mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 18:31:31 +00:00 
			
		
		
		
	 795075e638
			
		
	
	
		795075e638
		
			
		
	
	
	
	
		
			
			Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #12728
		
			
				
	
	
		
			2030 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2030 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or http://www.opensolaris.org/os/licensing.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
 | |
|  * Copyright (c) 2017, Intel Corporation.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Virtual Device Labels
 | |
|  * ---------------------
 | |
|  *
 | |
|  * The vdev label serves several distinct purposes:
 | |
|  *
 | |
|  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
 | |
|  *	   identity within the pool.
 | |
|  *
 | |
|  *	2. Verify that all the devices given in a configuration are present
 | |
|  *         within the pool.
 | |
|  *
 | |
|  *	3. Determine the uberblock for the pool.
 | |
|  *
 | |
|  *	4. In case of an import operation, determine the configuration of the
 | |
|  *         toplevel vdev of which it is a part.
 | |
|  *
 | |
|  *	5. If an import operation cannot find all the devices in the pool,
 | |
|  *         provide enough information to the administrator to determine which
 | |
|  *         devices are missing.
 | |
|  *
 | |
|  * It is important to note that while the kernel is responsible for writing the
 | |
|  * label, it only consumes the information in the first three cases.  The
 | |
|  * latter information is only consumed in userland when determining the
 | |
|  * configuration to import a pool.
 | |
|  *
 | |
|  *
 | |
|  * Label Organization
 | |
|  * ------------------
 | |
|  *
 | |
|  * Before describing the contents of the label, it's important to understand how
 | |
|  * the labels are written and updated with respect to the uberblock.
 | |
|  *
 | |
|  * When the pool configuration is altered, either because it was newly created
 | |
|  * or a device was added, we want to update all the labels such that we can deal
 | |
|  * with fatal failure at any point.  To this end, each disk has two labels which
 | |
|  * are updated before and after the uberblock is synced.  Assuming we have
 | |
|  * labels and an uberblock with the following transaction groups:
 | |
|  *
 | |
|  *              L1          UB          L2
 | |
|  *           +------+    +------+    +------+
 | |
|  *           |      |    |      |    |      |
 | |
|  *           | t10  |    | t10  |    | t10  |
 | |
|  *           |      |    |      |    |      |
 | |
|  *           +------+    +------+    +------+
 | |
|  *
 | |
|  * In this stable state, the labels and the uberblock were all updated within
 | |
|  * the same transaction group (10).  Each label is mirrored and checksummed, so
 | |
|  * that we can detect when we fail partway through writing the label.
 | |
|  *
 | |
|  * In order to identify which labels are valid, the labels are written in the
 | |
|  * following manner:
 | |
|  *
 | |
|  *	1. For each vdev, update 'L1' to the new label
 | |
|  *	2. Update the uberblock
 | |
|  *	3. For each vdev, update 'L2' to the new label
 | |
|  *
 | |
|  * Given arbitrary failure, we can determine the correct label to use based on
 | |
|  * the transaction group.  If we fail after updating L1 but before updating the
 | |
|  * UB, we will notice that L1's transaction group is greater than the uberblock,
 | |
|  * so L2 must be valid.  If we fail after writing the uberblock but before
 | |
|  * writing L2, we will notice that L2's transaction group is less than L1, and
 | |
|  * therefore L1 is valid.
 | |
|  *
 | |
|  * Another added complexity is that not every label is updated when the config
 | |
|  * is synced.  If we add a single device, we do not want to have to re-write
 | |
|  * every label for every device in the pool.  This means that both L1 and L2 may
 | |
|  * be older than the pool uberblock, because the necessary information is stored
 | |
|  * on another vdev.
 | |
|  *
 | |
|  *
 | |
|  * On-disk Format
 | |
|  * --------------
 | |
|  *
 | |
|  * The vdev label consists of two distinct parts, and is wrapped within the
 | |
|  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
 | |
|  * VTOC disk labels, but is otherwise ignored.
 | |
|  *
 | |
|  * The first half of the label is a packed nvlist which contains pool wide
 | |
|  * properties, per-vdev properties, and configuration information.  It is
 | |
|  * described in more detail below.
 | |
|  *
 | |
|  * The latter half of the label consists of a redundant array of uberblocks.
 | |
|  * These uberblocks are updated whenever a transaction group is committed,
 | |
|  * or when the configuration is updated.  When a pool is loaded, we scan each
 | |
|  * vdev for the 'best' uberblock.
 | |
|  *
 | |
|  *
 | |
|  * Configuration Information
 | |
|  * -------------------------
 | |
|  *
 | |
|  * The nvlist describing the pool and vdev contains the following elements:
 | |
|  *
 | |
|  *	version		ZFS on-disk version
 | |
|  *	name		Pool name
 | |
|  *	state		Pool state
 | |
|  *	txg		Transaction group in which this label was written
 | |
|  *	pool_guid	Unique identifier for this pool
 | |
|  *	vdev_tree	An nvlist describing vdev tree.
 | |
|  *	features_for_read
 | |
|  *			An nvlist of the features necessary for reading the MOS.
 | |
|  *
 | |
|  * Each leaf device label also contains the following:
 | |
|  *
 | |
|  *	top_guid	Unique ID for top-level vdev in which this is contained
 | |
|  *	guid		Unique ID for the leaf vdev
 | |
|  *
 | |
|  * The 'vs' configuration follows the format described in 'spa_config.c'.
 | |
|  */
 | |
| 
 | |
| #include <sys/zfs_context.h>
 | |
| #include <sys/spa.h>
 | |
| #include <sys/spa_impl.h>
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/vdev.h>
 | |
| #include <sys/vdev_impl.h>
 | |
| #include <sys/vdev_draid.h>
 | |
| #include <sys/uberblock_impl.h>
 | |
| #include <sys/metaslab.h>
 | |
| #include <sys/metaslab_impl.h>
 | |
| #include <sys/zio.h>
 | |
| #include <sys/dsl_scan.h>
 | |
| #include <sys/abd.h>
 | |
| #include <sys/fs/zfs.h>
 | |
| #include <sys/byteorder.h>
 | |
| #include <sys/zfs_bootenv.h>
 | |
| 
 | |
| /*
 | |
|  * Basic routines to read and write from a vdev label.
 | |
|  * Used throughout the rest of this file.
 | |
|  */
 | |
| uint64_t
 | |
| vdev_label_offset(uint64_t psize, int l, uint64_t offset)
 | |
| {
 | |
| 	ASSERT(offset < sizeof (vdev_label_t));
 | |
| 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
 | |
| 
 | |
| 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
 | |
| 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns back the vdev label associated with the passed in offset.
 | |
|  */
 | |
| int
 | |
| vdev_label_number(uint64_t psize, uint64_t offset)
 | |
| {
 | |
| 	int l;
 | |
| 
 | |
| 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
 | |
| 		offset -= psize - VDEV_LABEL_END_SIZE;
 | |
| 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
 | |
| 	}
 | |
| 	l = offset / sizeof (vdev_label_t);
 | |
| 	return (l < VDEV_LABELS ? l : -1);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
 | |
|     uint64_t size, zio_done_func_t *done, void *private, int flags)
 | |
| {
 | |
| 	ASSERT(
 | |
| 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
 | |
| 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
 | |
| 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
 | |
| 
 | |
| 	zio_nowait(zio_read_phys(zio, vd,
 | |
| 	    vdev_label_offset(vd->vdev_psize, l, offset),
 | |
| 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
 | |
| 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
 | |
| }
 | |
| 
 | |
| void
 | |
| vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
 | |
|     uint64_t size, zio_done_func_t *done, void *private, int flags)
 | |
| {
 | |
| 	ASSERT(
 | |
| 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
 | |
| 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
 | |
| 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
 | |
| 
 | |
| 	zio_nowait(zio_write_phys(zio, vd,
 | |
| 	    vdev_label_offset(vd->vdev_psize, l, offset),
 | |
| 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
 | |
| 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate the nvlist representing this vdev's stats
 | |
|  */
 | |
| void
 | |
| vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
 | |
| {
 | |
| 	nvlist_t *nvx;
 | |
| 	vdev_stat_t *vs;
 | |
| 	vdev_stat_ex_t *vsx;
 | |
| 
 | |
| 	vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
 | |
| 	vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
 | |
| 
 | |
| 	vdev_get_stats_ex(vd, vs, vsx);
 | |
| 	fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
 | |
| 	    (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
 | |
| 
 | |
| 	/*
 | |
| 	 * Add extended stats into a special extended stats nvlist.  This keeps
 | |
| 	 * all the extended stats nicely grouped together.  The extended stats
 | |
| 	 * nvlist is then added to the main nvlist.
