ZIO_ZSTD_LEVEL_14, ZIO_ZSTD_LEVEL_14},
 | |
| 	{ZIO_ZSTD_LEVEL_15, ZIO_ZSTD_LEVEL_15},
 | |
| 	{ZIO_ZSTD_LEVEL_16, ZIO_ZSTD_LEVEL_16},
 | |
| 	{ZIO_ZSTD_LEVEL_17, ZIO_ZSTD_LEVEL_17},
 | |
| 	{ZIO_ZSTD_LEVEL_18, ZIO_ZSTD_LEVEL_18},
 | |
| 	{ZIO_ZSTD_LEVEL_19, ZIO_ZSTD_LEVEL_19},
 | |
| 	{-1, ZIO_ZSTD_LEVEL_FAST_1},
 | |
| 	{-2, ZIO_ZSTD_LEVEL_FAST_2},
 | |
| 	{-3, ZIO_ZSTD_LEVEL_FAST_3},
 | |
| 	{-4, ZIO_ZSTD_LEVEL_FAST_4},
 | |
| 	{-5, ZIO_ZSTD_LEVEL_FAST_5},
 | |
| 	{-6, ZIO_ZSTD_LEVEL_FAST_6},
 | |
| 	{-7, ZIO_ZSTD_LEVEL_FAST_7},
 | |
| 	{-8, ZIO_ZSTD_LEVEL_FAST_8},
 | |
| 	{-9, ZIO_ZSTD_LEVEL_FAST_9},
 | |
| 	{-10, ZIO_ZSTD_LEVEL_FAST_10},
 | |
| 	{-20, ZIO_ZSTD_LEVEL_FAST_20},
 | |
| 	{-30, ZIO_ZSTD_LEVEL_FAST_30},
 | |
| 	{-40, ZIO_ZSTD_LEVEL_FAST_40},
 | |
| 	{-50, ZIO_ZSTD_LEVEL_FAST_50},
 | |
| 	{-60, ZIO_ZSTD_LEVEL_FAST_60},
 | |
| 	{-70, ZIO_ZSTD_LEVEL_FAST_70},
 | |
| 	{-80, ZIO_ZSTD_LEVEL_FAST_80},
 | |
| 	{-90, ZIO_ZSTD_LEVEL_FAST_90},
 | |
| 	{-100, ZIO_ZSTD_LEVEL_FAST_100},
 | |
| 	{-500, ZIO_ZSTD_LEVEL_FAST_500},
 | |
| 	{-1000, ZIO_ZSTD_LEVEL_FAST_1000},
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This variable represents the maximum count of the pool based on the number
 | |
|  * of CPUs plus some buffer. We default to cpu count * 4, see init_zstd.
 | |
|  */
 | |
| static int pool_count = 16;
 | |
| 
 | |
| #define	ZSTD_POOL_MAX		pool_count
 | |
| #define	ZSTD_POOL_TIMEOUT	60 * 2
 | |
| 
 | |
| static struct zstd_fallback_mem zstd_dctx_fallback;
 | |
| static struct zstd_pool *zstd_mempool_cctx;
 | |
| static struct zstd_pool *zstd_mempool_dctx;
 | |
| 
 | |
| /*
 | |
|  * The library zstd code expects these if ADDRESS_SANITIZER gets defined,
 | |
|  * and while ASAN does this, KASAN defines that and does not. So to avoid
 | |
|  * changing the external code, we do this.
