mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 18:31:31 +00:00 
			
		
		
		
	 14e4e3cb9f
			
		
	
	
		14e4e3cb9f
		
	
	
	
	
		
			
			Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Closes #12844
		
			
				
	
	
		
			2591 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2591 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or http://www.opensolaris.org/os/licensing.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
 | |
|  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <sys/zfs_context.h>
 | |
| #include <sys/dbuf.h>
 | |
| #include <sys/dnode.h>
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/dmu_impl.h>
 | |
| #include <sys/dmu_tx.h>
 | |
| #include <sys/dmu_objset.h>
 | |
| #include <sys/dsl_dir.h>
 | |
| #include <sys/dsl_dataset.h>
 | |
| #include <sys/spa.h>
 | |
| #include <sys/zio.h>
 | |
| #include <sys/dmu_zfetch.h>
 | |
| #include <sys/range_tree.h>
 | |
| #include <sys/trace_zfs.h>
 | |
| #include <sys/zfs_project.h>
 | |
| 
 | |
| dnode_stats_t dnode_stats = {
 | |
| 	{ "dnode_hold_dbuf_hold",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_hold_dbuf_read",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_hold_alloc_hits",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_hold_alloc_misses",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_hold_alloc_interior",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_hold_alloc_lock_retry",	KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_hold_alloc_lock_misses",	KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_hold_alloc_type_none",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_hold_free_hits",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_hold_free_misses",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_hold_free_lock_misses",	KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_hold_free_lock_retry",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_hold_free_overflow",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_hold_free_refcount",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_free_interior_lock_retry",	KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_allocate",			KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_reallocate",			KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_buf_evict",			KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_alloc_next_chunk",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_alloc_race",			KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_alloc_next_block",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_move_invalid",			KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_move_recheck1",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_move_recheck2",		KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_move_special",			KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_move_handle",			KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_move_rwlock",			KSTAT_DATA_UINT64 },
 | |
| 	{ "dnode_move_active",			KSTAT_DATA_UINT64 },
 | |
| };
 | |
| 
 | |
| static kstat_t *dnode_ksp;
 | |
| static kmem_cache_t *dnode_cache;
 | |
| 
 | |
| static dnode_phys_t dnode_phys_zero __maybe_unused;
 | |
| 
 | |
| int zfs_default_bs = SPA_MINBLOCKSHIFT;
 | |
| int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
 | |
| 
 | |
| #ifdef	_KERNEL
 | |
| static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
 | |
| #endif /* _KERNEL */
 | |
| 
 | |
| static int
 | |
| dbuf_compare(const void *x1, const void *x2)
 | |
| {
 | |
| 	const dmu_buf_impl_t *d1 = x1;
 | |
| 	const dmu_buf_impl_t *d2 = x2;
 | |
| 
 | |
| 	int cmp = TREE_CMP(d1->db_level, d2->db_level);
 | |
| 	if (likely(cmp))
 | |
| 		return (cmp);
 | |
| 
 | |
| 	cmp = TREE_CMP(d1->db_blkid, d2->db_blkid);
 | |
| 	if (likely(cmp))
 | |
| 		return (cmp);
 | |
| 
 | |
| 	if (d1->db_state == DB_SEARCH) {
 | |
| 		ASSERT3S(d2->db_state, !=, DB_SEARCH);
 | |
| 		return (-1);
 | |
| 	} else if (d2->db_state == DB_SEARCH) {
 | |
| 		ASSERT3S(d1->db_state, !=, DB_SEARCH);
 | |
| 		return (1);
 | |
| 	}
 | |
| 
 | |
| 	return (TREE_PCMP(d1, d2));
 | |
| }
 | |
| 
 | |
| static int
 | |
| dnode_cons(void *arg, void *unused, int kmflag)
 | |
| {
 | |
| 	(void) unused, (void) kmflag;
 | |
| 	dnode_t *dn = arg;
 | |
| 
 | |
| 	rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL);
 | |
| 	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
 | |
| 	cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Every dbuf has a reference, and dropping a tracked reference is
 | |
| 	 * O(number of references), so don't track dn_holds.
 | |
| 	 */
 | |
| 	zfs_refcount_create_untracked(&dn->dn_holds);
 | |
| 	zfs_refcount_create(&dn->dn_tx_holds);
 | |
| 	list_link_init(&dn->dn_link);
 | |
| 
 | |
| 	bzero(&dn->dn_next_type[0], sizeof (dn->dn_next_type));
 | |
| 	bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
 | |
| 	bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
 | |
| 	bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
 | |
| 	bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
 | |
| 	bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
 | |
| 	bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
 | |
| 	bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
 | |
| 	bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid));
 | |
| 
 | |
| 	for (int i = 0; i < TXG_SIZE; i++) {
 | |
| 		multilist_link_init(&dn->dn_dirty_link[i]);
 | |
| 		dn->dn_free_ranges[i] = NULL;
 | |
| 		list_create(&dn->dn_dirty_records[i],
 | |
| 		    sizeof (dbuf_dirty_record_t),
 | |
| 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
 | |
| 	}
 | |
| 
 | |
| 	dn->dn_allocated_txg = 0;
 | |
| 	dn->dn_free_txg = 0;
 | |
| 	dn->dn_assigned_txg = 0;
 | |
| 	dn->dn_dirty_txg = 0;
 | |
| 	dn->dn_dirtyctx = 0;
 | |
| 	dn->dn_dirtyctx_firstset = NULL;
 | |
| 	dn->dn_bonus = NULL;
 | |
| 	dn->dn_have_spill = B_FALSE;
 | |
| 	dn->dn_zio = NULL;
 | |
| 	dn->dn_oldused = 0;
 | |
| 	dn->dn_oldflags = 0;
 | |
| 	dn->dn_olduid = 0;
 | |
| 	dn->dn_oldgid = 0;
 | |
| 	dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
 | |
| 	dn->dn_newuid = 0;
 | |
| 	dn->dn_newgid = 0;
 | |
| 	dn->dn_newprojid = ZFS_DEFAULT_PROJID;
 | |
| 	dn->dn_id_flags = 0;
 | |
| 
 | |
| 	dn->dn_dbufs_count = 0;
 | |
| 	avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
 | |
| 	    offsetof(dmu_buf_impl_t, db_link));
 | |
| 
 | |
| 	dn->dn_moved = 0;
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dnode_dest(void *arg, void *unused)
 | |
| {
 | |
| 	(void) unused;
 | |
| 	dnode_t *dn = arg;
 | |
| 
 | |
| 	rw_destroy(&dn->dn_struct_rwlock);
 | |
| 	mutex_destroy(&dn->dn_mtx);
 | |
| 	mutex_destroy(&dn->dn_dbufs_mtx);
 | |
| 	cv_destroy(&dn->dn_notxholds);
 | |
| 	cv_destroy(&dn->dn_nodnholds);
 | |
| 	zfs_refcount_destroy(&dn->dn_holds);
 | |
| 	zfs_refcount_destroy(&dn->dn_tx_holds);
 | |
| 	ASSERT(!list_link_active(&dn->dn_link));
 | |
| 
 | |
| 	for (int i = 0; i < TXG_SIZE; i++) {
 | |
| 		ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
 | |
| 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
 | |
| 		list_destroy(&dn->dn_dirty_records[i]);
 | |
| 		ASSERT0(dn->dn_next_nblkptr[i]);
 | |
| 		ASSERT0(dn->dn_next_nlevels[i]);
 | |
| 		ASSERT0(dn->dn_next_indblkshift[i]);
 | |
| 		ASSERT0(dn->dn_next_bonustype[i]);
 | |
| 		ASSERT0(dn->dn_rm_spillblk[i]);
 | |
| 		ASSERT0(dn->dn_next_bonuslen[i]);
 | |
| 		ASSERT0(dn->dn_next_blksz[i]);
 | |
| 		ASSERT0(dn->dn_next_maxblkid[i]);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT0(dn->dn_allocated_txg);
 | |
| 	ASSERT0(dn->dn_free_txg);
 | |
| 	ASSERT0(dn->dn_assigned_txg);
 | |
| 	ASSERT0(dn->dn_dirty_txg);
 | |
| 	ASSERT0(dn->dn_dirtyctx);
 | |
| 	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
 | |
| 	ASSERT3P(dn->dn_bonus, ==, NULL);
 | |
| 	ASSERT(!dn->dn_have_spill);
 | |
| 	ASSERT3P(dn->dn_zio, ==, NULL);
 | |
| 	ASSERT0(dn->dn_oldused);
 | |
| 	ASSERT0(dn->dn_oldflags);
 | |
| 	ASSERT0(dn->dn_olduid);
 | |
| 	ASSERT0(dn->dn_oldgid);
 | |
| 	ASSERT0(dn->dn_oldprojid);
 | |
| 	ASSERT0(dn->dn_newuid);
 | |
| 	ASSERT0(dn->dn_newgid);
 | |
| 	ASSERT0(dn->dn_newprojid);
 | |
| 	ASSERT0(dn->dn_id_flags);
 | |
| 
 | |
| 	ASSERT0(dn->dn_dbufs_count);
 | |
| 	avl_destroy(&dn->dn_dbufs);
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_init(void)
 | |
| {
 | |
| 	ASSERT(dnode_cache == NULL);
 | |
| 	dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
 | |
| 	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
 | |
| 	kmem_cache_set_move(dnode_cache, dnode_move);
 | |
| 
 | |
| 	dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
 | |
| 	    KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
 | |
| 	    KSTAT_FLAG_VIRTUAL);
 | |
| 	if (dnode_ksp != NULL) {
 | |
| 		dnode_ksp->ks_data = &dnode_stats;
 | |
| 		kstat_install(dnode_ksp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_fini(void)
 | |
| {
 | |
| 	if (dnode_ksp != NULL) {
 | |
| 		kstat_delete(dnode_ksp);
 | |
| 		dnode_ksp = NULL;
 | |
| 	}
 | |
| 
 | |
| 	kmem_cache_destroy(dnode_cache);
 | |
| 	dnode_cache = NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef ZFS_DEBUG
 | |
| void
 | |
| dnode_verify(dnode_t *dn)
 | |
| {
 | |
| 	int drop_struct_lock = FALSE;
 | |
| 
 | |
| 	ASSERT(dn->dn_phys);
 | |
| 	ASSERT(dn->dn_objset);
 | |
| 	ASSERT(dn->dn_handle->dnh_dnode == dn);
 | |
| 
 | |
| 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
 | |
| 
 | |
| 	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
 | |
| 		return;
 | |
| 
 | |
| 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
 | |
| 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | |
| 		drop_struct_lock = TRUE;
 | |
| 	}
 | |
| 	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
 | |
| 		int i;
 | |
| 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
 | |
| 		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
 | |
| 		if (dn->dn_datablkshift) {
 | |
| 			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
 | |
| 			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
 | |
| 			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
 | |
| 		}
 | |
| 		ASSERT3U(dn->dn_nlevels, <=, 30);
 | |
| 		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
 | |
| 		ASSERT3U(dn->dn_nblkptr, >=, 1);
 | |
| 		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
 | |
| 		ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
 | |
| 		ASSERT3U(dn->dn_datablksz, ==,
 | |
| 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
 | |
| 		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
 | |
| 		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
 | |
| 		    dn->dn_bonuslen, <=, max_bonuslen);
 | |
| 		for (i = 0; i < TXG_SIZE; i++) {
 | |
| 			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
 | |
| 		}
 | |
| 	}
 | |
| 	if (dn->dn_phys->dn_type != DMU_OT_NONE)
 | |
| 		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
 | |
| 	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
 | |
| 	if (dn->dn_dbuf != NULL) {
 | |
| 		ASSERT3P(dn->dn_phys, ==,
 | |
| 		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
 | |
| 		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
 | |
| 	}
 | |
| 	if (drop_struct_lock)
 | |
| 		rw_exit(&dn->dn_struct_rwlock);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void
 | |
| dnode_byteswap(dnode_phys_t *dnp)
 | |
| {
 | |
| 	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
 | |
| 	int i;
 | |
| 
 | |
| 	if (dnp->dn_type == DMU_OT_NONE) {
 | |
| 		bzero(dnp, sizeof (dnode_phys_t));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
 | |
| 	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
 | |
| 	dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
 | |
| 	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
 | |
| 	dnp->dn_used = BSWAP_64(dnp->dn_used);
 | |
| 
 | |
| 	/*
 | |
| 	 * dn_nblkptr is only one byte, so it's OK to read it in either
 | |
| 	 * byte order.  We can't read dn_bouslen.
 | |
| 	 */
 | |
| 	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
 | |
| 	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
 | |
| 	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
 | |
| 		buf64[i] = BSWAP_64(buf64[i]);
 | |
| 
 | |
| 	/*
 | |
| 	 * OK to check dn_bonuslen for zero, because it won't matter if
 | |
| 	 * we have the wrong byte order.  This is necessary because the
 | |
| 	 * dnode dnode is smaller than a regular dnode.