 | |
| 	 */
 | |
| 	nvx = fnvlist_alloc();
 | |
| 
 | |
| 	/* ZIOs in flight to disk */
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
 | |
| 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
 | |
| 
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
 | |
| 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
 | |
| 
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
 | |
| 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
 | |
| 
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
 | |
| 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
 | |
| 
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
 | |
| 	    vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
 | |
| 
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
 | |
| 	    vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
 | |
| 
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE,
 | |
| 	    vsx->vsx_active_queue[ZIO_PRIORITY_REBUILD]);
 | |
| 
 | |
| 	/* ZIOs pending */
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
 | |
| 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
 | |
| 
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
 | |
| 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
 | |
| 
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
 | |
| 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
 | |
| 
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
 | |
| 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
 | |
| 
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
 | |
| 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
 | |
| 
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
 | |
| 	    vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
 | |
| 
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE,
 | |
| 	    vsx->vsx_pend_queue[ZIO_PRIORITY_REBUILD]);
 | |
| 
 | |
| 	/* Histograms */
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
 | |
| 	    vsx->vsx_total_histo[ZIO_TYPE_READ],
 | |
| 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
 | |
| 	    vsx->vsx_total_histo[ZIO_TYPE_WRITE],
 | |
| 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
 | |
| 	    vsx->vsx_disk_histo[ZIO_TYPE_READ],
 | |
| 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
 | |
| 	    vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
 | |
| 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
 | |
| 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
 | |
| 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
 | |
| 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
 | |
| 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
 | |
| 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
 | |
| 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
 | |
| 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
 | |
| 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
 | |
| 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
 | |
| 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
 | |
| 	    vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
 | |
| 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO,
 | |
| 	    vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD],
 | |
| 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD]));
 | |
| 
 | |
| 	/* Request sizes */
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
 | |
| 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
 | |
| 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
 | |
| 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
 | |
| 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
 | |
| 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
 | |
| 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
 | |
| 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
 | |
| 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
 | |
| 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
 | |
| 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
 | |
| 	    vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
 | |
| 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO,
 | |
| 	    vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD],
 | |
| 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
 | |
| 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
 | |
| 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
 | |
| 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
 | |
| 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
 | |
| 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
 | |
| 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
 | |
| 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
 | |
| 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
 | |
| 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
 | |
| 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
 | |
| 	    vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
 | |
| 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
 | |
| 
 | |
| 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO,
 | |
| 	    vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD],
 | |
| 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD]));
 | |
| 
 | |
| 	/* IO delays */
 | |
| 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
 | |
| 
 | |
| 	/* Add extended stats nvlist to main nvlist */
 | |
| 	fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
 | |
| 
 | |
| 	fnvlist_free(nvx);
 | |
| 	kmem_free(vs, sizeof (*vs));
 | |
| 	kmem_free(vsx, sizeof (*vsx));
 | |
| }
 | |
| 
 | |
| static void
 | |
| root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
 | |
| {
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 
 | |
| 	if (vd != spa->spa_root_vdev)
 | |
| 		return;
 | |
| 
 | |
| 	/* provide either current or previous scan information */
 | |
| 	pool_scan_stat_t ps;
 | |
| 	if (spa_scan_get_stats(spa, &ps) == 0) {
 | |
| 		fnvlist_add_uint64_array(nvl,
 | |
| 		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
 | |
| 		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
 | |
| 	}
 | |
| 
 | |
| 	pool_removal_stat_t prs;
 | |
| 	if (spa_removal_get_stats(spa, &prs) == 0) {
 | |
| 		fnvlist_add_uint64_array(nvl,
 | |
| 		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
 | |
| 		    sizeof (prs) / sizeof (uint64_t));
 | |
| 	}
 | |
| 
 | |
| 	pool_checkpoint_stat_t pcs;
 | |
| 	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
 | |
| 		fnvlist_add_uint64_array(nvl,
 | |
| 		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
 | |
| 		    sizeof (pcs) / sizeof (uint64_t));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
 | |
| {
 | |
| 	if (vd == vd->vdev_top) {
 | |
| 		vdev_rebuild_stat_t vrs;
 | |
| 		if (vdev_rebuild_get_stats(vd, &vrs) == 0) {
 | |
| 			fnvlist_add_uint64_array(nvl,
 | |
| 			    ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs,
 | |
| 			    sizeof (vrs) / sizeof (uint64_t));
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate the nvlist representing this vdev's config.
 | |
|  */
 | |
| nvlist_t *
 | |
| vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
 | |
|     vdev_config_flag_t flags)
 | |
| {
 | |
| 	nvlist_t *nv = NULL;
 | |
| 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
 | |
| 
 | |
| 	nv = fnvlist_alloc();
 | |
| 
 | |
| 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
 | |
| 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
 | |
| 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
 | |
| 
 | |
| 	if (vd->vdev_path != NULL)
 | |
| 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
 | |
| 
 | |
| 	if (vd->vdev_devid != NULL)
 | |
| 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
 | |
| 
 | |
| 	if (vd->vdev_physpath != NULL)
 | |
| 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
 | |
| 		    vd->vdev_physpath);
 | |
| 
 | |
| 	if (vd->vdev_enc_sysfs_path != NULL)
 | |
| 		fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
 | |
| 		    vd->vdev_enc_sysfs_path);
 | |
| 
 | |
| 	if (vd->vdev_fru != NULL)
 | |
| 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
 | |
| 
 | |
| 	if (vd->vdev_ops->vdev_op_config_generate != NULL)
 | |
| 		vd->vdev_ops->vdev_op_config_generate(vd, nv);
 | |
| 
 | |
| 	if (vd->vdev_wholedisk != -1ULL) {
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
 | |
| 		    vd->vdev_wholedisk);
 | |
| 	}
 | |
| 
 | |
| 	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
 | |
| 
 | |
| 	if (vd->vdev_isspare)
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
 | |
| 
 | |
| 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
 | |
| 	    vd == vd->vdev_top) {
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
 | |
| 		    vd->vdev_ms_array);
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
 | |
| 		    vd->vdev_ms_shift);
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
 | |
| 		    vd->vdev_asize);
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
 | |
| 		if (vd->vdev_noalloc) {
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
 | |
| 			    vd->vdev_noalloc);
 | |
| 		}
 | |
| 		if (vd->vdev_removing) {
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
 | |
| 			    vd->vdev_removing);
 | |
| 		}
 | |
| 
 | |
| 		/* zpool command expects alloc class data */
 | |
| 		if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
 | |
| 			const char *bias = NULL;
 | |
| 
 | |
| 			switch (vd->vdev_alloc_bias) {
 | |
| 			case VDEV_BIAS_LOG:
 | |
| 				bias = VDEV_ALLOC_BIAS_LOG;
 | |
| 				break;
 | |
| 			case VDEV_BIAS_SPECIAL:
 | |
| 				bias = VDEV_ALLOC_BIAS_SPECIAL;
 | |
| 				break;
 | |
| 			case VDEV_BIAS_DEDUP:
 | |
| 				bias = VDEV_ALLOC_BIAS_DEDUP;
 | |
| 				break;
 | |
| 			default:
 | |
| 				ASSERT3U(vd->vdev_alloc_bias, ==,
 | |
| 				    VDEV_BIAS_NONE);
 | |
| 			}
 | |
| 			fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
 | |
| 			    bias);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (vd->vdev_dtl_sm != NULL) {
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
 | |
| 		    space_map_object(vd->vdev_dtl_sm));
 | |
| 	}
 | |
| 
 | |
| 	if (vic->vic_mapping_object != 0) {
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
 | |
| 		    vic->vic_mapping_object);
 | |
| 	}
 | |
| 
 | |
| 	if (vic->vic_births_object != 0) {
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
 | |
| 		    vic->vic_births_object);
 | |
| 	}
 | |
| 
 | |
| 	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
 | |
| 		    vic->vic_prev_indirect_vdev);
 | |
| 	}
 | |
| 
 | |
| 	if (vd->vdev_crtxg)
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
 | |
| 
 | |
| 	if (vd->vdev_expansion_time)
 | |
| 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
 | |
| 		    vd->vdev_expansion_time);
 | |
| 
 | |
| 	if (flags & VDEV_CONFIG_MOS) {
 | |
| 		if (vd->vdev_leaf_zap != 0) {
 | |
| 			ASSERT(vd->vdev_ops->vdev_op_leaf);
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
 | |
| 			    vd->vdev_leaf_zap);
 | |
| 		}
 | |
| 
 | |
| 		if (vd->vdev_top_zap != 0) {
 | |
| 			ASSERT(vd == vd->vdev_top);
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
 | |
| 			    vd->vdev_top_zap);
 | |
| 		}
 | |
| 
 | |
| 		if (vd->vdev_resilver_deferred) {
 | |
| 			ASSERT(vd->vdev_ops->vdev_op_leaf);
 | |
| 			ASSERT(spa->spa_resilver_deferred);
 | |
| 			fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (getstats) {
 | |
| 		vdev_config_generate_stats(vd, nv);
 | |
| 
 | |
| 		root_vdev_actions_getprogress(vd, nv);
 | |
| 		top_vdev_actions_getprogress(vd, nv);
 | |
| 
 | |
| 		/*
 | |
| 		 * Note: this can be called from open context
 | |
| 		 * (spa_get_stats()), so we need the rwlock to prevent
 | |
| 		 * the mapping from being changed by condensing.