 | |
|  */
 | |
| #if defined(ZFS_ASAN_ENABLED)
 | |
| #define	ADDRESS_SANITIZER 1
 | |
| #endif
 | |
| #if defined(_KERNEL) && defined(ADDRESS_SANITIZER)
 | |
| void __asan_unpoison_memory_region(void const volatile *addr, size_t size);
 | |
| void __asan_poison_memory_region(void const volatile *addr, size_t size);
 | |
| void __asan_unpoison_memory_region(void const volatile *addr, size_t size) {};
 | |
| void __asan_poison_memory_region(void const volatile *addr, size_t size) {};
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static void
 | |
| zstd_mempool_reap(struct zstd_pool *zstd_mempool)
 | |
| {
 | |
| 	struct zstd_pool *pool;
 | |
| 
 | |
| 	if (!zstd_mempool || !ZSTDSTAT(zstd_stat_buffers)) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* free obsolete slots */
 | |
| 	for (int i = 0; i < ZSTD_POOL_MAX; i++) {
 | |
| 		pool = &zstd_mempool[i];
 | |
| 		if (pool->mem && mutex_tryenter(&pool->barrier)) {
 | |
| 			/* Free memory if unused object older than 2 minutes */
 | |
| 			if (pool->mem && gethrestime_sec() > pool->timeout) {
 | |
| 				vmem_free(pool->mem, pool->size);
 | |
| 				ZSTDSTAT_SUB(zstd_stat_buffers, 1);
 | |
| 				ZSTDSTAT_SUB(zstd_stat_size, pool->size);
 | |
| 				pool->mem = NULL;
 | |
| 				pool->size = 0;
 | |
| 				pool->timeout = 0;
 | |
| 			}
 | |
| 			mutex_exit(&pool->barrier);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to get a cached allocated buffer from memory pool or allocate a new one
 | |
|  * if necessary. If a object is older than 2 minutes and does not fit the
 | |
|  * requested size, it will be released and a new cached entry will be allocated.
 | |
|  * If other pooled objects are detected without being used for 2 minutes, they
 | |
|  * will be released, too.
 | |
|  *
 | |
|  * The concept is that high frequency memory allocations of bigger objects are
 | |
|  * expensive. So if a lot of work is going on, allocations will be kept for a
 | |
|  * while and can be reused in that time frame.
 | |
|  *
 | |
|  * The scheduled release will be updated every time a object is reused.
 | |
|  */
 | |
| 
 | |
| static void *
 | |
| zstd_mempool_alloc(struct zstd_pool *zstd_mempool, size_t size)
 | |
| {
 | |
| 	struct zstd_pool *pool;
 | |
| 	struct zstd_kmem *mem = NULL;
 | |
| 
 | |
| 	if (!zstd_mempool) {
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	/* Seek for preallocated memory slot and free obsolete slots */
 | |
| 	for (int i = 0; i < ZSTD_POOL_MAX; i++) {
 | |
| 		pool = &zstd_mempool[i];
 | |
| 		/*
 | |
| 		 * This lock is simply a marker for a pool object being in use.
 | |
| 		 * If it's already hold, it will be skipped.
 | |
| 		 *
 | |
| 		 * We need to create it before checking it to avoid race
 | |
| 		 * conditions caused by running in a threaded context.
 | |
| 		 *
 | |
| 		 * The lock is later released by zstd_mempool_free.
 | |
| 		 */
 | |
| 		if (mutex_tryenter(&pool->barrier)) {
 | |
| 			/*
 | |
| 			 * Check if objects fits the size, if so we take it and
 | |
| 			 * update the timestamp.
 | |
| 			 */
 | |
| 			if (pool->mem && size <= pool->size) {
 | |
| 				pool->timeout = gethrestime_sec() +
 | |
| 				    ZSTD_POOL_TIMEOUT;
 | |
| 				mem = pool->mem;
 | |
| 				return (mem);
 | |
| 			}
 | |
| 			mutex_exit(&pool->barrier);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If no preallocated slot was found, try to fill in a new one.
 | |
| 	 *
 | |
| 	 * We run a similar algorithm twice here to avoid pool fragmentation.
 | |
| 	 * The first one may generate holes in the list if objects get released.
 | |
| 	 * We always make sure that these holes get filled instead of adding new
 | |
| 	 * allocations constantly at the end.
