mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 20:33:04 +00:00 
			
		
		
		
	 7ada752a93
			
		
	
	
		7ada752a93
		
	
	
	
	
		
			
			69 CSTYLED BEGINs remain, appx. 30 of which can be removed if cstyle(1) had a useful policy regarding CALL(ARG1, ARG2, ARG3); above 2 lines. As it stands, it spits out *both* sysctl_os.c: 385: continuation line should be indented by 4 spaces sysctl_os.c: 385: indent by spaces instead of tabs which is very cool Another >10 could be fixed by removing "ulong" &al. handling. I don't foresee anyone actually using it intentionally (does it even exist in modern headers? why did it in the first place?). Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Closes #12993
		
			
				
	
	
		
			1042 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1042 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or http://www.opensolaris.org/os/licensing.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
 | |
|  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/zfs_context.h>
 | |
| #include <sys/dsl_pool.h>
 | |
| #include <sys/dsl_dataset.h>
 | |
| 
 | |
| /*
 | |
|  * Deadlist concurrency:
 | |
|  *
 | |
|  * Deadlists can only be modified from the syncing thread.
 | |
|  *
 | |
|  * Except for dsl_deadlist_insert(), it can only be modified with the
 | |
|  * dp_config_rwlock held with RW_WRITER.
 | |
|  *
 | |
|  * The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
 | |
|  * be called concurrently, from open context, with the dl_config_rwlock held
 | |
|  * with RW_READER.
 | |
|  *
 | |
|  * Therefore, we only need to provide locking between dsl_deadlist_insert() and
 | |
|  * the accessors, protecting:
 | |
|  *     dl_phys->dl_used,comp,uncomp
 | |
|  *     and protecting the dl_tree from being loaded.
 | |
|  * The locking is provided by dl_lock.  Note that locking on the bpobj_t
 | |
|  * provides its own locking, and dl_oldfmt is immutable.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Livelist Overview
 | |
|  * ================
 | |
|  *
 | |
|  * Livelists use the same 'deadlist_t' struct as deadlists and are also used
 | |
|  * to track blkptrs over the lifetime of a dataset. Livelists however, belong
 | |
|  * to clones and track the blkptrs that are clone-specific (were born after
 | |
|  * the clone's creation). The exception is embedded block pointers which are
 | |
|  * not included in livelists because they do not need to be freed.
 | |
|  *
 | |
|  * When it comes time to delete the clone, the livelist provides a quick
 | |
|  * reference as to what needs to be freed. For this reason, livelists also track
 | |
|  * when clone-specific blkptrs are freed before deletion to prevent double
 | |
|  * frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the
 | |
|  * deletion algorithm iterates backwards over the livelist, matching
 | |
|  * FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists
 | |
|  * are also updated in the case when blkptrs are remapped: the old version
 | |
|  * of the blkptr is cancelled out with a FREE and the new version is tracked
 | |
|  * with an ALLOC.
 | |
|  *
 | |
|  * To bound the amount of memory required for deletion, livelists over a
 | |
|  * certain size are spread over multiple entries. Entries are grouped by
 | |
|  * birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will
 | |
|  * be in the same entry. This allows us to delete livelists incrementally
 | |
|  * over multiple syncs, one entry at a time.
 | |
|  *
 | |
|  * During the lifetime of the clone, livelists can get extremely large.
 | |
|  * Their size is managed by periodic condensing (preemptively cancelling out
 | |
|  * FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when
 | |
|  * the shared space between the clone and its origin is so small that it
 | |
|  * doesn't make sense to use livelists anymore.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The threshold sublist size at which we create a new sub-livelist for the
 | |
|  * next txg. However, since blkptrs of the same transaction group must be in
 | |
|  * the same sub-list, the actual sublist size may exceed this. When picking the
 | |
|  * size we had to balance the fact that larger sublists mean fewer sublists
 | |
|  * (decreasing the cost of insertion) against the consideration that sublists
 | |
|  * will be loaded into memory and shouldn't take up an inordinate amount of
 | |
|  * space. We settled on ~500000 entries, corresponding to roughly 128M.
 | |
|  */
 | |
| unsigned long zfs_livelist_max_entries = 500000;
 | |
| 
 | |
| /*
 | |
|  * We can approximate how much of a performance gain a livelist will give us
 | |
|  * based on the percentage of blocks shared between the clone and its origin.
 | |
|  * 0 percent shared means that the clone has completely diverged and that the
 | |
|  * old method is maximally effective: every read from the block tree will
 | |
|  * result in lots of frees. Livelists give us gains when they track blocks
 | |
|  * scattered across the tree, when one read in the old method might only
 | |
|  * result in a few frees. Once the clone has been overwritten enough,
 | |
|  * writes are no longer sparse and we'll no longer get much of a benefit from
 | |
|  * tracking them with a livelist. We chose a lower limit of 75 percent shared
 | |
|  * (25 percent overwritten). This means that 1/4 of all block pointers will be
 | |
|  * freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists
 | |
|  * to make deletion 4x faster. Once the amount of shared space drops below this
 | |
|  * threshold, the clone will revert to the old deletion method.
