mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-11-04 10:34:34 +00:00 
			
		
		
		
	spa_preferred_class() selects a storage class based on (among other things) the DMU object type. This only works for old-style object types that match only one specific kind of thing. For DMU_OTN_ types we need another way to signal the storage class. This commit allows the object type to be overridden in the IO policy for the purposes of choosing a storage class. It then adds the ability to set the storage type on a dnode hold, such that all writes generated under that hold will get it. This method has two shortcomings: - it would be better if we could "name" a set of storage class preferences rather than it being implied by the object type. - it would be better if this info were stored in the dnode on disk. In the absence of those things, this seems like the smallest possible change. Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Rob Norris <rob.norris@klarasystems.com> Sponsored-by: Klara, Inc. Sponsored-by: iXsystems, Inc. Closes #15894
		
			
				
	
	
		
			2827 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2827 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * CDDL HEADER START
 | 
						|
 *
 | 
						|
 * The contents of this file are subject to the terms of the
 | 
						|
 * Common Development and Distribution License (the "License").
 | 
						|
 * You may not use this file except in compliance with the License.
 | 
						|
 *
 | 
						|
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | 
						|
 * or https://opensource.org/licenses/CDDL-1.0.
 | 
						|
 * See the License for the specific language governing permissions
 | 
						|
 * and limitations under the License.
 | 
						|
 *
 | 
						|
 * When distributing Covered Code, include this CDDL HEADER in each
 | 
						|
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | 
						|
 * If applicable, add the following below this CDDL HEADER, with the
 | 
						|
 * fields enclosed by brackets "[]" replaced with your own identifying
 | 
						|
 * information: Portions Copyright [yyyy] [name of copyright owner]
 | 
						|
 *
 | 
						|
 * CDDL HEADER END
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | 
						|
 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
 | 
						|
 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
 | 
						|
 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
 | 
						|
 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
 | 
						|
 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
 | 
						|
 * Copyright (c) 2019 Datto Inc.
 | 
						|
 * Copyright (c) 2019, 2023, Klara Inc.
 | 
						|
 * Copyright (c) 2019, Allan Jude
 | 
						|
 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
 | 
						|
 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
 | 
						|
 */
 | 
						|
 | 
						|
#include <sys/dmu.h>
 | 
						|
#include <sys/dmu_impl.h>
 | 
						|
#include <sys/dmu_tx.h>
 | 
						|
#include <sys/dbuf.h>
 | 
						|
#include <sys/dnode.h>
 | 
						|
#include <sys/zfs_context.h>
 | 
						|
#include <sys/dmu_objset.h>
 | 
						|
#include <sys/dmu_traverse.h>
 | 
						|
#include <sys/dsl_dataset.h>
 | 
						|
#include <sys/dsl_dir.h>
 | 
						|
#include <sys/dsl_pool.h>
 | 
						|
#include <sys/dsl_synctask.h>
 | 
						|
#include <sys/dsl_prop.h>
 | 
						|
#include <sys/dmu_zfetch.h>
 | 
						|
#include <sys/zfs_ioctl.h>
 | 
						|
#include <sys/zap.h>
 | 
						|
#include <sys/zio_checksum.h>
 | 
						|
#include <sys/zio_compress.h>
 | 
						|
#include <sys/sa.h>
 | 
						|
#include <sys/zfeature.h>
 | 
						|
#include <sys/abd.h>
 | 
						|
#include <sys/brt.h>
 | 
						|
#include <sys/trace_zfs.h>
 | 
						|
#include <sys/zfs_racct.h>
 | 
						|
#include <sys/zfs_rlock.h>
 | 
						|
#ifdef _KERNEL
 | 
						|
#include <sys/vmsystm.h>
 | 
						|
#include <sys/zfs_znode.h>
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Enable/disable nopwrite feature.
 | 
						|
 */
 | 
						|
static int zfs_nopwrite_enabled = 1;
 | 
						|
 | 
						|
/*
 | 
						|
 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
 | 
						|
 * one TXG. After this threshold is crossed, additional dirty blocks from frees
 | 
						|
 * will wait until the next TXG.
 | 
						|
 * A value of zero will disable this throttle.
 | 
						|
 */
 | 
						|
static uint_t zfs_per_txg_dirty_frees_percent = 30;
 | 
						|
 | 
						|
/*
 | 
						|
 * Enable/disable forcing txg sync when dirty checking for holes with lseek().
 | 
						|
 * By default this is enabled to ensure accurate hole reporting, it can result
 | 
						|
 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
 | 
						|
 * Disabling this option will result in holes never being reported in dirty
 | 
						|
 * files which is always safe.