 | |
| 	 */
 | |
| 	for (int i = 0; i < ZSTD_POOL_MAX; i++) {
 | |
| 		pool = &zstd_mempool[i];
 | |
| 		if (mutex_tryenter(&pool->barrier)) {
 | |
| 			/* Object is free, try to allocate new one */
 | |
| 			if (!pool->mem) {
 | |
| 				mem = vmem_alloc(size, KM_SLEEP);
 | |
| 				if (mem) {
 | |
| 					ZSTDSTAT_ADD(zstd_stat_buffers, 1);
 | |
| 					ZSTDSTAT_ADD(zstd_stat_size, size);
 | |
| 					pool->mem = mem;
 | |
| 					pool->size = size;
 | |
| 					/* Keep track for later release */
 | |
| 					mem->pool = pool;
 | |
| 					mem->kmem_type = ZSTD_KMEM_POOL;
 | |
| 					mem->kmem_size = size;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (size <= pool->size) {
 | |
| 				/* Update timestamp */
 | |
| 				pool->timeout = gethrestime_sec() +
 | |
| 				    ZSTD_POOL_TIMEOUT;
 | |
| 
 | |
| 				return (pool->mem);
 | |
| 			}
 | |
| 
 | |
| 			mutex_exit(&pool->barrier);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the pool is full or the allocation failed, try lazy allocation
 | |
| 	 * instead.
 | |
| 	 */
 | |
| 	if (!mem) {
 | |
| 		mem = vmem_alloc(size, KM_NOSLEEP);
 | |
| 		if (mem) {
 | |
| 			mem->pool = NULL;
 | |
| 			mem->kmem_type = ZSTD_KMEM_DEFAULT;
 | |
| 			mem->kmem_size = size;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (mem);
 | |
| }
 | |
| 
 | |
| /* Mark object as released by releasing the barrier mutex */
 | |
| static void
 | |
| zstd_mempool_free(struct zstd_kmem *z)
 | |
| {
 | |
| 	mutex_exit(&z->pool->barrier);
 | |
| }
 | |
| 
 | |
| /* Convert ZFS internal enum to ZSTD level */
 | |
| static int
 | |
| zstd_enum_to_level(enum zio_zstd_levels level, int16_t *zstd_level)
 | |
| {
 | |
| 	if (level > 0 && level <= ZIO_ZSTD_LEVEL_19) {
 | |
| 		*zstd_level = zstd_levels[level - 1].zstd_level;
 | |
| 		return (0);
 | |
| 	}
 | |
| 	if (level >= ZIO_ZSTD_LEVEL_FAST_1 &&
 | |
| 	    level <= ZIO_ZSTD_LEVEL_FAST_1000) {
 | |
| 		*zstd_level = zstd_levels[level - ZIO_ZSTD_LEVEL_FAST_1
 | |
| 		    + ZIO_ZSTD_LEVEL_19].zstd_level;
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	/* Invalid/unknown zfs compression enum - this should never happen. */
 | |
| 	return (1);
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t
 | |
| zfs_zstd_compress_wrap(void *s_start, void *d_start, size_t s_len, size_t d_len,
 | |
|     int level)
 | |
| {
 | |
| 	int16_t zstd_level;
 | |
| 	if (zstd_enum_to_level(level, &zstd_level)) {
 | |
| 		ZSTDSTAT_BUMP(zstd_stat_com_inval);
 | |
| 		return (s_len);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * A zstd early abort heuristic.
 | |
| 	 *
 | |
| 	 * - Zeroth, if this is <= zstd-3, or < zstd_abort_size (currently
 | |
| 	 *   128k), don't try any of this, just go.
 | |
| 	 *   (because experimentally that was a reasonable cutoff for a perf win
 | |
| 	 *   with tiny ratio change)
 | |
| 	 * - First, we try LZ4 compression, and if it doesn't early abort, we
 | |
| 	 *   jump directly to whatever compression level we intended to try.
 | |
| 	 * - Second, we try zstd-1 - if that errors out (usually, but not
 | |
| 	 *   exclusively, if it would overflow), we give up early.
 | |
| 	 *
 | |
| 	 *   If it works, instead we go on and compress anyway.
 | |
| 	 *
 | |
| 	 * Why two passes? LZ4 alone gets you a lot of the way, but on highly
 | |
| 	 * compressible data, it was losing up to 8.5% of the compressed
 | |
| 	 * savings versus no early abort, and all the zstd-fast levels are
 | |
| 	 * worse indications on their own than LZ4, and don't improve the LZ4
 | |
| 	 * pass noticably if stacked like this.