 | |
| 	 */
 | |
| 	if (dnp->dn_bonuslen != 0) {
 | |
| 		/*
 | |
| 		 * Note that the bonus length calculated here may be
 | |
| 		 * longer than the actual bonus buffer.  This is because
 | |
| 		 * we always put the bonus buffer after the last block
 | |
| 		 * pointer (instead of packing it against the end of the
 | |
| 		 * dnode buffer).
 | |
| 		 */
 | |
| 		int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
 | |
| 		int slots = dnp->dn_extra_slots + 1;
 | |
| 		size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off;
 | |
| 		dmu_object_byteswap_t byteswap;
 | |
| 		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
 | |
| 		byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
 | |
| 		dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
 | |
| 	}
 | |
| 
 | |
| 	/* Swap SPILL block if we have one */
 | |
| 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
 | |
| 		byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_buf_byteswap(void *vbuf, size_t size)
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
 | |
| 	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
 | |
| 
 | |
| 	while (i < size) {
 | |
| 		dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
 | |
| 		dnode_byteswap(dnp);
 | |
| 
 | |
| 		i += DNODE_MIN_SIZE;
 | |
| 		if (dnp->dn_type != DMU_OT_NONE)
 | |
| 			i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
 | |
| {
 | |
| 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
 | |
| 
 | |
| 	dnode_setdirty(dn, tx);
 | |
| 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 | |
| 	ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
 | |
| 	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
 | |
| 
 | |
| 	if (newsize < dn->dn_bonuslen) {
 | |
| 		/* clear any data after the end of the new size */
 | |
| 		size_t diff = dn->dn_bonuslen - newsize;
 | |
| 		char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize;
 | |
| 		bzero(data_end, diff);
 | |
| 	}
 | |
| 
 | |
| 	dn->dn_bonuslen = newsize;
 | |
| 	if (newsize == 0)
 | |
| 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
 | |
| 	else
 | |
| 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
 | |
| 	rw_exit(&dn->dn_struct_rwlock);
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
 | |
| {
 | |
| 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
 | |
| 	dnode_setdirty(dn, tx);
 | |
| 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 | |
| 	dn->dn_bonustype = newtype;
 | |
| 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
 | |
| 	rw_exit(&dn->dn_struct_rwlock);
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
 | |
| {
 | |
| 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
 | |
| 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
 | |
| 	dnode_setdirty(dn, tx);
 | |
| 	dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK;
 | |
| 	dn->dn_have_spill = B_FALSE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| dnode_setdblksz(dnode_t *dn, int size)
 | |
| {
 | |
| 	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
 | |
| 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
 | |
| 	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
 | |
| 	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
 | |
| 	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
 | |
| 	dn->dn_datablksz = size;
 | |
| 	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
 | |
| 	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
 | |
| }
 | |
| 
 | |
| static dnode_t *
 | |
| dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
 | |
|     uint64_t object, dnode_handle_t *dnh)
 | |
| {
 | |
| 	dnode_t *dn;
 | |
| 
 | |
| 	dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
 | |
| 	dn->dn_moved = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Defer setting dn_objset until the dnode is ready to be a candidate
 | |
| 	 * for the dnode_move() callback.
 | |
| 	 */
 | |
| 	dn->dn_object = object;
 | |
| 	dn->dn_dbuf = db;
 | |
| 	dn->dn_handle = dnh;
 | |
| 	dn->dn_phys = dnp;
 | |
| 
 | |
| 	if (dnp->dn_datablkszsec) {
 | |
| 		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
 | |
| 	} else {
 | |
| 		dn->dn_datablksz = 0;
 | |
| 		dn->dn_datablkszsec = 0;
 | |
| 		dn->dn_datablkshift = 0;
 | |
| 	}
 | |
| 	dn->dn_indblkshift = dnp->dn_indblkshift;
 | |
| 	dn->dn_nlevels = dnp->dn_nlevels;
 | |
| 	dn->dn_type = dnp->dn_type;
 | |
| 	dn->dn_nblkptr = dnp->dn_nblkptr;
 | |
| 	dn->dn_checksum = dnp->dn_checksum;
 | |
| 	dn->dn_compress = dnp->dn_compress;
 | |
| 	dn->dn_bonustype = dnp->dn_bonustype;
 | |
| 	dn->dn_bonuslen = dnp->dn_bonuslen;
 | |
| 	dn->dn_num_slots = dnp->dn_extra_slots + 1;
 | |
| 	dn->dn_maxblkid = dnp->dn_maxblkid;
 | |
| 	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
 | |
| 	dn->dn_id_flags = 0;
 | |
| 
 | |
| 	dmu_zfetch_init(&dn->dn_zfetch, dn);
 | |
| 
 | |
| 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
 | |
| 	ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
 | |
| 	ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
 | |
| 
 | |
| 	mutex_enter(&os->os_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Exclude special dnodes from os_dnodes so an empty os_dnodes
 | |
| 	 * signifies that the special dnodes have no references from
 | |
| 	 * their children (the entries in os_dnodes).  This allows
 | |
| 	 * dnode_destroy() to easily determine if the last child has
 | |
| 	 * been removed and then complete eviction of the objset.
 | |
| 	 */
 | |
| 	if (!DMU_OBJECT_IS_SPECIAL(object))
 | |
| 		list_insert_head(&os->os_dnodes, dn);
 | |
| 	membar_producer();
 | |
| 
 | |
| 	/*
 | |
| 	 * Everything else must be valid before assigning dn_objset
 | |
| 	 * makes the dnode eligible for dnode_move().
 | |
| 	 */
 | |
| 	dn->dn_objset = os;
 | |
| 
 | |
| 	dnh->dnh_dnode = dn;
 | |
| 	mutex_exit(&os->os_lock);
 | |
| 
 | |
| 	arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
 | |
| 
 | |
| 	return (dn);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller must be holding the dnode handle, which is released upon return.
 | |
|  */
 | |
| static void
 | |
| dnode_destroy(dnode_t *dn)
 | |
| {
 | |
| 	objset_t *os = dn->dn_objset;
 | |
| 	boolean_t complete_os_eviction = B_FALSE;
 | |
| 
 | |
| 	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
 | |
| 
 | |
| 	mutex_enter(&os->os_lock);
 | |
| 	POINTER_INVALIDATE(&dn->dn_objset);
 | |
| 	if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
 | |
| 		list_remove(&os->os_dnodes, dn);
 | |
| 		complete_os_eviction =
 | |
| 		    list_is_empty(&os->os_dnodes) &&
 | |
| 		    list_link_active(&os->os_evicting_node);
 | |
| 	}
 | |
| 	mutex_exit(&os->os_lock);
 | |
| 
 | |
| 	/* the dnode can no longer move, so we can release the handle */
 | |
| 	if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
 | |
| 		zrl_remove(&dn->dn_handle->dnh_zrlock);
 | |
| 
 | |
| 	dn->dn_allocated_txg = 0;
 | |
| 	dn->dn_free_txg = 0;
 | |
| 	dn->dn_assigned_txg = 0;
 | |
| 	dn->dn_dirty_txg = 0;
 | |
| 
 | |
| 	dn->dn_dirtyctx = 0;
 | |
| 	dn->dn_dirtyctx_firstset = NULL;
 | |
| 	if (dn->dn_bonus != NULL) {
 | |
| 		mutex_enter(&dn->dn_bonus->db_mtx);
 | |
| 		dbuf_destroy(dn->dn_bonus);
 | |
| 		dn->dn_bonus = NULL;
 | |
| 	}
 | |
| 	dn->dn_zio = NULL;
 | |
| 
 | |
| 	dn->dn_have_spill = B_FALSE;
 | |
| 	dn->dn_oldused = 0;
 | |
| 	dn->dn_oldflags = 0;
 | |
| 	dn->dn_olduid = 0;
 | |
| 	dn->dn_oldgid = 0;
 | |
| 	dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
 | |
| 	dn->dn_newuid = 0;
 | |
| 	dn->dn_newgid = 0;
 | |
| 	dn->dn_newprojid = ZFS_DEFAULT_PROJID;
 | |
| 	dn->dn_id_flags = 0;
 | |
| 
 | |
| 	dmu_zfetch_fini(&dn->dn_zfetch);
 | |
| 	kmem_cache_free(dnode_cache, dn);
 | |
| 	arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE);
 | |
| 
 | |
| 	if (complete_os_eviction)
 | |
| 		dmu_objset_evict_done(os);
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
 | |
|     dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT3U(dn_slots, >, 0);
 | |
| 	ASSERT3U(dn_slots << DNODE_SHIFT, <=,
 | |
| 	    spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
 | |
| 	ASSERT3U(blocksize, <=,
 | |
| 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
 | |
| 	if (blocksize == 0)
 | |
| 		blocksize = 1 << zfs_default_bs;
 | |
| 	else
 | |
| 		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
 | |
| 
 | |
| 	if (ibs == 0)
 | |
| 		ibs = zfs_default_ibs;
 | |
| 
 | |
| 	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
 | |
| 
 | |
| 	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
 | |
| 	    dn->dn_objset, (u_longlong_t)dn->dn_object,
 | |
| 	    (u_longlong_t)tx->tx_txg, blocksize, ibs, dn_slots);
 | |
| 	DNODE_STAT_BUMP(dnode_allocate);
 | |
| 
 | |
| 	ASSERT(dn->dn_type == DMU_OT_NONE);
 | |
| 	ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
 | |
| 	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
 | |
| 	ASSERT(ot != DMU_OT_NONE);
 | |
| 	ASSERT(DMU_OT_IS_VALID(ot));
 | |
| 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
 | |
| 	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
 | |
| 	    (bonustype != DMU_OT_NONE && bonuslen != 0));
 | |
| 	ASSERT(DMU_OT_IS_VALID(bonustype));
 | |
| 	ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
 | |
| 	ASSERT(dn->dn_type == DMU_OT_NONE);
 | |
| 	ASSERT0(dn->dn_maxblkid);
 | |
| 	ASSERT0(dn->dn_allocated_txg);
 | |
| 	ASSERT0(dn->dn_assigned_txg);
 | |
| 	ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
 | |
| 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1);
 | |
| 	ASSERT(avl_is_empty(&dn->dn_dbufs));
 | |
| 
 | |
| 	for (i = 0; i < TXG_SIZE; i++) {
 | |
| 		ASSERT0(dn->dn_next_nblkptr[i]);
 | |
| 		ASSERT0(dn->dn_next_nlevels[i]);
 | |
| 		ASSERT0(dn->dn_next_indblkshift[i]);
 | |
| 		ASSERT0(dn->dn_next_bonuslen[i]);
 | |
| 		ASSERT0(dn->dn_next_bonustype[i]);
 | |
| 		ASSERT0(dn->dn_rm_spillblk[i]);
 | |
| 		ASSERT0(dn->dn_next_blksz[i]);
 | |
| 		ASSERT0(dn->dn_next_maxblkid[i]);
 | |
| 		ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
 | |
| 		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
 | |
| 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
 | |
| 	}
 | |
| 
 | |
| 	dn->dn_type = ot;
 | |
| 	dnode_setdblksz(dn, blocksize);
 | |
| 	dn->dn_indblkshift = ibs;
 | |
| 	dn->dn_nlevels = 1;
 | |
| 	dn->dn_num_slots = dn_slots;
 | |
| 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
 | |
| 		dn->dn_nblkptr = 1;
 | |
| 	else {
 | |
| 		dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
 | |
| 		    1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
 | |
| 		    SPA_BLKPTRSHIFT));
 | |
| 	}
 | |
| 
 | |
| 	dn->dn_bonustype = bonustype;
 | |
| 	dn->dn_bonuslen = bonuslen;
 | |
| 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
 | |
| 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
 | |
| 	dn->dn_dirtyctx = 0;
 | |
| 
 | |
| 	dn->dn_free_txg = 0;
 | |
| 	dn->dn_dirtyctx_firstset = NULL;
 | |
| 	dn->dn_dirty_txg = 0;
 | |
| 
 | |
| 	dn->dn_allocated_txg = tx->tx_txg;
 | |
| 	dn->dn_id_flags = 0;
 | |
| 
 | |
| 	dnode_setdirty(dn, tx);