 | |
|  */
 | |
| int zfs_livelist_min_percent_shared = 75;
 | |
| 
 | |
| static int
 | |
| dsl_deadlist_compare(const void *arg1, const void *arg2)
 | |
| {
 | |
| 	const dsl_deadlist_entry_t *dle1 = arg1;
 | |
| 	const dsl_deadlist_entry_t *dle2 = arg2;
 | |
| 
 | |
| 	return (TREE_CMP(dle1->dle_mintxg, dle2->dle_mintxg));
 | |
| }
 | |
| 
 | |
| static int
 | |
| dsl_deadlist_cache_compare(const void *arg1, const void *arg2)
 | |
| {
 | |
| 	const dsl_deadlist_cache_entry_t *dlce1 = arg1;
 | |
| 	const dsl_deadlist_cache_entry_t *dlce2 = arg2;
 | |
| 
 | |
| 	return (TREE_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg));
 | |
| }
 | |
| 
 | |
| static void
 | |
| dsl_deadlist_load_tree(dsl_deadlist_t *dl)
 | |
| {
 | |
| 	zap_cursor_t zc;
 | |
| 	zap_attribute_t za;
 | |
| 	int error;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&dl->dl_lock));
 | |
| 
 | |
| 	ASSERT(!dl->dl_oldfmt);
 | |
| 	if (dl->dl_havecache) {
 | |
| 		/*
 | |
| 		 * After loading the tree, the caller may modify the tree,
 | |
| 		 * e.g. to add or remove nodes, or to make a node no longer
 | |
| 		 * refer to the empty_bpobj.  These changes would make the
 | |
| 		 * dl_cache incorrect.  Therefore we discard the cache here,
 | |
| 		 * so that it can't become incorrect.
 | |
| 		 */
 | |
| 		dsl_deadlist_cache_entry_t *dlce;
 | |
| 		void *cookie = NULL;
 | |
| 		while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
 | |
| 		    != NULL) {
 | |
| 			kmem_free(dlce, sizeof (*dlce));
 | |
| 		}
 | |
| 		avl_destroy(&dl->dl_cache);
 | |
| 		dl->dl_havecache = B_FALSE;
 | |
| 	}
 | |
| 	if (dl->dl_havetree)
 | |
| 		return;
 | |
| 
 | |
| 	avl_create(&dl->dl_tree, dsl_deadlist_compare,
 | |
| 	    sizeof (dsl_deadlist_entry_t),
 | |
| 	    offsetof(dsl_deadlist_entry_t, dle_node));
 | |
| 	for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
 | |
| 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
 | |
| 	    zap_cursor_advance(&zc)) {
 | |
| 		dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
 | |
| 		dle->dle_mintxg = zfs_strtonum(za.za_name, NULL);
 | |
| 
 | |
| 		/*
 | |
| 		 * Prefetch all the bpobj's so that we do that i/o
 | |
| 		 * in parallel.  Then open them all in a second pass.
 | |
| 		 */
 | |
| 		dle->dle_bpobj.bpo_object = za.za_first_integer;
 | |
| 		dmu_prefetch(dl->dl_os, dle->dle_bpobj.bpo_object,
 | |
| 		    0, 0, 0, ZIO_PRIORITY_SYNC_READ);
 | |
| 
 | |
| 		avl_add(&dl->dl_tree, dle);
 | |
| 	}
 | |
| 	VERIFY3U(error, ==, ENOENT);
 | |
| 	zap_cursor_fini(&zc);
 | |
| 
 | |
| 	for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree);
 | |
| 	    dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) {
 | |
| 		VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
 | |
| 		    dle->dle_bpobj.bpo_object));
 | |
| 	}
 | |
| 	dl->dl_havetree = B_TRUE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load only the non-empty bpobj's into the dl_cache.  The cache is an analog
 | |
|  * of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It
 | |
|  * is used only for gathering space statistics.  The dl_cache has two
 | |
|  * advantages over the dl_tree:
 | |
|  *
 | |
|  * 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's
 | |
|  * mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj
 | |
|  * many times and to inquire about its (zero) space stats many times.
 | |
|  *
 | |
|  * 2. The dl_cache uses less memory than the dl_tree.  We only need to load
 | |
|  * the dl_tree of snapshots when deleting a snapshot, after which we free the
 | |
|  * dl_tree with dsl_deadlist_discard_tree
 | |
|  */
 | |
| static void
 | |
| dsl_deadlist_load_cache(dsl_deadlist_t *dl)
 | |
| {
 | |
| 	zap_cursor_t zc;
 | |
| 	zap_attribute_t za;
 | |
| 	int error;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&dl->dl_lock));
 | |
| 
 | |
| 	ASSERT(!dl->dl_oldfmt);
 | |
| 	if (dl->dl_havecache)
 | |
| 		return;
 | |
| 
 | |
| 	uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj;
 | |
| 
 | |
| 	avl_create(&dl->dl_cache, dsl_deadlist_cache_compare,
 | |
| 	    sizeof (dsl_deadlist_cache_entry_t),
 | |
| 	    offsetof(dsl_deadlist_cache_entry_t, dlce_node));
 | |
| 	for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
 | |
| 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
 | |
| 	    zap_cursor_advance(&zc)) {
 | |
| 		if (za.za_first_integer == empty_bpobj)
 | |
| 			continue;
 | |
| 		dsl_deadlist_cache_entry_t *dlce =
 | |
| 		    kmem_zalloc(sizeof (*dlce), KM_SLEEP);
 | |
| 		dlce->dlce_mintxg = zfs_strtonum(za.za_name, NULL);
 | |
| 
 | |
| 		/*
 | |
| 		 * Prefetch all the bpobj's so that we do that i/o
 | |
| 		 * in parallel.  Then open them all in a second pass.