 | 
						|
 */
 | 
						|
static int zfs_dmu_offset_next_sync = 1;
 | 
						|
 | 
						|
/*
 | 
						|
 * Limit the amount we can prefetch with one call to this amount.  This
 | 
						|
 * helps to limit the amount of memory that can be used by prefetching.
 | 
						|
 * Larger objects should be prefetched a bit at a time.
 | 
						|
 */
 | 
						|
#ifdef _ILP32
 | 
						|
uint_t dmu_prefetch_max = 8 * 1024 * 1024;
 | 
						|
#else
 | 
						|
uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
 | 
						|
#endif
 | 
						|
 | 
						|
const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
 | 
						|
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
 | 
						|
	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
 | 
						|
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
 | 
						|
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
 | 
						|
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
 | 
						|
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
 | 
						|
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
 | 
						|
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
 | 
						|
	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
 | 
						|
	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
 | 
						|
	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
 | 
						|
	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
 | 
						|
	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
 | 
						|
	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
 | 
						|
	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
 | 
						|
	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
 | 
						|
	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
 | 
						|
	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
 | 
						|
	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
 | 
						|
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
 | 
						|
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
 | 
						|
	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
 | 
						|
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
 | 
						|
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
 | 
						|
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
 | 
						|
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
 | 
						|
	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
 | 
						|
	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
 | 
						|
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
 | 
						|
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
 | 
						|
};
 | 
						|
 | 
						|
dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
 | 
						|
	{	byteswap_uint8_array,	"uint8"		},
 | 
						|
	{	byteswap_uint16_array,	"uint16"	},
 | 
						|
	{	byteswap_uint32_array,	"uint32"	},
 | 
						|
	{	byteswap_uint64_array,	"uint64"	},
 | 
						|
	{	zap_byteswap,		"zap"		},
 | 
						|
	{	dnode_buf_byteswap,	"dnode"		},
 | 
						|
	{	dmu_objset_byteswap,	"objset"	},
 | 
						|
	{	zfs_znode_byteswap,	"znode"		},
 | 
						|
	{	zfs_oldacl_byteswap,	"oldacl"	},
 | 
						|
	{	zfs_acl_byteswap,	"acl"		}
 | 
						|
};
 | 
						|
 | 
						|
int
 | 
						|
dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
 | 
						|
    const void *tag, dmu_buf_t **dbp)
 | 
						|
{
 | 
						|
	uint64_t blkid;
 | 
						|
	dmu_buf_impl_t *db;
 | 
						|
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
	blkid = dbuf_whichblock(dn, 0, offset);
 | 
						|
	db = dbuf_hold(dn, blkid, tag);
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
 | 
						|
	if (db == NULL) {
 | 
						|
		*dbp = NULL;
 | 
						|
		return (SET_ERROR(EIO));
 | 
						|
	}
 | 
						|
 | 
						|
	*dbp = &db->db;
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
 | 
						|
    const void *tag, dmu_buf_t **dbp)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	uint64_t blkid;
 | 
						|
	dmu_buf_impl_t *db;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = dnode_hold(os, object, FTAG, &dn);
 | 
						|
	if (err)
 | 
						|
		return (err);
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
	blkid = dbuf_whichblock(dn, 0, offset);
 | 
						|
	db = dbuf_hold(dn, blkid, tag);
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
 | 
						|
	if (db == NULL) {
 | 
						|
		*dbp = NULL;
 | 
						|
		return (SET_ERROR(EIO));
 | 
						|
	}
 | 
						|
 | 
						|
	*dbp = &db->db;
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
 | 
						|
    const void *tag, dmu_buf_t **dbp, int flags)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	int db_flags = DB_RF_CANFAIL;
 | 
						|
 | 
						|
	if (flags & DMU_READ_NO_PREFETCH)
 | 
						|
		db_flags |= DB_RF_NOPREFETCH;
 | 
						|
	if (flags & DMU_READ_NO_DECRYPT)
 | 
						|
		db_flags |= DB_RF_NO_DECRYPT;
 | 
						|
 | 
						|
	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
 | 
						|
	if (err == 0) {
 | 
						|
