mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 22:53:11 +00:00 
			
		
		
		
	 5f65d008e9
			
		
	
	
		5f65d008e9
		
			
		
	
	
	
	
		
			
			All of these externs are already #included as static inline functions via corresponding headers. Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com> Closes #13073
		
			
				
	
	
		
			2451 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2451 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or http://www.opensolaris.org/os/licensing.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
 | |
|  * Copyright (c) 2013 Martin Matuska. All rights reserved.
 | |
|  * Copyright (c) 2014 Joyent, Inc. All rights reserved.
 | |
|  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
 | |
|  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
 | |
|  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/dmu_objset.h>
 | |
| #include <sys/dmu_tx.h>
 | |
| #include <sys/dsl_dataset.h>
 | |
| #include <sys/dsl_dir.h>
 | |
| #include <sys/dsl_prop.h>
 | |
| #include <sys/dsl_synctask.h>
 | |
| #include <sys/dsl_deleg.h>
 | |
| #include <sys/dmu_impl.h>
 | |
| #include <sys/spa.h>
 | |
| #include <sys/spa_impl.h>
 | |
| #include <sys/metaslab.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/zio.h>
 | |
| #include <sys/arc.h>
 | |
| #include <sys/sunddi.h>
 | |
| #include <sys/zfeature.h>
 | |
| #include <sys/policy.h>
 | |
| #include <sys/zfs_vfsops.h>
 | |
| #include <sys/zfs_znode.h>
 | |
| #include <sys/zvol.h>
 | |
| #include <sys/zthr.h>
 | |
| #include "zfs_namecheck.h"
 | |
| #include "zfs_prop.h"
 | |
| 
 | |
| /*
 | |
|  * Filesystem and Snapshot Limits
 | |
|  * ------------------------------
 | |
|  *
 | |
|  * These limits are used to restrict the number of filesystems and/or snapshots
 | |
|  * that can be created at a given level in the tree or below. A typical
 | |
|  * use-case is with a delegated dataset where the administrator wants to ensure
 | |
|  * that a user within the zone is not creating too many additional filesystems
 | |
|  * or snapshots, even though they're not exceeding their space quota.
 | |
|  *
 | |
|  * The filesystem and snapshot counts are stored as extensible properties. This
 | |
|  * capability is controlled by a feature flag and must be enabled to be used.
 | |
|  * Once enabled, the feature is not active until the first limit is set. At
 | |
|  * that point, future operations to create/destroy filesystems or snapshots
 | |
|  * will validate and update the counts.
 | |
|  *
 | |
|  * Because the count properties will not exist before the feature is active,
 | |
|  * the counts are updated when a limit is first set on an uninitialized
 | |
|  * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
 | |
|  * all of the nested filesystems/snapshots. Thus, a new leaf node has a
 | |
|  * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
 | |
|  * snapshot count properties on a node indicate uninitialized counts on that
 | |
|  * node.) When first setting a limit on an uninitialized node, the code starts
 | |
|  * at the filesystem with the new limit and descends into all sub-filesystems
 | |
|  * to add the count properties.
 | |
|  *
 | |
|  * In practice this is lightweight since a limit is typically set when the
 | |
|  * filesystem is created and thus has no children. Once valid, changing the
 | |
|  * limit value won't require a re-traversal since the counts are already valid.
 | |
|  * When recursively fixing the counts, if a node with a limit is encountered
 | |
|  * during the descent, the counts are known to be valid and there is no need to
 | |
|  * descend into that filesystem's children. The counts on filesystems above the
 | |
|  * one with the new limit will still be uninitialized, unless a limit is
 | |
|  * eventually set on one of those filesystems. The counts are always recursively
 | |
|  * updated when a limit is set on a dataset, unless there is already a limit.
 | |
|  * When a new limit value is set on a filesystem with an existing limit, it is
 | |
|  * possible for the new limit to be less than the current count at that level
 | |
|  * since a user who can change the limit is also allowed to exceed the limit.
 | |
|  *
 | |
|  * Once the feature is active, then whenever a filesystem or snapshot is
 | |
|  * created, the code recurses up the tree, validating the new count against the
 | |
|  * limit at each initialized level. In practice, most levels will not have a
 | |
|  * limit set. If there is a limit at any initialized level up the tree, the
 | |
|  * check must pass or the creation will fail. Likewise, when a filesystem or
 | |
|  * snapshot is destroyed, the counts are recursively adjusted all the way up
 | |
|  * the initialized nodes in the tree. Renaming a filesystem into different point
 | |
|  * in the tree will first validate, then update the counts on each branch up to
 | |
|  * the common ancestor. A receive will also validate the counts and then update
 | |
|  * them.
 | |
|  *
 | |
|  * An exception to the above behavior is that the limit is not enforced if the
 | |
|  * user has permission to modify the limit. This is primarily so that
 | |
|  * recursive snapshots in the global zone always work. We want to prevent a
 | |
|  * denial-of-service in which a lower level delegated dataset could max out its
 | |
|  * limit and thus block recursive snapshots from being taken in the global zone.
 | |
|  * Because of this, it is possible for the snapshot count to be over the limit
 | |
|  * and snapshots taken in the global zone could cause a lower level dataset to
 | |
|  * hit or exceed its limit. The administrator taking the global zone recursive
 | |
|  * snapshot should be aware of this side-effect and behave accordingly.
 | |
|  * For consistency, the filesystem limit is also not enforced if the user can
 | |
|  * modify the limit.
 | |
|  *
 | |
|  * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
 | |
|  * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
 | |
|  * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
 | |
|  * dsl_dir_init_fs_ss_count().
 | |
|  */
 | |
| 
 | |
| static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
 | |
| 
 | |
| typedef struct ddulrt_arg {
 | |
| 	dsl_dir_t	*ddulrta_dd;
 | |
| 	uint64_t	ddlrta_txg;
 | |
| } ddulrt_arg_t;
 | |
| 
 | |
| static void
 | |
| dsl_dir_evict_async(void *dbu)
 | |
| {
 | |
| 	dsl_dir_t *dd = dbu;
 | |
| 	int t;
 | |
| 	dsl_pool_t *dp __maybe_unused = dd->dd_pool;
 | |
| 
 | |
| 	dd->dd_dbuf = NULL;
 | |
| 
 | |
| 	for (t = 0; t < TXG_SIZE; t++) {
 | |
| 		ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
 | |
| 		ASSERT(dd->dd_tempreserved[t] == 0);
 | |
| 		ASSERT(dd->dd_space_towrite[t] == 0);
 | |
| 	}
 | |
| 
 | |
| 	if (dd->dd_parent)
 | |
| 		dsl_dir_async_rele(dd->dd_parent, dd);
 | |
| 
 | |
| 	spa_async_close(dd->dd_pool->dp_spa, dd);
 | |
| 
 | |
| 	if (dsl_deadlist_is_open(&dd->dd_livelist))
 | |
| 		dsl_dir_livelist_close(dd);
 | |
| 
 | |
| 	dsl_prop_fini(dd);
 | |
| 	cv_destroy(&dd->dd_activity_cv);
 | |
| 	mutex_destroy(&dd->dd_activity_lock);
 | |
| 	mutex_destroy(&dd->dd_lock);
 | |
| 	kmem_free(dd, sizeof (dsl_dir_t));
 | |
| }
 | |
| 
 | |
| int
 | |
| dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
 | |
|     const char *tail, void *tag, dsl_dir_t **ddp)
 | |
| {
 | |
| 	dmu_buf_t *dbuf;
 | |
| 	dsl_dir_t *dd;
 | |
| 	dmu_object_info_t doi;
 | |
| 	int err;
 | |
| 
 | |
| 	ASSERT(dsl_pool_config_held(dp));
 | |
| 
 | |
| 	err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 	dd = dmu_buf_get_user(dbuf);
 | |
| 
 | |
| 	dmu_object_info_from_db(dbuf, &doi);
 | |
| 	ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
 | |
| 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
 | |
| 
 | |
| 	if (dd == NULL) {
 | |
| 		dsl_dir_t *winner;
 | |
| 
 | |
| 		dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
 | |
| 		dd->dd_object = ddobj;
 | |
| 		dd->dd_dbuf = dbuf;
 | |
| 		dd->dd_pool = dp;
 | |
| 
 | |
| 		mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 		mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 		cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL);
 | |
| 		dsl_prop_init(dd);
 | |
| 
 | |
| 		if (dsl_dir_is_zapified(dd)) {
 | |
| 			err = zap_lookup(dp->dp_meta_objset,
 | |
| 			    ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
 | |
| 			    sizeof (uint64_t), 1, &dd->dd_crypto_obj);
 | |
| 			if (err == 0) {
 | |
| 				/* check for on-disk format errata */
 | |
| 				if (dsl_dir_incompatible_encryption_version(
 | |
| 				    dd)) {
 | |
| 					dp->dp_spa->spa_errata =
 | |
| 					    ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
 | |
| 				}
 | |
| 			} else if (err != ENOENT) {
 | |
| 				goto errout;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		dsl_dir_snap_cmtime_update(dd);
 | |
| 
 | |
| 		if (dsl_dir_phys(dd)->dd_parent_obj) {
 | |
| 			err = dsl_dir_hold_obj(dp,
 | |
| 			    dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
 | |
| 			    &dd->dd_parent);
 | |
| 			if (err != 0)
 | |
| 				goto errout;
 | |
| 			if (tail) {
 | |
| #ifdef ZFS_DEBUG
 | |
| 				uint64_t foundobj;
 | |
| 
 | |
| 				err = zap_lookup(dp->dp_meta_objset,
 | |
| 				    dsl_dir_phys(dd->dd_parent)->
 | |
| 				    dd_child_dir_zapobj, tail,
 | |
| 				    sizeof (foundobj), 1, &foundobj);
 | |
| 				ASSERT(err || foundobj == ddobj);
 | |
| #endif
 | |
| 				(void) strlcpy(dd->dd_myname, tail,
 | |
| 				    sizeof (dd->dd_myname));
 | |
| 			} else {
 | |
| 				err = zap_value_search(dp->dp_meta_objset,
 | |
| 				    dsl_dir_phys(dd->dd_parent)->
 | |
| 				    dd_child_dir_zapobj,
 | |
| 				    ddobj, 0, dd->dd_myname);
 | |
| 			}
 | |
| 			if (err != 0)
 | |
| 				goto errout;
 | |
| 		} else {
 | |
| 			(void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa),
 | |
| 			    sizeof (dd->dd_myname));
 | |
| 		}
 | |
| 
 | |
| 		if (dsl_dir_is_clone(dd)) {
 | |
| 			dmu_buf_t *origin_bonus;
 | |
| 			dsl_dataset_phys_t *origin_phys;
 | |
| 
 | |
| 			/*
 | |
| 			 * We can't open the origin dataset, because
 | |
| 			 * that would require opening this dsl_dir.
 | |
| 			 * Just look at its phys directly instead.