 | |
| 		 */
 | |
| 		dlce->dlce_bpobj = za.za_first_integer;
 | |
| 		dmu_prefetch(dl->dl_os, dlce->dlce_bpobj,
 | |
| 		    0, 0, 0, ZIO_PRIORITY_SYNC_READ);
 | |
| 		avl_add(&dl->dl_cache, dlce);
 | |
| 	}
 | |
| 	VERIFY3U(error, ==, ENOENT);
 | |
| 	zap_cursor_fini(&zc);
 | |
| 
 | |
| 	for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache);
 | |
| 	    dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) {
 | |
| 		bpobj_t bpo;
 | |
| 		VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj));
 | |
| 
 | |
| 		VERIFY0(bpobj_space(&bpo,
 | |
| 		    &dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp));
 | |
| 		bpobj_close(&bpo);
 | |
| 	}
 | |
| 	dl->dl_havecache = B_TRUE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Discard the tree to save memory.
 | |
|  */
 | |
| void
 | |
| dsl_deadlist_discard_tree(dsl_deadlist_t *dl)
 | |
| {
 | |
| 	mutex_enter(&dl->dl_lock);
 | |
| 
 | |
| 	if (!dl->dl_havetree) {
 | |
| 		mutex_exit(&dl->dl_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	dsl_deadlist_entry_t *dle;
 | |
| 	void *cookie = NULL;
 | |
| 	while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) {
 | |
| 		bpobj_close(&dle->dle_bpobj);
 | |
| 		kmem_free(dle, sizeof (*dle));
 | |
| 	}
 | |
| 	avl_destroy(&dl->dl_tree);
 | |
| 
 | |
| 	dl->dl_havetree = B_FALSE;
 | |
| 	mutex_exit(&dl->dl_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args)
 | |
| {
 | |
| 	dsl_deadlist_entry_t *dle;
 | |
| 
 | |
| 	ASSERT(dsl_deadlist_is_open(dl));
 | |
| 
 | |
| 	mutex_enter(&dl->dl_lock);
 | |
| 	dsl_deadlist_load_tree(dl);
 | |
| 	mutex_exit(&dl->dl_lock);
 | |
| 	for (dle = avl_first(&dl->dl_tree); dle != NULL;
 | |
| 	    dle = AVL_NEXT(&dl->dl_tree, dle)) {
 | |
| 		if (func(args, dle) != 0)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
 | |
| {
 | |
| 	dmu_object_info_t doi;
 | |
| 
 | |
| 	ASSERT(!dsl_deadlist_is_open(dl));
 | |
| 
 | |
| 	mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	dl->dl_os = os;
 | |
| 	dl->dl_object = object;
 | |
| 	VERIFY0(dmu_bonus_hold(os, object, dl, &dl->dl_dbuf));
 | |
| 	dmu_object_info_from_db(dl->dl_dbuf, &doi);
 | |
| 	if (doi.doi_type == DMU_OT_BPOBJ) {
 | |
| 		dmu_buf_rele(dl->dl_dbuf, dl);
 | |
| 		dl->dl_dbuf = NULL;
 | |
| 		dl->dl_oldfmt = B_TRUE;
 | |
| 		VERIFY0(bpobj_open(&dl->dl_bpobj, os, object));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	dl->dl_oldfmt = B_FALSE;
 | |
| 	dl->dl_phys = dl->dl_dbuf->db_data;
 | |
| 	dl->dl_havetree = B_FALSE;
 | |
| 	dl->dl_havecache = B_FALSE;
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| dsl_deadlist_is_open(dsl_deadlist_t *dl)
 | |
| {
 | |
| 	return (dl->dl_os != NULL);
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_deadlist_close(dsl_deadlist_t *dl)
 | |
| {
 | |
| 	ASSERT(dsl_deadlist_is_open(dl));
 | |
| 	mutex_destroy(&dl->dl_lock);
 | |
| 
 | |
| 	if (dl->dl_oldfmt) {
 | |
| 		dl->dl_oldfmt = B_FALSE;
 | |
| 		bpobj_close(&dl->dl_bpobj);
 | |
| 		dl->dl_os = NULL;
 | |
| 		dl->dl_object = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (dl->dl_havetree) {
 | |
| 		dsl_deadlist_entry_t *dle;
 | |
| 		void *cookie = NULL;
 | |
| 		while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie))
 | |
| 		    != NULL) {
 | |
| 			bpobj_close(&dle->dle_bpobj);
 | |
| 			kmem_free(dle, sizeof (*dle));
 | |
| 		}
 | |
| 		avl_destroy(&dl->dl_tree);
 | |
| 	}
 | |
| 	if (dl->dl_havecache) {
 | |
| 		dsl_deadlist_cache_entry_t *dlce;
 | |
| 		void *cookie = NULL;
 | |
| 		while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
 | |
| 		    != NULL) {
 | |
| 			kmem_free(dlce, sizeof (*dlce));
 | |
| 		}
 | |
| 		avl_destroy(&dl->dl_cache);
 | |
| 	}
 | |
| 	dmu_buf_rele(dl->dl_dbuf, dl);
 | |
| 	dl->dl_dbuf = NULL;
 | |
| 	dl->dl_phys = NULL;
 | |
| 	dl->dl_os = NULL;
 | |
| 	dl->dl_object = 0;
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx)
 | |
| {
 | |
| 	if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
 | |