 | |
| 		 */
 | |
| 		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
 | |
| 		if (vd->vdev_indirect_mapping != NULL) {
 | |
| 			ASSERT(vd->vdev_indirect_births != NULL);
 | |
| 			vdev_indirect_mapping_t *vim =
 | |
| 			    vd->vdev_indirect_mapping;
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
 | |
| 			    vdev_indirect_mapping_size(vim));
 | |
| 		}
 | |
| 		rw_exit(&vd->vdev_indirect_rwlock);
 | |
| 		if (vd->vdev_mg != NULL &&
 | |
| 		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
 | |
| 			/*
 | |
| 			 * Compute approximately how much memory would be used
 | |
| 			 * for the indirect mapping if this device were to
 | |
| 			 * be removed.
 | |
| 			 *
 | |
| 			 * Note: If the frag metric is invalid, then not
 | |
| 			 * enough metaslabs have been converted to have
 | |
| 			 * histograms.
 | |
| 			 */
 | |
| 			uint64_t seg_count = 0;
 | |
| 			uint64_t to_alloc = vd->vdev_stat.vs_alloc;
 | |
| 
 | |
| 			/*
 | |
| 			 * There are the same number of allocated segments
 | |
| 			 * as free segments, so we will have at least one
 | |
| 			 * entry per free segment.  However, small free
 | |
| 			 * segments (smaller than vdev_removal_max_span)
 | |
| 			 * will be combined with adjacent allocated segments
 | |
| 			 * as a single mapping.
 | |
| 			 */
 | |
| 			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
 | |
| 				if (i + 1 < highbit64(vdev_removal_max_span)
 | |
| 				    - 1) {
 | |
| 					to_alloc +=
 | |
| 					    vd->vdev_mg->mg_histogram[i] <<
 | |
| 					    (i + 1);
 | |
| 				} else {
 | |
| 					seg_count +=
 | |
| 					    vd->vdev_mg->mg_histogram[i];
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * The maximum length of a mapping is
 | |
| 			 * zfs_remove_max_segment, so we need at least one entry
 | |
| 			 * per zfs_remove_max_segment of allocated data.
 | |
| 			 */
 | |
| 			seg_count += to_alloc / spa_remove_max_segment(spa);
 | |
| 
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
 | |
| 			    seg_count *
 | |
| 			    sizeof (vdev_indirect_mapping_entry_phys_t));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!vd->vdev_ops->vdev_op_leaf) {
 | |
| 		nvlist_t **child;
 | |
| 		int c, idx;
 | |
| 
 | |
| 		ASSERT(!vd->vdev_ishole);
 | |
| 
 | |
| 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
 | |
| 		    KM_SLEEP);
 | |
| 
 | |
| 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
 | |
| 			vdev_t *cvd = vd->vdev_child[c];
 | |
| 
 | |
| 			/*
 | |
| 			 * If we're generating an nvlist of removing
 | |
| 			 * vdevs then skip over any device which is
 | |
| 			 * not being removed.
 | |
| 			 */
 | |
| 			if ((flags & VDEV_CONFIG_REMOVING) &&
 | |
| 			    !cvd->vdev_removing)
 | |
| 				continue;
 | |
| 
 | |
| 			child[idx++] = vdev_config_generate(spa, cvd,
 | |
| 			    getstats, flags);
 | |
| 		}
 | |
| 
 | |
| 		if (idx) {
 | |
| 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
 | |
| 			    (const nvlist_t * const *)child, idx);
 | |
| 		}
 | |
| 
 | |
| 		for (c = 0; c < idx; c++)
 | |
| 			nvlist_free(child[c]);
 | |
| 
 | |
| 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
 | |
| 
 | |
| 	} else {
 | |
| 		const char *aux = NULL;
 | |
| 
 | |
| 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
 | |
| 		if (vd->vdev_resilver_txg != 0)
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
 | |
| 			    vd->vdev_resilver_txg);
 | |
| 		if (vd->vdev_rebuild_txg != 0)
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
 | |
| 			    vd->vdev_rebuild_txg);
 | |
| 		if (vd->vdev_faulted)
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
 | |
| 		if (vd->vdev_degraded)
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
 | |
| 		if (vd->vdev_removed)
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
 | |
| 		if (vd->vdev_unspare)
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
 | |
| 		if (vd->vdev_ishole)
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
 | |
| 
 | |
| 		/* Set the reason why we're FAULTED/DEGRADED. */
 | |
| 		switch (vd->vdev_stat.vs_aux) {
 | |
| 		case VDEV_AUX_ERR_EXCEEDED:
 | |
| 			aux = "err_exceeded";
 | |
| 			break;
 | |
| 
 | |
| 		case VDEV_AUX_EXTERNAL:
 | |
| 			aux = "external";
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (aux != NULL && !vd->vdev_tmpoffline) {
 | |
| 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * We're healthy - clear any previous AUX_STATE values.
 | |
| 			 */
 | |
| 			if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
 | |
| 				nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
 | |
| 		}
 | |
| 
 | |
| 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
 | |
| 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
 | |
| 			    vd->vdev_orig_guid);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (nv);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate a view of the top-level vdevs.  If we currently have holes
 | |
|  * in the namespace, then generate an array which contains a list of holey
 | |
|  * vdevs.  Additionally, add the number of top-level children that currently
 | |
|  * exist.
 | |
|  */
 | |
| void
 | |
| vdev_top_config_generate(spa_t *spa, nvlist_t *config)
 | |
| {
 | |
| 	vdev_t *rvd = spa->spa_root_vdev;
 | |
| 	uint64_t *array;
 | |
| 	uint_t c, idx;
 | |
| 
 | |
| 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
 | |
| 
 | |
| 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
 | |
| 		vdev_t *tvd = rvd->vdev_child[c];
 | |
| 
 | |
| 		if (tvd->vdev_ishole) {
 | |
| 			array[idx++] = c;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (idx) {
 | |
| 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
 | |
| 		    array, idx) == 0);
 | |
| 	}
 | |
| 
 | |
| 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
 | |
| 	    rvd->vdev_children) == 0);
 | |
| 
 | |
| 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the configuration from the label of the given vdev. For vdevs
 | |
|  * which don't have a txg value stored on their label (i.e. spares/cache)
 | |
|  * or have not been completely initialized (txg = 0) just return
 | |
|  * the configuration from the first valid label we find. Otherwise,
 | |
|  * find the most up-to-date label that does not exceed the specified
 | |
|  * 'txg' value.
 | |
|  */
 | |
| nvlist_t *
 | |
| vdev_label_read_config(vdev_t *vd, uint64_t txg)
 | |
| {
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 	nvlist_t *config = NULL;
 | |
| 	vdev_phys_t *vp[VDEV_LABELS];
 | |
| 	abd_t *vp_abd[VDEV_LABELS];
 | |
| 	zio_t *zio[VDEV_LABELS];
 | |
| 	uint64_t best_txg = 0;
 | |
| 	uint64_t label_txg = 0;
 | |
| 	int error = 0;
 | |
| 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
 | |
| 	    ZIO_FLAG_SPECULATIVE;
 | |
| 
 | |
| 	ASSERT(vd->vdev_validate_thread == curthread ||
 | |
| 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
 | |
| 
 | |
| 	if (!vdev_readable(vd))
 | |
| 		return (NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * The label for a dRAID distributed spare is not stored on disk.
 | |
| 	 * Instead it is generated when needed which allows us to bypass
 | |
| 	 * the pipeline when reading the config from the label.
 | |
| 	 */
 | |
| 	if (vd->vdev_ops == &vdev_draid_spare_ops)
 | |
| 		return (vdev_draid_read_config_spare(vd));
 | |
| 
 | |
| 	for (int l = 0; l < VDEV_LABELS; l++) {
 | |
| 		vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
 | |
| 		vp[l] = abd_to_buf(vp_abd[l]);
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	for (int l = 0; l < VDEV_LABELS; l++) {
 | |
| 		zio[l] = zio_root(spa, NULL, NULL, flags);
 | |
| 
 | |
| 		vdev_label_read(zio[l], vd, l, vp_abd[l],
 | |
| 		    offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
 | |
| 		    NULL, NULL, flags);
 | |
| 	}
 | |
| 	for (int l = 0; l < VDEV_LABELS; l++) {
 | |
| 		nvlist_t *label = NULL;
 | |
| 
 | |
| 		if (zio_wait(zio[l]) == 0 &&
 | |
| 		    nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist),
 | |
| 		    &label, 0) == 0) {
 | |
| 			/*
 | |
| 			 * Auxiliary vdevs won't have txg values in their
 | |
| 			 * labels and newly added vdevs may not have been
 | |
| 			 * completely initialized so just return the
 | |
| 			 * configuration from the first valid label we
 | |
| 			 * encounter.