 | |
| 			 */
 | |
| 			err = dmu_bonus_hold(dp->dp_meta_objset,
 | |
| 			    dsl_dir_phys(dd)->dd_origin_obj, FTAG,
 | |
| 			    &origin_bonus);
 | |
| 			if (err != 0)
 | |
| 				goto errout;
 | |
| 			origin_phys = origin_bonus->db_data;
 | |
| 			dd->dd_origin_txg =
 | |
| 			    origin_phys->ds_creation_txg;
 | |
| 			dmu_buf_rele(origin_bonus, FTAG);
 | |
| 			if (dsl_dir_is_zapified(dd)) {
 | |
| 				uint64_t obj;
 | |
| 				err = zap_lookup(dp->dp_meta_objset,
 | |
| 				    dd->dd_object, DD_FIELD_LIVELIST,
 | |
| 				    sizeof (uint64_t), 1, &obj);
 | |
| 				if (err == 0)
 | |
| 					dsl_dir_livelist_open(dd, obj);
 | |
| 				else if (err != ENOENT)
 | |
| 					goto errout;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
 | |
| 		    &dd->dd_dbuf);
 | |
| 		winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
 | |
| 		if (winner != NULL) {
 | |
| 			if (dd->dd_parent)
 | |
| 				dsl_dir_rele(dd->dd_parent, dd);
 | |
| 			if (dsl_deadlist_is_open(&dd->dd_livelist))
 | |
| 				dsl_dir_livelist_close(dd);
 | |
| 			dsl_prop_fini(dd);
 | |
| 			cv_destroy(&dd->dd_activity_cv);
 | |
| 			mutex_destroy(&dd->dd_activity_lock);
 | |
| 			mutex_destroy(&dd->dd_lock);
 | |
| 			kmem_free(dd, sizeof (dsl_dir_t));
 | |
| 			dd = winner;
 | |
| 		} else {
 | |
| 			spa_open_ref(dp->dp_spa, dd);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The dsl_dir_t has both open-to-close and instantiate-to-evict
 | |
| 	 * holds on the spa.  We need the open-to-close holds because
 | |
| 	 * otherwise the spa_refcnt wouldn't change when we open a
 | |
| 	 * dir which the spa also has open, so we could incorrectly
 | |
| 	 * think it was OK to unload/export/destroy the pool.  We need
 | |
| 	 * the instantiate-to-evict hold because the dsl_dir_t has a
 | |
| 	 * pointer to the dd_pool, which has a pointer to the spa_t.
 | |
| 	 */
 | |
| 	spa_open_ref(dp->dp_spa, tag);
 | |
| 	ASSERT3P(dd->dd_pool, ==, dp);
 | |
| 	ASSERT3U(dd->dd_object, ==, ddobj);
 | |
| 	ASSERT3P(dd->dd_dbuf, ==, dbuf);
 | |
| 	*ddp = dd;
 | |
| 	return (0);
 | |
| 
 | |
| errout:
 | |
| 	if (dd->dd_parent)
 | |
| 		dsl_dir_rele(dd->dd_parent, dd);
 | |
| 	if (dsl_deadlist_is_open(&dd->dd_livelist))
 | |
| 		dsl_dir_livelist_close(dd);
 | |
| 	dsl_prop_fini(dd);
 | |
| 	cv_destroy(&dd->dd_activity_cv);
 | |
| 	mutex_destroy(&dd->dd_activity_lock);
 | |
| 	mutex_destroy(&dd->dd_lock);
 | |
| 	kmem_free(dd, sizeof (dsl_dir_t));
 | |
| 	dmu_buf_rele(dbuf, tag);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_dir_rele(dsl_dir_t *dd, void *tag)
 | |
| {
 | |
| 	dprintf_dd(dd, "%s\n", "");
 | |
| 	spa_close(dd->dd_pool->dp_spa, tag);
 | |
| 	dmu_buf_rele(dd->dd_dbuf, tag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a reference to the given dsl dir that is being asynchronously
 | |
|  * released.  Async releases occur from a taskq performing eviction of
 | |
|  * dsl datasets and dirs.  This process is identical to a normal release
 | |
|  * with the exception of using the async API for releasing the reference on
 | |
|  * the spa.
 | |
|  */
 | |
| void
 | |
| dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
 | |
| {
 | |
| 	dprintf_dd(dd, "%s\n", "");
 | |
| 	spa_async_close(dd->dd_pool->dp_spa, tag);
 | |
| 	dmu_buf_rele(dd->dd_dbuf, tag);
 | |
| }
 | |
| 
 | |
| /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
 | |
| void
 | |
| dsl_dir_name(dsl_dir_t *dd, char *buf)
 | |
| {
 | |
| 	if (dd->dd_parent) {
 | |
| 		dsl_dir_name(dd->dd_parent, buf);
 | |
| 		VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
 | |
| 		    ZFS_MAX_DATASET_NAME_LEN);
 | |
| 	} else {
 | |
| 		buf[0] = '\0';
 | |
| 	}
 | |
| 	if (!MUTEX_HELD(&dd->dd_lock)) {
 | |
| 		/*
 | |
| 		 * recursive mutex so that we can use
 | |
| 		 * dprintf_dd() with dd_lock held
 | |
| 		 */
 | |
| 		mutex_enter(&dd->dd_lock);
 | |
| 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
 | |
| 		    <, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 		mutex_exit(&dd->dd_lock);
 | |
| 	} else {
 | |
| 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
 | |
| 		    <, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
 | |
| int
 | |
| dsl_dir_namelen(dsl_dir_t *dd)
 | |
| {
 | |
| 	int result = 0;
 | |
| 
 | |
| 	if (dd->dd_parent) {
 | |
| 		/* parent's name + 1 for the "/" */
 | |
| 		result = dsl_dir_namelen(dd->dd_parent) + 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!MUTEX_HELD(&dd->dd_lock)) {
 | |
| 		/* see dsl_dir_name */
 | |
| 		mutex_enter(&dd->dd_lock);
 | |
| 		result += strlen(dd->dd_myname);
 | |
| 		mutex_exit(&dd->dd_lock);
 | |
| 	} else {
 | |
| 		result += strlen(dd->dd_myname);
 | |
| 	}
 | |
| 
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| static int
 | |
| getcomponent(const char *path, char *component, const char **nextp)
 | |
| {
 | |
| 	char *p;
 | |
| 
 | |
| 	if ((path == NULL) || (path[0] == '\0'))
 | |
| 		return (SET_ERROR(ENOENT));
 | |
| 	/* This would be a good place to reserve some namespace... */
 | |
| 	p = strpbrk(path, "/@");
 | |
| 	if (p && (p[1] == '/' || p[1] == '@')) {
 | |
| 		/* two separators in a row */
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 	if (p == NULL || p == path) {
 | |
| 		/*
 | |
| 		 * if the first thing is an @ or /, it had better be an
 | |
| 		 * @ and it had better not have any more ats or slashes,
 | |
| 		 * and it had better have something after the @.
 | |
| 		 */
 | |
| 		if (p != NULL &&
 | |
| 		    (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 		if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
 | |
| 			return (SET_ERROR(ENAMETOOLONG));
 | |
| 		(void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 		p = NULL;
 | |
| 	} else if (p[0] == '/') {
 | |
| 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
 | |
| 			return (SET_ERROR(ENAMETOOLONG));
 | |
| 		(void) strncpy(component, path, p - path);
 | |
| 		component[p - path] = '\0';
 | |
| 		p++;
 | |
| 	} else if (p[0] == '@') {
 | |
| 		/*
 | |
| 		 * if the next separator is an @, there better not be
 | |
| 		 * any more slashes.
 | |
| 		 */
 | |
| 		if (strchr(path, '/'))
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
 | |
| 			return (SET_ERROR(ENAMETOOLONG));
 | |
| 		(void) strncpy(component, path, p - path);
 | |
| 		component[p - path] = '\0';
 | |
| 	} else {
 | |
| 		panic("invalid p=%p", (void *)p);
 | |
| 	}
 | |
| 	*nextp = p;
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the dsl_dir_t, and possibly the last component which couldn't
 | |
|  * be found in *tail.  The name must be in the specified dsl_pool_t.  This
 | |
|  * thread must hold the dp_config_rwlock for the pool.  Returns NULL if the
 | |
|  * path is bogus, or if tail==NULL and we couldn't parse the whole name.
 | |
|  * (*tail)[0] == '@' means that the last component is a snapshot.
 | |
|  */
 | |
| int
 | |
| dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
 | |
|     dsl_dir_t **ddp, const char **tailp)
 | |
| {
 | |
| 	char *buf;
 | |
| 	const char *spaname, *next, *nextnext = NULL;
 | |
| 	int err;
 | |
| 	dsl_dir_t *dd;
 | |
| 	uint64_t ddobj;
 | |
| 
 | |
| 	buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
 | |
| 	err = getcomponent(name, buf, &next);
 | |
| 	if (err != 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	/* Make sure the name is in the specified pool. */
 | |
| 	spaname = spa_name(dp->dp_spa);
 | |
| 	if (strcmp(buf, spaname) != 0) {
 | |
| 		err = SET_ERROR(EXDEV);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(dsl_pool_config_held(dp));
 | |
| 
 | |
| 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
 | |
| 	if (err != 0) {
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	while (next != NULL) {
 | |
| 		dsl_dir_t *child_dd;
 | |
| 		err = getcomponent(next, buf, &nextnext);
 | |
| 		if (err != 0)
 | |
| 			break;
 | |
| 		ASSERT(next[0] != '\0');
 | |
| 		if (next[0] == '@')
 | |
| 			break;
 | |
| 		dprintf("looking up %s in obj%lld\n",
 | |
| 		    buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj);
 | |
| 
 | |
| 		err = zap_lookup(dp->dp_meta_objset,
 | |
| 		    dsl_dir_phys(dd)->dd_child_dir_zapobj,
 | |
| 		    buf, sizeof (ddobj), 1, &ddobj);
 | |
| 		if (err != 0) {
 | |
| 			if (err == ENOENT)
 | |
| 				err = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
 | |
| 		if (err != 0)
 | |
| 			break;
 | |
| 		dsl_dir_rele(dd, tag);
 | |
| 		dd = child_dd;
 | |
| 		next = nextnext;
 | |
| 	}
 | |
| 
 | |
| 	if (err != 0) {
 | |
| 		dsl_dir_rele(dd, tag);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It's an error if there's more than one component left, or
 | |
| 	 * tailp==NULL and there's any component left.
 | |
| 	 */
 | |
| 	if (next != NULL &&
 | |
| 	    (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
 | |
| 		/* bad path name */
 | |
| 		dsl_dir_rele(dd, tag);
 | |
| 		dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
 | |
| 		err = SET_ERROR(ENOENT);
 | |
| 	}
 | |
| 	if (tailp != NULL)
 | |
| 		*tailp = next;
 | |
| 	if (err == 0)
 | |
| 		*ddp = dd;
 | |
| error:
 | |
| 	kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the counts are already initialized for this filesystem and its
 | |
|  * descendants then do nothing, otherwise initialize the counts.
 | |
|  *
 | |
|  * The counts on this filesystem, and those below, may be uninitialized due to
 | |
|  * either the use of a pre-existing pool which did not support the
 | |
|  * filesystem/snapshot limit feature, or one in which the feature had not yet
 | |
|  * been enabled.
 | |
|  *
 | |
|  * Recursively descend the filesystem tree and update the filesystem/snapshot
 | |
|  * counts on each filesystem below, then update the cumulative count on the
 | |
|  * current filesystem. If the filesystem already has a count set on it,
 | |
|  * then we know that its counts, and the counts on the filesystems below it,
 | |
|  * are already correct, so we don't have to update this filesystem.