 | |
| 	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
 | |
| 	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
 | |
| 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
 | |
| 	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
 | |
|     dmu_object_type_t bonustype, int bonuslen, int dn_slots,
 | |
|     boolean_t keep_spill, dmu_tx_t *tx)
 | |
| {
 | |
| 	int nblkptr;
 | |
| 
 | |
| 	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
 | |
| 	ASSERT3U(blocksize, <=,
 | |
| 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
 | |
| 	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
 | |
| 	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
 | |
| 	ASSERT(tx->tx_txg != 0);
 | |
| 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
 | |
| 	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
 | |
| 	    (bonustype == DMU_OT_SA && bonuslen == 0));
 | |
| 	ASSERT(DMU_OT_IS_VALID(bonustype));
 | |
| 	ASSERT3U(bonuslen, <=,
 | |
| 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
 | |
| 	ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT));
 | |
| 
 | |
| 	dnode_free_interior_slots(dn);
 | |
| 	DNODE_STAT_BUMP(dnode_reallocate);
 | |
| 
 | |
| 	/* clean up any unreferenced dbufs */
 | |
| 	dnode_evict_dbufs(dn);
 | |
| 
 | |
| 	dn->dn_id_flags = 0;
 | |
| 
 | |
| 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 | |
| 	dnode_setdirty(dn, tx);
 | |
| 	if (dn->dn_datablksz != blocksize) {
 | |
| 		/* change blocksize */
 | |
| 		ASSERT0(dn->dn_maxblkid);
 | |
| 		ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
 | |
| 		    dnode_block_freed(dn, 0));
 | |
| 
 | |
| 		dnode_setdblksz(dn, blocksize);
 | |
| 		dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize;
 | |
| 	}
 | |
| 	if (dn->dn_bonuslen != bonuslen)
 | |
| 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen;
 | |
| 
 | |
| 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
 | |
| 		nblkptr = 1;
 | |
| 	else
 | |
| 		nblkptr = MIN(DN_MAX_NBLKPTR,
 | |
| 		    1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
 | |
| 		    SPA_BLKPTRSHIFT));
 | |
| 	if (dn->dn_bonustype != bonustype)
 | |
| 		dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype;
 | |
| 	if (dn->dn_nblkptr != nblkptr)
 | |
| 		dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr;
 | |
| 	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) {
 | |
| 		dbuf_rm_spill(dn, tx);
 | |
| 		dnode_rm_spill(dn, tx);
 | |
| 	}
 | |
| 
 | |
| 	rw_exit(&dn->dn_struct_rwlock);
 | |
| 
 | |
| 	/* change type */
 | |
| 	dn->dn_type = ot;
 | |
| 
 | |
| 	/* change bonus size and type */
 | |
| 	mutex_enter(&dn->dn_mtx);
 | |
| 	dn->dn_bonustype = bonustype;
 | |
| 	dn->dn_bonuslen = bonuslen;
 | |
| 	dn->dn_num_slots = dn_slots;
 | |
| 	dn->dn_nblkptr = nblkptr;
 | |
| 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
 | |
| 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
 | |
| 	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
 | |
| 
 | |
| 	/* fix up the bonus db_size */
 | |
| 	if (dn->dn_bonus) {
 | |
| 		dn->dn_bonus->db.db_size =
 | |
| 		    DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
 | |
| 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
 | |
| 		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
 | |
| 	}
 | |
| 
 | |
| 	dn->dn_allocated_txg = tx->tx_txg;
 | |
| 	mutex_exit(&dn->dn_mtx);
 | |
| }
 | |
| 
 | |
| #ifdef	_KERNEL
 | |
| static void
 | |
| dnode_move_impl(dnode_t *odn, dnode_t *ndn)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
 | |
| 	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
 | |
| 	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
 | |
| 
 | |
| 	/* Copy fields. */
 | |
| 	ndn->dn_objset = odn->dn_objset;
 | |
| 	ndn->dn_object = odn->dn_object;
 | |
| 	ndn->dn_dbuf = odn->dn_dbuf;
 | |
| 	ndn->dn_handle = odn->dn_handle;
 | |
| 	ndn->dn_phys = odn->dn_phys;
 | |
| 	ndn->dn_type = odn->dn_type;
 | |
| 	ndn->dn_bonuslen = odn->dn_bonuslen;
 | |
| 	ndn->dn_bonustype = odn->dn_bonustype;
 | |
| 	ndn->dn_nblkptr = odn->dn_nblkptr;
 | |
| 	ndn->dn_checksum = odn->dn_checksum;
 | |
| 	ndn->dn_compress = odn->dn_compress;
 | |
| 	ndn->dn_nlevels = odn->dn_nlevels;
 | |
| 	ndn->dn_indblkshift = odn->dn_indblkshift;
 | |
| 	ndn->dn_datablkshift = odn->dn_datablkshift;
 | |
| 	ndn->dn_datablkszsec = odn->dn_datablkszsec;
 | |
| 	ndn->dn_datablksz = odn->dn_datablksz;
 | |
| 	ndn->dn_maxblkid = odn->dn_maxblkid;
 | |
| 	ndn->dn_num_slots = odn->dn_num_slots;
 | |
| 	bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0],
 | |
| 	    sizeof (odn->dn_next_type));
 | |
| 	bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
 | |
| 	    sizeof (odn->dn_next_nblkptr));
 | |
| 	bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
 | |
| 	    sizeof (odn->dn_next_nlevels));
 | |
| 	bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
 | |
| 	    sizeof (odn->dn_next_indblkshift));
 | |
| 	bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
 | |
| 	    sizeof (odn->dn_next_bonustype));
 | |
| 	bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
 | |
| 	    sizeof (odn->dn_rm_spillblk));
 | |
| 	bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
 | |
| 	    sizeof (odn->dn_next_bonuslen));
 | |
| 	bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
 | |
| 	    sizeof (odn->dn_next_blksz));
 | |
| 	bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0],
 | |
| 	    sizeof (odn->dn_next_maxblkid));
 | |
| 	for (i = 0; i < TXG_SIZE; i++) {
 | |
| 		list_move_tail(&ndn->dn_dirty_records[i],
 | |
| 		    &odn->dn_dirty_records[i]);
 | |
| 	}
 | |
| 	bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
 | |
| 	    sizeof (odn->dn_free_ranges));
 | |
| 	ndn->dn_allocated_txg = odn->dn_allocated_txg;
 | |
| 	ndn->dn_free_txg = odn->dn_free_txg;
 | |
| 	ndn->dn_assigned_txg = odn->dn_assigned_txg;
 | |
| 	ndn->dn_dirty_txg = odn->dn_dirty_txg;
 | |
| 	ndn->dn_dirtyctx = odn->dn_dirtyctx;
 | |
| 	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
 | |
| 	ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0);
 | |
| 	zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
 | |
| 	ASSERT(avl_is_empty(&ndn->dn_dbufs));
 | |
| 	avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
 | |
| 	ndn->dn_dbufs_count = odn->dn_dbufs_count;
 | |
| 	ndn->dn_bonus = odn->dn_bonus;
 | |
| 	ndn->dn_have_spill = odn->dn_have_spill;
 | |
| 	ndn->dn_zio = odn->dn_zio;
 | |
| 	ndn->dn_oldused = odn->dn_oldused;
 | |
| 	ndn->dn_oldflags = odn->dn_oldflags;
 | |
| 	ndn->dn_olduid = odn->dn_olduid;
 | |
| 	ndn->dn_oldgid = odn->dn_oldgid;
 | |
| 	ndn->dn_oldprojid = odn->dn_oldprojid;
 | |
| 	ndn->dn_newuid = odn->dn_newuid;
 | |
| 	ndn->dn_newgid = odn->dn_newgid;
 | |
| 	ndn->dn_newprojid = odn->dn_newprojid;
 | |
| 	ndn->dn_id_flags = odn->dn_id_flags;
 | |
| 	dmu_zfetch_init(&ndn->dn_zfetch, ndn);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update back pointers. Updating the handle fixes the back pointer of
 | |
| 	 * every descendant dbuf as well as the bonus dbuf.
 | |
| 	 */
 | |
| 	ASSERT(ndn->dn_handle->dnh_dnode == odn);
 | |
| 	ndn->dn_handle->dnh_dnode = ndn;
 | |
| 
 | |
| 	/*
 | |
| 	 * Invalidate the original dnode by clearing all of its back pointers.
 | |
| 	 */
 | |
| 	odn->dn_dbuf = NULL;
 | |
| 	odn->dn_handle = NULL;
 | |
| 	avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
 | |
| 	    offsetof(dmu_buf_impl_t, db_link));
 | |
| 	odn->dn_dbufs_count = 0;
 | |
| 	odn->dn_bonus = NULL;
 | |
| 	dmu_zfetch_fini(&odn->dn_zfetch);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the low bit of the objset pointer to ensure that dnode_move()
 | |
| 	 * recognizes the dnode as invalid in any subsequent callback.
 | |
| 	 */
 | |
| 	POINTER_INVALIDATE(&odn->dn_objset);
 | |
| 
 | |
| 	/*
 | |
| 	 * Satisfy the destructor.
 | |
| 	 */
 | |
| 	for (i = 0; i < TXG_SIZE; i++) {
 | |
| 		list_create(&odn->dn_dirty_records[i],
 | |
| 		    sizeof (dbuf_dirty_record_t),
 | |
| 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
 | |
| 		odn->dn_free_ranges[i] = NULL;
 | |
| 		odn->dn_next_nlevels[i] = 0;
 | |
| 		odn->dn_next_indblkshift[i] = 0;
 | |
| 		odn->dn_next_bonustype[i] = 0;
 | |
| 		odn->dn_rm_spillblk[i] = 0;
 | |
| 		odn->dn_next_bonuslen[i] = 0;
 | |
| 		odn->dn_next_blksz[i] = 0;
 | |
| 	}
 | |
| 	odn->dn_allocated_txg = 0;
 | |
| 	odn->dn_free_txg = 0;
 | |
| 	odn->dn_assigned_txg = 0;
 | |
| 	odn->dn_dirty_txg = 0;
 | |
| 	odn->dn_dirtyctx = 0;
 | |
| 	odn->dn_dirtyctx_firstset = NULL;
 | |
| 	odn->dn_have_spill = B_FALSE;
 | |
| 	odn->dn_zio = NULL;
 | |
| 	odn->dn_oldused = 0;
 | |
| 	odn->dn_oldflags = 0;
 | |
| 	odn->dn_olduid = 0;
 | |
| 	odn->dn_oldgid = 0;
 | |
| 	odn->dn_oldprojid = ZFS_DEFAULT_PROJID;
 | |
| 	odn->dn_newuid = 0;
 | |
| 	odn->dn_newgid = 0;
 | |
| 	odn->dn_newprojid = ZFS_DEFAULT_PROJID;
 | |
| 	odn->dn_id_flags = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark the dnode.
 | |
| 	 */
 | |
| 	ndn->dn_moved = 1;
 | |
| 	odn->dn_moved = (uint8_t)-1;
 | |
| }
 | |
| 
 | |
| static kmem_cbrc_t
 | |
| dnode_move(void *buf, void *newbuf, size_t size, void *arg)
 | |
| {
 | |
| 	dnode_t *odn = buf, *ndn = newbuf;
 | |
| 	objset_t *os;
 | |
| 	int64_t refcount;
 | |
| 	uint32_t dbufs;
 | |
| 
 | |
| 	/*
 | |
| 	 * The dnode is on the objset's list of known dnodes if the objset
 | |
| 	 * pointer is valid. We set the low bit of the objset pointer when
 | |
| 	 * freeing the dnode to invalidate it, and the memory patterns written
 | |
| 	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
 | |
| 	 * A newly created dnode sets the objset pointer last of all to indicate
 | |
| 	 * that the dnode is known and in a valid state to be moved by this
 | |
| 	 * function.
 | |
| 	 */
 | |
| 	os = odn->dn_objset;
 | |
| 	if (!POINTER_IS_VALID(os)) {
 | |
| 		DNODE_STAT_BUMP(dnode_move_invalid);
 | |
| 		return (KMEM_CBRC_DONT_KNOW);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that the objset does not go away during the move.
 | |
| 	 */
 | |
| 	rw_enter(&os_lock, RW_WRITER);
 | |
| 	if (os != odn->dn_objset) {
 | |
| 		rw_exit(&os_lock);
 | |
| 		DNODE_STAT_BUMP(dnode_move_recheck1);
 | |
| 		return (KMEM_CBRC_DONT_KNOW);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the dnode is still valid, then so is the objset. We know that no
 | |
| 	 * valid objset can be freed while we hold os_lock, so we can safely
 | |
| 	 * ensure that the objset remains in use.
 | |
| 	 */
 | |
| 	mutex_enter(&os->os_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Recheck the objset pointer in case the dnode was removed just before
 | |
| 	 * acquiring the lock.
 | |
| 	 */
 | |
| 	if (os != odn->dn_objset) {
 | |
| 		mutex_exit(&os->os_lock);
 | |
| 		rw_exit(&os_lock);
 | |
| 		DNODE_STAT_BUMP(dnode_move_recheck2);
 | |
| 		return (KMEM_CBRC_DONT_KNOW);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point we know that as long as we hold os->os_lock, the dnode
 | |
| 	 * cannot be freed and fields within the dnode can be safely accessed.