 | |
| 			 */
 | |
| 			error = nvlist_lookup_uint64(label,
 | |
| 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
 | |
| 			if ((error || label_txg == 0) && !config) {
 | |
| 				config = label;
 | |
| 				for (l++; l < VDEV_LABELS; l++)
 | |
| 					zio_wait(zio[l]);
 | |
| 				break;
 | |
| 			} else if (label_txg <= txg && label_txg > best_txg) {
 | |
| 				best_txg = label_txg;
 | |
| 				nvlist_free(config);
 | |
| 				config = fnvlist_dup(label);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (label != NULL) {
 | |
| 			nvlist_free(label);
 | |
| 			label = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
 | |
| 		flags |= ZIO_FLAG_TRYHARD;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We found a valid label but it didn't pass txg restrictions.
 | |
| 	 */
 | |
| 	if (config == NULL && label_txg != 0) {
 | |
| 		vdev_dbgmsg(vd, "label discarded as txg is too large "
 | |
| 		    "(%llu > %llu)", (u_longlong_t)label_txg,
 | |
| 		    (u_longlong_t)txg);
 | |
| 	}
 | |
| 
 | |
| 	for (int l = 0; l < VDEV_LABELS; l++) {
 | |
| 		abd_free(vp_abd[l]);
 | |
| 	}
 | |
| 
 | |
| 	return (config);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
 | |
|  * in with the device guid if this spare is active elsewhere on the system.
 | |
|  */
 | |
| static boolean_t
 | |
| vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
 | |
|     uint64_t *spare_guid, uint64_t *l2cache_guid)
 | |
| {
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
 | |
| 	uint64_t vdtxg = 0;
 | |
| 	nvlist_t *label;
 | |
| 
 | |
| 	if (spare_guid)
 | |
| 		*spare_guid = 0ULL;
 | |
| 	if (l2cache_guid)
 | |
| 		*l2cache_guid = 0ULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the label, if any, and perform some basic sanity checks.
 | |
| 	 */
 | |
| 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
 | |
| 	    &vdtxg);
 | |
| 
 | |
| 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 | |
| 	    &state) != 0 ||
 | |
| 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
 | |
| 	    &device_guid) != 0) {
 | |
| 		nvlist_free(label);
 | |
| 		return (B_FALSE);
 | |
| 	}
 | |
| 
 | |
| 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 | |
| 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
 | |
| 	    &pool_guid) != 0 ||
 | |
| 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
 | |
| 	    &txg) != 0)) {
 | |
| 		nvlist_free(label);
 | |
| 		return (B_FALSE);
 | |
| 	}
 | |
| 
 | |
| 	nvlist_free(label);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check to see if this device indeed belongs to the pool it claims to
 | |
| 	 * be a part of.  The only way this is allowed is if the device is a hot
 | |
| 	 * spare (which we check for later on).
 | |
| 	 */
 | |
| 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 | |
| 	    !spa_guid_exists(pool_guid, device_guid) &&
 | |
| 	    !spa_spare_exists(device_guid, NULL, NULL) &&
 | |
| 	    !spa_l2cache_exists(device_guid, NULL))
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the transaction group is zero, then this an initialized (but
 | |
| 	 * unused) label.  This is only an error if the create transaction
 | |
| 	 * on-disk is the same as the one we're using now, in which case the
 | |
| 	 * user has attempted to add the same vdev multiple times in the same
 | |
| 	 * transaction.
 | |
| 	 */
 | |
| 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 | |
| 	    txg == 0 && vdtxg == crtxg)
 | |
| 		return (B_TRUE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check to see if this is a spare device.  We do an explicit check for
 | |
| 	 * spa_has_spare() here because it may be on our pending list of spares
 | |
| 	 * to add.
 | |
| 	 */
 | |
| 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
 | |
| 	    spa_has_spare(spa, device_guid)) {
 | |
| 		if (spare_guid)
 | |
| 			*spare_guid = device_guid;
 | |
| 
 | |
| 		switch (reason) {
 | |
| 		case VDEV_LABEL_CREATE:
 | |
| 			return (B_TRUE);
 | |
| 
 | |
| 		case VDEV_LABEL_REPLACE:
 | |
| 			return (!spa_has_spare(spa, device_guid) ||
 | |
| 			    spare_pool != 0ULL);
 | |
| 
 | |
| 		case VDEV_LABEL_SPARE:
 | |
| 			return (spa_has_spare(spa, device_guid));
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check to see if this is an l2cache device.
 | |
| 	 */
 | |
| 	if (spa_l2cache_exists(device_guid, NULL) ||
 | |
| 	    spa_has_l2cache(spa, device_guid)) {
 | |
| 		if (l2cache_guid)
 | |
| 			*l2cache_guid = device_guid;
 | |
| 
 | |
| 		switch (reason) {
 | |
| 		case VDEV_LABEL_CREATE:
 | |
| 			return (B_TRUE);
 | |
| 
 | |
| 		case VDEV_LABEL_REPLACE:
 | |
| 			return (!spa_has_l2cache(spa, device_guid));
 | |
| 
 | |
| 		case VDEV_LABEL_L2CACHE:
 | |
| 			return (spa_has_l2cache(spa, device_guid));
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't rely on a pool's state if it's been imported
 | |
| 	 * read-only.  Instead we look to see if the pools is marked
 | |
| 	 * read-only in the namespace and set the state to active.
 | |
| 	 */
 | |
| 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
 | |
| 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
 | |
| 	    spa_mode(spa) == SPA_MODE_READ)
 | |
| 		state = POOL_STATE_ACTIVE;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the device is marked ACTIVE, then this device is in use by another
 | |
| 	 * pool on the system.
 | |
| 	 */
 | |
| 	return (state == POOL_STATE_ACTIVE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize a vdev label.  We check to make sure each leaf device is not in
 | |
|  * use, and writable.  We put down an initial label which we will later
 | |
|  * overwrite with a complete label.  Note that it's important to do this
 | |
|  * sequentially, not in parallel, so that we catch cases of multiple use of the
 | |
|  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
 | |
|  * itself.
 | |
|  */
 | |
| int
 | |
| vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
 | |
| {
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 	nvlist_t *label;
 | |
| 	vdev_phys_t *vp;
 | |
| 	abd_t *vp_abd;
 | |
| 	abd_t *bootenv;
 | |
| 	uberblock_t *ub;
 | |
| 	abd_t *ub_abd;
 | |
| 	zio_t *zio;
 | |
| 	char *buf;
 | |
| 	size_t buflen;
 | |
| 	int error;
 | |
| 	uint64_t spare_guid = 0, l2cache_guid = 0;
 | |
| 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
 | |
| 
 | |
| 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 | |
| 
 | |
| 	for (int c = 0; c < vd->vdev_children; c++)
 | |
| 		if ((error = vdev_label_init(vd->vdev_child[c],
 | |
| 		    crtxg, reason)) != 0)
 | |
| 			return (error);
 | |
| 
 | |
| 	/* Track the creation time for this vdev */
 | |
| 	vd->vdev_crtxg = crtxg;
 | |
| 
 | |
| 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
 | |
| 		return (0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Dead vdevs cannot be initialized.
 | |
| 	 */
 | |
| 	if (vdev_is_dead(vd))
 | |
| 		return (SET_ERROR(EIO));
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine if the vdev is in use.
 | |
| 	 */
 | |
| 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
 | |
| 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
 | |
| 		return (SET_ERROR(EBUSY));
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a request to add or replace a spare or l2cache device
 | |
| 	 * that is in use elsewhere on the system, then we must update the
 | |
| 	 * guid (which was initialized to a random value) to reflect the
 | |
| 	 * actual GUID (which is shared between multiple pools).
 | |
| 	 */
 | |
| 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
 | |
| 	    spare_guid != 0ULL) {
 | |
| 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
 | |
| 
 | |
| 		vd->vdev_guid += guid_delta;
 | |
| 
 | |
| 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
 | |
| 			pvd->vdev_guid_sum += guid_delta;
 | |
| 
 | |
| 		/*
 | |
| 		 * If this is a replacement, then we want to fallthrough to the
 | |
| 		 * rest of the code.  If we're adding a spare, then it's already
 | |
| 		 * labeled appropriately and we can just return.
