mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 13:29:32 +00:00 
			
		
		
		
	 795075e638
			
		
	
	
		795075e638
		
			
		
	
	
	
	
		
			
			Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #12728
		
			
				
	
	
		
			812 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			812 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or http://www.opensolaris.org/os/licensing.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <sys/zfs_context.h>
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/avl.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/nvpair.h>
 | |
| #ifdef _KERNEL
 | |
| #include <sys/sid.h>
 | |
| #include <sys/zfs_vfsops.h>
 | |
| #include <sys/zfs_znode.h>
 | |
| #endif
 | |
| #include <sys/zfs_fuid.h>
 | |
| 
 | |
| /*
 | |
|  * FUID Domain table(s).
 | |
|  *
 | |
|  * The FUID table is stored as a packed nvlist of an array
 | |
|  * of nvlists which contain an index, domain string and offset
 | |
|  *
 | |
|  * During file system initialization the nvlist(s) are read and
 | |
|  * two AVL trees are created.  One tree is keyed by the index number
 | |
|  * and the other by the domain string.  Nodes are never removed from
 | |
|  * trees, but new entries may be added.  If a new entry is added then
 | |
|  * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
 | |
|  * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define	FUID_IDX	"fuid_idx"
 | |
| #define	FUID_DOMAIN	"fuid_domain"
 | |
| #define	FUID_OFFSET	"fuid_offset"
 | |
| #define	FUID_NVP_ARRAY	"fuid_nvlist"
 | |
| 
 | |
| typedef struct fuid_domain {
 | |
| 	avl_node_t	f_domnode;
 | |
| 	avl_node_t	f_idxnode;
 | |
| 	ksiddomain_t	*f_ksid;
 | |
| 	uint64_t	f_idx;
 | |
| } fuid_domain_t;
 | |
| 
 | |
| static char *nulldomain = "";
 | |
| 
 | |
| /*
 | |
|  * Compare two indexes.
 | |
|  */
 | |
| static int
 | |
| idx_compare(const void *arg1, const void *arg2)
 | |
| {
 | |
| 	const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
 | |
| 	const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
 | |
| 
 | |
| 	return (TREE_CMP(node1->f_idx, node2->f_idx));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare two domain strings.
 | |
|  */
 | |
| static int
 | |
| domain_compare(const void *arg1, const void *arg2)
 | |
| {
 | |
| 	const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
 | |
| 	const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
 | |
| 	int val;
 | |
| 
 | |
| 	val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
 | |
| 
 | |
| 	return (TREE_ISIGN(val));
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
 | |
| {
 | |
| 	avl_create(idx_tree, idx_compare,
 | |
| 	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
 | |
| 	avl_create(domain_tree, domain_compare,
 | |
| 	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * load initial fuid domain and idx trees.  This function is used by
 | |
|  * both the kernel and zdb.
 | |
|  */
 | |
| uint64_t
 | |
| zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
 | |
|     avl_tree_t *domain_tree)
 | |
| {
 | |
| 	dmu_buf_t *db;
 | |
| 	uint64_t fuid_size;
 | |
| 
 | |
| 	ASSERT(fuid_obj != 0);
 | |
| 	VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
 | |
| 	    FTAG, &db));
 | |
| 	fuid_size = *(uint64_t *)db->db_data;
 | |
| 	dmu_buf_rele(db, FTAG);
 | |
| 
 | |
| 	if (fuid_size)  {