 | |
|  */
 | |
| static void
 | |
| dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
 | |
| {
 | |
| 	uint64_t my_fs_cnt = 0;
 | |
| 	uint64_t my_ss_cnt = 0;
 | |
| 	dsl_pool_t *dp = dd->dd_pool;
 | |
| 	objset_t *os = dp->dp_meta_objset;
 | |
| 	zap_cursor_t *zc;
 | |
| 	zap_attribute_t *za;
 | |
| 	dsl_dataset_t *ds;
 | |
| 
 | |
| 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
 | |
| 	ASSERT(dsl_pool_config_held(dp));
 | |
| 	ASSERT(dmu_tx_is_syncing(tx));
 | |
| 
 | |
| 	dsl_dir_zapify(dd, tx);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the filesystem count has already been initialized then we
 | |
| 	 * don't need to recurse down any further.
 | |
| 	 */
 | |
| 	if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
 | |
| 	za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
 | |
| 
 | |
| 	/* Iterate my child dirs */
 | |
| 	for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
 | |
| 	    zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
 | |
| 		dsl_dir_t *chld_dd;
 | |
| 		uint64_t count;
 | |
| 
 | |
| 		VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
 | |
| 		    &chld_dd));
 | |
| 
 | |
| 		/*
 | |
| 		 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
 | |
| 		 */
 | |
| 		if (chld_dd->dd_myname[0] == '$') {
 | |
| 			dsl_dir_rele(chld_dd, FTAG);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		my_fs_cnt++;	/* count this child */
 | |
| 
 | |
| 		dsl_dir_init_fs_ss_count(chld_dd, tx);
 | |
| 
 | |
| 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
 | |
| 		    DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
 | |
| 		my_fs_cnt += count;
 | |
| 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
 | |
| 		    DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
 | |
| 		my_ss_cnt += count;
 | |
| 
 | |
| 		dsl_dir_rele(chld_dd, FTAG);
 | |
| 	}
 | |
| 	zap_cursor_fini(zc);
 | |
| 	/* Count my snapshots (we counted children's snapshots above) */
 | |
| 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
 | |
| 	    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
 | |
| 
 | |
| 	for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
 | |
| 	    zap_cursor_retrieve(zc, za) == 0;
 | |
| 	    zap_cursor_advance(zc)) {
 | |
| 		/* Don't count temporary snapshots */
 | |
| 		if (za->za_name[0] != '%')
 | |
| 			my_ss_cnt++;
 | |
| 	}
 | |
| 	zap_cursor_fini(zc);
 | |
| 
 | |
| 	dsl_dataset_rele(ds, FTAG);
 | |
| 
 | |
| 	kmem_free(zc, sizeof (zap_cursor_t));
 | |
| 	kmem_free(za, sizeof (zap_attribute_t));
 | |
| 
 | |
| 	/* we're in a sync task, update counts */
 | |
| 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
 | |
| 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
 | |
| 	    sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
 | |
| 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
 | |
| 	    sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
 | |
| }
 | |
| 
 | |
| static int
 | |
| dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	char *ddname = (char *)arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	dsl_dataset_t *ds;
 | |
| 	dsl_dir_t *dd;
 | |
| 	int error;
 | |
| 
 | |
| 	error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
 | |
| 		dsl_dataset_rele(ds, FTAG);
 | |
| 		return (SET_ERROR(ENOTSUP));
 | |
| 	}
 | |
| 
 | |
| 	dd = ds->ds_dir;
 | |
| 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
 | |
| 	    dsl_dir_is_zapified(dd) &&
 | |
| 	    zap_contains(dp->dp_meta_objset, dd->dd_object,
 | |
| 	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
 | |
| 		dsl_dataset_rele(ds, FTAG);
 | |
| 		return (SET_ERROR(EALREADY));
 | |
| 	}
 | |
| 
 | |
| 	dsl_dataset_rele(ds, FTAG);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	char *ddname = (char *)arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	dsl_dataset_t *ds;
 | |
| 	spa_t *spa;
 | |
| 
 | |
| 	VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
 | |
| 
 | |
| 	spa = dsl_dataset_get_spa(ds);
 | |
| 
 | |
| 	if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
 | |
| 		/*
 | |
| 		 * Since the feature was not active and we're now setting a
 | |
| 		 * limit, increment the feature-active counter so that the
 | |
| 		 * feature becomes active for the first time.
 | |
| 		 *
 | |
| 		 * We are already in a sync task so we can update the MOS.
 | |
| 		 */
 | |
| 		spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
 | |
| 	 * we need to ensure the counts are correct. Descend down the tree from
 | |
| 	 * this point and update all of the counts to be accurate.
 | |
| 	 */
 | |
| 	dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
 | |
| 
 | |
| 	dsl_dataset_rele(ds, FTAG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make sure the feature is enabled and activate it if necessary.
 | |
|  * Since we're setting a limit, ensure the on-disk counts are valid.
 | |
|  * This is only called by the ioctl path when setting a limit value.
 | |
|  *
 | |
|  * We do not need to validate the new limit, since users who can change the
 | |
|  * limit are also allowed to exceed the limit.
 | |
|  */
 | |
| int
 | |
| dsl_dir_activate_fs_ss_limit(const char *ddname)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
 | |
| 	    dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
 | |
| 	    ZFS_SPACE_CHECK_RESERVED);
 | |
| 
 | |
| 	if (error == EALREADY)
 | |
| 		error = 0;
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to determine if the filesystem_limit or snapshot_limit should be
 | |
|  * enforced. We allow the limit to be exceeded if the user has permission to
 | |
|  * write the property value. We pass in the creds that we got in the open
 | |
|  * context since we will always be the GZ root in syncing context. We also have
 | |
|  * to handle the case where we are allowed to change the limit on the current
 | |
|  * dataset, but there may be another limit in the tree above.
 | |
|  *
 | |
|  * We can never modify these two properties within a non-global zone. In
 | |
|  * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
 | |
|  * can't use that function since we are already holding the dp_config_rwlock.
 | |
|  * In addition, we already have the dd and dealing with snapshots is simplified
 | |
|  * in this code.
 | |
|  */
 | |
| 
 | |
| typedef enum {
 | |
| 	ENFORCE_ALWAYS,
 | |
| 	ENFORCE_NEVER,
 | |
| 	ENFORCE_ABOVE
 | |
| } enforce_res_t;
 | |
| 
 | |
| static enforce_res_t
 | |
| dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop,
 | |
|     cred_t *cr, proc_t *proc)
 | |
| {
 | |
| 	enforce_res_t enforce = ENFORCE_ALWAYS;
 | |
| 	uint64_t obj;
 | |
| 	dsl_dataset_t *ds;
 | |
| 	uint64_t zoned;
 | |
| 	const char *zonedstr;
 | |
| 
 | |
| 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
 | |
| 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
 | |
| 
 | |
| #ifdef _KERNEL
 | |
| 	if (crgetzoneid(cr) != GLOBAL_ZONEID)
 | |
| 		return (ENFORCE_ALWAYS);
 | |
| 
 | |
| 	/*
 | |
| 	 * We are checking the saved credentials of the user process, which is
 | |
| 	 * not the current process.  Note that we can't use secpolicy_zfs(),
 | |
| 	 * because it only works if the cred is that of the current process (on
 | |
| 	 * Linux).
 | |
| 	 */
 | |
| 	if (secpolicy_zfs_proc(cr, proc) == 0)
 | |
| 		return (ENFORCE_NEVER);
 | |
| #else
 | |
| 	(void) proc;
 | |
| #endif
 | |
| 
 | |
| 	if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
 | |
| 		return (ENFORCE_ALWAYS);
 | |
| 
 | |
| 	ASSERT(dsl_pool_config_held(dd->dd_pool));
 | |
| 
 | |
| 	if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
 | |
| 		return (ENFORCE_ALWAYS);
 | |
| 
 | |
| 	zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED);
 | |
| 	if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) {
 | |
| 		/* Only root can access zoned fs's from the GZ */
 | |
| 		enforce = ENFORCE_ALWAYS;
 | |
| 	} else {
 | |
| 		if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
 | |
| 			enforce = ENFORCE_ABOVE;
 | |
| 	}
 | |
| 
 | |
| 	dsl_dataset_rele(ds, FTAG);
 | |
| 	return (enforce);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if adding additional child filesystem(s) would exceed any filesystem
 | |
|  * limits or adding additional snapshot(s) would exceed any snapshot limits.
 | |
|  * The prop argument indicates which limit to check.
 | |
|  *
 | |
|  * Note that all filesystem limits up to the root (or the highest
 | |
|  * initialized) filesystem or the given ancestor must be satisfied.
 | |
|  */
 | |
| int
 | |
| dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
 | |
|     dsl_dir_t *ancestor, cred_t *cr, proc_t *proc)
 | |
| {
 | |
| 	objset_t *os = dd->dd_pool->dp_meta_objset;
 | |
| 	uint64_t limit, count;
 | |
| 	char *count_prop;
 | |
| 	enforce_res_t enforce;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	ASSERT(dsl_pool_config_held(dd->dd_pool));
 | |
| 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
 | |
| 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're allowed to change the limit, don't enforce the limit
 | |
| 	 * e.g. this can happen if a snapshot is taken by an administrative
 | |
| 	 * user in the global zone (i.e. a recursive snapshot by root).
 | |
| 	 * However, we must handle the case of delegated permissions where we
 | |
| 	 * are allowed to change the limit on the current dataset, but there
 | |
| 	 * is another limit in the tree above.
 | |
| 	 */
 | |
| 	enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc);
 | |
| 	if (enforce == ENFORCE_NEVER)
 | |
| 		return (0);
 | |
| 
 | |
| 	/*
 | |
| 	 * e.g. if renaming a dataset with no snapshots, count adjustment
 | |
| 	 * is 0.
 | |
| 	 */
 | |
| 	if (delta == 0)
 | |
| 		return (0);
 | |
| 
 | |
| 	if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
 | |
| 		/*
 | |
| 		 * We don't enforce the limit for temporary snapshots. This is
 | |
| 		 * indicated by a NULL cred_t argument.
 | |
| 		 */
 | |
| 		if (cr == NULL)
 | |
| 			return (0);
 | |
| 
 | |
| 		count_prop = DD_FIELD_SNAPSHOT_COUNT;
 | |
| 	} else {
 | |
| 		count_prop = DD_FIELD_FILESYSTEM_COUNT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If an ancestor has been provided, stop checking the limit once we
 | |
| 	 * hit that dir. We need this during rename so that we don't overcount
 | |
| 	 * the check once we recurse up to the common ancestor.
 | |
| 	 */
 | |
| 	if (ancestor == dd)
 | |
| 		return (0);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we hit an uninitialized node while recursing up the tree, we can
 | |
| 	 * stop since we know there is no limit here (or above). The counts are
 | |
| 	 * not valid on this node and we know we won't touch this node's counts.
 | |
| 	 */
 | |
| 	if (!dsl_dir_is_zapified(dd))
 | |
| 		return (0);
 | |
| 	err = zap_lookup(os, dd->dd_object,
 | |
| 	    count_prop, sizeof (count), 1, &count);
 | |
| 	if (err == ENOENT)
 | |
| 		return (0);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 
 | |
| 	err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
 | |
| 	    B_FALSE);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 
 | |
| 	/* Is there a limit which we've hit? */
 | |
| 	if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
 | |
| 		return (SET_ERROR(EDQUOT));
 | |
| 
 | |
| 	if (dd->dd_parent != NULL)
 | |
| 		err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
 | |
| 		    ancestor, cr, proc);
 | |
| 
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
 | |
|  * parents. When a new filesystem/snapshot is created, increment the count on
 | |
|  * all parents, and when a filesystem/snapshot is destroyed, decrement the
 | |
|  * count.