 | |
| 	 */
 | |
| 	size_t actual_abort_size = zstd_abort_size;
 | |
| 	if (zstd_earlyabort_pass > 0 && zstd_level >= zstd_cutoff_level &&
 | |
| 	    s_len >= actual_abort_size) {
 | |
| 		int pass_len = 1;
 | |
| 		pass_len = lz4_compress_zfs(s_start, d_start, s_len, d_len, 0);
 | |
| 		if (pass_len < d_len) {
 | |
| 			ZSTDSTAT_BUMP(zstd_stat_lz4pass_allowed);
 | |
| 			goto keep_trying;
 | |
| 		}
 | |
| 		ZSTDSTAT_BUMP(zstd_stat_lz4pass_rejected);
 | |
| 
 | |
| 		pass_len = zfs_zstd_compress(s_start, d_start, s_len, d_len,
 | |
| 		    ZIO_ZSTD_LEVEL_1);
 | |
| 		if (pass_len == s_len || pass_len <= 0 || pass_len > d_len) {
 | |
| 			ZSTDSTAT_BUMP(zstd_stat_zstdpass_rejected);
 | |
| 			return (s_len);
 | |
| 		}
 | |
| 		ZSTDSTAT_BUMP(zstd_stat_zstdpass_allowed);
 | |
| 	} else {
 | |
| 		ZSTDSTAT_BUMP(zstd_stat_passignored);
 | |
| 		if (s_len < actual_abort_size) {
 | |
| 			ZSTDSTAT_BUMP(zstd_stat_passignored_size);
 | |
| 		}
 | |
| 	}
 | |
| keep_trying:
 | |
| 	return (zfs_zstd_compress(s_start, d_start, s_len, d_len, level));
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Compress block using zstd */
 | |
| size_t
 | |
| zfs_zstd_compress(void *s_start, void *d_start, size_t s_len, size_t d_len,
 | |
|     int level)
 | |
| {
 | |
| 	size_t c_len;
 | |
| 	int16_t zstd_level;
 | |
| 	zfs_zstdhdr_t *hdr;
 | |
| 	ZSTD_CCtx *cctx;
 | |
| 
 | |
| 	hdr = (zfs_zstdhdr_t *)d_start;
 | |
| 
 | |
| 	/* Skip compression if the specified level is invalid */
 | |
| 	if (zstd_enum_to_level(level, &zstd_level)) {
 | |
| 		ZSTDSTAT_BUMP(zstd_stat_com_inval);
 | |
| 		return (s_len);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT3U(d_len, >=, sizeof (*hdr));
 | |
| 	ASSERT3U(d_len, <=, s_len);
 | |
| 	ASSERT3U(zstd_level, !=, 0);
 | |
| 
 | |
| 	cctx = ZSTD_createCCtx_advanced(zstd_malloc);
 | |
| 
 | |
| 	/*
 | |
| 	 * Out of kernel memory, gently fall through - this will disable
 | |
| 	 * compression in zio_compress_data
 | |
| 	 */
 | |
| 	if (!cctx) {
 | |
| 		ZSTDSTAT_BUMP(zstd_stat_com_alloc_fail);
 | |
| 		return (s_len);
 | |
| 	}
 | |
| 
 | |
| 	/* Set the compression level */
 | |
| 	ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, zstd_level);
 | |
| 
 | |
| 	/* Use the "magicless" zstd header which saves us 4 header bytes */
 | |
| 	ZSTD_CCtx_setParameter(cctx, ZSTD_c_format, ZSTD_f_zstd1_magicless);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable redundant checksum calculation and content size storage since
 | |
| 	 * this is already done by ZFS itself.