 | |
| 		 */
 | |
| 		if (reason == VDEV_LABEL_SPARE)
 | |
| 			return (0);
 | |
| 		ASSERT(reason == VDEV_LABEL_REPLACE ||
 | |
| 		    reason == VDEV_LABEL_SPLIT);
 | |
| 	}
 | |
| 
 | |
| 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
 | |
| 	    l2cache_guid != 0ULL) {
 | |
| 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
 | |
| 
 | |
| 		vd->vdev_guid += guid_delta;
 | |
| 
 | |
| 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
 | |
| 			pvd->vdev_guid_sum += guid_delta;
 | |
| 
 | |
| 		/*
 | |
| 		 * If this is a replacement, then we want to fallthrough to the
 | |
| 		 * rest of the code.  If we're adding an l2cache, then it's
 | |
| 		 * already labeled appropriately and we can just return.
 | |
| 		 */
 | |
| 		if (reason == VDEV_LABEL_L2CACHE)
 | |
| 			return (0);
 | |
| 		ASSERT(reason == VDEV_LABEL_REPLACE);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize its label.
 | |
| 	 */
 | |
| 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
 | |
| 	abd_zero(vp_abd, sizeof (vdev_phys_t));
 | |
| 	vp = abd_to_buf(vp_abd);
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate a label describing the pool and our top-level vdev.
 | |
| 	 * We mark it as being from txg 0 to indicate that it's not
 | |
| 	 * really part of an active pool just yet.  The labels will
 | |
| 	 * be written again with a meaningful txg by spa_sync().
 | |
| 	 */
 | |
| 	if (reason == VDEV_LABEL_SPARE ||
 | |
| 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
 | |
| 		/*
 | |
| 		 * For inactive hot spares, we generate a special label that
 | |
| 		 * identifies as a mutually shared hot spare.  We write the
 | |
| 		 * label if we are adding a hot spare, or if we are removing an
 | |
| 		 * active hot spare (in which case we want to revert the
 | |
| 		 * labels).
 | |
| 		 */
 | |
| 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 | |
| 
 | |
| 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
 | |
| 		    spa_version(spa)) == 0);
 | |
| 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 | |
| 		    POOL_STATE_SPARE) == 0);
 | |
| 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
 | |
| 		    vd->vdev_guid) == 0);
 | |
| 	} else if (reason == VDEV_LABEL_L2CACHE ||
 | |
| 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
 | |
| 		/*
 | |
| 		 * For level 2 ARC devices, add a special label.
 | |
| 		 */
 | |
| 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 | |
| 
 | |
| 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
 | |
| 		    spa_version(spa)) == 0);
 | |
| 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
 | |
| 		    POOL_STATE_L2CACHE) == 0);
 | |
| 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
 | |
| 		    vd->vdev_guid) == 0);
 | |
| 	} else {
 | |
| 		uint64_t txg = 0ULL;
 | |
| 
 | |
| 		if (reason == VDEV_LABEL_SPLIT)
 | |
| 			txg = spa->spa_uberblock.ub_txg;
 | |
| 		label = spa_config_generate(spa, vd, txg, B_FALSE);
 | |
| 
 | |
| 		/*
 | |
| 		 * Add our creation time.  This allows us to detect multiple
 | |
| 		 * vdev uses as described above, and automatically expires if we
 | |
| 		 * fail.
 | |
| 		 */
 | |
| 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
 | |
| 		    crtxg) == 0);
 | |
| 	}
 | |
| 
 | |
| 	buf = vp->vp_nvlist;
 | |
| 	buflen = sizeof (vp->vp_nvlist);
 | |
| 
 | |
| 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
 | |
| 	if (error != 0) {
 | |
| 		nvlist_free(label);
 | |
| 		abd_free(vp_abd);
 | |
| 		/* EFAULT means nvlist_pack ran out of room */
 | |
| 		return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize uberblock template.
 | |
| 	 */
 | |
| 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
 | |
| 	abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
 | |
| 	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
 | |
| 	ub = abd_to_buf(ub_abd);
 | |
| 	ub->ub_txg = 0;
 | |
| 
 | |
| 	/* Initialize the 2nd padding area. */
 | |
| 	bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
 | |
| 	abd_zero(bootenv, VDEV_PAD_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Write everything in parallel.
 | |
| 	 */
 | |
| retry:
 | |
| 	zio = zio_root(spa, NULL, NULL, flags);
 | |
| 
 | |
| 	for (int l = 0; l < VDEV_LABELS; l++) {
 | |
| 
 | |
| 		vdev_label_write(zio, vd, l, vp_abd,
 | |
| 		    offsetof(vdev_label_t, vl_vdev_phys),
 | |
| 		    sizeof (vdev_phys_t), NULL, NULL, flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip the 1st padding area.
 | |
| 		 * Zero out the 2nd padding area where it might have
 | |
| 		 * left over data from previous filesystem format.
 | |
| 		 */
 | |
| 		vdev_label_write(zio, vd, l, bootenv,
 | |
| 		    offsetof(vdev_label_t, vl_be),
 | |
| 		    VDEV_PAD_SIZE, NULL, NULL, flags);
 | |
| 
 | |
| 		vdev_label_write(zio, vd, l, ub_abd,
 | |
| 		    offsetof(vdev_label_t, vl_uberblock),
 | |
| 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
 | |
| 	}
 | |
| 
 | |
| 	error = zio_wait(zio);
 | |
| 
 | |
| 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
 | |
| 		flags |= ZIO_FLAG_TRYHARD;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	nvlist_free(label);
 | |
| 	abd_free(bootenv);
 | |
| 	abd_free(ub_abd);
 | |
| 	abd_free(vp_abd);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this vdev hasn't been previously identified as a spare, then we
 | |
| 	 * mark it as such only if a) we are labeling it as a spare, or b) it
 | |
| 	 * exists as a spare elsewhere in the system.  Do the same for
 | |
| 	 * level 2 ARC devices.
 | |
| 	 */
 | |
| 	if (error == 0 && !vd->vdev_isspare &&
 | |
| 	    (reason == VDEV_LABEL_SPARE ||
 | |
| 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
 | |
| 		spa_spare_add(vd);
 | |
| 
 | |
| 	if (error == 0 && !vd->vdev_isl2cache &&
 | |
| 	    (reason == VDEV_LABEL_L2CACHE ||
 | |
| 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
 | |
| 		spa_l2cache_add(vd);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Done callback for vdev_label_read_bootenv_impl. If this is the first
 | |
|  * callback to finish, store our abd in the callback pointer. Otherwise, we
 | |
|  * just free our abd and return.
 | |
|  */
 | |
| static void
 | |
| vdev_label_read_bootenv_done(zio_t *zio)
 | |
| {
 | |
| 	zio_t *rio = zio->io_private;
 | |
| 	abd_t **cbp = rio->io_private;
 | |
| 
 | |
| 	ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
 | |
| 
 | |
| 	if (zio->io_error == 0) {
 | |
| 		mutex_enter(&rio->io_lock);
 | |
| 		if (*cbp == NULL) {
 | |
| 			/* Will free this buffer in vdev_label_read_bootenv. */
 | |
| 			*cbp = zio->io_abd;
 | |
| 		} else {
 | |
| 			abd_free(zio->io_abd);
 | |
| 		}
 | |
| 		mutex_exit(&rio->io_lock);
 | |
| 	} else {
 | |
| 		abd_free(zio->io_abd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
 | |
| {
 | |
| 	for (int c = 0; c < vd->vdev_children; c++)
 | |
| 		vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * We just use the first label that has a correct checksum; the
 | |
| 	 * bootloader should have rewritten them all to be the same on boot,
 | |
| 	 * and any changes we made since boot have been the same across all
 | |
| 	 * labels.
 | |
| 	 */
 | |
| 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
 | |
| 		for (int l = 0; l < VDEV_LABELS; l++) {
 | |
| 			vdev_label_read(zio, vd, l,
 | |
| 			    abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
 | |
| 			    offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
 | |
| 			    vdev_label_read_bootenv_done, zio, flags);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv)
 | |
| {
 | |
| 	nvlist_t *config;
 | |
| 	spa_t *spa = rvd->vdev_spa;
 | |
| 	abd_t *abd = NULL;
 | |
| 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
 | |
| 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
 | |
| 
 | |
| 	ASSERT(bootenv);
 | |
| 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 | |
| 
 | |
| 	zio_t *zio = zio_root(spa, NULL, &abd, flags);
 | |
| 	vdev_label_read_bootenv_impl(zio, rvd, flags);
 | |
| 	int err = zio_wait(zio);
 | |
| 
 | |
| 	if (abd != NULL) {
 | |
| 		char *buf;
 | |
| 		vdev_boot_envblock_t *vbe = abd_to_buf(abd);
 | |
| 
 | |
| 		vbe->vbe_version = ntohll(vbe->vbe_version);
 | |
| 		switch (vbe->vbe_version) {
 | |
| 		case VB_RAW:
 | |
| 			/*
 | |
| 			 * if we have textual data in vbe_bootenv, create nvlist
 | |
| 			 * with key "envmap".
