mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 13:29:32 +00:00 
			
		
		
		
	 7ada752a93
			
		
	
	
		7ada752a93
		
	
	
	
	
		
			
			69 CSTYLED BEGINs remain, appx. 30 of which can be removed if cstyle(1) had a useful policy regarding CALL(ARG1, ARG2, ARG3); above 2 lines. As it stands, it spits out *both* sysctl_os.c: 385: continuation line should be indented by 4 spaces sysctl_os.c: 385: indent by spaces instead of tabs which is very cool Another >10 could be fixed by removing "ulong" &al. handling. I don't foresee anyone actually using it intentionally (does it even exist in modern headers? why did it in the first place?). Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Closes #12993
		
			
				
	
	
		
			437 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			437 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or http://www.opensolaris.org/os/licensing.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 | |
|  * Use is subject to license terms.
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <sys/zfs_context.h>
 | |
| #include <sys/spa.h>
 | |
| #include <sys/vdev_impl.h>
 | |
| #include <sys/zio.h>
 | |
| #include <sys/kstat.h>
 | |
| #include <sys/abd.h>
 | |
| 
 | |
| /*
 | |
|  * Virtual device read-ahead caching.
 | |
|  *
 | |
|  * This file implements a simple LRU read-ahead cache.  When the DMU reads
 | |
|  * a given block, it will often want other, nearby blocks soon thereafter.
 | |
|  * We take advantage of this by reading a larger disk region and caching
 | |
|  * the result.  In the best case, this can turn 128 back-to-back 512-byte
 | |
|  * reads into a single 64k read followed by 127 cache hits; this reduces
 | |
|  * latency dramatically.  In the worst case, it can turn an isolated 512-byte
 | |
|  * read into a 64k read, which doesn't affect latency all that much but is
 | |
|  * terribly wasteful of bandwidth.  A more intelligent version of the cache
 | |
|  * could keep track of access patterns and not do read-ahead unless it sees
 | |
|  * at least two temporally close I/Os to the same region.  Currently, only
 | |
|  * metadata I/O is inflated.  A further enhancement could take advantage of
 | |
|  * more semantic information about the I/O.  And it could use something
 | |
|  * faster than an AVL tree; that was chosen solely for convenience.
 | |
|  *
 | |
|  * There are five cache operations: allocate, fill, read, write, evict.
 | |
|  *
 | |
|  * (1) Allocate.  This reserves a cache entry for the specified region.
 | |
|  *     We separate the allocate and fill operations so that multiple threads
 | |
|  *     don't generate I/O for the same cache miss.
 | |
|  *
 | |
|  * (2) Fill.  When the I/O for a cache miss completes, the fill routine
 | |
|  *     places the data in the previously allocated cache entry.
 | |
|  *
 | |
|  * (3) Read.  Read data from the cache.
 | |
|  *
 | |
|  * (4) Write.  Update cache contents after write completion.
 | |
|  *
 | |
|  * (5) Evict.  When allocating a new entry, we evict the oldest (LRU) entry
 | |
|  *     if the total cache size exceeds zfs_vdev_cache_size.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * These tunables are for performance analysis.
 | |
|  */
 | |
| /*
 | |
|  * All i/os smaller than zfs_vdev_cache_max will be turned into
 | |
|  * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
 | |
|  * track buffer).  At most zfs_vdev_cache_size bytes will be kept in each
 | |
|  * vdev's vdev_cache.
 | |
|  *
 | |
|  * TODO: Note that with the current ZFS code, it turns out that the
 | |
|  * vdev cache is not helpful, and in some cases actually harmful.  It
 | |
|  * is better if we disable this.  Once some time has passed, we should