 | |
| 	 * The objset listing this dnode cannot go away as long as this dnode is
 | |
| 	 * on its list.
 | |
| 	 */
 | |
| 	rw_exit(&os_lock);
 | |
| 	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
 | |
| 		mutex_exit(&os->os_lock);
 | |
| 		DNODE_STAT_BUMP(dnode_move_special);
 | |
| 		return (KMEM_CBRC_NO);
 | |
| 	}
 | |
| 	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock the dnode handle to prevent the dnode from obtaining any new
 | |
| 	 * holds. This also prevents the descendant dbufs and the bonus dbuf
 | |
| 	 * from accessing the dnode, so that we can discount their holds. The
 | |
| 	 * handle is safe to access because we know that while the dnode cannot
 | |
| 	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
 | |
| 	 * safely move any dnode referenced only by dbufs.
 | |
| 	 */
 | |
| 	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
 | |
| 		mutex_exit(&os->os_lock);
 | |
| 		DNODE_STAT_BUMP(dnode_move_handle);
 | |
| 		return (KMEM_CBRC_LATER);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
 | |
| 	 * We need to guarantee that there is a hold for every dbuf in order to
 | |
| 	 * determine whether the dnode is actively referenced. Falsely matching
 | |
| 	 * a dbuf to an active hold would lead to an unsafe move. It's possible
 | |
| 	 * that a thread already having an active dnode hold is about to add a
 | |
| 	 * dbuf, and we can't compare hold and dbuf counts while the add is in
 | |
| 	 * progress.
 | |
| 	 */
 | |
| 	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
 | |
| 		zrl_exit(&odn->dn_handle->dnh_zrlock);
 | |
| 		mutex_exit(&os->os_lock);
 | |
| 		DNODE_STAT_BUMP(dnode_move_rwlock);
 | |
| 		return (KMEM_CBRC_LATER);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A dbuf may be removed (evicted) without an active dnode hold. In that
 | |
| 	 * case, the dbuf count is decremented under the handle lock before the
 | |
| 	 * dbuf's hold is released. This order ensures that if we count the hold
 | |
| 	 * after the dbuf is removed but before its hold is released, we will
 | |
| 	 * treat the unmatched hold as active and exit safely. If we count the
 | |
| 	 * hold before the dbuf is removed, the hold is discounted, and the
 | |
| 	 * removal is blocked until the move completes.
 | |
| 	 */
 | |
| 	refcount = zfs_refcount_count(&odn->dn_holds);
 | |
| 	ASSERT(refcount >= 0);
 | |
| 	dbufs = DN_DBUFS_COUNT(odn);
 | |
| 
 | |
| 	/* We can't have more dbufs than dnode holds. */
 | |
| 	ASSERT3U(dbufs, <=, refcount);
 | |
| 	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
 | |
| 	    uint32_t, dbufs);
 | |
| 
 | |
| 	if (refcount > dbufs) {
 | |
| 		rw_exit(&odn->dn_struct_rwlock);
 | |
| 		zrl_exit(&odn->dn_handle->dnh_zrlock);
 | |
| 		mutex_exit(&os->os_lock);
 | |
| 		DNODE_STAT_BUMP(dnode_move_active);
 | |
| 		return (KMEM_CBRC_LATER);
 | |
| 	}
 | |
| 
 | |
| 	rw_exit(&odn->dn_struct_rwlock);
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point we know that anyone with a hold on the dnode is not
 | |
| 	 * actively referencing it. The dnode is known and in a valid state to
 | |
| 	 * move. We're holding the locks needed to execute the critical section.
 | |
| 	 */
 | |
| 	dnode_move_impl(odn, ndn);
 | |
| 
 | |
| 	list_link_replace(&odn->dn_link, &ndn->dn_link);
 | |
| 	/* If the dnode was safe to move, the refcount cannot have changed. */
 | |
| 	ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds));
 | |
| 	ASSERT(dbufs == DN_DBUFS_COUNT(ndn));
 | |
| 	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
 | |
| 	mutex_exit(&os->os_lock);
 | |
| 
 | |
| 	return (KMEM_CBRC_YES);
 | |
| }
 | |
| #endif	/* _KERNEL */
 | |
| 
 | |
| static void
 | |
| dnode_slots_hold(dnode_children_t *children, int idx, int slots)
 | |
| {
 | |
| 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
 | |
| 
 | |
| 	for (int i = idx; i < idx + slots; i++) {
 | |
| 		dnode_handle_t *dnh = &children->dnc_children[i];
 | |
| 		zrl_add(&dnh->dnh_zrlock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| dnode_slots_rele(dnode_children_t *children, int idx, int slots)
 | |
| {
 | |
| 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
 | |
| 
 | |
| 	for (int i = idx; i < idx + slots; i++) {
 | |
| 		dnode_handle_t *dnh = &children->dnc_children[i];
 | |
| 
 | |
| 		if (zrl_is_locked(&dnh->dnh_zrlock))
 | |
| 			zrl_exit(&dnh->dnh_zrlock);
 | |
| 		else
 | |
| 			zrl_remove(&dnh->dnh_zrlock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
 | |
| {
 | |
| 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
 | |
| 
 | |
| 	for (int i = idx; i < idx + slots; i++) {
 | |
| 		dnode_handle_t *dnh = &children->dnc_children[i];
 | |
| 
 | |
| 		if (!zrl_tryenter(&dnh->dnh_zrlock)) {
 | |
| 			for (int j = idx; j < i; j++) {
 | |
| 				dnh = &children->dnc_children[j];
 | |
| 				zrl_exit(&dnh->dnh_zrlock);
 | |
| 			}
 | |
| 
 | |
| 			return (0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (1);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
 | |
| {
 | |
| 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
 | |
| 
 | |
| 	for (int i = idx; i < idx + slots; i++) {
 | |
| 		dnode_handle_t *dnh = &children->dnc_children[i];
 | |
| 		dnh->dnh_dnode = ptr;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static boolean_t
 | |
| dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
 | |
| {
 | |
| 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
 | |
| 
 | |
| 	/*
 | |
| 	 * If all dnode slots are either already free or
 | |
| 	 * evictable return B_TRUE.
 | |
| 	 */
 | |
| 	for (int i = idx; i < idx + slots; i++) {
 | |
| 		dnode_handle_t *dnh = &children->dnc_children[i];
 | |
| 		dnode_t *dn = dnh->dnh_dnode;
 | |
| 
 | |
| 		if (dn == DN_SLOT_FREE) {
 | |
| 			continue;
 | |
| 		} else if (DN_SLOT_IS_PTR(dn)) {
 | |
| 			mutex_enter(&dn->dn_mtx);
 | |
| 			boolean_t can_free = (dn->dn_type == DMU_OT_NONE &&
 | |
| 			    zfs_refcount_is_zero(&dn->dn_holds) &&
 | |
| 			    !DNODE_IS_DIRTY(dn));
 | |
| 			mutex_exit(&dn->dn_mtx);
 | |
| 
 | |
| 			if (!can_free)
 | |
| 				return (B_FALSE);
 | |
| 			else
 | |
| 				continue;
 | |
| 		} else {
 | |
| 			return (B_FALSE);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (B_TRUE);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
 | |
| {
 | |
| 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
 | |
| 
 | |
| 	for (int i = idx; i < idx + slots; i++) {
 | |
| 		dnode_handle_t *dnh = &children->dnc_children[i];
 | |
| 
 | |
| 		ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
 | |
| 
 | |
| 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
 | |
| 			ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
 | |
| 			dnode_destroy(dnh->dnh_dnode);
 | |
| 			dnh->dnh_dnode = DN_SLOT_FREE;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_free_interior_slots(dnode_t *dn)
 | |
| {
 | |
| 	dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
 | |
| 	int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
 | |
| 	int idx = (dn->dn_object & (epb - 1)) + 1;
 | |
| 	int slots = dn->dn_num_slots - 1;
 | |
| 
 | |
| 	if (slots == 0)
 | |
| 		return;
 | |
| 
 | |
| 	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
 | |
| 
 | |
| 	while (!dnode_slots_tryenter(children, idx, slots)) {
 | |
| 		DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
 | |
| 	dnode_slots_rele(children, idx, slots);
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_special_close(dnode_handle_t *dnh)
 | |
| {
 | |
| 	dnode_t *dn = dnh->dnh_dnode;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final
 | |
| 	 * zfs_refcount_remove()
 | |
| 	 */
 | |
| 	mutex_enter(&dn->dn_mtx);
 | |
| 	if (zfs_refcount_count(&dn->dn_holds) > 0)
 | |
| 		cv_wait(&dn->dn_nodnholds, &dn->dn_mtx);
 | |
| 	mutex_exit(&dn->dn_mtx);
 | |
| 	ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0);
 | |
| 
 | |
| 	ASSERT(dn->dn_dbuf == NULL ||
 | |
| 	    dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
 | |
| 	zrl_add(&dnh->dnh_zrlock);
 | |
| 	dnode_destroy(dn); /* implicit zrl_remove() */
 | |
| 	zrl_destroy(&dnh->dnh_zrlock);
 | |
| 	dnh->dnh_dnode = NULL;
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
 | |
|     dnode_handle_t *dnh)
 | |
| {
 | |
| 	dnode_t *dn;
 | |
| 
 | |
| 	zrl_init(&dnh->dnh_zrlock);
 | |
| 	VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock));
 | |
| 
 | |
| 	dn = dnode_create(os, dnp, NULL, object, dnh);
 | |
| 	DNODE_VERIFY(dn);
 | |
| 
 | |
| 	zrl_exit(&dnh->dnh_zrlock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dnode_buf_evict_async(void *dbu)
 | |
| {
 | |
| 	dnode_children_t *dnc = dbu;
 | |
| 
 | |
| 	DNODE_STAT_BUMP(dnode_buf_evict);
 | |
| 
 | |
| 	for (int i = 0; i < dnc->dnc_count; i++) {
 | |
| 		dnode_handle_t *dnh = &dnc->dnc_children[i];
 | |
| 		dnode_t *dn;
 | |
| 
 | |
| 		/*
 | |
| 		 * The dnode handle lock guards against the dnode moving to
 | |
| 		 * another valid address, so there is no need here to guard
 | |
| 		 * against changes to or from NULL.
 | |
| 		 */
 | |
| 		if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
 | |
| 			zrl_destroy(&dnh->dnh_zrlock);
 | |
| 			dnh->dnh_dnode = DN_SLOT_UNINIT;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		zrl_add(&dnh->dnh_zrlock);
 | |
| 		dn = dnh->dnh_dnode;
 | |
| 		/*
 | |
| 		 * If there are holds on this dnode, then there should
 | |
| 		 * be holds on the dnode's containing dbuf as well; thus
 | |
| 		 * it wouldn't be eligible for eviction and this function
 | |
| 		 * would not have been called.
 | |
| 		 */
 | |
| 		ASSERT(zfs_refcount_is_zero(&dn->dn_holds));
 | |
| 		ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
 | |
| 
 | |
| 		dnode_destroy(dn); /* implicit zrl_remove() for first slot */
 | |
| 		zrl_destroy(&dnh->dnh_zrlock);
 | |
| 		dnh->dnh_dnode = DN_SLOT_UNINIT;
 | |
| 	}
 | |
| 	kmem_free(dnc, sizeof (dnode_children_t) +
 | |
| 	    dnc->dnc_count * sizeof (dnode_handle_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
 | |
|  * to ensure the hole at the specified object offset is large enough to
 | |
|  * hold the dnode being created. The slots parameter is also used to ensure
 | |
|  * a dnode does not span multiple dnode blocks. In both of these cases, if
 | |
|  * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
 | |
|  * are only possible when using DNODE_MUST_BE_FREE.
 | |
|  *
 | |
|  * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
 | |
|  * dnode_hold_impl() will check if the requested dnode is already consumed
 | |
|  * as an extra dnode slot by an large dnode, in which case it returns
 | |
|  * ENOENT.
 | |
|  *
 | |
|  * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just
 | |
|  * return whether the hold would succeed or not. tag and dnp should set to
 | |
|  * NULL in this case.
 | |
|  *
 | |
|  * errors:
 | |
|  * EINVAL - Invalid object number or flags.
 | |
|  * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
 | |
|  * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
 | |
|  *        - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
 | |
|  *        - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
 | |
|  * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
 | |
|  *        - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
 | |
|  * EIO    - I/O error when reading the meta dnode dbuf.
 | |
|  *
 | |
|  * succeeds even for free dnodes.