 | |
|  */
 | |
| void
 | |
| dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	int err;
 | |
| 	objset_t *os = dd->dd_pool->dp_meta_objset;
 | |
| 	uint64_t count;
 | |
| 
 | |
| 	ASSERT(dsl_pool_config_held(dd->dd_pool));
 | |
| 	ASSERT(dmu_tx_is_syncing(tx));
 | |
| 	ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
 | |
| 	    strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
 | |
| 	 */
 | |
| 	if (dd->dd_myname[0] == '$' && strcmp(prop,
 | |
| 	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
 | |
| 	 */
 | |
| 	if (delta == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we hit an uninitialized node while recursing up the tree, we can
 | |
| 	 * stop since we know the counts are not valid on this node and we
 | |
| 	 * know we shouldn't touch this node's counts. An uninitialized count
 | |
| 	 * on the node indicates that either the feature has not yet been
 | |
| 	 * activated or there are no limits on this part of the tree.
 | |
| 	 */
 | |
| 	if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
 | |
| 	    prop, sizeof (count), 1, &count)) == ENOENT)
 | |
| 		return;
 | |
| 	VERIFY0(err);
 | |
| 
 | |
| 	count += delta;
 | |
| 	/* Use a signed verify to make sure we're not neg. */
 | |
| 	VERIFY3S(count, >=, 0);
 | |
| 
 | |
| 	VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
 | |
| 	    tx));
 | |
| 
 | |
| 	/* Roll up this additional count into our ancestors */
 | |
| 	if (dd->dd_parent != NULL)
 | |
| 		dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	objset_t *mos = dp->dp_meta_objset;
 | |
| 	uint64_t ddobj;
 | |
| 	dsl_dir_phys_t *ddphys;
 | |
| 	dmu_buf_t *dbuf;
 | |
| 
 | |
| 	ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
 | |
| 	    DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
 | |
| 	if (pds) {
 | |
| 		VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
 | |
| 		    name, sizeof (uint64_t), 1, &ddobj, tx));
 | |
| 	} else {
 | |
| 		/* it's the root dir */
 | |
| 		VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
 | |
| 		    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
 | |
| 	}
 | |
| 	VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
 | |
| 	dmu_buf_will_dirty(dbuf, tx);
 | |
| 	ddphys = dbuf->db_data;
 | |
| 
 | |
| 	ddphys->dd_creation_time = gethrestime_sec();
 | |
| 	if (pds) {
 | |
| 		ddphys->dd_parent_obj = pds->dd_object;
 | |
| 
 | |
| 		/* update the filesystem counts */
 | |
| 		dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
 | |
| 	}
 | |
| 	ddphys->dd_props_zapobj = zap_create(mos,
 | |
| 	    DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
 | |
| 	ddphys->dd_child_dir_zapobj = zap_create(mos,
 | |
| 	    DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
 | |
| 	if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
 | |
| 		ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
 | |
| 
 | |
| 	dmu_buf_rele(dbuf, FTAG);
 | |
| 
 | |
| 	return (ddobj);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| dsl_dir_is_clone(dsl_dir_t *dd)
 | |
| {
 | |
| 	return (dsl_dir_phys(dd)->dd_origin_obj &&
 | |
| 	    (dd->dd_pool->dp_origin_snap == NULL ||
 | |
| 	    dsl_dir_phys(dd)->dd_origin_obj !=
 | |
| 	    dd->dd_pool->dp_origin_snap->ds_object));
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dsl_dir_get_used(dsl_dir_t *dd)
 | |
| {
 | |
| 	return (dsl_dir_phys(dd)->dd_used_bytes);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dsl_dir_get_compressed(dsl_dir_t *dd)
 | |
| {
 | |
| 	return (dsl_dir_phys(dd)->dd_compressed_bytes);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dsl_dir_get_quota(dsl_dir_t *dd)
 | |
| {
 | |
| 	return (dsl_dir_phys(dd)->dd_quota);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dsl_dir_get_reservation(dsl_dir_t *dd)
 | |
| {
 | |
| 	return (dsl_dir_phys(dd)->dd_reserved);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dsl_dir_get_compressratio(dsl_dir_t *dd)
 | |
| {
 | |
| 	/* a fixed point number, 100x the ratio */
 | |
| 	return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
 | |
| 	    (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
 | |
| 	    dsl_dir_phys(dd)->dd_compressed_bytes));
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dsl_dir_get_logicalused(dsl_dir_t *dd)
 | |
| {
 | |
| 	return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dsl_dir_get_usedsnap(dsl_dir_t *dd)
 | |
| {
 | |
| 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dsl_dir_get_usedds(dsl_dir_t *dd)
 | |
| {
 | |
| 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
 | |
| {
 | |
| 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dsl_dir_get_usedchild(dsl_dir_t *dd)
 | |
| {
 | |
| 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
 | |
| 	    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
 | |
| {
 | |
| 	dsl_dataset_t *ds;
 | |
| 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
 | |
| 	    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
 | |
| 
 | |
| 	dsl_dataset_name(ds, buf);
 | |
| 
 | |
| 	dsl_dataset_rele(ds, FTAG);
 | |
| }
 | |
| 
 | |
| int
 | |
| dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
 | |
| {
 | |
| 	if (dsl_dir_is_zapified(dd)) {
 | |
| 		objset_t *os = dd->dd_pool->dp_meta_objset;
 | |
| 		return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
 | |
| 		    sizeof (*count), 1, count));
 | |
| 	} else {
 | |
| 		return (SET_ERROR(ENOENT));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
 | |
| {
 | |
| 	if (dsl_dir_is_zapified(dd)) {
 | |
| 		objset_t *os = dd->dd_pool->dp_meta_objset;
 | |
| 		return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
 | |
| 		    sizeof (*count), 1, count));
 | |
| 	} else {
 | |
| 		return (SET_ERROR(ENOENT));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
 | |
| {
 | |
| 	mutex_enter(&dd->dd_lock);
 | |
| 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
 | |
| 	    dsl_dir_get_quota(dd));
 | |
| 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
 | |
| 	    dsl_dir_get_reservation(dd));
 | |
| 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
 | |
| 	    dsl_dir_get_logicalused(dd));
 | |
| 	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
 | |
| 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
 | |
| 		    dsl_dir_get_usedsnap(dd));
 | |
| 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
 | |
| 		    dsl_dir_get_usedds(dd));
 | |
| 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
 | |
| 		    dsl_dir_get_usedrefreserv(dd));
 | |
| 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
 | |
| 		    dsl_dir_get_usedchild(dd));
 | |
| 	}
 | |
| 	mutex_exit(&dd->dd_lock);
 | |
| 
 | |
| 	uint64_t count;
 | |
| 	if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
 | |
| 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
 | |
| 		    count);
 | |
| 	}
 | |
| 	if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
 | |
| 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
 | |
| 		    count);
 | |
| 	}
 | |
| 
 | |
| 	if (dsl_dir_is_clone(dd)) {
 | |
| 		char buf[ZFS_MAX_DATASET_NAME_LEN];
 | |
| 		dsl_dir_get_origin(dd, buf);
 | |
| 		dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_pool_t *dp = dd->dd_pool;
 | |
| 
 | |
| 	ASSERT(dsl_dir_phys(dd));
 | |
| 
 | |
| 	if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
 | |
| 		/* up the hold count until we can be written out */
 | |
| 		dmu_buf_add_ref(dd->dd_dbuf, dd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int64_t
 | |
| parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
 | |
| {
 | |
| 	uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
 | |
| 	uint64_t new_accounted =
 | |
| 	    MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
 | |
| 	return (new_accounted - old_accounted);
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
 | |
| {
 | |
| 	ASSERT(dmu_tx_is_syncing(tx));
 | |
| 
 | |
| 	mutex_enter(&dd->dd_lock);
 | |
| 	ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
 | |
| 	dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg,
 | |
| 	    (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
 | |
| 	dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
 | |
| 	mutex_exit(&dd->dd_lock);
 | |
| 
 | |
| 	/* release the hold from dsl_dir_dirty */
 | |
| 	dmu_buf_rele(dd->dd_dbuf, dd);
 | |
| }
 | |
| 
 | |
| static uint64_t
 | |
| dsl_dir_space_towrite(dsl_dir_t *dd)
 | |
| {
 | |
| 	uint64_t space = 0;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&dd->dd_lock));
 | |
| 
 | |
| 	for (int i = 0; i < TXG_SIZE; i++) {
 | |
| 		space += dd->dd_space_towrite[i & TXG_MASK];
 | |
| 		ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0);
 | |
| 	}
 | |
| 	return (space);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * How much space would dd have available if ancestor had delta applied
 | |
|  * to it?  If ondiskonly is set, we're only interested in what's
 | |
|  * on-disk, not estimated pending changes.
 | |
|  */
 | |
| uint64_t
 | |
| dsl_dir_space_available(dsl_dir_t *dd,
 | |
|     dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
 | |
| {
 | |
| 	uint64_t parentspace, myspace, quota, used;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are no restrictions otherwise, assume we have
 | |
| 	 * unlimited space available.
 | |
| 	 */
 | |
| 	quota = UINT64_MAX;
 | |
| 	parentspace = UINT64_MAX;
 | |
| 
 | |
| 	if (dd->dd_parent != NULL) {
 | |
| 		parentspace = dsl_dir_space_available(dd->dd_parent,
 | |
| 		    ancestor, delta, ondiskonly);
 | |
| 	}
 | |
| 
 | |
| 	mutex_enter(&dd->dd_lock);
 | |
| 	if (dsl_dir_phys(dd)->dd_quota != 0)
 | |
| 		quota = dsl_dir_phys(dd)->dd_quota;
 | |
| 	used = dsl_dir_phys(dd)->dd_used_bytes;
 | |
| 	if (!ondiskonly)
 | |
| 		used += dsl_dir_space_towrite(dd);
 | |
| 
 | |
| 	if (dd->dd_parent == NULL) {
 | |
| 		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
 | |
| 		    ZFS_SPACE_CHECK_NORMAL);
 | |
| 		quota = MIN(quota, poolsize);
 | |
| 	}
 | |
| 
 | |
| 	if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
 | |
| 		/*
 | |
| 		 * We have some space reserved, in addition to what our
 | |
| 		 * parent gave us.