		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
 | 
						|
		err = dbuf_read(db, NULL, db_flags);
 | 
						|
		if (err != 0) {
 | 
						|
			dbuf_rele(db, tag);
 | 
						|
			*dbp = NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
 | 
						|
    const void *tag, dmu_buf_t **dbp, int flags)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	int db_flags = DB_RF_CANFAIL;
 | 
						|
 | 
						|
	if (flags & DMU_READ_NO_PREFETCH)
 | 
						|
		db_flags |= DB_RF_NOPREFETCH;
 | 
						|
	if (flags & DMU_READ_NO_DECRYPT)
 | 
						|
		db_flags |= DB_RF_NO_DECRYPT;
 | 
						|
 | 
						|
	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
 | 
						|
	if (err == 0) {
 | 
						|
		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
 | 
						|
		err = dbuf_read(db, NULL, db_flags);
 | 
						|
		if (err != 0) {
 | 
						|
			dbuf_rele(db, tag);
 | 
						|
			*dbp = NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_bonus_max(void)
 | 
						|
{
 | 
						|
	return (DN_OLD_MAX_BONUSLEN);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 | 
						|
	dnode_t *dn;
 | 
						|
	int error;
 | 
						|
 | 
						|
	if (newsize < 0 || newsize > db_fake->db_size)
 | 
						|
		return (SET_ERROR(EINVAL));
 | 
						|
 | 
						|
	DB_DNODE_ENTER(db);
 | 
						|
	dn = DB_DNODE(db);
 | 
						|
 | 
						|
	if (dn->dn_bonus != db) {
 | 
						|
		error = SET_ERROR(EINVAL);
 | 
						|
	} else {
 | 
						|
		dnode_setbonuslen(dn, newsize, tx);
 | 
						|
		error = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	DB_DNODE_EXIT(db);
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 | 
						|
	dnode_t *dn;
 | 
						|
	int error;
 | 
						|
 | 
						|
	if (!DMU_OT_IS_VALID(type))
 | 
						|
		return (SET_ERROR(EINVAL));
 | 
						|
 | 
						|
	DB_DNODE_ENTER(db);
 | 
						|
	dn = DB_DNODE(db);
 | 
						|
 | 
						|
	if (dn->dn_bonus != db) {
 | 
						|
		error = SET_ERROR(EINVAL);
 | 
						|
	} else {
 | 
						|
		dnode_setbonus_type(dn, type, tx);
 | 
						|
		error = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	DB_DNODE_EXIT(db);
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
dmu_object_type_t
 | 
						|
dmu_get_bonustype(dmu_buf_t *db_fake)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 | 
						|
	dmu_object_type_t type;
 | 
						|
 | 
						|
	DB_DNODE_ENTER(db);
 | 
						|
	type = DB_DNODE(db)->dn_bonustype;
 | 
						|
	DB_DNODE_EXIT(db);
 | 
						|
 | 
						|
	return (type);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	int error;
 | 
						|
 | 
						|
	error = dnode_hold(os, object, FTAG, &dn);
 | 
						|
	dbuf_rm_spill(dn, tx);
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 | 
						|
	dnode_rm_spill(dn, tx);
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
 | 
						|
 * has not yet been allocated a new bonus dbuf a will be allocated.
 | 
						|
 * Returns ENOENT, EIO, or 0.
 | 
						|
 */
 | 
						|
int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
 | 
						|
    uint32_t flags)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db;
 | 
						|
	int error;
 | 
						|
	uint32_t db_flags = DB_RF_MUST_SUCCEED;
 | 
						|
 | 
						|
	if (flags & DMU_READ_NO_PREFETCH)
 | 
						|
		db_flags |= DB_RF_NOPREFETCH;
 | 
						|
	if (flags & DMU_READ_NO_DECRYPT)
 | 
						|
		db_flags |= DB_RF_NO_DECRYPT;
 | 
						|
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
	if (dn->dn_bonus == NULL) {
 | 
						|
		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
 | 
						|
			rw_exit(&dn->dn_struct_rwlock);
 | 
						|
			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 | 
						|
		}
 | 
						|
		if (dn->dn_bonus == NULL)
 | 
						|
			dbuf_create_bonus(dn);
 | 
						|
	}
 | 
						|
	db = dn->dn_bonus;
 | 
						|
 | 
						|
	/* as long as the bonus buf is held, the dnode will be held */
 | 
						|
	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
 | 
						|
		VERIFY(dnode_add_ref(dn, db));
 | 
						|
		atomic_inc_32(&dn->dn_dbufs_count);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
 | 
						|
	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
 | 
						|
	 * a dnode hold for every dbuf.
 | 
						|
	 */
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
 | 
						|
	error = dbuf_read(db, NULL, db_flags);
 | 
						|
	if (error) {
 | 
						|
		dnode_evict_bonus(dn);
 | 
						|
		dbuf_rele(db, tag);
 | 
						|
		*dbp = NULL;
 | 
						|
		return (error);
 | 
						|
	}
 | 
						|
 | 
						|
	*dbp = &db->db;
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	int error;
 | 
						|
 | 
						|
	error = dnode_hold(os, object, FTAG, &dn);
 | 
						|
	if (error)
 | 
						|
		return (error);
 | 
						|
 | 
						|
	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * returns ENOENT, EIO, or 0.
 | 
						|
 *
 | 
						|
 * This interface will allocate a blank spill dbuf when a spill blk
 | 
						|
 * doesn't already exist on the dnode.