 | |
|  */
 | |
| int
 | |
| dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
 | |
|     void *tag, dnode_t **dnp)
 | |
| {
 | |
| 	int epb, idx, err;
 | |
| 	int drop_struct_lock = FALSE;
 | |
| 	int type;
 | |
| 	uint64_t blk;
 | |
| 	dnode_t *mdn, *dn;
 | |
| 	dmu_buf_impl_t *db;
 | |
| 	dnode_children_t *dnc;
 | |
| 	dnode_phys_t *dn_block;
 | |
| 	dnode_handle_t *dnh;
 | |
| 
 | |
| 	ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
 | |
| 	ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
 | |
| 	IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL));
 | |
| 
 | |
| 	/*
 | |
| 	 * If you are holding the spa config lock as writer, you shouldn't
 | |
| 	 * be asking the DMU to do *anything* unless it's the root pool
 | |
| 	 * which may require us to read from the root filesystem while
 | |
| 	 * holding some (not all) of the locks as writer.
 | |
| 	 */
 | |
| 	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
 | |
| 	    (spa_is_root(os->os_spa) &&
 | |
| 	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
 | |
| 
 | |
| 	ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE));
 | |
| 
 | |
| 	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT ||
 | |
| 	    object == DMU_PROJECTUSED_OBJECT) {
 | |
| 		if (object == DMU_USERUSED_OBJECT)
 | |
| 			dn = DMU_USERUSED_DNODE(os);
 | |
| 		else if (object == DMU_GROUPUSED_OBJECT)
 | |
| 			dn = DMU_GROUPUSED_DNODE(os);
 | |
| 		else
 | |
| 			dn = DMU_PROJECTUSED_DNODE(os);
 | |
| 		if (dn == NULL)
 | |
| 			return (SET_ERROR(ENOENT));
 | |
| 		type = dn->dn_type;
 | |
| 		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
 | |
| 			return (SET_ERROR(ENOENT));
 | |
| 		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
 | |
| 			return (SET_ERROR(EEXIST));
 | |
| 		DNODE_VERIFY(dn);
 | |
| 		/* Don't actually hold if dry run, just return 0 */
 | |
| 		if (!(flag & DNODE_DRY_RUN)) {
 | |
| 			(void) zfs_refcount_add(&dn->dn_holds, tag);
 | |
| 			*dnp = dn;
 | |
| 		}
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	if (object == 0 || object >= DN_MAX_OBJECT)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	mdn = DMU_META_DNODE(os);
 | |
| 	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
 | |
| 
 | |
| 	DNODE_VERIFY(mdn);
 | |
| 
 | |
| 	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
 | |
| 		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
 | |
| 		drop_struct_lock = TRUE;
 | |
| 	}
 | |
| 
 | |
| 	blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
 | |
| 	db = dbuf_hold(mdn, blk, FTAG);
 | |
| 	if (drop_struct_lock)
 | |
| 		rw_exit(&mdn->dn_struct_rwlock);
 | |
| 	if (db == NULL) {
 | |
| 		DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
 | |
| 		return (SET_ERROR(EIO));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We do not need to decrypt to read the dnode so it doesn't matter
 | |
| 	 * if we get the encrypted or decrypted version.
 | |
| 	 */
 | |
| 	err = dbuf_read(db, NULL, DB_RF_CANFAIL |
 | |
| 	    DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH);
 | |
| 	if (err) {
 | |
| 		DNODE_STAT_BUMP(dnode_hold_dbuf_read);
 | |
| 		dbuf_rele(db, FTAG);
 | |
| 		return (err);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
 | |
| 	epb = db->db.db_size >> DNODE_SHIFT;
 | |
| 
 | |
| 	idx = object & (epb - 1);
 | |
| 	dn_block = (dnode_phys_t *)db->db.db_data;
 | |
| 
 | |
| 	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
 | |
| 	dnc = dmu_buf_get_user(&db->db);
 | |
| 	dnh = NULL;
 | |
| 	if (dnc == NULL) {
 | |
| 		dnode_children_t *winner;
 | |
| 		int skip = 0;
 | |
| 
 | |
| 		dnc = kmem_zalloc(sizeof (dnode_children_t) +
 | |
| 		    epb * sizeof (dnode_handle_t), KM_SLEEP);
 | |
| 		dnc->dnc_count = epb;
 | |
| 		dnh = &dnc->dnc_children[0];
 | |
| 
 | |
| 		/* Initialize dnode slot status from dnode_phys_t */
 | |
| 		for (int i = 0; i < epb; i++) {
 | |
| 			zrl_init(&dnh[i].dnh_zrlock);
 | |
| 
 | |
| 			if (skip) {
 | |
| 				skip--;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (dn_block[i].dn_type != DMU_OT_NONE) {
 | |
| 				int interior = dn_block[i].dn_extra_slots;
 | |
| 
 | |
| 				dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
 | |
| 				dnode_set_slots(dnc, i + 1, interior,
 | |
| 				    DN_SLOT_INTERIOR);
 | |
| 				skip = interior;
 | |
| 			} else {
 | |
| 				dnh[i].dnh_dnode = DN_SLOT_FREE;
 | |
| 				skip = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		dmu_buf_init_user(&dnc->dnc_dbu, NULL,
 | |
| 		    dnode_buf_evict_async, NULL);
 | |
| 		winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
 | |
| 		if (winner != NULL) {
 | |
| 
 | |
| 			for (int i = 0; i < epb; i++)
 | |
| 				zrl_destroy(&dnh[i].dnh_zrlock);
 | |
| 
 | |
| 			kmem_free(dnc, sizeof (dnode_children_t) +
 | |
| 			    epb * sizeof (dnode_handle_t));
 | |
| 			dnc = winner;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(dnc->dnc_count == epb);
 | |
| 
 | |
| 	if (flag & DNODE_MUST_BE_ALLOCATED) {
 | |
| 		slots = 1;
 | |
| 
 | |
| 		dnode_slots_hold(dnc, idx, slots);
 | |
| 		dnh = &dnc->dnc_children[idx];
 | |
| 
 | |
| 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
 | |
| 			dn = dnh->dnh_dnode;
 | |
| 		} else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
 | |
| 			DNODE_STAT_BUMP(dnode_hold_alloc_interior);
 | |
| 			dnode_slots_rele(dnc, idx, slots);
 | |
| 			dbuf_rele(db, FTAG);
 | |
| 			return (SET_ERROR(EEXIST));
 | |
| 		} else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
 | |
| 			DNODE_STAT_BUMP(dnode_hold_alloc_misses);
 | |
| 			dnode_slots_rele(dnc, idx, slots);
 | |
| 			dbuf_rele(db, FTAG);
 | |
| 			return (SET_ERROR(ENOENT));
 | |
| 		} else {
 | |
| 			dnode_slots_rele(dnc, idx, slots);
 | |
| 			while (!dnode_slots_tryenter(dnc, idx, slots)) {
 | |
| 				DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
 | |
| 				cond_resched();
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Someone else won the race and called dnode_create()
 | |
| 			 * after we checked DN_SLOT_IS_PTR() above but before
 | |
| 			 * we acquired the lock.
 | |
| 			 */
 | |
| 			if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
 | |
| 				DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
 | |
| 				dn = dnh->dnh_dnode;
 | |
| 			} else {
 | |
| 				dn = dnode_create(os, dn_block + idx, db,
 | |
| 				    object, dnh);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		mutex_enter(&dn->dn_mtx);
 | |
| 		if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) {
 | |
| 			DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
 | |
| 			mutex_exit(&dn->dn_mtx);
 | |
| 			dnode_slots_rele(dnc, idx, slots);
 | |
| 			dbuf_rele(db, FTAG);
 | |
| 			return (SET_ERROR(ENOENT));
 | |
| 		}
 | |
| 
 | |
| 		/* Don't actually hold if dry run, just return 0 */
 | |
| 		if (flag & DNODE_DRY_RUN) {
 | |
| 			mutex_exit(&dn->dn_mtx);
 | |
| 			dnode_slots_rele(dnc, idx, slots);
 | |
| 			dbuf_rele(db, FTAG);
 | |
| 			return (0);
 | |
| 		}
 | |
| 
 | |
| 		DNODE_STAT_BUMP(dnode_hold_alloc_hits);
 | |
| 	} else if (flag & DNODE_MUST_BE_FREE) {
 | |
| 
 | |
| 		if (idx + slots - 1 >= DNODES_PER_BLOCK) {
 | |
| 			DNODE_STAT_BUMP(dnode_hold_free_overflow);
 | |
| 			dbuf_rele(db, FTAG);
 | |
| 			return (SET_ERROR(ENOSPC));
 | |
| 		}
 | |
| 
 | |
| 		dnode_slots_hold(dnc, idx, slots);
 | |
| 
 | |
| 		if (!dnode_check_slots_free(dnc, idx, slots)) {
 | |
| 			DNODE_STAT_BUMP(dnode_hold_free_misses);
 | |
| 			dnode_slots_rele(dnc, idx, slots);
 | |
| 			dbuf_rele(db, FTAG);
 | |
| 			return (SET_ERROR(ENOSPC));
 | |
| 		}
 | |
| 
 | |
| 		dnode_slots_rele(dnc, idx, slots);
 | |
| 		while (!dnode_slots_tryenter(dnc, idx, slots)) {
 | |
| 			DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 
 | |
| 		if (!dnode_check_slots_free(dnc, idx, slots)) {
 | |
| 			DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
 | |
| 			dnode_slots_rele(dnc, idx, slots);
 | |
| 			dbuf_rele(db, FTAG);
 | |
| 			return (SET_ERROR(ENOSPC));
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Allocated but otherwise free dnodes which would
 | |
| 		 * be in the interior of a multi-slot dnodes need
 | |
| 		 * to be freed.  Single slot dnodes can be safely
 | |
| 		 * re-purposed as a performance optimization.
 | |
| 		 */
 | |
| 		if (slots > 1)
 | |
| 			dnode_reclaim_slots(dnc, idx + 1, slots - 1);
 | |
| 
 | |
| 		dnh = &dnc->dnc_children[idx];
 | |
| 		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
 | |
| 			dn = dnh->dnh_dnode;
 | |
| 		} else {
 | |
| 			dn = dnode_create(os, dn_block + idx, db,
 | |
| 			    object, dnh);
 | |
| 		}
 | |
| 
 | |
| 		mutex_enter(&dn->dn_mtx);
 | |
| 		if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) {
 | |
| 			DNODE_STAT_BUMP(dnode_hold_free_refcount);
 | |
| 			mutex_exit(&dn->dn_mtx);
 | |
| 			dnode_slots_rele(dnc, idx, slots);
 | |
| 			dbuf_rele(db, FTAG);
 | |
| 			return (SET_ERROR(EEXIST));
 | |
| 		}
 | |
| 
 | |
| 		/* Don't actually hold if dry run, just return 0 */
 | |
| 		if (flag & DNODE_DRY_RUN) {
 | |
| 			mutex_exit(&dn->dn_mtx);
 | |
| 			dnode_slots_rele(dnc, idx, slots);
 | |
| 			dbuf_rele(db, FTAG);
 | |
| 			return (0);
 | |
| 		}
 | |
| 
 | |
| 		dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
 | |
| 		DNODE_STAT_BUMP(dnode_hold_free_hits);
 | |
| 	} else {
 | |
| 		dbuf_rele(db, FTAG);
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	ASSERT0(dn->dn_free_txg);
 | |
| 
 | |
| 	if (zfs_refcount_add(&dn->dn_holds, tag) == 1)
 | |
| 		dbuf_add_ref(db, dnh);
 | |
| 
 | |
| 	mutex_exit(&dn->dn_mtx);
 | |
| 
 | |
| 	/* Now we can rely on the hold to prevent the dnode from moving. */
 | |
| 	dnode_slots_rele(dnc, idx, slots);
 | |
| 
 | |
| 	DNODE_VERIFY(dn);
 | |
| 	ASSERT3P(dnp, !=, NULL);
 | |
| 	ASSERT3P(dn->dn_dbuf, ==, db);
 | |
| 	ASSERT3U(dn->dn_object, ==, object);
 | |
| 	dbuf_rele(db, FTAG);
 | |
| 
 | |
| 	*dnp = dn;
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return held dnode if the object is allocated, NULL if not.
 | |
|  */
 | |
| int
 | |
| dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
 | |
| {
 | |
| 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
 | |
| 	    dnp));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Can only add a reference if there is already at least one
 | |
|  * reference on the dnode.  Returns FALSE if unable to add a
 | |
|  * new reference.