 | |
| 	 */
 | |
| 	ZSTD_CCtx_setParameter(cctx, ZSTD_c_checksumFlag, 0);
 | |
| 	ZSTD_CCtx_setParameter(cctx, ZSTD_c_contentSizeFlag, 0);
 | |
| 
 | |
| 	c_len = ZSTD_compress2(cctx,
 | |
| 	    hdr->data,
 | |
| 	    d_len - sizeof (*hdr),
 | |
| 	    s_start, s_len);
 | |
| 
 | |
| 	ZSTD_freeCCtx(cctx);
 | |
| 
 | |
| 	/* Error in the compression routine, disable compression. */
 | |
| 	if (ZSTD_isError(c_len)) {
 | |
| 		/*
 | |
| 		 * If we are aborting the compression because the saves are
 | |
| 		 * too small, that is not a failure. Everything else is a
 | |
| 		 * failure, so increment the compression failure counter.
 | |
| 		 */
 | |
| 		int err = ZSTD_getErrorCode(c_len);
 | |
| 		if (err != ZSTD_error_dstSize_tooSmall) {
 | |
| 			ZSTDSTAT_BUMP(zstd_stat_com_fail);
 | |
| 			dprintf("Error: %s", ZSTD_getErrorString(err));
 | |
| 		}
 | |
| 		return (s_len);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Encode the compressed buffer size at the start. We'll need this in
 | |
| 	 * decompression to counter the effects of padding which might be added
 | |
| 	 * to the compressed buffer and which, if unhandled, would confuse the
 | |
| 	 * hell out of our decompression function.
 | |
| 	 */
 | |
| 	hdr->c_len = BE_32(c_len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check version for overflow.
 | |
| 	 * The limit of 24 bits must not be exceeded. This allows a maximum
 | |
| 	 * version 1677.72.15 which we don't expect to be ever reached.
 | |
| 	 */
 | |
| 	ASSERT3U(ZSTD_VERSION_NUMBER, <=, 0xFFFFFF);
 | |
| 
 | |
| 	/*
 | |
| 	 * Encode the compression level as well. We may need to know the
 | |
| 	 * original compression level if compressed_arc is disabled, to match
 | |
| 	 * the compression settings to write this block to the L2ARC.
 | |
| 	 *
 | |
| 	 * Encode the actual level, so if the enum changes in the future, we
 | |
| 	 * will be compatible.
 | |
| 	 *
 | |
| 	 * The upper 24 bits store the ZSTD version to be able to provide
 | |
| 	 * future compatibility, since new versions might enhance the
 | |
| 	 * compression algorithm in a way, where the compressed data will
 | |
| 	 * change.
 | |
| 	 *
 | |
| 	 * As soon as such incompatibility occurs, handling code needs to be
 | |
| 	 * added, differentiating between the versions.
 | |
| 	 */
 | |
| 	zfs_set_hdrversion(hdr, ZSTD_VERSION_NUMBER);
 | |
| 	zfs_set_hdrlevel(hdr, level);
 | |
| 	hdr->raw_version_level = BE_32(hdr->raw_version_level);
 | |
| 
 | |
| 	return (c_len + sizeof (*hdr));
 | |
| }
 | |
| 
 | |
| /* Decompress block using zstd and return its stored level */
 | |
| int
 | |
| zfs_zstd_decompress_level(void *s_start, void *d_start, size_t s_len,
 | |
|     size_t d_len, uint8_t *level)
 | |
| {
 | |
| 	ZSTD_DCtx *dctx;
 | |
| 	size_t result;
 | |
| 	int16_t zstd_level;
 | |
| 	uint32_t c_len;
 | |
| 	const zfs_zstdhdr_t *hdr;
 | |
| 	zfs_zstdhdr_t hdr_copy;
 | |
| 
 | |
| 	hdr = (const zfs_zstdhdr_t *)s_start;
 | |
| 	c_len = BE_32(hdr->c_len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make a copy instead of directly converting the header, since we must
 | |
| 	 * not modify the original data that may be used again later.
 | |
| 	 */
 | |
| 	hdr_copy.raw_version_level = BE_32(hdr->raw_version_level);
 | |
| 	uint8_t curlevel = zfs_get_hdrlevel(&hdr_copy);
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE: We ignore the ZSTD version for now. As soon as any
 | |
| 	 * incompatibility occurs, it has to be handled accordingly.