 | |
|  * actually remove this to simplify the code.  For now we just disable
 | |
|  * it by setting the zfs_vdev_cache_size to zero.  Note that Solaris 11
 | |
|  * has made these same changes.
 | |
|  */
 | |
| static int zfs_vdev_cache_max = 1 << 14;			/* 16KB */
 | |
| static int zfs_vdev_cache_size = 0;
 | |
| static int zfs_vdev_cache_bshift = 16;
 | |
| 
 | |
| #define	VCBS (1 << zfs_vdev_cache_bshift)	/* 64KB */
 | |
| 
 | |
| static kstat_t *vdc_ksp = NULL;
 | |
| 
 | |
| typedef struct vdc_stats {
 | |
| 	kstat_named_t vdc_stat_delegations;
 | |
| 	kstat_named_t vdc_stat_hits;
 | |
| 	kstat_named_t vdc_stat_misses;
 | |
| } vdc_stats_t;
 | |
| 
 | |
| static vdc_stats_t vdc_stats = {
 | |
| 	{ "delegations",	KSTAT_DATA_UINT64 },
 | |
| 	{ "hits",		KSTAT_DATA_UINT64 },
 | |
| 	{ "misses",		KSTAT_DATA_UINT64 }
 | |
| };
 | |
| 
 | |
| #define	VDCSTAT_BUMP(stat)	atomic_inc_64(&vdc_stats.stat.value.ui64);
 | |
| 
 | |
| static inline int
 | |
| vdev_cache_offset_compare(const void *a1, const void *a2)
 | |
| {
 | |
| 	const vdev_cache_entry_t *ve1 = (const vdev_cache_entry_t *)a1;
 | |
| 	const vdev_cache_entry_t *ve2 = (const vdev_cache_entry_t *)a2;
 | |
| 
 | |
| 	return (TREE_CMP(ve1->ve_offset, ve2->ve_offset));
 | |
| }
 | |
| 
 | |
| static int
 | |
| vdev_cache_lastused_compare(const void *a1, const void *a2)
 | |
| {
 | |
| 	const vdev_cache_entry_t *ve1 = (const vdev_cache_entry_t *)a1;
 | |
| 	const vdev_cache_entry_t *ve2 = (const vdev_cache_entry_t *)a2;
 | |
| 
 | |
| 	int cmp = TREE_CMP(ve1->ve_lastused, ve2->ve_lastused);
 | |
| 	if (likely(cmp))
 | |
| 		return (cmp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Among equally old entries, sort by offset to ensure uniqueness.
 | |
| 	 */
 | |
| 	return (vdev_cache_offset_compare(a1, a2));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Evict the specified entry from the cache.
 | |
|  */
 | |
| static void
 | |
| vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&vc->vc_lock));
 | |
| 	ASSERT3P(ve->ve_fill_io, ==, NULL);
 | |
| 	ASSERT3P(ve->ve_abd, !=, NULL);
 | |
| 
 | |
| 	avl_remove(&vc->vc_lastused_tree, ve);
 | |
| 	avl_remove(&vc->vc_offset_tree, ve);
 | |
| 	abd_free(ve->ve_abd);
 | |
| 	kmem_free(ve, sizeof (vdev_cache_entry_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate an entry in the cache.  At the point we don't have the data,
 | |
|  * we're just creating a placeholder so that multiple threads don't all
 | |
|  * go off and read the same blocks.
 | |
|  */
 | |
| static vdev_cache_entry_t *
 | |
| vdev_cache_allocate(zio_t *zio)
 | |
| {
 | |
| 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
 | |
| 	uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
 | |
| 	vdev_cache_entry_t *ve;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&vc->vc_lock));
 | |
| 
 | |
| 	if (zfs_vdev_cache_size == 0)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * If adding a new entry would exceed the cache size,
 | |
| 	 * evict the oldest entry (LRU).
 | |
| 	 */
 | |
| 	if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
 | |
| 	    zfs_vdev_cache_size) {
 | |
| 		ve = avl_first(&vc->vc_lastused_tree);
 | |
| 		if (ve->ve_fill_io != NULL)
 | |
| 			return (NULL);
 | |
| 		ASSERT3U(ve->ve_hits, !=, 0);
 | |
| 		vdev_cache_evict(vc, ve);
 | |
| 	}
 | |
| 
 | |
| 	ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
 | |
| 	ve->ve_offset = offset;
 | |
| 	ve->ve_lastused = ddi_get_lbolt();
 | |
| 	ve->ve_abd = abd_alloc_for_io(VCBS, B_TRUE);
 | |
| 
 | |
| 	avl_add(&vc->vc_offset_tree, ve);
 | |
| 	avl_add(&vc->vc_lastused_tree, ve);
 | |
| 
 | |
| 	return (ve);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