 | 
						|
 *
 | 
						|
 * if you only want to find an already existing spill db, then
 | 
						|
 * dmu_spill_hold_existing() should be used.
 | 
						|
 */
 | 
						|
int
 | 
						|
dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
 | 
						|
    dmu_buf_t **dbp)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db = NULL;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if ((flags & DB_RF_HAVESTRUCT) == 0)
 | 
						|
		rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
 | 
						|
	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
 | 
						|
 | 
						|
	if ((flags & DB_RF_HAVESTRUCT) == 0)
 | 
						|
		rw_exit(&dn->dn_struct_rwlock);
 | 
						|
 | 
						|
	if (db == NULL) {
 | 
						|
		*dbp = NULL;
 | 
						|
		return (SET_ERROR(EIO));
 | 
						|
	}
 | 
						|
	err = dbuf_read(db, NULL, flags);
 | 
						|
	if (err == 0)
 | 
						|
		*dbp = &db->db;
 | 
						|
	else {
 | 
						|
		dbuf_rele(db, tag);
 | 
						|
		*dbp = NULL;
 | 
						|
	}
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
 | 
						|
	dnode_t *dn;
 | 
						|
	int err;
 | 
						|
 | 
						|
	DB_DNODE_ENTER(db);
 | 
						|
	dn = DB_DNODE(db);
 | 
						|
 | 
						|
	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
 | 
						|
		err = SET_ERROR(EINVAL);
 | 
						|
	} else {
 | 
						|
		rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
 | 
						|
		if (!dn->dn_have_spill) {
 | 
						|
			err = SET_ERROR(ENOENT);
 | 
						|
		} else {
 | 
						|
			err = dmu_spill_hold_by_dnode(dn,
 | 
						|
			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
 | 
						|
		}
 | 
						|
 | 
						|
		rw_exit(&dn->dn_struct_rwlock);
 | 
						|
	}
 | 
						|
 | 
						|
	DB_DNODE_EXIT(db);
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
 | 
						|
    dmu_buf_t **dbp)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
 | 
						|
	int err;
 | 
						|
	uint32_t db_flags = DB_RF_CANFAIL;
 | 
						|
 | 
						|
	if (flags & DMU_READ_NO_DECRYPT)
 | 
						|
		db_flags |= DB_RF_NO_DECRYPT;
 | 
						|
 | 
						|
	DB_DNODE_ENTER(db);
 | 
						|
	err = dmu_spill_hold_by_dnode(DB_DNODE(db), db_flags, tag, dbp);
 | 
						|
	DB_DNODE_EXIT(db);
 | 
						|
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
 | 
						|
 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
 | 
						|
 * and can induce severe lock contention when writing to several files
 | 
						|
 * whose dnodes are in the same block.
 | 
						|
 */
 | 
						|
int
 | 
						|
dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
 | 
						|
    boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
 | 
						|
    uint32_t flags)
 | 
						|
{
 | 
						|
	dmu_buf_t **dbp;
 | 
						|
	zstream_t *zs = NULL;
 | 
						|
	uint64_t blkid, nblks, i;
 | 
						|
	uint32_t dbuf_flags;
 | 
						|
	int err;
 | 
						|
	zio_t *zio = NULL;
 | 
						|
	boolean_t missed = B_FALSE;
 | 
						|
 | 
						|
	ASSERT(!read || length <= DMU_MAX_ACCESS);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Note: We directly notify the prefetch code of this read, so that
 | 
						|
	 * we can tell it about the multi-block read.  dbuf_read() only knows
 | 
						|
	 * about the one block it is accessing.
 | 
						|
	 */
 | 
						|
	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
 | 
						|
	    DB_RF_NOPREFETCH;
 | 
						|
 | 
						|
	if ((flags & DMU_READ_NO_DECRYPT) != 0)
 | 
						|
		dbuf_flags |= DB_RF_NO_DECRYPT;
 | 
						|
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
	if (dn->dn_datablkshift) {
 | 
						|
		int blkshift = dn->dn_datablkshift;
 | 
						|
		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
 | 
						|
		    P2ALIGN_TYPED(offset, 1ULL << blkshift, uint64_t))
 | 
						|
		    >> blkshift;
 | 
						|
	} else {
 | 
						|
		if (offset + length > dn->dn_datablksz) {
 | 
						|
			zfs_panic_recover("zfs: accessing past end of object "
 | 
						|
			    "%llx/%llx (size=%u access=%llu+%llu)",
 | 
						|
			    (longlong_t)dn->dn_objset->
 | 
						|
			    os_dsl_dataset->ds_object,
 | 
						|
			    (longlong_t)dn->dn_object, dn->dn_datablksz,
 | 
						|
			    (longlong_t)offset, (longlong_t)length);
 | 
						|
			rw_exit(&dn->dn_struct_rwlock);
 | 
						|
			return (SET_ERROR(EIO));
 | 
						|
		}
 | 
						|
		nblks = 1;
 | 
						|
	}
 | 
						|
	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
 | 
						|
 | 
						|
	if (read)
 | 
						|
		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
 | 
						|
		    ZIO_FLAG_CANFAIL);
 | 
						|
	blkid = dbuf_whichblock(dn, 0, offset);
 | 
						|
	if ((flags & DMU_READ_NO_PREFETCH) == 0) {
 | 
						|
		/*
 | 
						|
		 * Prepare the zfetch before initiating the demand reads, so
 | 
						|
		 * that if multiple threads block on same indirect block, we
 | 
						|
		 * base predictions on the original less racy request order.