| 		return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx));
 | |
| 	return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR,
 | |
| 	    sizeof (dsl_deadlist_phys_t), tx));
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
 | |
| {
 | |
| 	dmu_object_info_t doi;
 | |
| 	zap_cursor_t zc;
 | |
| 	zap_attribute_t za;
 | |
| 	int error;
 | |
| 
 | |
| 	VERIFY0(dmu_object_info(os, dlobj, &doi));
 | |
| 	if (doi.doi_type == DMU_OT_BPOBJ) {
 | |
| 		bpobj_free(os, dlobj, tx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (zap_cursor_init(&zc, os, dlobj);
 | |
| 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
 | |
| 	    zap_cursor_advance(&zc)) {
 | |
| 		uint64_t obj = za.za_first_integer;
 | |
| 		if (obj == dmu_objset_pool(os)->dp_empty_bpobj)
 | |
| 			bpobj_decr_empty(os, tx);
 | |
| 		else
 | |
| 			bpobj_free(os, obj, tx);
 | |
| 	}
 | |
| 	VERIFY3U(error, ==, ENOENT);
 | |
| 	zap_cursor_fini(&zc);
 | |
| 	VERIFY0(dmu_object_free(os, dlobj, tx));
 | |
| }
 | |
| 
 | |
| static void
 | |
| dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
 | |
|     const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&dl->dl_lock));
 | |
| 	if (dle->dle_bpobj.bpo_object ==
 | |
| 	    dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
 | |
| 		uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
 | |
| 		bpobj_close(&dle->dle_bpobj);
 | |
| 		bpobj_decr_empty(dl->dl_os, tx);
 | |
| 		VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
 | |
| 		VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
 | |
| 		    dle->dle_mintxg, obj, tx));
 | |
| 	}
 | |
| 	bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
 | |
|     uint64_t obj, dmu_tx_t *tx)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&dl->dl_lock));
 | |
| 	if (dle->dle_bpobj.bpo_object !=
 | |
| 	    dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
 | |
| 		bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
 | |
| 	} else {
 | |
| 		bpobj_close(&dle->dle_bpobj);
 | |
| 		bpobj_decr_empty(dl->dl_os, tx);
 | |
| 		VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
 | |
| 		VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
 | |
| 		    dle->dle_mintxg, obj, tx));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_deadlist_entry_t dle_tofind;
 | |
| 	dsl_deadlist_entry_t *dle;
 | |
| 	avl_index_t where;
 | |
| 
 | |
| 	if (dl->dl_oldfmt) {
 | |
| 		bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mutex_enter(&dl->dl_lock);
 | |
| 	dsl_deadlist_load_tree(dl);
 | |
| 
 | |
| 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
 | |
| 
 | |
| 	int sign = bp_freed ? -1 : +1;
 | |
| 	dl->dl_phys->dl_used +=
 | |
| 	    sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp);
 | |
| 	dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp);
 | |
| 	dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp);
 | |
| 
 | |
| 	dle_tofind.dle_mintxg = bp->blk_birth;
 | |
| 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
 | |
| 	if (dle == NULL)
 | |
| 		dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
 | |
| 	else
 | |
| 		dle = AVL_PREV(&dl->dl_tree, dle);
 | |
| 
 | |
| 	if (dle == NULL) {
 | |
| 		zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu",
 | |
| 		    bp, (longlong_t)bp->blk_birth);
 | |
| 		dle = avl_first(&dl->dl_tree);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT3P(dle, !=, NULL);
 | |
| 	dle_enqueue(dl, dle, bp, bp_freed, tx);
 | |
| 	mutex_exit(&dl->dl_lock);
 | |
| }
 | |
| 
 | |
| int
 | |
| dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_deadlist_t *dl = arg;
 | |
| 	dsl_deadlist_insert(dl, bp, B_FALSE, tx);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| int
 | |
| dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_deadlist_t *dl = arg;
 | |
| 	dsl_deadlist_insert(dl, bp, B_TRUE, tx);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert new key in deadlist, which must be > all current entries.
 | |
|  * mintxg is not inclusive.