 | |
| {
 | |
| 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&vc->vc_lock));
 | |
| 	ASSERT3P(ve->ve_fill_io, ==, NULL);
 | |
| 
 | |
| 	if (ve->ve_lastused != ddi_get_lbolt()) {
 | |
| 		avl_remove(&vc->vc_lastused_tree, ve);
 | |
| 		ve->ve_lastused = ddi_get_lbolt();
 | |
| 		avl_add(&vc->vc_lastused_tree, ve);
 | |
| 	}
 | |
| 
 | |
| 	ve->ve_hits++;
 | |
| 	abd_copy_off(zio->io_abd, ve->ve_abd, 0, cache_phase, zio->io_size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill a previously allocated cache entry with data.
 | |
|  */
 | |
| static void
 | |
| vdev_cache_fill(zio_t *fio)
 | |
| {
 | |
| 	vdev_t *vd = fio->io_vd;
 | |
| 	vdev_cache_t *vc = &vd->vdev_cache;
 | |
| 	vdev_cache_entry_t *ve = fio->io_private;
 | |
| 	zio_t *pio;
 | |
| 
 | |
| 	ASSERT3U(fio->io_size, ==, VCBS);
 | |
| 
 | |
| 	/*
 | |
| 	 * Add data to the cache.
 | |
| 	 */
 | |
| 	mutex_enter(&vc->vc_lock);
 | |
| 
 | |
| 	ASSERT3P(ve->ve_fill_io, ==, fio);
 | |
| 	ASSERT3U(ve->ve_offset, ==, fio->io_offset);
 | |
| 	ASSERT3P(ve->ve_abd, ==, fio->io_abd);
 | |
| 
 | |
| 	ve->ve_fill_io = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Even if this cache line was invalidated by a missed write update,
 | |
| 	 * any reads that were queued up before the missed update are still
 | |
| 	 * valid, so we can satisfy them from this line before we evict it.
 | |
| 	 */
 | |
| 	zio_link_t *zl = NULL;
 | |
| 	while ((pio = zio_walk_parents(fio, &zl)) != NULL)
 | |
| 		vdev_cache_hit(vc, ve, pio);
 | |
| 
 | |
| 	if (fio->io_error || ve->ve_missed_update)
 | |
| 		vdev_cache_evict(vc, ve);
 | |
| 
 | |
| 	mutex_exit(&vc->vc_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read data from the cache.  Returns B_TRUE cache hit, B_FALSE on miss.
 | |
|  */
 | |
| boolean_t
 | |
| vdev_cache_read(zio_t *zio)
 | |
| {
 | |
| 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
 | |
| 	vdev_cache_entry_t *ve, ve_search;
 | |
| 	uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
 | |
| 	zio_t *fio;
 | |
| 	uint64_t cache_phase __maybe_unused = P2PHASE(zio->io_offset, VCBS);
 | |
| 
 | |
| 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
 | |
| 
 | |
| 	if (zfs_vdev_cache_size == 0)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	if (zio->io_size > zfs_vdev_cache_max)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the I/O straddles two or more cache blocks, don't cache it.
 | |
| 	 */
 | |
| 	if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS))
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	ASSERT3U(cache_phase + zio->io_size, <=, VCBS);
 | |
| 
 | |
| 	mutex_enter(&vc->vc_lock);
 | |
| 
 | |
| 	ve_search.ve_offset = cache_offset;
 | |
| 	ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
 | |
| 
 | |
| 	if (ve != NULL) {
 | |
| 		if (ve->ve_missed_update) {
 | |
| 			mutex_exit(&vc->vc_lock);
 | |
| 			return (B_FALSE);
 | |
| 		}
 | |
| 
 | |
| 		if ((fio = ve->ve_fill_io) != NULL) {
 | |
| 			zio_vdev_io_bypass(zio);
 | |
| 			zio_add_child(zio, fio);
 | |
| 			mutex_exit(&vc->vc_lock);
 | |
| 			VDCSTAT_BUMP(vdc_stat_delegations);
 | |
| 			return (B_TRUE);
 | |
| 		}
 | |
| 
 | |
| 		vdev_cache_hit(vc, ve, zio);
 | |
| 		zio_vdev_io_bypass(zio);
 | |
| 
 | |
| 		mutex_exit(&vc->vc_lock);
 | |
| 		VDCSTAT_BUMP(vdc_stat_hits);
 | |
| 		return (B_TRUE);
 | |
| 	}
 | |
| 
 | |
| 	ve = vdev_cache_allocate(zio);
 | |
| 
 | |
| 	if (ve == NULL) {
 | |
| 		mutex_exit(&vc->vc_lock);
 | |
| 		return (B_FALSE);
 | |
| 	}
 | |
| 
 | |
| 	fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
 | |
| 	    ve->ve_abd, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_NOW,
 | |