 | |
| 	 * The version can be accessed via `hdr_copy.version`.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert and check the level
 | |
| 	 * An invalid level is a strong indicator for data corruption! In such
 | |
| 	 * case return an error so the upper layers can try to fix it.
 | |
| 	 */
 | |
| 	if (zstd_enum_to_level(curlevel, &zstd_level)) {
 | |
| 		ZSTDSTAT_BUMP(zstd_stat_dec_inval);
 | |
| 		return (1);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT3U(d_len, >=, s_len);
 | |
| 	ASSERT3U(curlevel, !=, ZIO_COMPLEVEL_INHERIT);
 | |
| 
 | |
| 	/* Invalid compressed buffer size encoded at start */
 | |
| 	if (c_len + sizeof (*hdr) > s_len) {
 | |
| 		ZSTDSTAT_BUMP(zstd_stat_dec_header_inval);
 | |
| 		return (1);
 | |
| 	}
 | |
| 
 | |
| 	dctx = ZSTD_createDCtx_advanced(zstd_dctx_malloc);
 | |
| 	if (!dctx) {
 | |
| 		ZSTDSTAT_BUMP(zstd_stat_dec_alloc_fail);
 | |
| 		return (1);
 | |
| 	}
 | |
| 
 | |
| 	/* Set header type to "magicless" */
 | |
| 	ZSTD_DCtx_setParameter(dctx, ZSTD_d_format, ZSTD_f_zstd1_magicless);
 | |
| 
 | |
| 	/* Decompress the data and release the context */
 | |
| 	result = ZSTD_decompressDCtx(dctx, d_start, d_len, hdr->data, c_len);
 | |
| 	ZSTD_freeDCtx(dctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Returns 0 on success (decompression function returned non-negative)
 | |
| 	 * and non-zero on failure (decompression function returned negative.
 | |
| 	 */
 | |
| 	if (ZSTD_isError(result)) {
 | |
| 		ZSTDSTAT_BUMP(zstd_stat_dec_fail);
 | |
| 		return (1);
 | |
| 	}
 | |
| 
 | |
| 	if (level) {
 | |
| 		*level = curlevel;
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /* Decompress datablock using zstd */
 | |
| int
 | |
| zfs_zstd_decompress(void *s_start, void *d_start, size_t s_len, size_t d_len,
 | |
|     int level __maybe_unused)
 | |
| {
 | |
| 
 | |
| 	return (zfs_zstd_decompress_level(s_start, d_start, s_len, d_len,
 | |
| 	    NULL));
 | |
| }
 | |
| 
 | |
| /* Allocator for zstd compression context using mempool_allocator */
 | |
| static void *
 | |
| zstd_alloc(void *opaque __maybe_unused, size_t size)
 | |
| {
 | |
| 	size_t nbytes = sizeof (struct zstd_kmem) + size;
 | |
| 	struct zstd_kmem *z = NULL;
 | |
| 
 | |
| 	z = (struct zstd_kmem *)zstd_mempool_alloc(zstd_mempool_cctx, nbytes);
 | |
| 
 | |
| 	if (!z) {
 | |
| 		ZSTDSTAT_BUMP(zstd_stat_alloc_fail);
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	return ((void*)z + (sizeof (struct zstd_kmem)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocator for zstd decompression context using mempool_allocator with
 | |
|  * fallback to reserved memory if allocation fails
 | |
|  */
 | |
| static void *
 | |
| zstd_dctx_alloc(void *opaque __maybe_unused, size_t size)
 | |
| {
 | |
| 	size_t nbytes = sizeof (struct zstd_kmem) + size;
 | |
| 	struct zstd_kmem *z = NULL;
 | |
| 	enum zstd_kmem_type type = ZSTD_KMEM_DEFAULT;
 | |
| 
 | |
| 	z = (struct zstd_kmem *)zstd_mempool_alloc(zstd_mempool_dctx, nbytes);
 | |
| 	if (!z) {
 | |
| 		/* Try harder, decompression shall not fail */
 | |
| 		z = vmem_alloc(nbytes, KM_SLEEP);
 | |
| 		if (z) {
 | |
| 			z->pool = NULL;
 | |
| 		}
 | |
| 		ZSTDSTAT_BUMP(zstd_stat_alloc_fail);
 | |
| 	} else {
 | |
| 		return ((void*)z + (sizeof (struct zstd_kmem)));
 | |
| 	}
 | |
| 
 | |
| 	/* Fallback if everything fails */
 | |
| 	if (!z) {
 | |
| 		/*
 | |
| 		 * Barrier since we only can handle it in a single thread. All
 | |
| 		 * other following threads need to wait here until decompression
 | |
| 		 * is completed. zstd_free will release this barrier later.