 | 
						|
		 */
 | 
						|
		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read,
 | 
						|
		    B_TRUE);
 | 
						|
	}
 | 
						|
	for (i = 0; i < nblks; i++) {
 | 
						|
		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
 | 
						|
		if (db == NULL) {
 | 
						|
			if (zs) {
 | 
						|
				dmu_zfetch_run(&dn->dn_zfetch, zs, missed,
 | 
						|
				    B_TRUE);
 | 
						|
			}
 | 
						|
			rw_exit(&dn->dn_struct_rwlock);
 | 
						|
			dmu_buf_rele_array(dbp, nblks, tag);
 | 
						|
			if (read)
 | 
						|
				zio_nowait(zio);
 | 
						|
			return (SET_ERROR(EIO));
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Initiate async demand data read.
 | 
						|
		 * We check the db_state after calling dbuf_read() because
 | 
						|
		 * (1) dbuf_read() may change the state to CACHED due to a
 | 
						|
		 * hit in the ARC, and (2) on a cache miss, a child will
 | 
						|
		 * have been added to "zio" but not yet completed, so the
 | 
						|
		 * state will not yet be CACHED.
 | 
						|
		 */
 | 
						|
		if (read) {
 | 
						|
			if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
 | 
						|
			    offset + length < db->db.db_offset +
 | 
						|
			    db->db.db_size) {
 | 
						|
				if (offset <= db->db.db_offset)
 | 
						|
					dbuf_flags |= DB_RF_PARTIAL_FIRST;
 | 
						|
				else
 | 
						|
					dbuf_flags |= DB_RF_PARTIAL_MORE;
 | 
						|
			}
 | 
						|
			(void) dbuf_read(db, zio, dbuf_flags);
 | 
						|
			if (db->db_state != DB_CACHED)
 | 
						|
				missed = B_TRUE;
 | 
						|
		}
 | 
						|
		dbp[i] = &db->db;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!read)
 | 
						|
		zfs_racct_write(length, nblks);
 | 
						|
 | 
						|
	if (zs)
 | 
						|
		dmu_zfetch_run(&dn->dn_zfetch, zs, missed, B_TRUE);
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
 | 
						|
	if (read) {
 | 
						|
		/* wait for async read i/o */
 | 
						|
		err = zio_wait(zio);
 | 
						|
		if (err) {
 | 
						|
			dmu_buf_rele_array(dbp, nblks, tag);
 | 
						|
			return (err);
 | 
						|
		}
 | 
						|
 | 
						|
		/* wait for other io to complete */
 | 
						|
		for (i = 0; i < nblks; i++) {
 | 
						|
			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
 | 
						|
			mutex_enter(&db->db_mtx);
 | 
						|
			while (db->db_state == DB_READ ||
 | 
						|
			    db->db_state == DB_FILL)
 | 
						|
				cv_wait(&db->db_changed, &db->db_mtx);
 | 
						|
			if (db->db_state == DB_UNCACHED)
 | 
						|
				err = SET_ERROR(EIO);
 | 
						|
			mutex_exit(&db->db_mtx);
 | 
						|
			if (err) {
 | 
						|
				dmu_buf_rele_array(dbp, nblks, tag);
 | 
						|
				return (err);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	*numbufsp = nblks;
 | 
						|
	*dbpp = dbp;
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
 | 
						|
    uint64_t length, int read, const void *tag, int *numbufsp,
 | 
						|
    dmu_buf_t ***dbpp)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = dnode_hold(os, object, FTAG, &dn);
 | 
						|
	if (err)
 | 
						|
		return (err);
 | 
						|
 | 
						|
	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
 | 
						|
	    numbufsp, dbpp, DMU_READ_PREFETCH);
 | 
						|
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
 | 
						|
    uint64_t length, boolean_t read, const void *tag, int *numbufsp,
 | 
						|
    dmu_buf_t ***dbpp)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 | 
						|
	int err;
 | 
						|
 | 
						|
	DB_DNODE_ENTER(db);
 | 
						|
	err = dmu_buf_hold_array_by_dnode(DB_DNODE(db), offset, length, read,
 | 
						|
	    tag, numbufsp, dbpp, DMU_READ_PREFETCH);
 | 
						|
	DB_DNODE_EXIT(db);
 | 
						|
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
 | 
						|
 | 
						|
	if (numbufs == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	for (i = 0; i < numbufs; i++) {
 | 
						|
		if (dbp[i])
 | 
						|
			dbuf_rele(dbp[i], tag);
 | 
						|
	}
 | 
						|
 | 
						|
	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Issue prefetch I/Os for the given blocks.  If level is greater than 0, the
 | 
						|
 * indirect blocks prefetched will be those that point to the blocks containing
 | 
						|
 * the data starting at offset, and continuing to offset + len.  If the range
 | 
						|
 * is too long, prefetch the first dmu_prefetch_max bytes as requested, while
 | 
						|
 * for the rest only a higher level, also fitting within dmu_prefetch_max.  It
 | 
						|
 * should primarily help random reads, since for long sequential reads there is
 | 
						|
 * a speculative prefetcher.