 | |
| 		nvlist_t **fuidnvp;
 | |
| 		nvlist_t *nvp = NULL;
 | |
| 		uint_t count;
 | |
| 		char *packed;
 | |
| 		int i;
 | |
| 
 | |
| 		packed = kmem_alloc(fuid_size, KM_SLEEP);
 | |
| 		VERIFY(dmu_read(os, fuid_obj, 0,
 | |
| 		    fuid_size, packed, DMU_READ_PREFETCH) == 0);
 | |
| 		VERIFY(nvlist_unpack(packed, fuid_size,
 | |
| 		    &nvp, 0) == 0);
 | |
| 		VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
 | |
| 		    &fuidnvp, &count) == 0);
 | |
| 
 | |
| 		for (i = 0; i != count; i++) {
 | |
| 			fuid_domain_t *domnode;
 | |
| 			char *domain;
 | |
| 			uint64_t idx;
 | |
| 
 | |
| 			VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
 | |
| 			    &domain) == 0);
 | |
| 			VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
 | |
| 			    &idx) == 0);
 | |
| 
 | |
| 			domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
 | |
| 
 | |
| 			domnode->f_idx = idx;
 | |
| 			domnode->f_ksid = ksid_lookupdomain(domain);
 | |
| 			avl_add(idx_tree, domnode);
 | |
| 			avl_add(domain_tree, domnode);
 | |
| 		}
 | |
| 		nvlist_free(nvp);
 | |
| 		kmem_free(packed, fuid_size);
 | |
| 	}
 | |
| 	return (fuid_size);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
 | |
| {
 | |
| 	fuid_domain_t *domnode;
 | |
| 	void *cookie;
 | |
| 
 | |
| 	cookie = NULL;
 | |
| 	while ((domnode = avl_destroy_nodes(domain_tree, &cookie)))
 | |
| 		ksiddomain_rele(domnode->f_ksid);
 | |
| 
 | |
| 	avl_destroy(domain_tree);
 | |
| 	cookie = NULL;
 | |
| 	while ((domnode = avl_destroy_nodes(idx_tree, &cookie)))
 | |
| 		kmem_free(domnode, sizeof (fuid_domain_t));
 | |
| 	avl_destroy(idx_tree);
 | |
| }
 | |
| 
 | |
| char *
 | |
| zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
 | |
| {
 | |
| 	fuid_domain_t searchnode, *findnode;
 | |
| 	avl_index_t loc;
 | |
| 
 | |
| 	searchnode.f_idx = idx;
 | |
| 
 | |
| 	findnode = avl_find(idx_tree, &searchnode, &loc);
 | |
| 
 | |
| 	return (findnode ? findnode->f_ksid->kd_name : nulldomain);
 | |
| }
 | |
| 
 | |
| #ifdef _KERNEL
 | |
| /*
 | |
|  * Load the fuid table(s) into memory.
 | |
|  */
 | |
| static void
 | |
| zfs_fuid_init(zfsvfs_t *zfsvfs)
 | |
| {
 | |
| 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
 | |
| 
 | |
| 	if (zfsvfs->z_fuid_loaded) {
 | |
| 		rw_exit(&zfsvfs->z_fuid_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
 | |
| 
 | |
| 	(void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
 | |
| 	    ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
 | |
| 	if (zfsvfs->z_fuid_obj != 0) {
 | |
| 		zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
 | |
| 		    zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
 | |
| 		    &zfsvfs->z_fuid_domain);
 | |
| 	}
 | |
| 
 | |
| 	zfsvfs->z_fuid_loaded = B_TRUE;
 | |
| 	rw_exit(&zfsvfs->z_fuid_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sync out AVL trees to persistent storage.
 | |
|  */
 | |
| void
 | |
| zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
 | |
| {
 | |
| 	nvlist_t *nvp;
 | |
| 	nvlist_t **fuids;
 | |
| 	size_t nvsize = 0;
 | |
| 	char *packed;
 | |
| 	dmu_buf_t *db;
 | |
| 	fuid_domain_t *domnode;
 | |
| 	int numnodes;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!zfsvfs->z_fuid_dirty) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
 | |
| 
 | |
| 	/*
 | |
| 	 * First see if table needs to be created?