 | |
| 		 */
 | |
| 		mutex_enter(&zstd_dctx_fallback.barrier);
 | |
| 
 | |
| 		z = zstd_dctx_fallback.mem;
 | |
| 		type = ZSTD_KMEM_DCTX;
 | |
| 		ZSTDSTAT_BUMP(zstd_stat_alloc_fallback);
 | |
| 	}
 | |
| 
 | |
| 	/* Allocation should always be successful */
 | |
| 	if (!z) {
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	z->kmem_type = type;
 | |
| 	z->kmem_size = nbytes;
 | |
| 
 | |
| 	return ((void*)z + (sizeof (struct zstd_kmem)));
 | |
| }
 | |
| 
 | |
| /* Free allocated memory by its specific type */
 | |
| static void
 | |
| zstd_free(void *opaque __maybe_unused, void *ptr)
 | |
| {
 | |
| 	struct zstd_kmem *z = (ptr - sizeof (struct zstd_kmem));
 | |
| 	enum zstd_kmem_type type;
 | |
| 
 | |
| 	ASSERT3U(z->kmem_type, <, ZSTD_KMEM_COUNT);
 | |
| 	ASSERT3U(z->kmem_type, >, ZSTD_KMEM_UNKNOWN);
 | |
| 
 | |
| 	type = z->kmem_type;
 | |
| 	switch (type) {
 | |
| 	case ZSTD_KMEM_DEFAULT:
 | |
| 		vmem_free(z, z->kmem_size);
 | |
| 		break;
 | |
| 	case ZSTD_KMEM_POOL:
 | |
| 		zstd_mempool_free(z);
 | |
| 		break;
 | |
| 	case ZSTD_KMEM_DCTX:
 | |
| 		mutex_exit(&zstd_dctx_fallback.barrier);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Allocate fallback memory to ensure safe decompression */
 | |
| static void __init
 | |
| create_fallback_mem(struct zstd_fallback_mem *mem, size_t size)
 | |
| {
 | |
| 	mem->mem_size = size;
 | |
| 	mem->mem = vmem_zalloc(mem->mem_size, KM_SLEEP);
 | |
| 	mutex_init(&mem->barrier, NULL, MUTEX_DEFAULT, NULL);
 | |
| }
 | |
| 
 | |
| /* Initialize memory pool barrier mutexes */
 | |
| static void __init
 | |
| zstd_mempool_init(void)
 | |
| {
 | |
| 	zstd_mempool_cctx =
 | |
| 	    kmem_zalloc(ZSTD_POOL_MAX * sizeof (struct zstd_pool), KM_SLEEP);
 | |
| 	zstd_mempool_dctx =
 | |
| 	    kmem_zalloc(ZSTD_POOL_MAX * sizeof (struct zstd_pool), KM_SLEEP);
 | |
| 
 | |
| 	for (int i = 0; i < ZSTD_POOL_MAX; i++) {
 | |
| 		mutex_init(&zstd_mempool_cctx[i].barrier, NULL,
 | |
| 		    MUTEX_DEFAULT, NULL);
 | |
| 		mutex_init(&zstd_mempool_dctx[i].barrier, NULL,
 | |
| 		    MUTEX_DEFAULT, NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Initialize zstd-related memory handling */
 | |
| static int __init
 | |
| zstd_meminit(void)
 | |
| {
 | |
| 	zstd_mempool_init();
 | |
| 
 | |
| 	/*
 | |
| 	 * Estimate the size of the fallback decompression context.