 | 
						|
 *
 | 
						|
 * Note that if the indirect blocks above the blocks being prefetched are not
 | 
						|
 * in cache, they will be asynchronously read in.  Dnode read by dnode_hold()
 | 
						|
 * is currently synchronous.
 | 
						|
 */
 | 
						|
void
 | 
						|
dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
 | 
						|
    uint64_t len, zio_priority_t pri)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
 | 
						|
	if (dmu_prefetch_max == 0 || len == 0) {
 | 
						|
		dmu_prefetch_dnode(os, object, pri);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dnode_hold(os, object, FTAG, &dn) != 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	dmu_prefetch_by_dnode(dn, level, offset, len, pri);
 | 
						|
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset,
 | 
						|
    uint64_t len, zio_priority_t pri)
 | 
						|
{
 | 
						|
	int64_t level2 = level;
 | 
						|
	uint64_t start, end, start2, end2;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Depending on len we may do two prefetches: blocks [start, end) at
 | 
						|
	 * level, and following blocks [start2, end2) at higher level2.
 | 
						|
	 */
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
	if (dn->dn_datablkshift != 0) {
 | 
						|
		/*
 | 
						|
		 * The object has multiple blocks.  Calculate the full range
 | 
						|
		 * of blocks [start, end2) and then split it into two parts,
 | 
						|
		 * so that the first [start, end) fits into dmu_prefetch_max.
 | 
						|
		 */
 | 
						|
		start = dbuf_whichblock(dn, level, offset);
 | 
						|
		end2 = dbuf_whichblock(dn, level, offset + len - 1) + 1;
 | 
						|
		uint8_t ibs = dn->dn_indblkshift;
 | 
						|
		uint8_t bs = (level == 0) ? dn->dn_datablkshift : ibs;
 | 
						|
		uint_t limit = P2ROUNDUP(dmu_prefetch_max, 1 << bs) >> bs;
 | 
						|
		start2 = end = MIN(end2, start + limit);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Find level2 where [start2, end2) fits into dmu_prefetch_max.
 | 
						|
		 */
 | 
						|
		uint8_t ibps = ibs - SPA_BLKPTRSHIFT;
 | 
						|
		limit = P2ROUNDUP(dmu_prefetch_max, 1 << ibs) >> ibs;
 | 
						|
		do {
 | 
						|
			level2++;
 | 
						|
			start2 = P2ROUNDUP(start2, 1 << ibps) >> ibps;
 | 
						|
			end2 = P2ROUNDUP(end2, 1 << ibps) >> ibps;
 | 
						|
		} while (end2 - start2 > limit);
 | 
						|
	} else {
 | 
						|
		/* There is only one block.  Prefetch it or nothing. */
 | 
						|
		start = start2 = end2 = 0;
 | 
						|
		end = start + (level == 0 && offset < dn->dn_datablksz);
 | 
						|
	}
 | 
						|
 | 
						|
	for (uint64_t i = start; i < end; i++)
 | 
						|
		dbuf_prefetch(dn, level, i, pri, 0);
 | 
						|
	for (uint64_t i = start2; i < end2; i++)
 | 
						|
		dbuf_prefetch(dn, level2, i, pri, 0);
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
}
 | 
						|
 | 
						|
typedef struct {
 | 
						|
	kmutex_t	dpa_lock;
 | 
						|
	kcondvar_t	dpa_cv;
 | 
						|
	uint64_t	dpa_pending_io;
 | 
						|
} dmu_prefetch_arg_t;
 | 
						|
 | 
						|
static void
 | 
						|
dmu_prefetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t issued)
 | 
						|
{
 | 
						|
	(void) level; (void) blkid; (void)issued;
 | 
						|
	dmu_prefetch_arg_t *dpa = arg;
 | 
						|
 | 
						|
	ASSERT0(level);
 | 
						|
 | 
						|
	mutex_enter(&dpa->dpa_lock);
 | 
						|
	ASSERT3U(dpa->dpa_pending_io, >, 0);
 | 
						|
	if (--dpa->dpa_pending_io == 0)
 | 
						|
		cv_broadcast(&dpa->dpa_cv);