 | |
| 		 */
 | |
| 		parentspace += dsl_dir_phys(dd)->dd_reserved - used;
 | |
| 	}
 | |
| 
 | |
| 	if (dd == ancestor) {
 | |
| 		ASSERT(delta <= 0);
 | |
| 		ASSERT(used >= -delta);
 | |
| 		used += delta;
 | |
| 		if (parentspace != UINT64_MAX)
 | |
| 			parentspace -= delta;
 | |
| 	}
 | |
| 
 | |
| 	if (used > quota) {
 | |
| 		/* over quota */
 | |
| 		myspace = 0;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * the lesser of the space provided by our parent and
 | |
| 		 * the space left in our quota
 | |
| 		 */
 | |
| 		myspace = MIN(parentspace, quota - used);
 | |
| 	}
 | |
| 
 | |
| 	mutex_exit(&dd->dd_lock);
 | |
| 
 | |
| 	return (myspace);
 | |
| }
 | |
| 
 | |
| struct tempreserve {
 | |
| 	list_node_t tr_node;
 | |
| 	dsl_dir_t *tr_ds;
 | |
| 	uint64_t tr_size;
 | |
| };
 | |
| 
 | |
| static int
 | |
| dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
 | |
|     boolean_t ignorequota, list_t *tr_list,
 | |
|     dmu_tx_t *tx, boolean_t first)
 | |
| {
 | |
| 	uint64_t txg;
 | |
| 	uint64_t quota;
 | |
| 	struct tempreserve *tr;
 | |
| 	int retval;
 | |
| 	uint64_t ref_rsrv;
 | |
| 
 | |
| top_of_function:
 | |
| 	txg = tx->tx_txg;
 | |
| 	retval = EDQUOT;
 | |
| 	ref_rsrv = 0;
 | |
| 
 | |
| 	ASSERT3U(txg, !=, 0);
 | |
| 	ASSERT3S(asize, >, 0);
 | |
| 
 | |
| 	mutex_enter(&dd->dd_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check against the dsl_dir's quota.  We don't add in the delta
 | |
| 	 * when checking for over-quota because they get one free hit.
 | |
| 	 */
 | |
| 	uint64_t est_inflight = dsl_dir_space_towrite(dd);
 | |
| 	for (int i = 0; i < TXG_SIZE; i++)
 | |
| 		est_inflight += dd->dd_tempreserved[i];
 | |
| 	uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
 | |
| 
 | |
| 	/*
 | |
| 	 * On the first iteration, fetch the dataset's used-on-disk and
 | |
| 	 * refreservation values. Also, if checkrefquota is set, test if
 | |
| 	 * allocating this space would exceed the dataset's refquota.
 | |
| 	 */
 | |
| 	if (first && tx->tx_objset) {
 | |
| 		int error;
 | |
| 		dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
 | |
| 
 | |
| 		error = dsl_dataset_check_quota(ds, !netfree,
 | |
| 		    asize, est_inflight, &used_on_disk, &ref_rsrv);
 | |
| 		if (error != 0) {
 | |
| 			mutex_exit(&dd->dd_lock);
 | |
| 			DMU_TX_STAT_BUMP(dmu_tx_quota);
 | |
| 			return (error);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this transaction will result in a net free of space,
 | |
| 	 * we want to let it through.
 | |
| 	 */
 | |
| 	if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
 | |
| 		quota = UINT64_MAX;
 | |
| 	else
 | |
| 		quota = dsl_dir_phys(dd)->dd_quota;
 | |
| 
 | |
| 	/*
 | |
| 	 * Adjust the quota against the actual pool size at the root
 | |
| 	 * minus any outstanding deferred frees.
 | |
| 	 * To ensure that it's possible to remove files from a full
 | |
| 	 * pool without inducing transient overcommits, we throttle
 | |
| 	 * netfree transactions against a quota that is slightly larger,
 | |
| 	 * but still within the pool's allocation slop.  In cases where
 | |
| 	 * we're very close to full, this will allow a steady trickle of
 | |
| 	 * removes to get through.
 | |
| 	 */
 | |
| 	if (dd->dd_parent == NULL) {
 | |
| 		uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
 | |
| 		    (netfree) ?
 | |
| 		    ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
 | |
| 
 | |
| 		if (avail < quota) {
 | |
| 			quota = avail;
 | |
| 			retval = SET_ERROR(ENOSPC);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If they are requesting more space, and our current estimate
 | |
| 	 * is over quota, they get to try again unless the actual
 | |
| 	 * on-disk is over quota and there are no pending changes (which
 | |
| 	 * may free up space for us).
 | |
| 	 */
 | |
| 	if (used_on_disk + est_inflight >= quota) {
 | |
| 		if (est_inflight > 0 || used_on_disk < quota ||
 | |
| 		    (retval == ENOSPC && used_on_disk < quota))
 | |
| 			retval = ERESTART;
 | |
| 		dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
 | |
| 		    "quota=%lluK tr=%lluK err=%d\n",
 | |
| 		    (u_longlong_t)used_on_disk>>10,
 | |
| 		    (u_longlong_t)est_inflight>>10,
 | |
| 		    (u_longlong_t)quota>>10, (u_longlong_t)asize>>10, retval);
 | |
| 		mutex_exit(&dd->dd_lock);
 | |
| 		DMU_TX_STAT_BUMP(dmu_tx_quota);
 | |
| 		return (SET_ERROR(retval));
 | |
| 	}
 | |
| 
 | |
| 	/* We need to up our estimated delta before dropping dd_lock */
 | |
| 	dd->dd_tempreserved[txg & TXG_MASK] += asize;
 | |
| 
 | |
| 	uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
 | |
| 	    asize - ref_rsrv);
 | |
| 	mutex_exit(&dd->dd_lock);
 | |
| 
 | |
| 	tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
 | |
| 	tr->tr_ds = dd;
 | |
| 	tr->tr_size = asize;
 | |
| 	list_insert_tail(tr_list, tr);
 | |
| 
 | |
| 	/* see if it's OK with our parent */
 | |
| 	if (dd->dd_parent != NULL && parent_rsrv != 0) {
 | |
| 		/*
 | |
| 		 * Recurse on our parent without recursion. This has been
 | |
| 		 * observed to be potentially large stack usage even within
 | |
| 		 * the test suite. Largest seen stack was 7632 bytes on linux.
 | |
| 		 */
 | |
| 
 | |
| 		dd = dd->dd_parent;
 | |
| 		asize = parent_rsrv;
 | |
| 		ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
 | |
| 		first = B_FALSE;
 | |
| 		goto top_of_function;
 | |
| 
 | |
| 	} else {
 | |
| 		return (0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reserve space in this dsl_dir, to be used in this tx's txg.
 | |
|  * After the space has been dirtied (and dsl_dir_willuse_space()
 | |
|  * has been called), the reservation should be canceled, using
 | |
|  * dsl_dir_tempreserve_clear().
 | |
|  */
 | |
| int
 | |
| dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
 | |
|     boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
 | |
| {
 | |
| 	int err;
 | |
| 	list_t *tr_list;
 | |
| 
 | |
| 	if (asize == 0) {
 | |
| 		*tr_cookiep = NULL;
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
 | |
| 	list_create(tr_list, sizeof (struct tempreserve),
 | |
| 	    offsetof(struct tempreserve, tr_node));
 | |
| 	ASSERT3S(asize, >, 0);
 | |
| 
 | |
| 	err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
 | |
| 	if (err == 0) {
 | |
| 		struct tempreserve *tr;
 | |
| 
 | |
| 		tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
 | |
| 		tr->tr_size = lsize;
 | |
| 		list_insert_tail(tr_list, tr);
 | |
| 	} else {
 | |
| 		if (err == EAGAIN) {
 | |
| 			/*
 | |
| 			 * If arc_memory_throttle() detected that pageout
 | |
| 			 * is running and we are low on memory, we delay new
 | |
| 			 * non-pageout transactions to give pageout an
 | |
| 			 * advantage.
 | |
| 			 *
 | |
| 			 * It is unfortunate to be delaying while the caller's
 | |
| 			 * locks are held.
 | |
| 			 */
 | |
| 			txg_delay(dd->dd_pool, tx->tx_txg,
 | |
| 			    MSEC2NSEC(10), MSEC2NSEC(10));
 | |
| 			err = SET_ERROR(ERESTART);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (err == 0) {
 | |
| 		err = dsl_dir_tempreserve_impl(dd, asize, netfree,
 | |
| 		    B_FALSE, tr_list, tx, B_TRUE);
 | |
| 	}
 | |
| 
 | |
| 	if (err != 0)
 | |
| 		dsl_dir_tempreserve_clear(tr_list, tx);
 | |
| 	else
 | |
| 		*tr_cookiep = tr_list;
 | |
| 
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear a temporary reservation that we previously made with
 | |
|  * dsl_dir_tempreserve_space().
 | |
|  */
 | |
| void
 | |
| dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
 | |
| {
 | |
| 	int txgidx = tx->tx_txg & TXG_MASK;
 | |
| 	list_t *tr_list = tr_cookie;
 | |
| 	struct tempreserve *tr;
 | |
| 
 | |
| 	ASSERT3U(tx->tx_txg, !=, 0);
 | |
| 
 | |
| 	if (tr_cookie == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	while ((tr = list_head(tr_list)) != NULL) {
 | |
| 		if (tr->tr_ds) {
 | |
| 			mutex_enter(&tr->tr_ds->dd_lock);
 | |
| 			ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
 | |
| 			    tr->tr_size);
 | |
| 			tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
 | |
| 			mutex_exit(&tr->tr_ds->dd_lock);
 | |
| 		} else {
 | |
| 			arc_tempreserve_clear(tr->tr_size);
 | |
| 		}
 | |
| 		list_remove(tr_list, tr);
 | |
| 		kmem_free(tr, sizeof (struct tempreserve));
 | |
| 	}
 | |
| 
 | |
| 	kmem_free(tr_list, sizeof (list_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This should be called from open context when we think we're going to write
 | |
|  * or free space, for example when dirtying data. Be conservative; it's okay
 | |
|  * to write less space or free more, but we don't want to write more or free
 | |
|  * less than the amount specified.
 | |
|  *
 | |
|  * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
 | |
|  * version however it has been adjusted to use an iterative rather than
 | |
|  * recursive algorithm to minimize stack usage.
 | |
|  */
 | |
| void
 | |
| dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
 | |
| {
 | |
| 	int64_t parent_space;
 | |
| 	uint64_t est_used;
 | |
| 
 | |
| 	do {
 | |
| 		mutex_enter(&dd->dd_lock);
 | |
| 		if (space > 0)
 | |
| 			dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
 | |
| 
 | |
| 		est_used = dsl_dir_space_towrite(dd) +
 | |
| 		    dsl_dir_phys(dd)->dd_used_bytes;
 | |
| 		parent_space = parent_delta(dd, est_used, space);
 | |
| 		mutex_exit(&dd->dd_lock);
 | |
| 
 | |
| 		/* Make sure that we clean up dd_space_to* */
 | |
| 		dsl_dir_dirty(dd, tx);
 | |
| 
 | |
| 		dd = dd->dd_parent;
 | |
| 		space = parent_space;
 | |
| 	} while (space && dd);
 | |
| }
 | |
| 
 | |
| /* call from syncing context when we actually write/free space for this dd */
 | |
| void
 | |
| dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
 | |
|     int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
 | |
| {
 | |
| 	int64_t accounted_delta;
 | |
| 
 | |
| 	ASSERT(dmu_tx_is_syncing(tx));
 | |
| 	ASSERT(type < DD_USED_NUM);
 | |
| 
 | |
| 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
 | |
| 
 | |
| 	/*
 | |
| 	 * dsl_dataset_set_refreservation_sync_impl() calls this with
 | |
| 	 * dd_lock held, so that it can atomically update
 | |
| 	 * ds->ds_reserved and the dsl_dir accounting, so that
 | |
| 	 * dsl_dataset_check_quota() can see dataset and dir accounting
 | |
| 	 * consistently.