 | |
|  */
 | |
| boolean_t
 | |
| dnode_add_ref(dnode_t *dn, void *tag)
 | |
| {
 | |
| 	mutex_enter(&dn->dn_mtx);
 | |
| 	if (zfs_refcount_is_zero(&dn->dn_holds)) {
 | |
| 		mutex_exit(&dn->dn_mtx);
 | |
| 		return (FALSE);
 | |
| 	}
 | |
| 	VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag));
 | |
| 	mutex_exit(&dn->dn_mtx);
 | |
| 	return (TRUE);
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_rele(dnode_t *dn, void *tag)
 | |
| {
 | |
| 	mutex_enter(&dn->dn_mtx);
 | |
| 	dnode_rele_and_unlock(dn, tag, B_FALSE);
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting)
 | |
| {
 | |
| 	uint64_t refs;
 | |
| 	/* Get while the hold prevents the dnode from moving. */
 | |
| 	dmu_buf_impl_t *db = dn->dn_dbuf;
 | |
| 	dnode_handle_t *dnh = dn->dn_handle;
 | |
| 
 | |
| 	refs = zfs_refcount_remove(&dn->dn_holds, tag);
 | |
| 	if (refs == 0)
 | |
| 		cv_broadcast(&dn->dn_nodnholds);
 | |
| 	mutex_exit(&dn->dn_mtx);
 | |
| 	/* dnode could get destroyed at this point, so don't use it anymore */
 | |
| 
 | |
| 	/*
 | |
| 	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
 | |
| 	 * indirectly by dbuf_rele() while relying on the dnode handle to
 | |
| 	 * prevent the dnode from moving, since releasing the last hold could
 | |
| 	 * result in the dnode's parent dbuf evicting its dnode handles. For
 | |
| 	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
 | |
| 	 * other direct or indirect hold on the dnode must first drop the dnode
 | |
| 	 * handle.
 | |
| 	 */
 | |
| #ifdef ZFS_DEBUG
 | |
| 	ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
 | |
| #endif
 | |
| 
 | |
| 	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
 | |
| 	if (refs == 0 && db != NULL) {
 | |
| 		/*
 | |
| 		 * Another thread could add a hold to the dnode handle in
 | |
| 		 * dnode_hold_impl() while holding the parent dbuf. Since the
 | |
| 		 * hold on the parent dbuf prevents the handle from being
 | |
| 		 * destroyed, the hold on the handle is OK. We can't yet assert
 | |
| 		 * that the handle has zero references, but that will be
 | |
| 		 * asserted anyway when the handle gets destroyed.
 | |
| 		 */
 | |
| 		mutex_enter(&db->db_mtx);
 | |
| 		dbuf_rele_and_unlock(db, dnh, evicting);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test whether we can create a dnode at the specified location.
 | |
|  */
 | |
| int
 | |
| dnode_try_claim(objset_t *os, uint64_t object, int slots)
 | |
| {
 | |
| 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN,
 | |
| 	    slots, NULL, NULL));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks if the dnode contains any uncommitted dirty records.
 | |
|  */
 | |
| boolean_t
 | |
| dnode_is_dirty(dnode_t *dn)
 | |
| {
 | |
| 	mutex_enter(&dn->dn_mtx);
 | |
| 
 | |
| 	for (int i = 0; i < TXG_SIZE; i++) {
 | |
| 		if (multilist_link_active(&dn->dn_dirty_link[i])) {
 | |
| 			mutex_exit(&dn->dn_mtx);
 | |
| 			return (B_TRUE);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_exit(&dn->dn_mtx);
 | |
| 
 | |
| 	return (B_FALSE);
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
 | |
| {
 | |
| 	objset_t *os = dn->dn_objset;
 | |
| 	uint64_t txg = tx->tx_txg;
 | |
| 
 | |
| 	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
 | |
| 		dsl_dataset_dirty(os->os_dsl_dataset, tx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	DNODE_VERIFY(dn);
 | |
| 
 | |
| #ifdef ZFS_DEBUG
 | |
| 	mutex_enter(&dn->dn_mtx);
 | |
| 	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
 | |
| 	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
 | |
| 	mutex_exit(&dn->dn_mtx);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine old uid/gid when necessary
 | |
| 	 */
 | |
| 	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
 | |
| 
 | |
| 	multilist_t *dirtylist = &os->os_dirty_dnodes[txg & TXG_MASK];
 | |
| 	multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are already marked dirty, we're done.
 | |
| 	 */
 | |
| 	if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
 | |
| 		multilist_sublist_unlock(mls);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) ||
 | |
| 	    !avl_is_empty(&dn->dn_dbufs));
 | |
| 	ASSERT(dn->dn_datablksz != 0);
 | |
| 	ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]);
 | |
| 	ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]);
 | |
| 	ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]);
 | |
| 
 | |
| 	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
 | |
| 	    (u_longlong_t)dn->dn_object, (u_longlong_t)txg);
 | |
| 
 | |
| 	multilist_sublist_insert_head(mls, dn);
 | |
| 
 | |
| 	multilist_sublist_unlock(mls);
 | |
| 
 | |
| 	/*
 | |
| 	 * The dnode maintains a hold on its containing dbuf as
 | |
| 	 * long as there are holds on it.  Each instantiated child
 | |
| 	 * dbuf maintains a hold on the dnode.  When the last child
 | |
| 	 * drops its hold, the dnode will drop its hold on the
 | |
| 	 * containing dbuf. We add a "dirty hold" here so that the
 | |
| 	 * dnode will hang around after we finish processing its
 | |
| 	 * children.
 | |
| 	 */
 | |
| 	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
 | |
| 
 | |
| 	(void) dbuf_dirty(dn->dn_dbuf, tx);
 | |
| 
 | |
| 	dsl_dataset_dirty(os->os_dsl_dataset, tx);
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_free(dnode_t *dn, dmu_tx_t *tx)
 | |
| {
 | |
| 	mutex_enter(&dn->dn_mtx);
 | |
| 	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
 | |
| 		mutex_exit(&dn->dn_mtx);
 | |
| 		return;
 | |
| 	}
 | |
| 	dn->dn_free_txg = tx->tx_txg;
 | |
| 	mutex_exit(&dn->dn_mtx);
 | |
| 
 | |
| 	dnode_setdirty(dn, tx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to change the block size for the indicated dnode.  This can only
 | |
|  * succeed if there are no blocks allocated or dirty beyond first block
 | |
|  */
 | |
| int
 | |
| dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
 | |
| {
 | |
| 	dmu_buf_impl_t *db;
 | |
| 	int err;
 | |
| 
 | |
| 	ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
 | |
| 	if (size == 0)
 | |
| 		size = SPA_MINBLOCKSIZE;
 | |
| 	else
 | |
| 		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
 | |
| 
 | |
| 	if (ibs == dn->dn_indblkshift)
 | |
| 		ibs = 0;
 | |
| 
 | |
| 	if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
 | |
| 		return (0);
 | |
| 
 | |
| 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 | |
| 
 | |
| 	/* Check for any allocated blocks beyond the first */
 | |
| 	if (dn->dn_maxblkid != 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	mutex_enter(&dn->dn_dbufs_mtx);
 | |
| 	for (db = avl_first(&dn->dn_dbufs); db != NULL;
 | |
| 	    db = AVL_NEXT(&dn->dn_dbufs, db)) {
 | |
| 		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
 | |
| 		    db->db_blkid != DMU_SPILL_BLKID) {
 | |
| 			mutex_exit(&dn->dn_dbufs_mtx);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_exit(&dn->dn_dbufs_mtx);
 | |
| 
 | |
| 	if (ibs && dn->dn_nlevels != 1)
 | |
| 		goto fail;
 | |
| 
 | |
| 	/* resize the old block */
 | |
| 	err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
 | |
| 	if (err == 0) {
 | |
| 		dbuf_new_size(db, size, tx);
 | |
| 	} else if (err != ENOENT) {
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	dnode_setdblksz(dn, size);
 | |
| 	dnode_setdirty(dn, tx);
 | |
| 	dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
 | |
| 	if (ibs) {
 | |
| 		dn->dn_indblkshift = ibs;
 | |
| 		dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
 | |
| 	}
 | |
| 	/* release after we have fixed the blocksize in the dnode */
 | |
| 	if (db)
 | |
| 		dbuf_rele(db, FTAG);
 | |
| 
 | |
| 	rw_exit(&dn->dn_struct_rwlock);
 | |
| 	return (0);
 | |
| 
 | |
| fail:
 | |
| 	rw_exit(&dn->dn_struct_rwlock);
 | |
| 	return (SET_ERROR(ENOTSUP));
 | |
| }
 | |
| 
 | |
| static void
 | |
| dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx)
 | |
| {
 | |
| 	uint64_t txgoff = tx->tx_txg & TXG_MASK;
 | |
| 	int old_nlevels = dn->dn_nlevels;
 | |
| 	dmu_buf_impl_t *db;
 | |
| 	list_t *list;
 | |
| 	dbuf_dirty_record_t *new, *dr, *dr_next;
 | |
| 
 | |
| 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
 | |
| 
 | |
| 	ASSERT3U(new_nlevels, >, dn->dn_nlevels);
 | |
| 	dn->dn_nlevels = new_nlevels;
 | |
| 
 | |
| 	ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
 | |
| 	dn->dn_next_nlevels[txgoff] = new_nlevels;
 | |
| 
 | |
| 	/* dirty the left indirects */
 | |
| 	db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
 | |
| 	ASSERT(db != NULL);
 | |
| 	new = dbuf_dirty(db, tx);
 | |
| 	dbuf_rele(db, FTAG);
 | |
| 
 | |
| 	/* transfer the dirty records to the new indirect */
 | |
| 	mutex_enter(&dn->dn_mtx);
 | |
| 	mutex_enter(&new->dt.di.dr_mtx);
 | |
| 	list = &dn->dn_dirty_records[txgoff];
 | |
| 	for (dr = list_head(list); dr; dr = dr_next) {
 | |
| 		dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
 | |
| 
 | |
| 		IMPLY(dr->dr_dbuf == NULL, old_nlevels == 1);
 | |
| 		if (dr->dr_dbuf == NULL ||
 | |
| 		    (dr->dr_dbuf->db_level == old_nlevels - 1 &&
 | |
| 		    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
 | |
| 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID)) {
 | |
| 			list_remove(&dn->dn_dirty_records[txgoff], dr);
 | |
| 			list_insert_tail(&new->dt.di.dr_children, dr);
 | |
| 			dr->dr_parent = new;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_exit(&new->dt.di.dr_mtx);
 | |
| 	mutex_exit(&dn->dn_mtx);
 | |
| }
 | |
| 
 | |
| int
 | |
| dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 | |
| 
 | |
| 	if (dn->dn_nlevels == nlevels) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	} else if (nlevels < dn->dn_nlevels) {
 | |
| 		ret = SET_ERROR(EINVAL);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	dnode_set_nlevels_impl(dn, nlevels, tx);
 | |
| 
 | |
| out:
 | |
| 	rw_exit(&dn->dn_struct_rwlock);
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| /* read-holding callers must not rely on the lock being continuously held */
 | |
| void
 | |
| dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read,
 | |
|     boolean_t force)
 | |
| {
 | |
| 	int epbs, new_nlevels;
 | |
| 	uint64_t sz;
 | |
| 
 | |
| 	ASSERT(blkid != DMU_BONUS_BLKID);
 | |
| 
 | |
| 	ASSERT(have_read ?
 | |
| 	    RW_READ_HELD(&dn->dn_struct_rwlock) :
 | |
| 	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
 | |
| 
 | |
| 	/*
 | |
| 	 * if we have a read-lock, check to see if we need to do any work
 | |
| 	 * before upgrading to a write-lock.
 | |
| 	 */
 | |
| 	if (have_read) {
 | |
| 		if (blkid <= dn->dn_maxblkid)
 | |
| 			return;
 | |
| 
 | |
| 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
 | |
| 			rw_exit(&dn->dn_struct_rwlock);
 | |
| 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Raw sends (indicated by the force flag) require that we take the
 | |
| 	 * given blkid even if the value is lower than the current value.
 | |
| 	 */
 | |
| 	if (!force && blkid <= dn->dn_maxblkid)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff]
 | |
| 	 * to indicate that this field is set. This allows us to set the
 | |
| 	 * maxblkid to 0 on an existing object in dnode_sync().
 | |
| 	 */
 | |
| 	dn->dn_maxblkid = blkid;
 | |
| 	dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] =
 | |
| 	    blkid | DMU_NEXT_MAXBLKID_SET;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the number of levels necessary to support the new maxblkid.
 | |
| 	 * Raw sends will ensure nlevels is set correctly for us.