 | |
|  */
 | |
| void
 | |
| dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
 | |
| {
 | |
| 	uint64_t obj;
 | |
| 	dsl_deadlist_entry_t *dle;
 | |
| 
 | |
| 	if (dl->dl_oldfmt)
 | |
| 		return;
 | |
| 
 | |
| 	dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
 | |
| 	dle->dle_mintxg = mintxg;
 | |
| 
 | |
| 	mutex_enter(&dl->dl_lock);
 | |
| 	dsl_deadlist_load_tree(dl);
 | |
| 
 | |
| 	obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
 | |
| 	VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
 | |
| 	avl_add(&dl->dl_tree, dle);
 | |
| 
 | |
| 	VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
 | |
| 	    mintxg, obj, tx));
 | |
| 	mutex_exit(&dl->dl_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove this key, merging its entries into the previous key.
 | |
|  */
 | |
| void
 | |
| dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_deadlist_entry_t dle_tofind;
 | |
| 	dsl_deadlist_entry_t *dle, *dle_prev;
 | |
| 
 | |
| 	if (dl->dl_oldfmt)
 | |
| 		return;
 | |
| 	mutex_enter(&dl->dl_lock);
 | |
| 	dsl_deadlist_load_tree(dl);
 | |
| 
 | |
| 	dle_tofind.dle_mintxg = mintxg;
 | |
| 	dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
 | |
| 	ASSERT3P(dle, !=, NULL);
 | |
| 	dle_prev = AVL_PREV(&dl->dl_tree, dle);
 | |
| 
 | |
| 	dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx);
 | |
| 
 | |
| 	avl_remove(&dl->dl_tree, dle);
 | |
| 	bpobj_close(&dle->dle_bpobj);
 | |
| 	kmem_free(dle, sizeof (*dle));
 | |
| 
 | |
| 	VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
 | |
| 	mutex_exit(&dl->dl_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a deadlist entry and all of its contents by removing the entry from
 | |
|  * the deadlist's avl tree, freeing the entry's bpobj and adjusting the
 | |
|  * deadlist's space accounting accordingly.
 | |
|  */
 | |
| void
 | |
| dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
 | |
| {
 | |
| 	uint64_t used, comp, uncomp;
 | |
| 	dsl_deadlist_entry_t dle_tofind;
 | |
| 	dsl_deadlist_entry_t *dle;
 | |
| 	objset_t *os = dl->dl_os;
 | |
| 
 | |
| 	if (dl->dl_oldfmt)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_enter(&dl->dl_lock);
 | |
| 	dsl_deadlist_load_tree(dl);
 | |
| 
 | |
| 	dle_tofind.dle_mintxg = mintxg;
 | |
| 	dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
 | |
| 	VERIFY3P(dle, !=, NULL);
 | |
| 
 | |
| 	avl_remove(&dl->dl_tree, dle);
 | |
| 	VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx));
 | |
| 	VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
 | |
| 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
 | |
| 	dl->dl_phys->dl_used -= used;
 | |
| 	dl->dl_phys->dl_comp -= comp;
 | |
| 	dl->dl_phys->dl_uncomp -= uncomp;
 | |
| 	if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) {
 | |
| 		bpobj_decr_empty(os, tx);
 | |
| 	} else {
 | |
| 		bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
 | |
| 	}
 | |
| 	bpobj_close(&dle->dle_bpobj);
 | |
| 	kmem_free(dle, sizeof (*dle));
 | |
| 	mutex_exit(&dl->dl_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear out the contents of a deadlist_entry by freeing its bpobj,
 | |
|  * replacing it with an empty bpobj and adjusting the deadlist's
 | |
|  * space accounting
 | |
|  */
 | |
| void
 | |
| dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	uint64_t new_obj, used, comp, uncomp;
 | |
| 	objset_t *os = dl->dl_os;
 | |
| 
 | |
| 	mutex_enter(&dl->dl_lock);
 | |
| 	VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx));
 | |
| 	VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
 | |
| 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
 | |
| 	dl->dl_phys->dl_used -= used;
 | |
| 	dl->dl_phys->dl_comp -= comp;
 | |
| 	dl->dl_phys->dl_uncomp -= uncomp;
 | |
| 	if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj)
 | |
| 		bpobj_decr_empty(os, tx);
 | |
| 	else
 | |
| 		bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
 | |
| 	bpobj_close(&dle->dle_bpobj);
 | |
| 	new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx);
 | |
| 	VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj));
 | |
| 	VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg,
 | |
| 	    new_obj, tx));
 | |
| 	ASSERT(bpobj_is_empty(&dle->dle_bpobj));
 | |
| 	mutex_exit(&dl->dl_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the first entry in deadlist's avl tree
 | |
|  */
 | |
| dsl_deadlist_entry_t *
 | |
| dsl_deadlist_first(dsl_deadlist_t *dl)
 | |
| {
 | |
| 	dsl_deadlist_entry_t *dle;
 | |
| 
 | |
| 	mutex_enter(&dl->dl_lock);
 | |
| 	dsl_deadlist_load_tree(dl);
 | |
| 	dle = avl_first(&dl->dl_tree);
 | |
| 	mutex_exit(&dl->dl_lock);
 | |
| 
 | |
| 	return (dle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the last entry in deadlist's avl tree
 | |
|  */
 | |
| dsl_deadlist_entry_t *
 | |
| dsl_deadlist_last(dsl_deadlist_t *dl)
 | |
| {
 | |
| 	dsl_deadlist_entry_t *dle;
 | |
| 
 | |
| 	mutex_enter(&dl->dl_lock);
 | |
| 	dsl_deadlist_load_tree(dl);
 | |
| 	dle = avl_last(&dl->dl_tree);
 | |
| 	mutex_exit(&dl->dl_lock);
 | |
| 
 | |
| 	return (dle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk ds's snapshots to regenerate generate ZAP & AVL.