 | |
| 	 */
 | |
| 	boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
 | |
| 	if (needlock)
 | |
| 		mutex_enter(&dd->dd_lock);
 | |
| 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
 | |
| 	accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
 | |
| 	ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
 | |
| 	ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
 | |
| 	ASSERT(uncompressed >= 0 ||
 | |
| 	    ddp->dd_uncompressed_bytes >= -uncompressed);
 | |
| 	ddp->dd_used_bytes += used;
 | |
| 	ddp->dd_uncompressed_bytes += uncompressed;
 | |
| 	ddp->dd_compressed_bytes += compressed;
 | |
| 
 | |
| 	if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
 | |
| 		ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used);
 | |
| 		ddp->dd_used_breakdown[type] += used;
 | |
| #ifdef ZFS_DEBUG
 | |
| 		{
 | |
| 			dd_used_t t;
 | |
| 			uint64_t u = 0;
 | |
| 			for (t = 0; t < DD_USED_NUM; t++)
 | |
| 				u += ddp->dd_used_breakdown[t];
 | |
| 			ASSERT3U(u, ==, ddp->dd_used_bytes);
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 	if (needlock)
 | |
| 		mutex_exit(&dd->dd_lock);
 | |
| 
 | |
| 	if (dd->dd_parent != NULL) {
 | |
| 		dsl_dir_diduse_transfer_space(dd->dd_parent,
 | |
| 		    accounted_delta, compressed, uncompressed,
 | |
| 		    used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
 | |
|     dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
 | |
| {
 | |
| 	ASSERT(dmu_tx_is_syncing(tx));
 | |
| 	ASSERT(oldtype < DD_USED_NUM);
 | |
| 	ASSERT(newtype < DD_USED_NUM);
 | |
| 
 | |
| 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
 | |
| 	if (delta == 0 ||
 | |
| 	    !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN))
 | |
| 		return;
 | |
| 
 | |
| 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
 | |
| 	mutex_enter(&dd->dd_lock);
 | |
| 	ASSERT(delta > 0 ?
 | |
| 	    ddp->dd_used_breakdown[oldtype] >= delta :
 | |
| 	    ddp->dd_used_breakdown[newtype] >= -delta);
 | |
| 	ASSERT(ddp->dd_used_bytes >= ABS(delta));
 | |
| 	ddp->dd_used_breakdown[oldtype] -= delta;
 | |
| 	ddp->dd_used_breakdown[newtype] += delta;
 | |
| 	mutex_exit(&dd->dd_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used,
 | |
|     int64_t compressed, int64_t uncompressed, int64_t tonew,
 | |
|     dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
 | |
| {
 | |
| 	int64_t accounted_delta;
 | |
| 
 | |
| 	ASSERT(dmu_tx_is_syncing(tx));
 | |
| 	ASSERT(oldtype < DD_USED_NUM);
 | |
| 	ASSERT(newtype < DD_USED_NUM);
 | |
| 
 | |
| 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
 | |
| 
 | |
| 	mutex_enter(&dd->dd_lock);
 | |
| 	dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
 | |
| 	accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
 | |
| 	ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
 | |
| 	ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
 | |
| 	ASSERT(uncompressed >= 0 ||
 | |
| 	    ddp->dd_uncompressed_bytes >= -uncompressed);
 | |
| 	ddp->dd_used_bytes += used;
 | |
| 	ddp->dd_uncompressed_bytes += uncompressed;
 | |
| 	ddp->dd_compressed_bytes += compressed;
 | |
| 
 | |
| 	if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
 | |
| 		ASSERT(tonew - used <= 0 ||
 | |
| 		    ddp->dd_used_breakdown[oldtype] >= tonew - used);
 | |
| 		ASSERT(tonew >= 0 ||
 | |
| 		    ddp->dd_used_breakdown[newtype] >= -tonew);
 | |
| 		ddp->dd_used_breakdown[oldtype] -= tonew - used;
 | |
| 		ddp->dd_used_breakdown[newtype] += tonew;
 | |
| #ifdef ZFS_DEBUG
 | |
| 		{
 | |
| 			dd_used_t t;
 | |
| 			uint64_t u = 0;
 | |
| 			for (t = 0; t < DD_USED_NUM; t++)
 | |
| 				u += ddp->dd_used_breakdown[t];
 | |
| 			ASSERT3U(u, ==, ddp->dd_used_bytes);
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 	mutex_exit(&dd->dd_lock);
 | |
| 
 | |
| 	if (dd->dd_parent != NULL) {
 | |
| 		dsl_dir_diduse_transfer_space(dd->dd_parent,
 | |
| 		    accounted_delta, compressed, uncompressed,
 | |
| 		    used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| typedef struct dsl_dir_set_qr_arg {
 | |
| 	const char *ddsqra_name;
 | |
| 	zprop_source_t ddsqra_source;
 | |
| 	uint64_t ddsqra_value;
 | |
| } dsl_dir_set_qr_arg_t;
 | |
| 
 | |
| static int
 | |
| dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_dir_set_qr_arg_t *ddsqra = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	dsl_dataset_t *ds;
 | |
| 	int error;
 | |
| 	uint64_t towrite, newval;
 | |
| 
 | |
| 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = dsl_prop_predict(ds->ds_dir, "quota",
 | |
| 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
 | |
| 	if (error != 0) {
 | |
| 		dsl_dataset_rele(ds, FTAG);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	if (newval == 0) {
 | |
| 		dsl_dataset_rele(ds, FTAG);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	mutex_enter(&ds->ds_dir->dd_lock);
 | |
| 	/*
 | |
| 	 * If we are doing the preliminary check in open context, and
 | |
| 	 * there are pending changes, then don't fail it, since the
 | |
| 	 * pending changes could under-estimate the amount of space to be
 | |
| 	 * freed up.
 | |
| 	 */
 | |
| 	towrite = dsl_dir_space_towrite(ds->ds_dir);
 | |
| 	if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
 | |
| 	    (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
 | |
| 	    newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
 | |
| 		error = SET_ERROR(ENOSPC);
 | |
| 	}
 | |
| 	mutex_exit(&ds->ds_dir->dd_lock);
 | |
| 	dsl_dataset_rele(ds, FTAG);
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_dir_set_qr_arg_t *ddsqra = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	dsl_dataset_t *ds;
 | |
| 	uint64_t newval;
 | |
| 
 | |
| 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
 | |
| 
 | |
| 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
 | |
| 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
 | |
| 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
 | |
| 		    &ddsqra->ddsqra_value, tx);
 | |
| 
 | |
| 		VERIFY0(dsl_prop_get_int_ds(ds,
 | |
| 		    zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
 | |
| 	} else {
 | |
| 		newval = ddsqra->ddsqra_value;
 | |
| 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
 | |
| 		    zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
 | |
| 	}
 | |
| 
 | |
| 	dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
 | |
| 	mutex_enter(&ds->ds_dir->dd_lock);
 | |
| 	dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
 | |
| 	mutex_exit(&ds->ds_dir->dd_lock);
 | |
| 	dsl_dataset_rele(ds, FTAG);
 | |
| }
 | |
| 
 | |
| int
 | |
| dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
 | |
| {
 | |
| 	dsl_dir_set_qr_arg_t ddsqra;
 | |
| 
 | |
| 	ddsqra.ddsqra_name = ddname;
 | |
| 	ddsqra.ddsqra_source = source;
 | |
| 	ddsqra.ddsqra_value = quota;
 | |
| 
 | |
| 	return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
 | |
| 	    dsl_dir_set_quota_sync, &ddsqra, 0,
 | |
| 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
 | |
| }
 | |
| 
 | |
| static int
 | |
| dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_dir_set_qr_arg_t *ddsqra = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	dsl_dataset_t *ds;
 | |
| 	dsl_dir_t *dd;
 | |
| 	uint64_t newval, used, avail;
 | |
| 	int error;
 | |
| 
 | |
| 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 	dd = ds->ds_dir;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are doing the preliminary check in open context, the
 | |
| 	 * space estimates may be inaccurate.
 | |
| 	 */
 | |
| 	if (!dmu_tx_is_syncing(tx)) {
 | |
| 		dsl_dataset_rele(ds, FTAG);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	error = dsl_prop_predict(ds->ds_dir,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_RESERVATION),
 | |
| 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
 | |
| 	if (error != 0) {
 | |
| 		dsl_dataset_rele(ds, FTAG);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	mutex_enter(&dd->dd_lock);
 | |
| 	used = dsl_dir_phys(dd)->dd_used_bytes;
 | |
| 	mutex_exit(&dd->dd_lock);
 | |
| 
 | |
| 	if (dd->dd_parent) {
 | |
| 		avail = dsl_dir_space_available(dd->dd_parent,
 | |
| 		    NULL, 0, FALSE);
 | |
| 	} else {
 | |
| 		avail = dsl_pool_adjustedsize(dd->dd_pool,
 | |
| 		    ZFS_SPACE_CHECK_NORMAL) - used;
 | |
| 	}
 | |
| 
 | |
| 	if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
 | |
| 		uint64_t delta = MAX(used, newval) -
 | |
| 		    MAX(used, dsl_dir_phys(dd)->dd_reserved);
 | |
| 
 | |
| 		if (delta > avail ||
 | |
| 		    (dsl_dir_phys(dd)->dd_quota > 0 &&
 | |
| 		    newval > dsl_dir_phys(dd)->dd_quota))
 | |
| 			error = SET_ERROR(ENOSPC);
 | |
| 	}
 | |
| 
 | |
| 	dsl_dataset_rele(ds, FTAG);
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
 | |
| {
 | |
| 	uint64_t used;
 | |
| 	int64_t delta;
 | |
| 
 | |
| 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
 | |
| 
 | |
| 	mutex_enter(&dd->dd_lock);
 | |
| 	used = dsl_dir_phys(dd)->dd_used_bytes;
 | |
| 	delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
 | |
| 	dsl_dir_phys(dd)->dd_reserved = value;
 | |
| 
 | |
| 	if (dd->dd_parent != NULL) {
 | |
| 		/* Roll up this additional usage into our ancestors */
 | |
| 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
 | |
| 		    delta, 0, 0, tx);
 | |
| 	}
 | |
| 	mutex_exit(&dd->dd_lock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_dir_set_qr_arg_t *ddsqra = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	dsl_dataset_t *ds;
 | |
| 	uint64_t newval;
 | |
| 
 | |
| 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
 | |
| 
 | |
| 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
 | |
| 		dsl_prop_set_sync_impl(ds,
 | |
| 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
 | |
| 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
 | |
| 		    &ddsqra->ddsqra_value, tx);
 | |
| 
 | |
| 		VERIFY0(dsl_prop_get_int_ds(ds,
 | |
| 		    zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
 | |
| 	} else {
 | |
| 		newval = ddsqra->ddsqra_value;
 | |
| 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
 | |
| 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
 | |
| 		    (longlong_t)newval);
 | |
| 	}
 | |
| 
 | |
| 	dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
 | |
| 	dsl_dataset_rele(ds, FTAG);
 | |
| }
 | |
| 
 | |
| int
 | |
| dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
 | |
|     uint64_t reservation)
 | |
| {
 | |
| 	dsl_dir_set_qr_arg_t ddsqra;
 | |
| 
 | |
| 	ddsqra.ddsqra_name = ddname;
 | |
| 	ddsqra.ddsqra_source = source;
 | |
| 	ddsqra.ddsqra_value = reservation;
 | |
| 
 | |
| 	return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
 | |
| 	    dsl_dir_set_reservation_sync, &ddsqra, 0,
 | |
| 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
 | |
| }
 | |
| 
 | |
| static dsl_dir_t *
 | |
| closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
 | |
| {
 | |
| 	for (; ds1; ds1 = ds1->dd_parent) {
 | |
| 		dsl_dir_t *dd;
 | |
| 		for (dd = ds2; dd; dd = dd->dd_parent) {
 | |
| 			if (ds1 == dd)
 | |
| 				return (dd);
 | |
| 		}
 | |
| 	}
 | |
| 	return (NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If delta is applied to dd, how much of that delta would be applied to
 | |
|  * ancestor?  Syncing context only.