 | |
| 	 */
 | |
| 	new_nlevels = 1;
 | |
| 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
 | |
| 	for (sz = dn->dn_nblkptr;
 | |
| 	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
 | |
| 		new_nlevels++;
 | |
| 
 | |
| 	ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS);
 | |
| 
 | |
| 	if (!force) {
 | |
| 		if (new_nlevels > dn->dn_nlevels)
 | |
| 			dnode_set_nlevels_impl(dn, new_nlevels, tx);
 | |
| 	} else {
 | |
| 		ASSERT3U(dn->dn_nlevels, >=, new_nlevels);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (have_read)
 | |
| 		rw_downgrade(&dn->dn_struct_rwlock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
 | |
| {
 | |
| 	dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
 | |
| 	if (db != NULL) {
 | |
| 		dmu_buf_will_dirty(&db->db, tx);
 | |
| 		dbuf_rele(db, FTAG);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
 | |
|  * and end_blkid.
 | |
|  */
 | |
| static void
 | |
| dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	dmu_buf_impl_t *db_search;
 | |
| 	dmu_buf_impl_t *db;
 | |
| 	avl_index_t where;
 | |
| 
 | |
| 	db_search = kmem_zalloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
 | |
| 
 | |
| 	mutex_enter(&dn->dn_dbufs_mtx);
 | |
| 
 | |
| 	db_search->db_level = 1;
 | |
| 	db_search->db_blkid = start_blkid + 1;
 | |
| 	db_search->db_state = DB_SEARCH;
 | |
| 	for (;;) {
 | |
| 
 | |
| 		db = avl_find(&dn->dn_dbufs, db_search, &where);
 | |
| 		if (db == NULL)
 | |
| 			db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
 | |
| 
 | |
| 		if (db == NULL || db->db_level != 1 ||
 | |
| 		    db->db_blkid >= end_blkid) {
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Setup the next blkid we want to search for.
 | |
| 		 */
 | |
| 		db_search->db_blkid = db->db_blkid + 1;
 | |
| 		ASSERT3U(db->db_blkid, >=, start_blkid);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the dbuf transitions to DB_EVICTING while we're trying
 | |
| 		 * to dirty it, then we will be unable to discover it in
 | |
| 		 * the dbuf hash table. This will result in a call to
 | |
| 		 * dbuf_create() which needs to acquire the dn_dbufs_mtx
 | |
| 		 * lock. To avoid a deadlock, we drop the lock before
 | |
| 		 * dirtying the level-1 dbuf.
 | |
| 		 */
 | |
| 		mutex_exit(&dn->dn_dbufs_mtx);
 | |
| 		dnode_dirty_l1(dn, db->db_blkid, tx);
 | |
| 		mutex_enter(&dn->dn_dbufs_mtx);
 | |
| 	}
 | |
| 
 | |
| #ifdef ZFS_DEBUG
 | |
| 	/*
 | |
| 	 * Walk all the in-core level-1 dbufs and verify they have been dirtied.
 | |
| 	 */
 | |
| 	db_search->db_level = 1;
 | |
| 	db_search->db_blkid = start_blkid + 1;
 | |
| 	db_search->db_state = DB_SEARCH;
 | |
| 	db = avl_find(&dn->dn_dbufs, db_search, &where);
 | |
| 	if (db == NULL)
 | |
| 		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
 | |
| 	for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) {
 | |
| 		if (db->db_level != 1 || db->db_blkid >= end_blkid)
 | |
| 			break;
 | |
| 		if (db->db_state != DB_EVICTING)
 | |
| 			ASSERT(db->db_dirtycnt > 0);
 | |
| 	}
 | |
| #endif
 | |
| 	kmem_free(db_search, sizeof (dmu_buf_impl_t));
 | |
| 	mutex_exit(&dn->dn_dbufs_mtx);
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, void *tag)
 | |
| {
 | |
| 	/*
 | |
| 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
 | |
| 	 * initialize the objset.
 | |
| 	 */
 | |
| 	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
 | |
| 		dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
 | |
| 
 | |
| 		if (ds != NULL) {
 | |
| 			rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag);
 | |
| 		}
 | |
| 		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
 | |
| 			if (dmu_tx_is_syncing(tx))
 | |
| 				dn->dn_dirtyctx = DN_DIRTY_SYNC;
 | |
| 			else
 | |
| 				dn->dn_dirtyctx = DN_DIRTY_OPEN;
 | |
| 			dn->dn_dirtyctx_firstset = tag;
 | |
| 		}
 | |
| 		if (ds != NULL) {
 | |
| 			rrw_exit(&ds->ds_bp_rwlock, tag);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| dnode_partial_zero(dnode_t *dn, uint64_t off, uint64_t blkoff, uint64_t len,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	dmu_buf_impl_t *db;
 | |
| 	int res;
 | |
| 
 | |
| 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | |
| 	res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), TRUE, FALSE,
 | |
| 	    FTAG, &db);
 | |
| 	rw_exit(&dn->dn_struct_rwlock);
 | |
| 	if (res == 0) {
 | |
| 		db_lock_type_t dblt;
 | |
| 		boolean_t dirty;
 | |
| 
 | |
| 		dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
 | |
| 		/* don't dirty if not on disk and not dirty */
 | |
| 		dirty = !list_is_empty(&db->db_dirty_records) ||
 | |
| 		    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr));
 | |
| 		dmu_buf_unlock_parent(db, dblt, FTAG);
 | |
| 		if (dirty) {
 | |
| 			caddr_t data;
 | |
| 
 | |
| 			dmu_buf_will_dirty(&db->db, tx);
 | |
| 			data = db->db.db_data;
 | |
| 			bzero(data + blkoff, len);
 | |
| 		}
 | |
| 		dbuf_rele(db, FTAG);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
 | |
| {
 | |
| 	uint64_t blkoff, blkid, nblks;
 | |
| 	int blksz, blkshift, head, tail;
 | |
| 	int trunc = FALSE;
 | |
| 	int epbs;
 | |
| 
 | |
| 	blksz = dn->dn_datablksz;
 | |
| 	blkshift = dn->dn_datablkshift;
 | |
| 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
 | |
| 
 | |
| 	if (len == DMU_OBJECT_END) {
 | |
| 		len = UINT64_MAX - off;
 | |
| 		trunc = TRUE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * First, block align the region to free:
 | |
| 	 */
 | |
| 	if (ISP2(blksz)) {
 | |
| 		head = P2NPHASE(off, blksz);
 | |
| 		blkoff = P2PHASE(off, blksz);
 | |
| 		if ((off >> blkshift) > dn->dn_maxblkid)
 | |
| 			return;
 | |
| 	} else {
 | |
| 		ASSERT(dn->dn_maxblkid == 0);
 | |
| 		if (off == 0 && len >= blksz) {
 | |
| 			/*
 | |
| 			 * Freeing the whole block; fast-track this request.
 | |
| 			 */
 | |
| 			blkid = 0;
 | |
| 			nblks = 1;
 | |
| 			if (dn->dn_nlevels > 1) {
 | |
| 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 | |
| 				dnode_dirty_l1(dn, 0, tx);
 | |
| 				rw_exit(&dn->dn_struct_rwlock);
 | |
| 			}
 | |
| 			goto done;
 | |
| 		} else if (off >= blksz) {
 | |
| 			/* Freeing past end-of-data */
 | |
| 			return;
 | |
| 		} else {
 | |
| 			/* Freeing part of the block. */
 | |
| 			head = blksz - off;
 | |
| 			ASSERT3U(head, >, 0);
 | |
| 		}
 | |
| 		blkoff = off;
 | |
| 	}
 | |
| 	/* zero out any partial block data at the start of the range */
 | |
| 	if (head) {
 | |
| 		ASSERT3U(blkoff + head, ==, blksz);
 | |
| 		if (len < head)
 | |
| 			head = len;
 | |
| 		dnode_partial_zero(dn, off, blkoff, head, tx);
 | |
| 		off += head;
 | |
| 		len -= head;
 | |
| 	}
 | |
| 
 | |
| 	/* If the range was less than one block, we're done */
 | |
| 	if (len == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* If the remaining range is past end of file, we're done */
 | |
| 	if ((off >> blkshift) > dn->dn_maxblkid)
 | |
| 		return;
 | |
| 
 | |
| 	ASSERT(ISP2(blksz));
 | |
| 	if (trunc)
 | |
| 		tail = 0;
 | |
| 	else
 | |
| 		tail = P2PHASE(len, blksz);
 | |
| 
 | |
| 	ASSERT0(P2PHASE(off, blksz));
 | |
| 	/* zero out any partial block data at the end of the range */
 | |
| 	if (tail) {
 | |
| 		if (len < tail)
 | |
| 			tail = len;
 | |
| 		dnode_partial_zero(dn, off + len, 0, tail, tx);
 | |
| 		len -= tail;
 | |
| 	}
 | |
| 
 | |
| 	/* If the range did not include a full block, we are done */
 | |
| 	if (len == 0)
 | |
| 		return;
 | |
| 
 | |
| 	ASSERT(IS_P2ALIGNED(off, blksz));
 | |
| 	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
 | |
| 	blkid = off >> blkshift;
 | |
| 	nblks = len >> blkshift;
 | |
| 	if (trunc)
 | |
| 		nblks += 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Dirty all the indirect blocks in this range.  Note that only
 | |
| 	 * the first and last indirect blocks can actually be written
 | |
| 	 * (if they were partially freed) -- they must be dirtied, even if
 | |
| 	 * they do not exist on disk yet.  The interior blocks will
 | |
| 	 * be freed by free_children(), so they will not actually be written.
 | |
| 	 * Even though these interior blocks will not be written, we
 | |
| 	 * dirty them for two reasons:
 | |
| 	 *
 | |
| 	 *  - It ensures that the indirect blocks remain in memory until
 | |
| 	 *    syncing context.  (They have already been prefetched by
 | |
| 	 *    dmu_tx_hold_free(), so we don't have to worry about reading
 | |
| 	 *    them serially here.)
 | |
| 	 *
 | |
| 	 *  - The dirty space accounting will put pressure on the txg sync
 | |
| 	 *    mechanism to begin syncing, and to delay transactions if there
 | |
| 	 *    is a large amount of freeing.  Even though these indirect
 | |
| 	 *    blocks will not be written, we could need to write the same
 | |
| 	 *    amount of space if we copy the freed BPs into deadlists.
 | |
| 	 */
 | |
| 	if (dn->dn_nlevels > 1) {
 | |
| 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 | |
| 		uint64_t first, last;
 | |
| 
 | |
| 		first = blkid >> epbs;
 | |
| 		dnode_dirty_l1(dn, first, tx);
 | |
| 		if (trunc)
 | |
| 			last = dn->dn_maxblkid >> epbs;
 | |
| 		else
 | |
| 			last = (blkid + nblks - 1) >> epbs;
 | |
| 		if (last != first)
 | |
| 			dnode_dirty_l1(dn, last, tx);
 | |
| 
 | |
| 		dnode_dirty_l1range(dn, first, last, tx);
 | |
| 
 | |
| 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
 | |
| 		    SPA_BLKPTRSHIFT;
 | |
| 		for (uint64_t i = first + 1; i < last; i++) {
 | |
| 			/*
 | |
| 			 * Set i to the blockid of the next non-hole
 | |
| 			 * level-1 indirect block at or after i.  Note
 | |
| 			 * that dnode_next_offset() operates in terms of
 | |
| 			 * level-0-equivalent bytes.
 | |
| 			 */
 | |
| 			uint64_t ibyte = i << shift;
 | |
| 			int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
 | |
| 			    &ibyte, 2, 1, 0);
 | |
| 			i = ibyte >> shift;
 | |
| 			if (i >= last)
 | |
| 				break;
 | |
| 
 | |
| 			/*
 | |
| 			 * Normally we should not see an error, either
 | |
| 			 * from dnode_next_offset() or dbuf_hold_level()
 | |
| 			 * (except for ESRCH from dnode_next_offset).
 | |
| 			 * If there is an i/o error, then when we read
 | |
| 			 * this block in syncing context, it will use
 | |
| 			 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
 | |
| 			 * to the "failmode" property.  dnode_next_offset()
 | |
| 			 * doesn't have a flag to indicate MUSTSUCCEED.
 | |
| 			 */
 | |
| 			if (err != 0)
 | |
| 				break;
 | |
| 
 | |
| 			dnode_dirty_l1(dn, i, tx);
 | |
| 		}
 | |
| 		rw_exit(&dn->dn_struct_rwlock);
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	/*
 | |
| 	 * Add this range to the dnode range list.
 | |
| 	 * We will finish up this free operation in the syncing phase.