 | |
| 	 */
 | |
| 	if (zfsvfs->z_fuid_obj == 0) {
 | |
| 		zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
 | |
| 		    DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
 | |
| 		    sizeof (uint64_t), tx);
 | |
| 		VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
 | |
| 		    ZFS_FUID_TABLES, sizeof (uint64_t), 1,
 | |
| 		    &zfsvfs->z_fuid_obj, tx) == 0);
 | |
| 	}
 | |
| 
 | |
| 	VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 | |
| 
 | |
| 	numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
 | |
| 	fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
 | |
| 	for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
 | |
| 	    domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
 | |
| 		VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
 | |
| 		VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
 | |
| 		    domnode->f_idx) == 0);
 | |
| 		VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
 | |
| 		VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
 | |
| 		    domnode->f_ksid->kd_name) == 0);
 | |
| 	}
 | |
| 	fnvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
 | |
| 	    (const nvlist_t * const *)fuids, numnodes);
 | |
| 	for (i = 0; i != numnodes; i++)
 | |
| 		nvlist_free(fuids[i]);
 | |
| 	kmem_free(fuids, numnodes * sizeof (void *));
 | |
| 	VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
 | |
| 	packed = kmem_alloc(nvsize, KM_SLEEP);
 | |
| 	VERIFY(nvlist_pack(nvp, &packed, &nvsize,
 | |
| 	    NV_ENCODE_XDR, KM_SLEEP) == 0);
 | |
| 	nvlist_free(nvp);
 | |
| 	zfsvfs->z_fuid_size = nvsize;
 | |
| 	dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
 | |
| 	    zfsvfs->z_fuid_size, packed, tx);
 | |
| 	kmem_free(packed, zfsvfs->z_fuid_size);
 | |
| 	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
 | |
| 	    FTAG, &db));
 | |
| 	dmu_buf_will_dirty(db, tx);
 | |
| 	*(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
 | |
| 	dmu_buf_rele(db, FTAG);
 | |
| 
 | |
| 	zfsvfs->z_fuid_dirty = B_FALSE;
 | |
| 	rw_exit(&zfsvfs->z_fuid_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Query domain table for a given domain.
 | |
|  *
 | |
|  * If domain isn't found and addok is set, it is added to AVL trees and
 | |
|  * the zfsvfs->z_fuid_dirty flag will be set to TRUE.  It will then be
 | |
|  * necessary for the caller or another thread to detect the dirty table
 | |
|  * and sync out the changes.
 | |
|  */
 | |
| int
 | |
| zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
 | |
|     char **retdomain, boolean_t addok)
 | |
| {
 | |
| 	fuid_domain_t searchnode, *findnode;
 | |
| 	avl_index_t loc;
 | |
| 	krw_t rw = RW_READER;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the dummy "nobody" domain then return an index of 0
 | |
| 	 * to cause the created FUID to be a standard POSIX id
 | |
| 	 * for the user nobody.
 | |
| 	 */
 | |
| 	if (domain[0] == '\0') {
 | |
| 		if (retdomain)
 | |
| 			*retdomain = nulldomain;
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	searchnode.f_ksid = ksid_lookupdomain(domain);
 | |
| 	if (retdomain)
 | |
| 		*retdomain = searchnode.f_ksid->kd_name;
 | |
| 	if (!zfsvfs->z_fuid_loaded)
 | |
| 		zfs_fuid_init(zfsvfs);
 | |
| 
 | |
| retry:
 | |
| 	rw_enter(&zfsvfs->z_fuid_lock, rw);
 | |
| 	findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
 | |
| 
 | |
| 	if (findnode) {
 | |
| 		rw_exit(&zfsvfs->z_fuid_lock);
 | |
| 		ksiddomain_rele(searchnode.f_ksid);
 | |
| 		return (findnode->f_idx);
 | |
| 	} else if (addok) {
 | |
| 		fuid_domain_t *domnode;
 | |
| 		uint64_t retidx;
 | |
| 
 | |
| 		if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
 | |
| 			rw_exit(&zfsvfs->z_fuid_lock);
 | |
| 			rw = RW_WRITER;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
 | |
| 		domnode->f_ksid = searchnode.f_ksid;
 | |
| 
 | |
| 		retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
 | |
| 
 | |
| 		avl_add(&zfsvfs->z_fuid_domain, domnode);
 | |
| 		avl_add(&zfsvfs->z_fuid_idx, domnode);
 | |
| 		zfsvfs->z_fuid_dirty = B_TRUE;
 | |
| 		rw_exit(&zfsvfs->z_fuid_lock);
 | |
| 		return (retidx);
 | |
| 	} else {
 | |
| 		rw_exit(&zfsvfs->z_fuid_lock);
 | |
| 		return (-1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Query domain table by index, returning domain string
 | |
|  *
 | |
|  * Returns a pointer from an avl node of the domain string.