 | |
|  */
 | |
| static int64_t
 | |
| would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
 | |
| {
 | |
| 	if (dd == ancestor)
 | |
| 		return (delta);
 | |
| 
 | |
| 	mutex_enter(&dd->dd_lock);
 | |
| 	delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
 | |
| 	mutex_exit(&dd->dd_lock);
 | |
| 	return (would_change(dd->dd_parent, delta, ancestor));
 | |
| }
 | |
| 
 | |
| typedef struct dsl_dir_rename_arg {
 | |
| 	const char *ddra_oldname;
 | |
| 	const char *ddra_newname;
 | |
| 	cred_t *ddra_cred;
 | |
| 	proc_t *ddra_proc;
 | |
| } dsl_dir_rename_arg_t;
 | |
| 
 | |
| typedef struct dsl_valid_rename_arg {
 | |
| 	int char_delta;
 | |
| 	int nest_delta;
 | |
| } dsl_valid_rename_arg_t;
 | |
| 
 | |
| static int
 | |
| dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
 | |
| {
 | |
| 	(void) dp;
 | |
| 	dsl_valid_rename_arg_t *dvra = arg;
 | |
| 	char namebuf[ZFS_MAX_DATASET_NAME_LEN];
 | |
| 
 | |
| 	dsl_dataset_name(ds, namebuf);
 | |
| 
 | |
| 	ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
 | |
| 	    <, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 	int namelen = strlen(namebuf) + dvra->char_delta;
 | |
| 	int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
 | |
| 
 | |
| 	if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
 | |
| 		return (SET_ERROR(ENAMETOOLONG));
 | |
| 	if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
 | |
| 		return (SET_ERROR(ENAMETOOLONG));
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_dir_rename_arg_t *ddra = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	dsl_dir_t *dd, *newparent;
 | |
| 	dsl_valid_rename_arg_t dvra;
 | |
| 	dsl_dataset_t *parentds;
 | |
| 	objset_t *parentos;
 | |
| 	const char *mynewname;
 | |
| 	int error;
 | |
| 
 | |
| 	/* target dir should exist */
 | |
| 	error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	/* new parent should exist */
 | |
| 	error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
 | |
| 	    &newparent, &mynewname);
 | |
| 	if (error != 0) {
 | |
| 		dsl_dir_rele(dd, FTAG);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	/* can't rename to different pool */
 | |
| 	if (dd->dd_pool != newparent->dd_pool) {
 | |
| 		dsl_dir_rele(newparent, FTAG);
 | |
| 		dsl_dir_rele(dd, FTAG);
 | |
| 		return (SET_ERROR(EXDEV));
 | |
| 	}
 | |
| 
 | |
| 	/* new name should not already exist */
 | |
| 	if (mynewname == NULL) {
 | |
| 		dsl_dir_rele(newparent, FTAG);
 | |
| 		dsl_dir_rele(dd, FTAG);
 | |
| 		return (SET_ERROR(EEXIST));
 | |
| 	}
 | |
| 
 | |
| 	/* can't rename below anything but filesystems (eg. no ZVOLs) */
 | |
| 	error = dsl_dataset_hold_obj(newparent->dd_pool,
 | |
| 	    dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
 | |
| 	if (error != 0) {
 | |
| 		dsl_dir_rele(newparent, FTAG);
 | |
| 		dsl_dir_rele(dd, FTAG);
 | |
| 		return (error);
 | |
| 	}
 | |
| 	error = dmu_objset_from_ds(parentds, &parentos);
 | |
| 	if (error != 0) {
 | |
| 		dsl_dataset_rele(parentds, FTAG);
 | |
| 		dsl_dir_rele(newparent, FTAG);
 | |
| 		dsl_dir_rele(dd, FTAG);
 | |
| 		return (error);
 | |
| 	}
 | |
| 	if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
 | |
| 		dsl_dataset_rele(parentds, FTAG);
 | |
| 		dsl_dir_rele(newparent, FTAG);
 | |
| 		dsl_dir_rele(dd, FTAG);
 | |
| 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
 | |
| 	}
 | |
| 	dsl_dataset_rele(parentds, FTAG);
 | |
| 
 | |
| 	ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
 | |
| 	    <, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 	ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
 | |
| 	    <, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 	dvra.char_delta = strlen(ddra->ddra_newname)
 | |
| 	    - strlen(ddra->ddra_oldname);
 | |
| 	dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
 | |
| 	    - get_dataset_depth(ddra->ddra_oldname);
 | |
| 
 | |
| 	/* if the name length is growing, validate child name lengths */
 | |
| 	if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
 | |
| 		error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
 | |
| 		    &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
 | |
| 		if (error != 0) {
 | |
| 			dsl_dir_rele(newparent, FTAG);
 | |
| 			dsl_dir_rele(dd, FTAG);
 | |
| 			return (error);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (dmu_tx_is_syncing(tx)) {
 | |
| 		if (spa_feature_is_active(dp->dp_spa,
 | |
| 		    SPA_FEATURE_FS_SS_LIMIT)) {
 | |
| 			/*
 | |
| 			 * Although this is the check function and we don't
 | |
| 			 * normally make on-disk changes in check functions,
 | |
| 			 * we need to do that here.
 | |
| 			 *
 | |
| 			 * Ensure this portion of the tree's counts have been
 | |
| 			 * initialized in case the new parent has limits set.
 | |
| 			 */
 | |
| 			dsl_dir_init_fs_ss_count(dd, tx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (newparent != dd->dd_parent) {
 | |
| 		/* is there enough space? */
 | |
| 		uint64_t myspace =
 | |
| 		    MAX(dsl_dir_phys(dd)->dd_used_bytes,
 | |
| 		    dsl_dir_phys(dd)->dd_reserved);
 | |
| 		objset_t *os = dd->dd_pool->dp_meta_objset;
 | |
| 		uint64_t fs_cnt = 0;
 | |
| 		uint64_t ss_cnt = 0;
 | |
| 
 | |
| 		if (dsl_dir_is_zapified(dd)) {
 | |
| 			int err;
 | |
| 
 | |
| 			err = zap_lookup(os, dd->dd_object,
 | |
| 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
 | |
| 			    &fs_cnt);
 | |
| 			if (err != ENOENT && err != 0) {
 | |
| 				dsl_dir_rele(newparent, FTAG);
 | |
| 				dsl_dir_rele(dd, FTAG);
 | |
| 				return (err);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * have to add 1 for the filesystem itself that we're
 | |
| 			 * moving
 | |
| 			 */
 | |
| 			fs_cnt++;
 | |
| 
 | |
| 			err = zap_lookup(os, dd->dd_object,
 | |
| 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
 | |
| 			    &ss_cnt);
 | |
| 			if (err != ENOENT && err != 0) {
 | |
| 				dsl_dir_rele(newparent, FTAG);
 | |
| 				dsl_dir_rele(dd, FTAG);
 | |
| 				return (err);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* check for encryption errors */
 | |
| 		error = dsl_dir_rename_crypt_check(dd, newparent);
 | |
| 		if (error != 0) {
 | |
| 			dsl_dir_rele(newparent, FTAG);
 | |
| 			dsl_dir_rele(dd, FTAG);
 | |
| 			return (SET_ERROR(EACCES));
 | |
| 		}
 | |
| 
 | |
| 		/* no rename into our descendant */
 | |
| 		if (closest_common_ancestor(dd, newparent) == dd) {
 | |
| 			dsl_dir_rele(newparent, FTAG);
 | |
| 			dsl_dir_rele(dd, FTAG);
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 		}
 | |
| 
 | |
| 		error = dsl_dir_transfer_possible(dd->dd_parent,
 | |
| 		    newparent, fs_cnt, ss_cnt, myspace,
 | |
| 		    ddra->ddra_cred, ddra->ddra_proc);
 | |
| 		if (error != 0) {
 | |
| 			dsl_dir_rele(newparent, FTAG);
 | |
| 			dsl_dir_rele(dd, FTAG);
 | |
| 			return (error);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dsl_dir_rele(newparent, FTAG);
 | |
| 	dsl_dir_rele(dd, FTAG);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_dir_rename_arg_t *ddra = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	dsl_dir_t *dd, *newparent;
 | |
| 	const char *mynewname;
 | |
| 	objset_t *mos = dp->dp_meta_objset;
 | |
| 
 | |
| 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
 | |
| 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
 | |
| 	    &mynewname));
 | |
| 
 | |
| 	/* Log this before we change the name. */
 | |
| 	spa_history_log_internal_dd(dd, "rename", tx,
 | |
| 	    "-> %s", ddra->ddra_newname);
 | |
| 
 | |
| 	if (newparent != dd->dd_parent) {
 | |
| 		objset_t *os = dd->dd_pool->dp_meta_objset;
 | |
| 		uint64_t fs_cnt = 0;
 | |
| 		uint64_t ss_cnt = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * We already made sure the dd counts were initialized in the
 | |
| 		 * check function.