 | |
| 	 */
 | |
| 	mutex_enter(&dn->dn_mtx);
 | |
| 	{
 | |
| 		int txgoff = tx->tx_txg & TXG_MASK;
 | |
| 		if (dn->dn_free_ranges[txgoff] == NULL) {
 | |
| 			dn->dn_free_ranges[txgoff] = range_tree_create(NULL,
 | |
| 			    RANGE_SEG64, NULL, 0, 0);
 | |
| 		}
 | |
| 		range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
 | |
| 		range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
 | |
| 	}
 | |
| 	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
 | |
| 	    (u_longlong_t)blkid, (u_longlong_t)nblks,
 | |
| 	    (u_longlong_t)tx->tx_txg);
 | |
| 	mutex_exit(&dn->dn_mtx);
 | |
| 
 | |
| 	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
 | |
| 	dnode_setdirty(dn, tx);
 | |
| }
 | |
| 
 | |
| static boolean_t
 | |
| dnode_spill_freed(dnode_t *dn)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	mutex_enter(&dn->dn_mtx);
 | |
| 	for (i = 0; i < TXG_SIZE; i++) {
 | |
| 		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
 | |
| 			break;
 | |
| 	}
 | |
| 	mutex_exit(&dn->dn_mtx);
 | |
| 	return (i < TXG_SIZE);
 | |
| }
 | |
| 
 | |
| /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
 | |
| uint64_t
 | |
| dnode_block_freed(dnode_t *dn, uint64_t blkid)
 | |
| {
 | |
| 	void *dp = spa_get_dsl(dn->dn_objset->os_spa);
 | |
| 	int i;
 | |
| 
 | |
| 	if (blkid == DMU_BONUS_BLKID)
 | |
| 		return (FALSE);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're in the process of opening the pool, dp will not be
 | |
| 	 * set yet, but there shouldn't be anything dirty.
 | |
| 	 */
 | |
| 	if (dp == NULL)
 | |
| 		return (FALSE);
 | |
| 
 | |
| 	if (dn->dn_free_txg)
 | |
| 		return (TRUE);
 | |
| 
 | |
| 	if (blkid == DMU_SPILL_BLKID)
 | |
| 		return (dnode_spill_freed(dn));
 | |
| 
 | |
| 	mutex_enter(&dn->dn_mtx);
 | |
| 	for (i = 0; i < TXG_SIZE; i++) {
 | |
| 		if (dn->dn_free_ranges[i] != NULL &&
 | |
| 		    range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
 | |
| 			break;
 | |
| 	}
 | |
| 	mutex_exit(&dn->dn_mtx);
 | |
| 	return (i < TXG_SIZE);
 | |
| }
 | |
| 
 | |
| /* call from syncing context when we actually write/free space for this dnode */
 | |
| void
 | |
| dnode_diduse_space(dnode_t *dn, int64_t delta)
 | |
| {
 | |
| 	uint64_t space;
 | |
| 	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
 | |
| 	    dn, dn->dn_phys,
 | |
| 	    (u_longlong_t)dn->dn_phys->dn_used,
 | |
| 	    (longlong_t)delta);
 | |
| 
 | |
| 	mutex_enter(&dn->dn_mtx);
 | |
| 	space = DN_USED_BYTES(dn->dn_phys);
 | |
| 	if (delta > 0) {
 | |
| 		ASSERT3U(space + delta, >=, space); /* no overflow */
 | |
| 	} else {
 | |
| 		ASSERT3U(space, >=, -delta); /* no underflow */
 | |
| 	}
 | |
| 	space += delta;
 | |
| 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
 | |
| 		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
 | |
| 		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
 | |
| 		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
 | |
| 	} else {
 | |
| 		dn->dn_phys->dn_used = space;
 | |
| 		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
 | |
| 	}
 | |
| 	mutex_exit(&dn->dn_mtx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scans a block at the indicated "level" looking for a hole or data,
 | |
|  * depending on 'flags'.
 | |
|  *
 | |
|  * If level > 0, then we are scanning an indirect block looking at its
 | |
|  * pointers.  If level == 0, then we are looking at a block of dnodes.
 | |
|  *
 | |
|  * If we don't find what we are looking for in the block, we return ESRCH.
 | |
|  * Otherwise, return with *offset pointing to the beginning (if searching
 | |
|  * forwards) or end (if searching backwards) of the range covered by the
 | |
|  * block pointer we matched on (or dnode).
 | |
|  *
 | |
|  * The basic search algorithm used below by dnode_next_offset() is to
 | |
|  * use this function to search up the block tree (widen the search) until
 | |
|  * we find something (i.e., we don't return ESRCH) and then search back
 | |
|  * down the tree (narrow the search) until we reach our original search
 | |
|  * level.
 | |
|  */
 | |
| static int
 | |
| dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
 | |
|     int lvl, uint64_t blkfill, uint64_t txg)
 | |
| {
 | |
| 	dmu_buf_impl_t *db = NULL;
 | |
| 	void *data = NULL;
 | |
| 	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
 | |
| 	uint64_t epb = 1ULL << epbs;
 | |
| 	uint64_t minfill, maxfill;
 | |
| 	boolean_t hole;
 | |
| 	int i, inc, error, span;
 | |
| 
 | |
| 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
 | |
| 
 | |
| 	hole = ((flags & DNODE_FIND_HOLE) != 0);
 | |
| 	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
 | |
| 	ASSERT(txg == 0 || !hole);
 | |
| 
 | |
| 	if (lvl == dn->dn_phys->dn_nlevels) {
 | |
| 		error = 0;
 | |
| 		epb = dn->dn_phys->dn_nblkptr;
 | |
| 		data = dn->dn_phys->dn_blkptr;
 | |
| 	} else {
 | |
| 		uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
 | |
| 		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
 | |
| 		if (error) {
 | |
| 			if (error != ENOENT)
 | |
| 				return (error);
 | |
| 			if (hole)
 | |
| 				return (0);
 | |
| 			/*
 | |
| 			 * This can only happen when we are searching up
 | |
| 			 * the block tree for data.  We don't really need to
 | |
| 			 * adjust the offset, as we will just end up looking
 | |
| 			 * at the pointer to this block in its parent, and its
 | |
| 			 * going to be unallocated, so we will skip over it.
 | |
| 			 */
 | |
| 			return (SET_ERROR(ESRCH));
 | |
| 		}
 | |
| 		error = dbuf_read(db, NULL,
 | |
| 		    DB_RF_CANFAIL | DB_RF_HAVESTRUCT |
 | |
| 		    DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH);
 | |
| 		if (error) {
 | |
| 			dbuf_rele(db, FTAG);
 | |
| 			return (error);
 | |
| 		}
 | |
| 		data = db->db.db_data;
 | |
| 		rw_enter(&db->db_rwlock, RW_READER);
 | |
| 	}
 | |
| 
 | |
| 	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
 | |
| 	    db->db_blkptr->blk_birth <= txg ||
 | |
| 	    BP_IS_HOLE(db->db_blkptr))) {
 | |
| 		/*
 | |
| 		 * This can only happen when we are searching up the tree
 | |
| 		 * and these conditions mean that we need to keep climbing.
 | |
| 		 */
 | |
| 		error = SET_ERROR(ESRCH);
 | |
| 	} else if (lvl == 0) {
 | |
| 		dnode_phys_t *dnp = data;
 | |
| 
 | |
| 		ASSERT(dn->dn_type == DMU_OT_DNODE);
 | |
| 		ASSERT(!(flags & DNODE_FIND_BACKWARDS));
 | |
| 
 | |
| 		for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
 | |
| 		    i < blkfill; i += dnp[i].dn_extra_slots + 1) {
 | |
| 			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (i == blkfill)
 | |
| 			error = SET_ERROR(ESRCH);
 | |
| 
 | |
| 		*offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
 | |
| 		    (i << DNODE_SHIFT);
 | |
| 	} else {
 | |
| 		blkptr_t *bp = data;
 | |
| 		uint64_t start = *offset;
 | |
| 		span = (lvl - 1) * epbs + dn->dn_datablkshift;
 | |
| 		minfill = 0;
 | |
| 		maxfill = blkfill << ((lvl - 1) * epbs);
 | |
| 
 | |
| 		if (hole)
 | |
| 			maxfill--;
 | |
| 		else
 | |
| 			minfill++;
 | |
| 
 | |
| 		if (span >= 8 * sizeof (*offset)) {
 | |
| 			/* This only happens on the highest indirection level */
 | |
| 			ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1);
 | |
| 			*offset = 0;
 | |
| 		} else {
 | |
| 			*offset = *offset >> span;
 | |
| 		}
 | |
| 
 | |
| 		for (i = BF64_GET(*offset, 0, epbs);
 | |
| 		    i >= 0 && i < epb; i += inc) {
 | |
| 			if (BP_GET_FILL(&bp[i]) >= minfill &&
 | |
| 			    BP_GET_FILL(&bp[i]) <= maxfill &&
 | |
| 			    (hole || bp[i].blk_birth > txg))
 | |
| 				break;
 | |
| 			if (inc > 0 || *offset > 0)
 | |
| 				*offset += inc;
 | |
| 		}
 | |
| 
 | |
| 		if (span >= 8 * sizeof (*offset)) {
 | |
| 			*offset = start;
 | |
| 		} else {
 | |
| 			*offset = *offset << span;
 | |
| 		}
 | |
| 
 | |
| 		if (inc < 0) {
 | |
| 			/* traversing backwards; position offset at the end */
 | |
| 			ASSERT3U(*offset, <=, start);
 | |
| 			*offset = MIN(*offset + (1ULL << span) - 1, start);
 | |
| 		} else if (*offset < start) {
 | |
| 			*offset = start;
 | |
| 		}
 | |
| 		if (i < 0 || i >= epb)
 | |
| 			error = SET_ERROR(ESRCH);
 | |
| 	}
 | |
| 
 | |
| 	if (db != NULL) {
 | |
| 		rw_exit(&db->db_rwlock);
 | |
| 		dbuf_rele(db, FTAG);
 | |
| 	}
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the next hole, data, or sparse region at or after *offset.
 | |
|  * The value 'blkfill' tells us how many items we expect to find
 | |
|  * in an L0 data block; this value is 1 for normal objects,
 | |
|  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
 | |
|  * DNODES_PER_BLOCK when searching for sparse regions thereof.
 | |
|  *
 | |
|  * Examples:
 | |
|  *
 | |
|  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
 | |
|  *	Finds the next/previous hole/data in a file.
 | |
|  *	Used in dmu_offset_next().
 | |
|  *
 | |
|  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
 | |
|  *	Finds the next free/allocated dnode an objset's meta-dnode.
 | |
|  *	Only finds objects that have new contents since txg (ie.
 | |
|  *	bonus buffer changes and content removal are ignored).
 | |
|  *	Used in dmu_object_next().
 | |
|  *
 | |
|  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
 | |
|  *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
 | |
|  *	Used in dmu_object_alloc().
 | |
|  */
 | |
| int
 | |
| dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
 | |
|     int minlvl, uint64_t blkfill, uint64_t txg)
 | |
| {
 | |
| 	uint64_t initial_offset = *offset;
 | |
| 	int lvl, maxlvl;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (!(flags & DNODE_FIND_HAVELOCK))
 | |
| 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | |
| 
 | |
| 	if (dn->dn_phys->dn_nlevels == 0) {
 | |
| 		error = SET_ERROR(ESRCH);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (dn->dn_datablkshift == 0) {
 | |
| 		if (*offset < dn->dn_datablksz) {
 | |
| 			if (flags & DNODE_FIND_HOLE)
 | |
| 				*offset = dn->dn_datablksz;
 | |
| 		} else {
 | |
| 			error = SET_ERROR(ESRCH);
 | |
| 		}
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	maxlvl = dn->dn_phys->dn_nlevels;
 | |
| 
 | |
| 	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
 | |
| 		error = dnode_next_offset_level(dn,
 | |
| 		    flags, offset, lvl, blkfill, txg);
 | |
| 		if (error != ESRCH)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	while (error == 0 && --lvl >= minlvl) {
 | |
| 		error = dnode_next_offset_level(dn,
 | |
| 		    flags, offset, lvl, blkfill, txg);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * There's always a "virtual hole" at the end of the object, even
 | |
| 	 * if all BP's which physically exist are non-holes.
 | |
| 	 */
 | |
| 	if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
 | |
| 	    minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
 | |
| 		error = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
 | |
| 	    initial_offset < *offset : initial_offset > *offset))
 | |
| 		error = SET_ERROR(ESRCH);
 | |
| out:
 | |
| 	if (!(flags & DNODE_FIND_HAVELOCK))
 | |
| 		rw_exit(&dn->dn_struct_rwlock);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| #if defined(_KERNEL)
 | |
| EXPORT_SYMBOL(dnode_hold);
 | |
| EXPORT_SYMBOL(dnode_rele);
 | |
| EXPORT_SYMBOL(dnode_set_nlevels);
 | |
| EXPORT_SYMBOL(dnode_set_blksz);
 | |
| EXPORT_SYMBOL(dnode_free_range);
 | |
| EXPORT_SYMBOL(dnode_evict_dbufs);
 | |
| EXPORT_SYMBOL(dnode_evict_bonus);
 | |
| #endif
 |