 | |
| 			 */
 | |
| 			fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW);
 | |
| 			vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
 | |
| 			fnvlist_add_string(bootenv, GRUB_ENVMAP,
 | |
| 			    vbe->vbe_bootenv);
 | |
| 			break;
 | |
| 
 | |
| 		case VB_NVLIST:
 | |
| 			err = nvlist_unpack(vbe->vbe_bootenv,
 | |
| 			    sizeof (vbe->vbe_bootenv), &config, 0);
 | |
| 			if (err == 0) {
 | |
| 				fnvlist_merge(bootenv, config);
 | |
| 				nvlist_free(config);
 | |
| 				break;
 | |
| 			}
 | |
| 			fallthrough;
 | |
| 		default:
 | |
| 			/* Check for FreeBSD zfs bootonce command string */
 | |
| 			buf = abd_to_buf(abd);
 | |
| 			if (*buf == '\0') {
 | |
| 				fnvlist_add_uint64(bootenv, BOOTENV_VERSION,
 | |
| 				    VB_NVLIST);
 | |
| 				break;
 | |
| 			}
 | |
| 			fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * abd was allocated in vdev_label_read_bootenv_impl()
 | |
| 		 */
 | |
| 		abd_free(abd);
 | |
| 		/*
 | |
| 		 * If we managed to read any successfully,
 | |
| 		 * return success.
 | |
| 		 */
 | |
| 		return (0);
 | |
| 	}
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| int
 | |
| vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env)
 | |
| {
 | |
| 	zio_t *zio;
 | |
| 	spa_t *spa = vd->vdev_spa;
 | |
| 	vdev_boot_envblock_t *bootenv;
 | |
| 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
 | |
| 	int error;
 | |
| 	size_t nvsize;
 | |
| 	char *nvbuf;
 | |
| 
 | |
| 	error = nvlist_size(env, &nvsize, NV_ENCODE_XDR);
 | |
| 	if (error != 0)
 | |
| 		return (SET_ERROR(error));
 | |
| 
 | |
| 	if (nvsize >= sizeof (bootenv->vbe_bootenv)) {
 | |
| 		return (SET_ERROR(E2BIG));
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 | |
| 
 | |
| 	error = ENXIO;
 | |
| 	for (int c = 0; c < vd->vdev_children; c++) {
 | |
| 		int child_err;
 | |
| 
 | |
| 		child_err = vdev_label_write_bootenv(vd->vdev_child[c], env);
 | |
| 		/*
 | |
| 		 * As long as any of the disks managed to write all of their
 | |
| 		 * labels successfully, return success.
 | |
| 		 */
 | |
| 		if (child_err == 0)
 | |
| 			error = child_err;
 | |
| 	}
 | |
| 
 | |
| 	if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
 | |
| 	    !vdev_writeable(vd)) {
 | |
| 		return (error);
 | |
| 	}
 | |
| 	ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
 | |
| 	abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
 | |
| 	abd_zero(abd, VDEV_PAD_SIZE);
 | |
| 
 | |
| 	bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
 | |
| 	nvbuf = bootenv->vbe_bootenv;
 | |
| 	nvsize = sizeof (bootenv->vbe_bootenv);
 | |
| 
 | |
| 	bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION);
 | |
| 	switch (bootenv->vbe_version) {
 | |
| 	case VB_RAW:
 | |
| 		if (nvlist_lookup_string(env, GRUB_ENVMAP, &nvbuf) == 0) {
 | |
| 			(void) strlcpy(bootenv->vbe_bootenv, nvbuf, nvsize);
 | |
| 		}
 | |
| 		error = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case VB_NVLIST:
 | |
| 		error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR,
 | |
| 		    KM_SLEEP);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		error = EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (error == 0) {
 | |
| 		bootenv->vbe_version = htonll(bootenv->vbe_version);
 | |
| 		abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
 | |
| 	} else {
 | |
| 		abd_free(abd);
 | |
| 		return (SET_ERROR(error));
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	zio = zio_root(spa, NULL, NULL, flags);
 | |
| 	for (int l = 0; l < VDEV_LABELS; l++) {
 | |
| 		vdev_label_write(zio, vd, l, abd,
 | |
| 		    offsetof(vdev_label_t, vl_be),
 | |
| 		    VDEV_PAD_SIZE, NULL, NULL, flags);
 | |
| 	}
 | |
| 
 | |
| 	error = zio_wait(zio);
 | |
| 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
 | |
| 		flags |= ZIO_FLAG_TRYHARD;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	abd_free(abd);
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * uberblock load/sync
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Consider the following situation: txg is safely synced to disk.  We've
 | |
|  * written the first uberblock for txg + 1, and then we lose power.  When we
 | |
|  * come back up, we fail to see the uberblock for txg + 1 because, say,
 | |
|  * it was on a mirrored device and the replica to which we wrote txg + 1
 | |
|  * is now offline.  If we then make some changes and sync txg + 1, and then
 | |
|  * the missing replica comes back, then for a few seconds we'll have two
 | |
|  * conflicting uberblocks on disk with the same txg.  The solution is simple:
 | |
|  * among uberblocks with equal txg, choose the one with the latest timestamp.
 | |
|  */
 | |
| static int
 | |
| vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
 | |
| {
 | |
| 	int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
 | |
| 
 | |
| 	if (likely(cmp))
 | |
| 		return (cmp);
 | |
| 
 | |
| 	cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
 | |
| 	if (likely(cmp))
 | |
| 		return (cmp);
 | |
| 
 | |
| 	/*
 | |
| 	 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
 | |
| 	 * ZFS, e.g. OpenZFS >= 0.7.
 | |
| 	 *
 | |
| 	 * If one ub has MMP and the other does not, they were written by
 | |
| 	 * different hosts, which matters for MMP.  So we treat no MMP/no SEQ as
 | |
| 	 * a 0 value.
 | |
| 	 *
 | |
| 	 * Since timestamp and txg are the same if we get this far, either is
 | |
| 	 * acceptable for importing the pool.
 | |
| 	 */
 | |
| 	unsigned int seq1 = 0;
 | |
| 	unsigned int seq2 = 0;
 | |
| 
 | |
| 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
 | |
| 		seq1 = MMP_SEQ(ub1);
 | |
| 
 | |
| 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
 | |
| 		seq2 = MMP_SEQ(ub2);
 | |
| 
 | |
| 	return (TREE_CMP(seq1, seq2));
 | |
| }
 | |
| 
 | |
| struct ubl_cbdata {
 | |
| 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
 | |
| 	vdev_t		*ubl_vd;	/* vdev associated with the above */
 | |
| };
 | |
| 
 | |
| static void
 | |
| vdev_uberblock_load_done(zio_t *zio)
 | |
| {
 | |
| 	vdev_t *vd = zio->io_vd;
 | |
| 	spa_t *spa = zio->io_spa;
 | |
| 	zio_t *rio = zio->io_private;
 | |
| 	uberblock_t *ub = abd_to_buf(zio->io_abd);
 | |
| 	struct ubl_cbdata *cbp = rio->io_private;
 | |
| 
 | |
| 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
 | |
| 
 | |
| 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
 | |
| 		mutex_enter(&rio->io_lock);
 | |
| 		if (ub->ub_txg <= spa->spa_load_max_txg &&
 | |
| 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
 | |
| 			/*
 | |
| 			 * Keep track of the vdev in which this uberblock
 | |
| 			 * was found. We will use this information later
 | |
| 			 * to obtain the config nvlist associated with
 | |
| 			 * this uberblock.
 | |
| 			 */
 | |
| 			*cbp->ubl_ubbest = *ub;
 | |
| 			cbp->ubl_vd = vd;
 | |
| 		}
 | |
| 		mutex_exit(&rio->io_lock);
 | |
| 	}
 | |
| 
 | |
| 	abd_free(zio->io_abd);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
 | |
|     struct ubl_cbdata *cbp)
 | |
| {
 | |
| 	for (int c = 0; c < vd->vdev_children; c++)
 | |
| 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
 | |
| 
 | |
| 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) &&
 | |
| 	    vd->vdev_ops != &vdev_draid_spare_ops) {
 | |
| 		for (int l = 0; l < VDEV_LABELS; l++) {
 | |
| 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
 | |
| 				vdev_label_read(zio, vd, l,
 | |
| 				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
 | |
| 				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
 | |
| 				    VDEV_UBERBLOCK_SIZE(vd),
 | |
| 				    vdev_uberblock_load_done, zio, flags);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reads the 'best' uberblock from disk along with its associated
 | |
|  * configuration. First, we read the uberblock array of each label of each
 | |
|  * vdev, keeping track of the uberblock with the highest txg in each array.