 | |
|  *
 | |
|  */
 | |
| const char *
 | |
| zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
 | |
| {
 | |
| 	char *domain;
 | |
| 
 | |
| 	if (idx == 0 || !zfsvfs->z_use_fuids)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	if (!zfsvfs->z_fuid_loaded)
 | |
| 		zfs_fuid_init(zfsvfs);
 | |
| 
 | |
| 	rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
 | |
| 
 | |
| 	if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty)
 | |
| 		domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
 | |
| 	else
 | |
| 		domain = nulldomain;
 | |
| 	rw_exit(&zfsvfs->z_fuid_lock);
 | |
| 
 | |
| 	ASSERT(domain);
 | |
| 	return (domain);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
 | |
| {
 | |
| 	*uidp = zfs_fuid_map_id(ZTOZSB(zp), KUID_TO_SUID(ZTOUID(zp)),
 | |
| 	    cr, ZFS_OWNER);
 | |
| 	*gidp = zfs_fuid_map_id(ZTOZSB(zp), KGID_TO_SGID(ZTOGID(zp)),
 | |
| 	    cr, ZFS_GROUP);
 | |
| }
 | |
| 
 | |
| #ifdef __FreeBSD__
 | |
| uid_t
 | |
| zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
 | |
|     cred_t *cr, zfs_fuid_type_t type)
 | |
| {
 | |
| 	uint32_t index = FUID_INDEX(fuid);
 | |
| 
 | |
| 	if (index == 0)
 | |
| 		return (fuid);
 | |
| 
 | |
| 	return (UID_NOBODY);
 | |
| }
 | |
| #elif defined(__linux__)
 | |
| uid_t
 | |
| zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
 | |
|     cred_t *cr, zfs_fuid_type_t type)
 | |
| {
 | |
| 	/*
 | |
| 	 * The Linux port only supports POSIX IDs, use the passed id.
 | |
| 	 */
 | |
| 	return (fuid);
 | |
| }
 | |
| 
 | |
| #else
 | |
| uid_t
 | |
| zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
 | |
|     cred_t *cr, zfs_fuid_type_t type)
 | |
| {
 | |
| 	uint32_t index = FUID_INDEX(fuid);
 | |
| 	const char *domain;
 | |
| 	uid_t id;
 | |
| 
 | |
| 	if (index == 0)
 | |
| 		return (fuid);
 | |
| 
 | |
| 	domain = zfs_fuid_find_by_idx(zfsvfs, index);
 | |
| 	ASSERT(domain != NULL);
 | |
| 
 | |
| 	if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
 | |
| 		(void) kidmap_getuidbysid(crgetzone(cr), domain,
 | |
| 		    FUID_RID(fuid), &id);
 | |
| 	} else {
 | |
| 		(void) kidmap_getgidbysid(crgetzone(cr), domain,
 | |
| 		    FUID_RID(fuid), &id);
 | |
| 	}
 | |
| 	return (id);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Add a FUID node to the list of fuid's being created for this
 | |
|  * ACL
 | |
|  *
 | |
|  * If ACL has multiple domains, then keep only one copy of each unique
 | |
|  * domain.
 | |
|  */
 | |
| void
 | |
| zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
 | |
|     uint64_t idx, uint64_t id, zfs_fuid_type_t type)
 | |
| {
 | |
| 	zfs_fuid_t *fuid;
 | |
| 	zfs_fuid_domain_t *fuid_domain;
 | |
| 	zfs_fuid_info_t *fuidp;
 | |
| 	uint64_t fuididx;
 | |
| 	boolean_t found = B_FALSE;
 | |
| 
 | |
| 	if (*fuidpp == NULL)
 | |
| 		*fuidpp = zfs_fuid_info_alloc();
 | |
| 
 | |
| 	fuidp = *fuidpp;
 | |
| 	/*
 | |
| 	 * First find fuid domain index in linked list
 | |
| 	 *
 | |
| 	 * If one isn't found then create an entry.