 | 
						|
	mutex_exit(&dpa->dpa_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dmu_prefetch_wait_by_dnode(dnode_t *dn, uint64_t offset, uint64_t len)
 | 
						|
{
 | 
						|
	dmu_prefetch_arg_t dpa;
 | 
						|
 | 
						|
	mutex_init(&dpa.dpa_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	cv_init(&dpa.dpa_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
 | 
						|
	uint64_t start = dbuf_whichblock(dn, 0, offset);
 | 
						|
	uint64_t end = dbuf_whichblock(dn, 0, offset + len - 1) + 1;
 | 
						|
	dpa.dpa_pending_io = end - start;
 | 
						|
 | 
						|
	for (uint64_t blk = start; blk < end; blk++) {
 | 
						|
		(void) dbuf_prefetch_impl(dn, 0, blk, ZIO_PRIORITY_ASYNC_READ,
 | 
						|
		    0, dmu_prefetch_done, &dpa);
 | 
						|
	}
 | 
						|
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
 | 
						|
	/* wait for prefetch L0 reads to finish */
 | 
						|
	mutex_enter(&dpa.dpa_lock);
 | 
						|
	while (dpa.dpa_pending_io > 0) {
 | 
						|
		cv_wait(&dpa.dpa_cv, &dpa.dpa_lock);
 | 
						|
 | 
						|
	}
 | 
						|
	mutex_exit(&dpa.dpa_lock);
 | 
						|
 | 
						|
	mutex_destroy(&dpa.dpa_lock);
 | 
						|
	cv_destroy(&dpa.dpa_cv);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Issue prefetch I/Os for the given L0 block range and wait for the I/O
 | 
						|
 * to complete. This does not enforce dmu_prefetch_max and will prefetch
 | 
						|
 * the entire range. The blocks are read from disk into the ARC but no
 | 
						|
 * decompression occurs (i.e., the dbuf cache is not required).
 | 
						|
 */
 | 
						|
int
 | 
						|
dmu_prefetch_wait(objset_t *os, uint64_t object, uint64_t offset, uint64_t size)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	err = dnode_hold(os, object, FTAG, &dn);
 | 
						|
	if (err != 0)
 | 
						|
		return (err);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Chunk the requests (16 indirects worth) so that we can be interrupted
 | 
						|
	 */
 | 
						|
	uint64_t chunksize;
 | 
						|
	if (dn->dn_indblkshift) {
 | 
						|
		uint64_t nbps = bp_span_in_blocks(dn->dn_indblkshift, 1);
 | 
						|
		chunksize = (nbps * 16) << dn->dn_datablkshift;
 | 
						|
	} else {
 | 
						|
		chunksize = dn->dn_datablksz;
 | 
						|
	}
 | 
						|
 | 
						|
	while (size > 0) {
 | 
						|
		uint64_t mylen = MIN(size, chunksize);
 | 
						|
 | 
						|
		dmu_prefetch_wait_by_dnode(dn, offset, mylen);
 | 
						|
 | 
						|
		offset += mylen;
 | 
						|
		size -= mylen;
 | 
						|
 | 
						|
		if (issig()) {
 | 
						|
			err = SET_ERROR(EINTR);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Issue prefetch I/Os for the given object's dnode.
 | 
						|
 */
 | 
						|
void
 | 
						|
dmu_prefetch_dnode(objset_t *os, uint64_t object, zio_priority_t pri)
 | 
						|
{
 | 
						|
	if (object == 0 || object >= DN_MAX_OBJECT)
 | 
						|
		return;
 | 
						|
 | 
						|
	dnode_t *dn = DMU_META_DNODE(os);
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
	uint64_t blkid = dbuf_whichblock(dn, 0, object * sizeof (dnode_phys_t));
 | 
						|
	dbuf_prefetch(dn, 0, blkid, pri, 0);
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get the next "chunk" of file data to free.  We traverse the file from
 | 
						|
 * the end so that the file gets shorter over time (if we crashes in the
 | 
						|
 * middle, this will leave us in a better state).  We find allocated file
 | 
						|
 * data by simply searching the allocated level 1 indirects.