 | |
|  * Then, we read the configuration from the same vdev as the best uberblock.
 | |
|  */
 | |
| void
 | |
| vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
 | |
| {
 | |
| 	zio_t *zio;
 | |
| 	spa_t *spa = rvd->vdev_spa;
 | |
| 	struct ubl_cbdata cb;
 | |
| 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
 | |
| 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
 | |
| 
 | |
| 	ASSERT(ub);
 | |
| 	ASSERT(config);
 | |
| 
 | |
| 	bzero(ub, sizeof (uberblock_t));
 | |
| 	*config = NULL;
 | |
| 
 | |
| 	cb.ubl_ubbest = ub;
 | |
| 	cb.ubl_vd = NULL;
 | |
| 
 | |
| 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 | |
| 	zio = zio_root(spa, NULL, &cb, flags);
 | |
| 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
 | |
| 	(void) zio_wait(zio);
 | |
| 
 | |
| 	/*
 | |
| 	 * It's possible that the best uberblock was discovered on a label
 | |
| 	 * that has a configuration which was written in a future txg.
 | |
| 	 * Search all labels on this vdev to find the configuration that
 | |
| 	 * matches the txg for our uberblock.
 | |
| 	 */
 | |
| 	if (cb.ubl_vd != NULL) {
 | |
| 		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
 | |
| 		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
 | |
| 
 | |
| 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
 | |
| 		if (*config == NULL && spa->spa_extreme_rewind) {
 | |
| 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
 | |
| 			    "Trying again without txg restrictions.");
 | |
| 			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
 | |
| 		}
 | |
| 		if (*config == NULL) {
 | |
| 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
 | |
| 		}
 | |
| 	}
 | |
| 	spa_config_exit(spa, SCL_ALL, FTAG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For use when a leaf vdev is expanded.
 | |
|  * The location of labels 2 and 3 changed, and at the new location the
 | |
|  * uberblock rings are either empty or contain garbage.  The sync will write
 | |
|  * new configs there because the vdev is dirty, but expansion also needs the
 | |
|  * uberblock rings copied.  Read them from label 0 which did not move.
 | |
|  *
 | |
|  * Since the point is to populate labels {2,3} with valid uberblocks,
 | |
|  * we zero uberblocks we fail to read or which are not valid.
 | |
|  */
 | |
| 
 | |
| static void
 | |
| vdev_copy_uberblocks(vdev_t *vd)
 | |
| {
 | |
| 	abd_t *ub_abd;
 | |
| 	zio_t *write_zio;
 | |
| 	int locks = (SCL_L2ARC | SCL_ZIO);
 | |
| 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
 | |
| 	    ZIO_FLAG_SPECULATIVE;
 | |
| 
 | |
| 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
 | |
| 	    SCL_STATE);
 | |
| 	ASSERT(vd->vdev_ops->vdev_op_leaf);
 | |
| 
 | |
| 	/*
 | |
| 	 * No uberblocks are stored on distributed spares, they may be
 | |
| 	 * safely skipped when expanding a leaf vdev.
 | |
| 	 */
 | |
| 	if (vd->vdev_ops == &vdev_draid_spare_ops)
 | |
| 		return;
 | |
| 
 | |
| 	spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
 | |
| 
 | |
| 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
 | |
| 
 | |
| 	write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
 | |
| 	for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
 | |
| 		const int src_label = 0;
 | |
| 		zio_t *zio;
 | |
| 
 | |
| 		zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
 | |
| 		vdev_label_read(zio, vd, src_label, ub_abd,
 | |
| 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
 | |
| 		    NULL, NULL, flags);
 | |
| 
 | |
| 		if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
 | |
| 			abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
 | |
| 
 | |
| 		for (int l = 2; l < VDEV_LABELS; l++)
 | |
| 			vdev_label_write(write_zio, vd, l, ub_abd,
 | |
| 			    VDEV_UBERBLOCK_OFFSET(vd, n),
 | |
| 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
 | |
| 			    flags | ZIO_FLAG_DONT_PROPAGATE);
 | |
| 	}
 | |
| 	(void) zio_wait(write_zio);
 | |
| 
 | |
| 	spa_config_exit(vd->vdev_spa, locks, FTAG);
 | |
| 
 | |
| 	abd_free(ub_abd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On success, increment root zio's count of good writes.
 | |
|  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
 | |
|  */
 | |
| static void
 | |
| vdev_uberblock_sync_done(zio_t *zio)
 | |
| {
 | |
| 	uint64_t *good_writes = zio->io_private;
 | |
| 
 | |
| 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
 | |
| 		atomic_inc_64(good_writes);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write the uberblock to all labels of all leaves of the specified vdev.
 | |
|  */
 | |
| static void
 | |
| vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
 | |
|     uberblock_t *ub, vdev_t *vd, int flags)
 | |
| {
 | |
| 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
 | |
| 		vdev_uberblock_sync(zio, good_writes,
 | |
| 		    ub, vd->vdev_child[c], flags);
 | |
| 	}
 | |
| 
 | |
| 	if (!vd->vdev_ops->vdev_op_leaf)
 | |
| 		return;
 | |
| 
 | |
| 	if (!vdev_writeable(vd))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * There's no need to write uberblocks to a distributed spare, they
 | |
| 	 * are already stored on all the leaves of the parent dRAID.  For
 | |
| 	 * this same reason vdev_uberblock_load_impl() skips distributed
 | |
| 	 * spares when reading uberblocks.
 | |
| 	 */
 | |
| 	if (vd->vdev_ops == &vdev_draid_spare_ops)
 | |
| 		return;
 | |
| 
 | |
| 	/* If the vdev was expanded, need to copy uberblock rings. */
 | |
| 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
 | |
| 	    vd->vdev_copy_uberblocks == B_TRUE) {
 | |
| 		vdev_copy_uberblocks(vd);
 | |
| 		vd->vdev_copy_uberblocks = B_FALSE;
 | |
| 	}
 | |
| 
 | |
| 	int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
 | |
| 	int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
 | |
| 
 | |
| 	/* Copy the uberblock_t into the ABD */
 | |
| 	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
 | |
| 	abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
 | |
| 	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
 | |
| 
 | |
| 	for (int l = 0; l < VDEV_LABELS; l++)
 | |
| 		vdev_label_write(zio, vd, l, ub_abd,
 | |
| 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
 | |
| 		    vdev_uberblock_sync_done, good_writes,
 | |
| 		    flags | ZIO_FLAG_DONT_PROPAGATE);
 | |
| 
 | |
| 	abd_free(ub_abd);
 | |
| }
 | |
| 
 | |
| /* Sync the uberblocks to all vdevs in svd[] */
 | |
| static int
 | |
| vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
 | |
| {
 | |
| 	spa_t *spa = svd[0]->vdev_spa;
 | |
| 	zio_t *zio;
 | |
| 	uint64_t good_writes = 0;
 | |
| 
 | |
| 	zio = zio_root(spa, NULL, NULL, flags);
 | |
| 
 | |
| 	for (int v = 0; v < svdcount; v++)
 | |
| 		vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
 | |
| 
 | |
| 	(void) zio_wait(zio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush the uberblocks to disk.  This ensures that the odd labels
 | |
| 	 * are no longer needed (because the new uberblocks and the even
 | |
| 	 * labels are safely on disk), so it is safe to overwrite them.
 | |
| 	 */
 | |
| 	zio = zio_root(spa, NULL, NULL, flags);
 | |
| 
 | |
| 	for (int v = 0; v < svdcount; v++) {
 | |
| 		if (vdev_writeable(svd[v])) {
 | |
| 			zio_flush(zio, svd[v]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	(void) zio_wait(zio);
 | |
| 
 | |
| 	return (good_writes >= 1 ? 0 : EIO);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On success, increment the count of good writes for our top-level vdev.
 | |
|  */
 | |
| static void
 | |
| vdev_label_sync_done(zio_t *zio)
 | |
| {
 | |
| 	uint64_t *good_writes = zio->io_private;
 | |
| 
 | |
| 	if (zio->io_error == 0)
 | |
| 		atomic_inc_64(good_writes);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If there weren't enough good writes, indicate failure to the parent.
 | |
|  */
 | |
| static void
 | |
| vdev_label_sync_top_done(zio_t *zio)
 | |
| {
 | |
| 	uint64_t *good_writes = zio->io_private;
 | |
| 
 | |
| 	if (*good_writes == 0)
 | |
| 		zio->io_error = SET_ERROR(EIO);
 | |
| 
 | |
| 	kmem_free(good_writes, sizeof (uint64_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We ignore errors for log and cache devices, simply free the private data.