 | |
| 	 */
 | |
| 
 | |
| 	for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
 | |
| 	    fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
 | |
| 	    fuid_domain), fuididx++) {
 | |
| 		if (idx == fuid_domain->z_domidx) {
 | |
| 			found = B_TRUE;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!found) {
 | |
| 		fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
 | |
| 		fuid_domain->z_domain = domain;
 | |
| 		fuid_domain->z_domidx = idx;
 | |
| 		list_insert_tail(&fuidp->z_domains, fuid_domain);
 | |
| 		fuidp->z_domain_str_sz += strlen(domain) + 1;
 | |
| 		fuidp->z_domain_cnt++;
 | |
| 	}
 | |
| 
 | |
| 	if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Now allocate fuid entry and add it on the end of the list
 | |
| 		 */
 | |
| 
 | |
| 		fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
 | |
| 		fuid->z_id = id;
 | |
| 		fuid->z_domidx = idx;
 | |
| 		fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
 | |
| 
 | |
| 		list_insert_tail(&fuidp->z_fuids, fuid);
 | |
| 		fuidp->z_fuid_cnt++;
 | |
| 	} else {
 | |
| 		if (type == ZFS_OWNER)
 | |
| 			fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
 | |
| 		else
 | |
| 			fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_KSID
 | |
| /*
 | |
|  * Create a file system FUID, based on information in the users cred
 | |
|  *
 | |
|  * If cred contains KSID_OWNER then it should be used to determine
 | |
|  * the uid otherwise cred's uid will be used. By default cred's gid
 | |
|  * is used unless it's an ephemeral ID in which case KSID_GROUP will
 | |
|  * be used if it exists.
 | |
|  */
 | |
| uint64_t
 | |
| zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
 | |
|     cred_t *cr, zfs_fuid_info_t **fuidp)
 | |
| {
 | |
| 	uint64_t	idx;
 | |
| 	ksid_t		*ksid;
 | |
| 	uint32_t	rid;
 | |
| 	char		*kdomain;
 | |
| 	const char	*domain;
 | |
| 	uid_t		id;
 | |
| 
 | |
| 	VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
 | |
| 
 | |
| 	ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
 | |
| 
 | |
| 	if (!zfsvfs->z_use_fuids || (ksid == NULL)) {
 | |
| 		id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr);
 | |
| 
 | |
| 		if (IS_EPHEMERAL(id))
 | |
| 			return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY);
 | |
| 
 | |
| 		return ((uint64_t)id);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * ksid is present and FUID is supported
 | |
| 	 */
 | |
| 	id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr);
 | |
| 
 | |
| 	if (!IS_EPHEMERAL(id))
 | |
| 		return ((uint64_t)id);
 | |
| 
 | |
| 	if (type == ZFS_GROUP)
 | |
| 		id = ksid_getid(ksid);
 | |
| 
 | |
| 	rid = ksid_getrid(ksid);
 | |
| 	domain = ksid_getdomain(ksid);
 | |
| 
 | |
| 	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
 | |
| 
 | |
| 	zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
 | |
| 
 | |
| 	return (FUID_ENCODE(idx, rid));
 | |
| }
 | |
| #endif /* HAVE_KSID */
 | |
| 
 | |
| /*
 | |
|  * Create a file system FUID for an ACL ace
 | |
|  * or a chown/chgrp of the file.
 | |
|  * This is similar to zfs_fuid_create_cred, except that
 | |
|  * we can't find the domain + rid information in the
 | |
|  * cred.  Instead we have to query Winchester for the
 | |
|  * domain and rid.
 | |
|  *
 | |
|  * During replay operations the domain+rid information is
 | |
|  * found in the zfs_fuid_info_t that the replay code has
 | |
|  * attached to the zfsvfs of the file system.
 | |
|  */
 | |
| uint64_t
 | |
| zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
 | |
|     zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
 | |
| {
 | |
| #ifdef HAVE_KSID
 | |
| 	const char *domain;
 | |
| 	char *kdomain;
 | |
| 	uint32_t fuid_idx = FUID_INDEX(id);
 | |
| 	uint32_t rid = 0;
 | |
| 	idmap_stat status;
 | |
| 	uint64_t idx = UID_NOBODY;
 | |
| 	zfs_fuid_t *zfuid = NULL;
 | |
| 	zfs_fuid_info_t *fuidp = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If POSIX ID, or entry is already a FUID then
 | |
| 	 * just return the id
 | |
| 	 *
 | |
| 	 * We may also be handed an already FUID'ized id via
 | |
| 	 * chmod.