 | |
|  */
 | |
| static void
 | |
| dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
 | |
|     uint64_t mrs_obj, dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_deadlist_t dl = { 0 };
 | |
| 	dsl_pool_t *dp = dmu_objset_pool(os);
 | |
| 
 | |
| 	dsl_deadlist_open(&dl, os, dlobj);
 | |
| 	if (dl.dl_oldfmt) {
 | |
| 		dsl_deadlist_close(&dl);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	while (mrs_obj != 0) {
 | |
| 		dsl_dataset_t *ds;
 | |
| 		VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
 | |
| 		dsl_deadlist_add_key(&dl,
 | |
| 		    dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
 | |
| 		mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
 | |
| 		dsl_dataset_rele(ds, FTAG);
 | |
| 	}
 | |
| 	dsl_deadlist_close(&dl);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
 | |
|     uint64_t mrs_obj, dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_deadlist_entry_t *dle;
 | |
| 	uint64_t newobj;
 | |
| 
 | |
| 	newobj = dsl_deadlist_alloc(dl->dl_os, tx);
 | |
| 
 | |
| 	if (dl->dl_oldfmt) {
 | |
| 		dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
 | |
| 		return (newobj);
 | |
| 	}
 | |
| 
 | |
| 	mutex_enter(&dl->dl_lock);
 | |
| 	dsl_deadlist_load_tree(dl);
 | |
| 
 | |
| 	for (dle = avl_first(&dl->dl_tree); dle;
 | |
| 	    dle = AVL_NEXT(&dl->dl_tree, dle)) {
 | |
| 		uint64_t obj;
 | |
| 
 | |
| 		if (dle->dle_mintxg >= maxtxg)
 | |
| 			break;
 | |
| 
 | |
| 		obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
 | |
| 		VERIFY0(zap_add_int_key(dl->dl_os, newobj,
 | |
| 		    dle->dle_mintxg, obj, tx));
 | |
| 	}
 | |
| 	mutex_exit(&dl->dl_lock);
 | |
| 	return (newobj);
 | |
| }
 | |
| 
 | |
| void
 | |
| dsl_deadlist_space(dsl_deadlist_t *dl,
 | |
|     uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
 | |
| {
 | |
| 	ASSERT(dsl_deadlist_is_open(dl));
 | |
| 	if (dl->dl_oldfmt) {
 | |
| 		VERIFY0(bpobj_space(&dl->dl_bpobj,
 | |
| 		    usedp, compp, uncompp));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mutex_enter(&dl->dl_lock);
 | |
| 	*usedp = dl->dl_phys->dl_used;
 | |
| 	*compp = dl->dl_phys->dl_comp;
 | |
| 	*uncompp = dl->dl_phys->dl_uncomp;
 | |
| 	mutex_exit(&dl->dl_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * return space used in the range (mintxg, maxtxg].
 | |
|  * Includes maxtxg, does not include mintxg.
 | |
|  * mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
 | |
|  * UINT64_MAX).
 | |
|  */
 | |
| void
 | |
| dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
 | |
|     uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
 | |
| {
 | |
| 	dsl_deadlist_cache_entry_t *dlce;
 | |
| 	dsl_deadlist_cache_entry_t dlce_tofind;
 | |
| 	avl_index_t where;
 | |
| 
 | |
| 	if (dl->dl_oldfmt) {
 | |
| 		VERIFY0(bpobj_space_range(&dl->dl_bpobj,
 | |
| 		    mintxg, maxtxg, usedp, compp, uncompp));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	*usedp = *compp = *uncompp = 0;
 | |
| 
 | |
| 	mutex_enter(&dl->dl_lock);
 | |
| 	dsl_deadlist_load_cache(dl);
 | |
| 	dlce_tofind.dlce_mintxg = mintxg;
 | |
| 	dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this mintxg doesn't exist, it may be an empty_bpobj which
 | |
| 	 * is omitted from the sparse tree.  Start at the next non-empty
 | |
| 	 * entry.