 | |
|  */
 | |
| static void
 | |
| vdev_label_sync_ignore_done(zio_t *zio)
 | |
| {
 | |
| 	kmem_free(zio->io_private, sizeof (uint64_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write all even or odd labels to all leaves of the specified vdev.
 | |
|  */
 | |
| static void
 | |
| vdev_label_sync(zio_t *zio, uint64_t *good_writes,
 | |
|     vdev_t *vd, int l, uint64_t txg, int flags)
 | |
| {
 | |
| 	nvlist_t *label;
 | |
| 	vdev_phys_t *vp;
 | |
| 	abd_t *vp_abd;
 | |
| 	char *buf;
 | |
| 	size_t buflen;
 | |
| 
 | |
| 	for (int c = 0; c < vd->vdev_children; c++) {
 | |
| 		vdev_label_sync(zio, good_writes,
 | |
| 		    vd->vdev_child[c], l, txg, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (!vd->vdev_ops->vdev_op_leaf)
 | |
| 		return;
 | |
| 
 | |
| 	if (!vdev_writeable(vd))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The top-level config never needs to be written to a distributed
 | |
| 	 * spare.  When read vdev_dspare_label_read_config() will generate
 | |
| 	 * the config for the vdev_label_read_config().
 | |
| 	 */
 | |
| 	if (vd->vdev_ops == &vdev_draid_spare_ops)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate a label describing the top-level config to which we belong.
 | |
| 	 */
 | |
| 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
 | |
| 
 | |
| 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
 | |
| 	abd_zero(vp_abd, sizeof (vdev_phys_t));
 | |
| 	vp = abd_to_buf(vp_abd);
 | |
| 
 | |
| 	buf = vp->vp_nvlist;
 | |
| 	buflen = sizeof (vp->vp_nvlist);
 | |
| 
 | |
| 	if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
 | |
| 		for (; l < VDEV_LABELS; l += 2) {
 | |
| 			vdev_label_write(zio, vd, l, vp_abd,
 | |
| 			    offsetof(vdev_label_t, vl_vdev_phys),
 | |
| 			    sizeof (vdev_phys_t),
 | |
| 			    vdev_label_sync_done, good_writes,
 | |
| 			    flags | ZIO_FLAG_DONT_PROPAGATE);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	abd_free(vp_abd);
 | |
| 	nvlist_free(label);
 | |
| }
 | |
| 
 | |
| static int
 | |
| vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
 | |
| {
 | |
| 	list_t *dl = &spa->spa_config_dirty_list;
 | |
| 	vdev_t *vd;
 | |
| 	zio_t *zio;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Write the new labels to disk.
 | |
| 	 */
 | |
| 	zio = zio_root(spa, NULL, NULL, flags);
 | |
| 
 | |
| 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
 | |
| 		uint64_t *good_writes;
 | |
| 
 | |
| 		ASSERT(!vd->vdev_ishole);
 | |
| 
 | |
| 		good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
 | |
| 		zio_t *vio = zio_null(zio, spa, NULL,
 | |
| 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
 | |
| 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
 | |
| 		    good_writes, flags);
 | |
| 		vdev_label_sync(vio, good_writes, vd, l, txg, flags);
 | |
| 		zio_nowait(vio);
 | |
| 	}
 | |
| 
 | |
| 	error = zio_wait(zio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush the new labels to disk.
 | |
| 	 */
 | |
| 	zio = zio_root(spa, NULL, NULL, flags);
 | |
| 
 | |
| 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
 | |
| 		zio_flush(zio, vd);
 | |
| 
 | |
| 	(void) zio_wait(zio);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sync the uberblock and any changes to the vdev configuration.
 | |
|  *
 | |
|  * The order of operations is carefully crafted to ensure that
 | |
|  * if the system panics or loses power at any time, the state on disk
 | |
|  * is still transactionally consistent.  The in-line comments below
 | |
|  * describe the failure semantics at each stage.
 | |
|  *
 | |
|  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
 | |
|  * at any time, you can just call it again, and it will resume its work.
 | |
|  */
 | |
| int
 | |
| vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
 | |
| {
 | |
| 	spa_t *spa = svd[0]->vdev_spa;
 | |
| 	uberblock_t *ub = &spa->spa_uberblock;
 | |
| 	int error = 0;
 | |
| 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
 | |
| 
 | |
| 	ASSERT(svdcount != 0);
 | |
| retry:
 | |
| 	/*
 | |
| 	 * Normally, we don't want to try too hard to write every label and
 | |
| 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
 | |
| 	 * sync process to block while we retry.  But if we can't write a
 | |
| 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
 | |
| 	 * bailing out and declaring the pool faulted.
 | |
| 	 */
 | |
| 	if (error != 0) {
 | |
| 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
 | |
| 			return (error);
 | |
| 		flags |= ZIO_FLAG_TRYHARD;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(ub->ub_txg <= txg);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this isn't a resync due to I/O errors,
 | |
| 	 * and nothing changed in this transaction group,
 | |
| 	 * and the vdev configuration hasn't changed,
 | |
| 	 * then there's nothing to do.
 | |
| 	 */
 | |
| 	if (ub->ub_txg < txg) {
 | |
| 		boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
 | |
| 		    txg, spa->spa_mmp.mmp_delay);
 | |
| 
 | |
| 		if (!changed && list_is_empty(&spa->spa_config_dirty_list))
 | |
| 			return (0);
 | |
| 	}
 | |
| 
 | |
| 	if (txg > spa_freeze_txg(spa))
 | |
| 		return (0);
 | |
| 
 | |
| 	ASSERT(txg <= spa->spa_final_txg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush the write cache of every disk that's been written to
 | |
| 	 * in this transaction group.  This ensures that all blocks
 | |
| 	 * written in this txg will be committed to stable storage
 | |
| 	 * before any uberblock that references them.
 | |
| 	 */
 | |
| 	zio_t *zio = zio_root(spa, NULL, NULL, flags);
 | |
| 
 | |
| 	for (vdev_t *vd =
 | |
| 	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
 | |
| 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
 | |
| 		zio_flush(zio, vd);
 | |
| 
 | |
| 	(void) zio_wait(zio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
 | |
| 	 * system dies in the middle of this process, that's OK: all of the
 | |
| 	 * even labels that made it to disk will be newer than any uberblock,
 | |
| 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
 | |
| 	 * which have not yet been touched, will still be valid.  We flush
 | |
| 	 * the new labels to disk to ensure that all even-label updates
 | |
| 	 * are committed to stable storage before the uberblock update.
 | |
| 	 */
 | |
| 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
 | |
| 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
 | |
| 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
 | |
| 			    "for pool '%s' when syncing out the even labels "
 | |
| 			    "of dirty vdevs", error, spa_name(spa));
 | |
| 		}
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Sync the uberblocks to all vdevs in svd[].
 | |
| 	 * If the system dies in the middle of this step, there are two cases
 | |
| 	 * to consider, and the on-disk state is consistent either way:
 | |
| 	 *
 | |
| 	 * (1)	If none of the new uberblocks made it to disk, then the
 | |
| 	 *	previous uberblock will be the newest, and the odd labels
 | |
| 	 *	(which had not yet been touched) will be valid with respect
 | |
| 	 *	to that uberblock.
 | |
| 	 *
 | |
| 	 * (2)	If one or more new uberblocks made it to disk, then they
 | |
| 	 *	will be the newest, and the even labels (which had all
 | |
| 	 *	been successfully committed) will be valid with respect
 | |
| 	 *	to the new uberblocks.
 | |
| 	 */
 | |
| 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
 | |
| 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
 | |
| 			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
 | |
| 			    "%d for pool '%s'", error, spa_name(spa));
 | |
| 		}
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (spa_multihost(spa))
 | |
| 		mmp_update_uberblock(spa, ub);
 | |
| 
 | |
| 	/*
 | |
| 	 * Sync out odd labels for every dirty vdev.  If the system dies
 | |
| 	 * in the middle of this process, the even labels and the new
 | |
| 	 * uberblocks will suffice to open the pool.  The next time
 | |
| 	 * the pool is opened, the first thing we'll do -- before any
 | |
| 	 * user data is modified -- is mark every vdev dirty so that
 | |
| 	 * all labels will be brought up to date.  We flush the new labels
 | |
| 	 * to disk to ensure that all odd-label updates are committed to
 | |
| 	 * stable storage before the next transaction group begins.
 | |
| 	 */
 | |
| 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
 | |
| 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
 | |
| 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
 | |
| 			    "for pool '%s' when syncing out the odd labels of "
 | |
| 			    "dirty vdevs", error, spa_name(spa));
 | |
| 		}
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 |