 | |
| 		 */
 | |
| 		if (spa_feature_is_active(dp->dp_spa,
 | |
| 		    SPA_FEATURE_FS_SS_LIMIT)) {
 | |
| 			VERIFY0(zap_lookup(os, dd->dd_object,
 | |
| 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
 | |
| 			    &fs_cnt));
 | |
| 			/* add 1 for the filesystem itself that we're moving */
 | |
| 			fs_cnt++;
 | |
| 
 | |
| 			VERIFY0(zap_lookup(os, dd->dd_object,
 | |
| 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
 | |
| 			    &ss_cnt));
 | |
| 		}
 | |
| 
 | |
| 		dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
 | |
| 		    DD_FIELD_FILESYSTEM_COUNT, tx);
 | |
| 		dsl_fs_ss_count_adjust(newparent, fs_cnt,
 | |
| 		    DD_FIELD_FILESYSTEM_COUNT, tx);
 | |
| 
 | |
| 		dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
 | |
| 		    DD_FIELD_SNAPSHOT_COUNT, tx);
 | |
| 		dsl_fs_ss_count_adjust(newparent, ss_cnt,
 | |
| 		    DD_FIELD_SNAPSHOT_COUNT, tx);
 | |
| 
 | |
| 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
 | |
| 		    -dsl_dir_phys(dd)->dd_used_bytes,
 | |
| 		    -dsl_dir_phys(dd)->dd_compressed_bytes,
 | |
| 		    -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
 | |
| 		dsl_dir_diduse_space(newparent, DD_USED_CHILD,
 | |
| 		    dsl_dir_phys(dd)->dd_used_bytes,
 | |
| 		    dsl_dir_phys(dd)->dd_compressed_bytes,
 | |
| 		    dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
 | |
| 
 | |
| 		if (dsl_dir_phys(dd)->dd_reserved >
 | |
| 		    dsl_dir_phys(dd)->dd_used_bytes) {
 | |
| 			uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
 | |
| 			    dsl_dir_phys(dd)->dd_used_bytes;
 | |
| 
 | |
| 			dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
 | |
| 			    -unused_rsrv, 0, 0, tx);
 | |
| 			dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
 | |
| 			    unused_rsrv, 0, 0, tx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
 | |
| 
 | |
| 	/* remove from old parent zapobj */
 | |
| 	VERIFY0(zap_remove(mos,
 | |
| 	    dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
 | |
| 	    dd->dd_myname, tx));
 | |
| 
 | |
| 	(void) strlcpy(dd->dd_myname, mynewname,
 | |
| 	    sizeof (dd->dd_myname));
 | |
| 	dsl_dir_rele(dd->dd_parent, dd);
 | |
| 	dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
 | |
| 	VERIFY0(dsl_dir_hold_obj(dp,
 | |
| 	    newparent->dd_object, NULL, dd, &dd->dd_parent));
 | |
| 
 | |
| 	/* add to new parent zapobj */
 | |
| 	VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
 | |
| 	    dd->dd_myname, 8, 1, &dd->dd_object, tx));
 | |
| 
 | |
| 	/* TODO: A rename callback to avoid these layering violations. */
 | |
| 	zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
 | |
| 	zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
 | |
| 	    ddra->ddra_newname, B_TRUE);
 | |
| 
 | |
| 	dsl_prop_notify_all(dd);
 | |
| 
 | |
| 	dsl_dir_rele(newparent, FTAG);
 | |
| 	dsl_dir_rele(dd, FTAG);
 | |
| }
 | |
| 
 | |
| int
 | |
| dsl_dir_rename(const char *oldname, const char *newname)
 | |
| {
 | |
| 	dsl_dir_rename_arg_t ddra;
 | |
| 
 | |
| 	ddra.ddra_oldname = oldname;
 | |
| 	ddra.ddra_newname = newname;
 | |
| 	ddra.ddra_cred = CRED();
 | |
| 	ddra.ddra_proc = curproc;
 | |
| 
 | |
| 	return (dsl_sync_task(oldname,
 | |
| 	    dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
 | |
| 	    3, ZFS_SPACE_CHECK_RESERVED));
 | |
| }
 | |
| 
 | |
| int
 | |
| dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
 | |
|     uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space,
 | |
|     cred_t *cr, proc_t *proc)
 | |
| {
 | |
| 	dsl_dir_t *ancestor;
 | |
| 	int64_t adelta;
 | |
| 	uint64_t avail;
 | |
| 	int err;
 | |
| 
 | |
| 	ancestor = closest_common_ancestor(sdd, tdd);
 | |
| 	adelta = would_change(sdd, -space, ancestor);
 | |
| 	avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
 | |
| 	if (avail < space)
 | |
| 		return (SET_ERROR(ENOSPC));
 | |
| 
 | |
| 	err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
 | |
| 	    ancestor, cr, proc);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 	err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
 | |
| 	    ancestor, cr, proc);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| inode_timespec_t
 | |
| dsl_dir_snap_cmtime(dsl_dir_t *dd)
 | |
| {
 | |
| 	inode_timespec_t t;
 | |
| 
 | |
| 	mutex_enter(&dd->dd_lock);
 | |
| 	t = dd->dd_snap_cmtime;
 | |
| 	mutex_exit(&dd->dd_lock);
 | |
| 
 | |
| 	return (t);
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
 | |
| {
 | |
| 	inode_timespec_t t;
 | |
| 
 | |
| 	gethrestime(&t);
 | |
| 	mutex_enter(&dd->dd_lock);
 | |
| 	dd->dd_snap_cmtime = t;
 | |
| 	mutex_exit(&dd->dd_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
 | |
| {
 | |
| 	objset_t *mos = dd->dd_pool->dp_meta_objset;
 | |
| 	dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| dsl_dir_is_zapified(dsl_dir_t *dd)
 | |
| {
 | |
| 	dmu_object_info_t doi;
 | |
| 
 | |
| 	dmu_object_info_from_db(dd->dd_dbuf, &doi);
 | |
| 	return (doi.doi_type == DMU_OTN_ZAP_METADATA);
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj)
 | |
| {
 | |
| 	objset_t *mos = dd->dd_pool->dp_meta_objset;
 | |
| 	ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa,
 | |
| 	    SPA_FEATURE_LIVELIST));
 | |
| 	dsl_deadlist_open(&dd->dd_livelist, mos, obj);
 | |
| 	bplist_create(&dd->dd_pending_allocs);
 | |
| 	bplist_create(&dd->dd_pending_frees);
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_dir_livelist_close(dsl_dir_t *dd)
 | |
| {
 | |
| 	dsl_deadlist_close(&dd->dd_livelist);
 | |
| 	bplist_destroy(&dd->dd_pending_allocs);
 | |
| 	bplist_destroy(&dd->dd_pending_frees);
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total)
 | |
| {
 | |
| 	uint64_t obj;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	spa_t *spa = dp->dp_spa;
 | |
| 	livelist_condense_entry_t to_condense = spa->spa_to_condense;
 | |
| 
 | |
| 	if (!dsl_deadlist_is_open(&dd->dd_livelist))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the livelist being removed is set to be condensed, stop the
 | |
| 	 * condense zthr and indicate the cancellation in the spa_to_condense
 | |
| 	 * struct in case the condense no-wait synctask has already started
 | |
| 	 */
 | |
| 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
 | |
| 	if (ll_condense_thread != NULL &&
 | |
| 	    (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) {
 | |
| 		/*
 | |
| 		 * We use zthr_wait_cycle_done instead of zthr_cancel
 | |
| 		 * because we don't want to destroy the zthr, just have
 | |
| 		 * it skip its current task.
 | |
| 		 */
 | |
| 		spa->spa_to_condense.cancelled = B_TRUE;
 | |
| 		zthr_wait_cycle_done(ll_condense_thread);
 | |
| 		/*
 | |
| 		 * If we've returned from zthr_wait_cycle_done without
 | |
| 		 * clearing the to_condense data structure it's either
 | |
| 		 * because the no-wait synctask has started (which is
 | |
| 		 * indicated by 'syncing' field of to_condense) and we
 | |
| 		 * can expect it to clear to_condense on its own.
 | |
| 		 * Otherwise, we returned before the zthr ran. The
 | |
| 		 * checkfunc will now fail as cancelled == B_TRUE so we
 | |
| 		 * can safely NULL out ds, allowing a different dir's
 | |
| 		 * livelist to be condensed.
 | |
| 		 *
 | |
| 		 * We can be sure that the to_condense struct will not
 | |
| 		 * be repopulated at this stage because both this
 | |
| 		 * function and dsl_livelist_try_condense execute in
 | |
| 		 * syncing context.
 | |
| 		 */
 | |
| 		if ((spa->spa_to_condense.ds != NULL) &&
 | |
| 		    !spa->spa_to_condense.syncing) {
 | |
| 			dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf,
 | |
| 			    spa);
 | |
| 			spa->spa_to_condense.ds = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dsl_dir_livelist_close(dd);
 | |
| 	VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object,
 | |
| 	    DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj));
 | |
| 	VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object,
 | |
| 	    DD_FIELD_LIVELIST, tx));
 | |
| 	if (total) {
 | |
| 		dsl_deadlist_free(dp->dp_meta_objset, obj, tx);
 | |
| 		spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds,
 | |
|     zfs_wait_activity_t activity, boolean_t *in_progress)
 | |
| {
 | |
| 	int error = 0;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&dd->dd_activity_lock));
 | |
| 
 | |
| 	switch (activity) {
 | |
| 	case ZFS_WAIT_DELETEQ: {
 | |
| #ifdef _KERNEL
 | |
| 		objset_t *os;
 | |
| 		error = dmu_objset_from_ds(ds, &os);
 | |
| 		if (error != 0)
 | |
| 			break;
 | |
| 
 | |
| 		mutex_enter(&os->os_user_ptr_lock);
 | |
| 		void *user = dmu_objset_get_user(os);
 | |
| 		mutex_exit(&os->os_user_ptr_lock);
 | |
| 		if (dmu_objset_type(os) != DMU_OST_ZFS ||
 | |
| 		    user == NULL || zfs_get_vfs_flag_unmounted(os)) {
 | |
| 			*in_progress = B_FALSE;
 | |
| 			return (0);
 | |
| 		}
 | |
| 
 | |
| 		uint64_t readonly = B_FALSE;
 | |
| 		error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly,
 | |
| 		    NULL);
 | |
| 
 | |
| 		if (error != 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) {
 | |
| 			*in_progress = B_FALSE;
 | |
| 			return (0);
 | |
| 		}
 | |
| 
 | |
| 		uint64_t count, unlinked_obj;
 | |
| 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
 | |
| 		    &unlinked_obj);
 | |
| 		if (error != 0) {
 | |
| 			dsl_dataset_rele(ds, FTAG);
 | |
| 			break;
 | |
| 		}
 | |
| 		error = zap_count(os, unlinked_obj, &count);
 | |
| 
 | |
| 		if (error == 0)
 | |
| 			*in_progress = (count != 0);
 | |
| 		break;
 | |
| #else
 | |
| 		/*
 | |
| 		 * The delete queue is ZPL specific, and libzpool doesn't have
 | |
| 		 * it. It doesn't make sense to wait for it.
 | |
| 		 */
 | |
| 		(void) ds;
 | |
| 		*in_progress = B_FALSE;
 | |
| 		break;
 | |
| #endif
 | |
| 	}
 | |
| 	default:
 | |
| 		panic("unrecognized value for activity %d", activity);
 | |
| 	}
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| int
 | |
| dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity,
 | |
|     boolean_t *waited)
 | |
| {
 | |
| 	int error = 0;
 | |
| 	boolean_t in_progress;
 | |
| 	dsl_pool_t *dp = dd->dd_pool;
 | |
| 	for (;;) {
 | |
| 		dsl_pool_config_enter(dp, FTAG);
 | |
| 		error = dsl_dir_activity_in_progress(dd, ds, activity,
 | |
| 		    &in_progress);
 | |
| 		dsl_pool_config_exit(dp, FTAG);
 | |
| 		if (error != 0 || !in_progress)
 | |
| 			break;
 | |
| 
 | |
| 		*waited = B_TRUE;
 | |
| 
 | |
| 		if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) ==
 | |
| 		    0 || dd->dd_activity_cancelled) {
 | |
| 			error = SET_ERROR(EINTR);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_dir_cancel_waiters(dsl_dir_t *dd)
 | |
| {
 | |
| 	mutex_enter(&dd->dd_activity_lock);
 | |
| 	dd->dd_activity_cancelled = B_TRUE;
 | |
| 	cv_broadcast(&dd->dd_activity_cv);
 | |
| 	while (dd->dd_activity_waiters > 0)
 | |
| 		cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock);
 | |
| 	mutex_exit(&dd->dd_activity_lock);
 | |
| }
 | |
| 
 | |
| #if defined(_KERNEL)
 | |
| EXPORT_SYMBOL(dsl_dir_set_quota);
 | |
| EXPORT_SYMBOL(dsl_dir_set_reservation);
 | |
| #endif
 |