| 	    ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
 | |
| 
 | |
| 	ve->ve_fill_io = fio;
 | |
| 	zio_vdev_io_bypass(zio);
 | |
| 	zio_add_child(zio, fio);
 | |
| 
 | |
| 	mutex_exit(&vc->vc_lock);
 | |
| 	zio_nowait(fio);
 | |
| 	VDCSTAT_BUMP(vdc_stat_misses);
 | |
| 
 | |
| 	return (B_TRUE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update cache contents upon write completion.
 | |
|  */
 | |
| void
 | |
| vdev_cache_write(zio_t *zio)
 | |
| {
 | |
| 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
 | |
| 	vdev_cache_entry_t *ve, ve_search;
 | |
| 	uint64_t io_start = zio->io_offset;
 | |
| 	uint64_t io_end = io_start + zio->io_size;
 | |
| 	uint64_t min_offset = P2ALIGN(io_start, VCBS);
 | |
| 	uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
 | |
| 	avl_index_t where;
 | |
| 
 | |
| 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
 | |
| 
 | |
| 	mutex_enter(&vc->vc_lock);
 | |
| 
 | |
| 	ve_search.ve_offset = min_offset;
 | |
| 	ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
 | |
| 
 | |
| 	if (ve == NULL)
 | |
| 		ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
 | |
| 
 | |
| 	while (ve != NULL && ve->ve_offset < max_offset) {
 | |
| 		uint64_t start = MAX(ve->ve_offset, io_start);
 | |
| 		uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
 | |
| 
 | |
| 		if (ve->ve_fill_io != NULL) {
 | |
| 			ve->ve_missed_update = 1;
 | |
| 		} else {
 | |
| 			abd_copy_off(ve->ve_abd, zio->io_abd,
 | |
| 			    start - ve->ve_offset, start - io_start,
 | |
| 			    end - start);
 | |
| 		}
 | |
| 		ve = AVL_NEXT(&vc->vc_offset_tree, ve);
 | |
| 	}
 | |
| 	mutex_exit(&vc->vc_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| vdev_cache_purge(vdev_t *vd)
 | |
| {
 | |
| 	vdev_cache_t *vc = &vd->vdev_cache;
 | |
| 	vdev_cache_entry_t *ve;
 | |
| 
 | |
| 	mutex_enter(&vc->vc_lock);
 | |
| 	while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
 | |
| 		vdev_cache_evict(vc, ve);
 | |
| 	mutex_exit(&vc->vc_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| vdev_cache_init(vdev_t *vd)
 | |
| {
 | |
| 	vdev_cache_t *vc = &vd->vdev_cache;
 | |
| 
 | |
| 	mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 
 | |
| 	avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
 | |
| 	    sizeof (vdev_cache_entry_t),
 | |
| 	    offsetof(struct vdev_cache_entry, ve_offset_node));
 | |
| 
 | |
| 	avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
 | |
| 	    sizeof (vdev_cache_entry_t),
 | |
| 	    offsetof(struct vdev_cache_entry, ve_lastused_node));
 | |
| }
 | |
| 
 | |
| void
 | |
| vdev_cache_fini(vdev_t *vd)
 | |
| {
 | |
| 	vdev_cache_t *vc = &vd->vdev_cache;
 | |
| 
 | |
| 	vdev_cache_purge(vd);
 | |
| 
 | |
| 	avl_destroy(&vc->vc_offset_tree);
 | |
| 	avl_destroy(&vc->vc_lastused_tree);
 | |
| 
 | |
| 	mutex_destroy(&vc->vc_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| vdev_cache_stat_init(void)
 | |
| {
 | |
| 	vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
 | |
| 	    KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
 | |
| 	    KSTAT_FLAG_VIRTUAL);
 | |
| 	if (vdc_ksp != NULL) {
 | |
| 		vdc_ksp->ks_data = &vdc_stats;
 | |
| 		kstat_install(vdc_ksp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| vdev_cache_stat_fini(void)
 | |
| {
 | |
| 	if (vdc_ksp != NULL) {
 | |
| 		kstat_delete(vdc_ksp);
 | |
| 		vdc_ksp = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_max, INT, ZMOD_RW,
 | |
| 	"Inflate reads small than max");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_size, INT, ZMOD_RD,
 | |
| 	"Total size of the per-disk cache");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_bshift, INT, ZMOD_RW,
 | |
| 	"Shift size to inflate reads too");
 |