 | |
| 	 */
 | |
| 
 | |
| 	if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
 | |
| 		return (id);
 | |
| 
 | |
| 	if (zfsvfs->z_replay) {
 | |
| 		fuidp = zfsvfs->z_fuid_replay;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we are passed an ephemeral id, but no
 | |
| 		 * fuid_info was logged then return NOBODY.
 | |
| 		 * This is most likely a result of idmap service
 | |
| 		 * not being available.
 | |
| 		 */
 | |
| 		if (fuidp == NULL)
 | |
| 			return (UID_NOBODY);
 | |
| 
 | |
| 		VERIFY3U(type, >=, ZFS_OWNER);
 | |
| 		VERIFY3U(type, <=, ZFS_ACE_GROUP);
 | |
| 
 | |
| 		switch (type) {
 | |
| 		case ZFS_ACE_USER:
 | |
| 		case ZFS_ACE_GROUP:
 | |
| 			zfuid = list_head(&fuidp->z_fuids);
 | |
| 			rid = FUID_RID(zfuid->z_logfuid);
 | |
| 			idx = FUID_INDEX(zfuid->z_logfuid);
 | |
| 			break;
 | |
| 		case ZFS_OWNER:
 | |
| 			rid = FUID_RID(fuidp->z_fuid_owner);
 | |
| 			idx = FUID_INDEX(fuidp->z_fuid_owner);
 | |
| 			break;
 | |
| 		case ZFS_GROUP:
 | |
| 			rid = FUID_RID(fuidp->z_fuid_group);
 | |
| 			idx = FUID_INDEX(fuidp->z_fuid_group);
 | |
| 			break;
 | |
| 		};
 | |
| 		domain = fuidp->z_domain_table[idx - 1];
 | |
| 	} else {
 | |
| 		if (type == ZFS_OWNER || type == ZFS_ACE_USER)
 | |
| 			status = kidmap_getsidbyuid(crgetzone(cr), id,
 | |
| 			    &domain, &rid);
 | |
| 		else
 | |
| 			status = kidmap_getsidbygid(crgetzone(cr), id,
 | |
| 			    &domain, &rid);
 | |
| 
 | |
| 		if (status != 0) {
 | |
| 			/*
 | |
| 			 * When returning nobody we will need to
 | |
| 			 * make a dummy fuid table entry for logging
 | |
| 			 * purposes.
 | |
| 			 */
 | |
| 			rid = UID_NOBODY;
 | |
| 			domain = nulldomain;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
 | |
| 
 | |
| 	if (!zfsvfs->z_replay)
 | |
| 		zfs_fuid_node_add(fuidpp, kdomain,
 | |
| 		    rid, idx, id, type);
 | |
| 	else if (zfuid != NULL) {
 | |
| 		list_remove(&fuidp->z_fuids, zfuid);
 | |
| 		kmem_free(zfuid, sizeof (zfs_fuid_t));
 | |
| 	}
 | |
| 	return (FUID_ENCODE(idx, rid));
 | |
| #else
 | |
| 	/*
 | |
| 	 * The Linux port only supports POSIX IDs, use the passed id.