 | |
| 	 */
 | |
| 	if (dlce == NULL)
 | |
| 		dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER);
 | |
| 
 | |
| 	for (; dlce && dlce->dlce_mintxg < maxtxg;
 | |
| 	    dlce = AVL_NEXT(&dl->dl_tree, dlce)) {
 | |
| 		*usedp += dlce->dlce_bytes;
 | |
| 		*compp += dlce->dlce_comp;
 | |
| 		*uncompp += dlce->dlce_uncomp;
 | |
| 	}
 | |
| 
 | |
| 	mutex_exit(&dl->dl_lock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_deadlist_entry_t dle_tofind;
 | |
| 	dsl_deadlist_entry_t *dle;
 | |
| 	avl_index_t where;
 | |
| 	uint64_t used, comp, uncomp;
 | |
| 	bpobj_t bpo;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&dl->dl_lock));
 | |
| 
 | |
| 	VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
 | |
| 	VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
 | |
| 	bpobj_close(&bpo);
 | |
| 
 | |
| 	dsl_deadlist_load_tree(dl);
 | |
| 
 | |
| 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
 | |
| 	dl->dl_phys->dl_used += used;
 | |
| 	dl->dl_phys->dl_comp += comp;
 | |
| 	dl->dl_phys->dl_uncomp += uncomp;
 | |
| 
 | |
| 	dle_tofind.dle_mintxg = birth;
 | |
| 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
 | |
| 	if (dle == NULL)
 | |
| 		dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
 | |
| 	dle_enqueue_subobj(dl, dle, obj, tx);
 | |
| }
 | |
| 
 | |
| static int
 | |
| dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_deadlist_t *dl = arg;
 | |
| 	dsl_deadlist_insert(dl, bp, bp_freed, tx);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Merge the deadlist pointed to by 'obj' into dl.  obj will be left as
 | |
|  * an empty deadlist.
 | |
|  */
 | |
| void
 | |
| dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
 | |
| {
 | |
| 	zap_cursor_t zc;
 | |
| 	zap_attribute_t za;
 | |
| 	dmu_buf_t *bonus;
 | |
| 	dsl_deadlist_phys_t *dlp;
 | |
| 	dmu_object_info_t doi;
 | |
| 	int error;
 | |
| 
 | |
| 	VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
 | |
| 	if (doi.doi_type == DMU_OT_BPOBJ) {
 | |
| 		bpobj_t bpo;
 | |
| 		VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
 | |
| 		VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx));
 | |
| 		bpobj_close(&bpo);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mutex_enter(&dl->dl_lock);
 | |
| 	for (zap_cursor_init(&zc, dl->dl_os, obj);
 | |
| 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
 | |
| 	    zap_cursor_advance(&zc)) {
 | |
| 		uint64_t mintxg = zfs_strtonum(za.za_name, NULL);
 | |
| 		dsl_deadlist_insert_bpobj(dl, za.za_first_integer, mintxg, tx);
 | |
| 		VERIFY0(zap_remove_int(dl->dl_os, obj, mintxg, tx));
 | |
| 	}
 | |
| 	VERIFY3U(error, ==, ENOENT);
 | |
| 	zap_cursor_fini(&zc);
 | |
| 
 | |
| 	VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
 | |
| 	dlp = bonus->db_data;
 | |
| 	dmu_buf_will_dirty(bonus, tx);
 | |
| 	bzero(dlp, sizeof (*dlp));
 | |
| 	dmu_buf_rele(bonus, FTAG);
 | |
| 	mutex_exit(&dl->dl_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove entries on dl that are born > mintxg, and put them on the bpobj.
 | |
|  */
 | |
| void
 | |
| dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	dsl_deadlist_entry_t dle_tofind;
 | |
| 	dsl_deadlist_entry_t *dle;
 | |
| 	avl_index_t where;
 | |
| 
 | |
| 	ASSERT(!dl->dl_oldfmt);
 | |
| 
 | |
| 	mutex_enter(&dl->dl_lock);
 | |
| 	dmu_buf_will_dirty(dl->dl_dbuf, tx);
 | |
| 	dsl_deadlist_load_tree(dl);
 | |
| 
 | |
| 	dle_tofind.dle_mintxg = mintxg;
 | |
| 	dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
 | |
| 	if (dle == NULL)
 | |
| 		dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
 | |
| 	while (dle) {
 | |
| 		uint64_t used, comp, uncomp;
 | |
| 		dsl_deadlist_entry_t *dle_next;
 | |
| 
 | |
| 		bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);
 | |
| 
 | |
| 		VERIFY0(bpobj_space(&dle->dle_bpobj,
 | |
| 		    &used, &comp, &uncomp));
 | |
| 		ASSERT3U(dl->dl_phys->dl_used, >=, used);
 | |
| 		ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
 | |
| 		ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
 | |
| 		dl->dl_phys->dl_used -= used;
 | |
| 		dl->dl_phys->dl_comp -= comp;
 | |
| 		dl->dl_phys->dl_uncomp -= uncomp;
 | |
| 
 | |
| 		VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
 | |
| 		    dle->dle_mintxg, tx));
 | |
| 
 | |
| 		dle_next = AVL_NEXT(&dl->dl_tree, dle);
 | |
| 		avl_remove(&dl->dl_tree, dle);
 | |
| 		bpobj_close(&dle->dle_bpobj);
 | |
| 		kmem_free(dle, sizeof (*dle));
 | |
| 		dle = dle_next;
 | |
| 	}
 | |
| 	mutex_exit(&dl->dl_lock);
 | |
| }
 | |
| 
 | |
| typedef struct livelist_entry {
 | |
| 	blkptr_t le_bp;
 | |
| 	uint32_t le_refcnt;
 | |
| 	avl_node_t le_node;
 | |
| } livelist_entry_t;
 | |
| 
 | |
| static int
 | |
| livelist_compare(const void *larg, const void *rarg)
 | |
| {
 | |
| 	const blkptr_t *l = &((livelist_entry_t *)larg)->le_bp;
 | |
| 	const blkptr_t *r = &((livelist_entry_t *)rarg)->le_bp;
 | |
| 
 | |
| 	/* Sort them according to dva[0] */
 | |
| 	uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
 | |
| 	uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
 | |
| 
 | |
| 	if (l_dva0_vdev != r_dva0_vdev)
 | |
| 		return (TREE_CMP(l_dva0_vdev, r_dva0_vdev));
 | |
| 
 | |
| 	/* if vdevs are equal, sort by offsets. */
 | |
| 	uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
 | |
| 	uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
 | |
| 	if (l_dva0_offset == r_dva0_offset)
 | |
| 		ASSERT3U(l->blk_birth, ==, r->blk_birth);
 | |
| 	return (TREE_CMP(l_dva0_offset, r_dva0_offset));
 | |
| }
 | |
| 
 | |
| struct livelist_iter_arg {
 | |
| 	avl_tree_t *avl;
 | |
| 	bplist_t *to_free;
 | |
| 	zthr_t *t;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Expects an AVL tree which is incrementally filled will FREE blkptrs
 | |
|  * and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a
 | |
|  * corresponding FREE are stored in the supplied bplist.