 | |
| 	 * The expected size on x64 with current ZSTD should be about 160 KB.
 | |
| 	 */
 | |
| 	create_fallback_mem(&zstd_dctx_fallback,
 | |
| 	    P2ROUNDUP(ZSTD_estimateDCtxSize() + sizeof (struct zstd_kmem),
 | |
| 	    PAGESIZE));
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /* Release object from pool and free memory */
 | |
| static void
 | |
| release_pool(struct zstd_pool *pool)
 | |
| {
 | |
| 	mutex_destroy(&pool->barrier);
 | |
| 	vmem_free(pool->mem, pool->size);
 | |
| 	pool->mem = NULL;
 | |
| 	pool->size = 0;
 | |
| }
 | |
| 
 | |
| /* Release memory pool objects */
 | |
| static void
 | |
| zstd_mempool_deinit(void)
 | |
| {
 | |
| 	for (int i = 0; i < ZSTD_POOL_MAX; i++) {
 | |
| 		release_pool(&zstd_mempool_cctx[i]);
 | |
| 		release_pool(&zstd_mempool_dctx[i]);
 | |
| 	}
 | |
| 
 | |
| 	kmem_free(zstd_mempool_dctx, ZSTD_POOL_MAX * sizeof (struct zstd_pool));
 | |
| 	kmem_free(zstd_mempool_cctx, ZSTD_POOL_MAX * sizeof (struct zstd_pool));
 | |
| 	zstd_mempool_dctx = NULL;
 | |
| 	zstd_mempool_cctx = NULL;
 | |
| }
 | |
| 
 | |
| /* release unused memory from pool */
 | |
| 
 | |
| void
 | |
| zfs_zstd_cache_reap_now(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * calling alloc with zero size seeks
 | |
| 	 * and releases old unused objects
 | |
| 	 */
 | |
| 	zstd_mempool_reap(zstd_mempool_cctx);
 | |
| 	zstd_mempool_reap(zstd_mempool_dctx);
 | |
| }
 | |
| 
 | |
| extern int __init
 | |
| zstd_init(void)
 | |
| {
 | |
| 	/* Set pool size by using maximum sane thread count * 4 */
 | |
| 	pool_count = (boot_ncpus * 4);
 | |
| 	zstd_meminit();
 | |
| 
 | |
| 	/* Initialize kstat */
 | |
| 	zstd_ksp = kstat_create("zfs", 0, "zstd", "misc",
 | |
| 	    KSTAT_TYPE_NAMED, sizeof (zstd_stats) / sizeof (kstat_named_t),
 | |
| 	    KSTAT_FLAG_VIRTUAL);
 | |
| 	if (zstd_ksp != NULL) {
 | |
| 		zstd_ksp->ks_data = &zstd_stats;
 | |
| 		kstat_install(zstd_ksp);
 | |
| #ifdef _KERNEL
 | |
| 		zstd_ksp->ks_update = kstat_zstd_update;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| extern void
 | |
| zstd_fini(void)
 | |
| {
 | |
| 	/* Deinitialize kstat */
 | |
| 	if (zstd_ksp != NULL) {
 | |
| 		kstat_delete(zstd_ksp);
 | |
| 		zstd_ksp = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Release fallback memory */
 | |
| 	vmem_free(zstd_dctx_fallback.mem, zstd_dctx_fallback.mem_size);
 | |
| 	mutex_destroy(&zstd_dctx_fallback.barrier);
 | |
| 
 | |
| 	/* Deinit memory pool */
 | |
| 	zstd_mempool_deinit();
 | |
| }
 | |
| 
 | |
| #if defined(_KERNEL)
 | |
| #ifdef __FreeBSD__
 | |
| module_init(zstd_init);
 | |
| module_exit(zstd_fini);
 | |
| #endif
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs, zstd_, earlyabort_pass, UINT, ZMOD_RW,
 | |
| 	"Enable early abort attempts when using zstd");
 | |
| ZFS_MODULE_PARAM(zfs, zstd_, abort_size, UINT, ZMOD_RW,
 | |
| 	"Minimal size of block to attempt early abort");
 | |
| #endif
 |