 | |
| 	 */
 | |
| 	return (id);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_fuid_destroy(zfsvfs_t *zfsvfs)
 | |
| {
 | |
| 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
 | |
| 	if (!zfsvfs->z_fuid_loaded) {
 | |
| 		rw_exit(&zfsvfs->z_fuid_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
 | |
| 	rw_exit(&zfsvfs->z_fuid_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate zfs_fuid_info for tracking FUIDs created during
 | |
|  * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
 | |
|  */
 | |
| zfs_fuid_info_t *
 | |
| zfs_fuid_info_alloc(void)
 | |
| {
 | |
| 	zfs_fuid_info_t *fuidp;
 | |
| 
 | |
| 	fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
 | |
| 	list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
 | |
| 	    offsetof(zfs_fuid_domain_t, z_next));
 | |
| 	list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
 | |
| 	    offsetof(zfs_fuid_t, z_next));
 | |
| 	return (fuidp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release all memory associated with zfs_fuid_info_t
 | |
|  */
 | |
| void
 | |
| zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
 | |
| {
 | |
| 	zfs_fuid_t *zfuid;
 | |
| 	zfs_fuid_domain_t *zdomain;
 | |
| 
 | |
| 	while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
 | |
| 		list_remove(&fuidp->z_fuids, zfuid);
 | |
| 		kmem_free(zfuid, sizeof (zfs_fuid_t));
 | |
| 	}
 | |
| 
 | |
| 	if (fuidp->z_domain_table != NULL)
 | |
| 		kmem_free(fuidp->z_domain_table,
 | |
| 		    (sizeof (char *)) * fuidp->z_domain_cnt);
 | |
| 
 | |
| 	while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
 | |
| 		list_remove(&fuidp->z_domains, zdomain);
 | |
| 		kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
 | |
| 	}
 | |
| 
 | |
| 	kmem_free(fuidp, sizeof (zfs_fuid_info_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if id is a groupmember.  If cred
 | |
|  * has ksid info then sidlist is checked first
 | |
|  * and if still not found then POSIX groups are checked
 | |
|  *
 | |
|  * Will use a straight FUID compare when possible.
 | |
|  */
 | |
| boolean_t
 | |
| zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
 | |
| {
 | |
| 	uid_t		gid;
 | |
| 
 | |
| #ifdef illumos
 | |
| 	ksid_t		*ksid = crgetsid(cr, KSID_GROUP);
 | |
| 	ksidlist_t	*ksidlist = crgetsidlist(cr);
 | |
| 
 | |
| 	if (ksid && ksidlist) {
 | |
| 		int		i;
 | |
| 		ksid_t		*ksid_groups;
 | |
| 		uint32_t	idx = FUID_INDEX(id);
 | |
| 		uint32_t	rid = FUID_RID(id);
 | |
| 
 | |
| 		ksid_groups = ksidlist->ksl_sids;
 | |
| 
 | |
| 		for (i = 0; i != ksidlist->ksl_nsid; i++) {
 | |
| 			if (idx == 0) {
 | |
| 				if (id != IDMAP_WK_CREATOR_GROUP_GID &&
 | |
| 				    id == ksid_groups[i].ks_id) {
 | |
| 					return (B_TRUE);
 | |
| 				}
 | |
| 			} else {
 | |
| 				const char *domain;
 | |
| 
 | |
| 				domain = zfs_fuid_find_by_idx(zfsvfs, idx);
 | |
| 				ASSERT(domain != NULL);
 | |
| 
 | |
| 				if (strcmp(domain,
 | |
| 				    IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
 | |
| 					return (B_FALSE);
 | |
| 
 | |
| 				if ((strcmp(domain,
 | |
| 				    ksid_groups[i].ks_domain->kd_name) == 0) &&
 | |
| 				    rid == ksid_groups[i].ks_rid)
 | |
| 					return (B_TRUE);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| #endif /* illumos */
 | |
| 
 | |
| 	/*
 | |
| 	 * Not found in ksidlist, check posix groups
 | |
| 	 */
 | |
| 	gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
 | |
| 	return (groupmember(gid, cr));
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
 | |
| {
 | |
| 	if (zfsvfs->z_fuid_obj == 0) {
 | |
| 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
 | |
| 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
 | |
| 		    FUID_SIZE_ESTIMATE(zfsvfs));
 | |
| 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
 | |
| 	} else {
 | |
| 		dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
 | |
| 		dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
 | |
| 		    FUID_SIZE_ESTIMATE(zfsvfs));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * buf must be big enough (eg, 32 bytes)
 | |
|  */
 | |
| int
 | |
| zfs_id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
 | |
|     char *buf, size_t len, boolean_t addok)
 | |
| {
 | |
| 	uint64_t fuid;
 | |
| 	int domainid = 0;
 | |
| 
 | |
| 	if (domain && domain[0]) {
 | |
| 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
 | |
| 		if (domainid == -1)
 | |
| 			return (SET_ERROR(ENOENT));
 | |
| 	}
 | |
| 	fuid = FUID_ENCODE(domainid, rid);
 | |
| 	(void) snprintf(buf, len, "%llx", (longlong_t)fuid);
 | |
| 	return (0);
 | |
| }
 | |
| #endif
 |