 | |
|  *
 | |
|  * Note that multiple FREE and ALLOC entries for the same blkptr may
 | |
|  * be encountered when dedup is involved. For this reason we keep a
 | |
|  * refcount for all the FREE entries of each blkptr and ensure that
 | |
|  * each of those FREE entries has a corresponding ALLOC preceding it.
 | |
|  */
 | |
| static int
 | |
| dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	struct livelist_iter_arg *lia = arg;
 | |
| 	avl_tree_t *avl = lia->avl;
 | |
| 	bplist_t *to_free = lia->to_free;
 | |
| 	zthr_t *t = lia->t;
 | |
| 	ASSERT(tx == NULL);
 | |
| 
 | |
| 	if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t)))
 | |
| 		return (SET_ERROR(EINTR));
 | |
| 
 | |
| 	livelist_entry_t node;
 | |
| 	node.le_bp = *bp;
 | |
| 	livelist_entry_t *found = avl_find(avl, &node, NULL);
 | |
| 	if (bp_freed) {
 | |
| 		if (found == NULL) {
 | |
| 			/* first free entry for this blkptr */
 | |
| 			livelist_entry_t *e =
 | |
| 			    kmem_alloc(sizeof (livelist_entry_t), KM_SLEEP);
 | |
| 			e->le_bp = *bp;
 | |
| 			e->le_refcnt = 1;
 | |
| 			avl_add(avl, e);
 | |
| 		} else {
 | |
| 			/* dedup block free */
 | |
| 			ASSERT(BP_GET_DEDUP(bp));
 | |
| 			ASSERT3U(BP_GET_CHECKSUM(bp), ==,
 | |
| 			    BP_GET_CHECKSUM(&found->le_bp));
 | |
| 			ASSERT3U(found->le_refcnt + 1, >, found->le_refcnt);
 | |
| 			found->le_refcnt++;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (found == NULL) {
 | |
| 			/* block is currently marked as allocated */
 | |
| 			bplist_append(to_free, bp);
 | |
| 		} else {
 | |
| 			/* alloc matches a free entry */
 | |
| 			ASSERT3U(found->le_refcnt, !=, 0);
 | |
| 			found->le_refcnt--;
 | |
| 			if (found->le_refcnt == 0) {
 | |
| 				/* all tracked free pairs have been matched */
 | |
| 				avl_remove(avl, found);
 | |
| 				kmem_free(found, sizeof (livelist_entry_t));
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * This is definitely a deduped blkptr so
 | |
| 				 * let's validate it.
 | |
| 				 */
 | |
| 				ASSERT(BP_GET_DEDUP(bp));
 | |
| 				ASSERT3U(BP_GET_CHECKSUM(bp), ==,
 | |
| 				    BP_GET_CHECKSUM(&found->le_bp));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs
 | |
|  * which have an ALLOC entry but no matching FREE
 | |
|  */
 | |
| int
 | |
| dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t,
 | |
|     uint64_t *size)
 | |
| {
 | |
| 	avl_tree_t avl;
 | |
| 	avl_create(&avl, livelist_compare, sizeof (livelist_entry_t),
 | |
| 	    offsetof(livelist_entry_t, le_node));
 | |
| 
 | |
| 	/* process the sublist */
 | |
| 	struct livelist_iter_arg arg = {
 | |
| 	    .avl = &avl,
 | |
| 	    .to_free = to_free,
 | |
| 	    .t = t
 | |
| 	};
 | |
| 	int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size);
 | |
| 
 | |
| 	VERIFY0(avl_numnodes(&avl));
 | |
| 	avl_destroy(&avl);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, max_entries, ULONG, ZMOD_RW,
 | |
| 	"Size to start the next sub-livelist in a livelist");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, min_percent_shared, INT, ZMOD_RW,
 | |
| 	"Threshold at which livelist is disabled");
 |