 | 
						|
 *
 | 
						|
 * On input, *start should be the first offset that does not need to be
 | 
						|
 * freed (e.g. "offset + length").  On return, *start will be the first
 | 
						|
 * offset that should be freed and l1blks is set to the number of level 1
 | 
						|
 * indirect blocks found within the chunk.
 | 
						|
 */
 | 
						|
static int
 | 
						|
get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
 | 
						|
{
 | 
						|
	uint64_t blks;
 | 
						|
	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
 | 
						|
	/* bytes of data covered by a level-1 indirect block */
 | 
						|
	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
 | 
						|
	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
 | 
						|
 | 
						|
	ASSERT3U(minimum, <=, *start);
 | 
						|
 | 
						|
	/* dn_nlevels == 1 means we don't have any L1 blocks */
 | 
						|
	if (dn->dn_nlevels <= 1) {
 | 
						|
		*l1blks = 0;
 | 
						|
		*start = minimum;
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check if we can free the entire range assuming that all of the
 | 
						|
	 * L1 blocks in this range have data. If we can, we use this
 | 
						|
	 * worst case value as an estimate so we can avoid having to look
 | 
						|
	 * at the object's actual data.
 | 
						|
	 */
 | 
						|
	uint64_t total_l1blks =
 | 
						|
	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
 | 
						|
	    iblkrange;
 | 
						|
	if (total_l1blks <= maxblks) {
 | 
						|
		*l1blks = total_l1blks;
 | 
						|
		*start = minimum;
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
	ASSERT(ISP2(iblkrange));
 | 
						|
 | 
						|
	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
 | 
						|
		int err;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * dnode_next_offset(BACKWARDS) will find an allocated L1
 | 
						|
		 * indirect block at or before the input offset.  We must
 | 
						|
		 * decrement *start so that it is at the end of the region
 | 
						|
		 * to search.
 | 
						|
		 */
 | 
						|
		(*start)--;
 | 
						|
 | 
						|
		err = dnode_next_offset(dn,
 | 
						|
		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
 | 
						|
 | 
						|
		/* if there are no indirect blocks before start, we are done */
 | 
						|
		if (err == ESRCH) {
 | 
						|
			*start = minimum;
 | 
						|
			break;
 | 
						|
		} else if (err != 0) {
 | 
						|
			*l1blks = blks;
 | 
						|
			return (err);
 | 
						|
		}
 | 
						|
 | 
						|
		/* set start to the beginning of this L1 indirect */
 | 
						|
		*start = P2ALIGN_TYPED(*start, iblkrange, uint64_t);
 | 
						|
	}
 | 
						|
	if (*start < minimum)
 | 
						|
		*start = minimum;
 | 
						|
	*l1blks = blks;
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
 | 
						|
 * otherwise return false.
 | 
						|
 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
 | 
						|
 */
 | 
						|
static boolean_t
 | 
						|
dmu_objset_zfs_unmounting(objset_t *os)
 | 
						|
{
 | 
						|
#ifdef _KERNEL
 | 
						|
	if (dmu_objset_type(os) == DMU_OST_ZFS)
 | 
						|
		return (zfs_get_vfs_flag_unmounted(os));
 | 
						|
#else
 | 
						|
	(void) os;
 | 
						|
#endif
 | 
						|
	return (B_FALSE);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
 | 
						|
    uint64_t length)
 | 
						|
{
 | 
						|
	uint64_t object_size;
 | 
						|
	int err;
 | 
						|
	uint64_t dirty_frees_threshold;
 | 
						|
	dsl_pool_t *dp = dmu_objset_pool(os);
 | 
						|
 | 
						|
	if (dn == NULL)
 | 
						|
		return (SET_ERROR(EINVAL));
 | 
						|
 | 
						|
	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
 | 
						|
	if (offset >= object_size)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	if (zfs_per_txg_dirty_frees_percent <= 100)
 | 
						|
		dirty_frees_threshold =
 | 
						|
		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
 | 
						|
	else
 | 
						|
		dirty_frees_threshold = zfs_dirty_data_max / 20;
 | 
						|
 | 
						|
	if (length == DMU_OBJECT_END || offset + length > object_size)
 | 
						|
		length = object_size - offset;
 | 
						|
 | 
						|
	while (length != 0) {
 | 
						|
		uint64_t chunk_end, chunk_begin, chunk_len;
 | 
						|
		uint64_t l1blks;
 | 
						|
		dmu_tx_t *tx;
 | 
						|
 | 
						|
		if (dmu_objset_zfs_unmounting(dn->dn_objset))
 | 
						|
			return (SET_ERROR(EINTR));
 | 
						|
 | 
						|
		chunk_end = chunk_begin = offset + length;
 | 
						|
 | 
						|
		/* move chunk_begin backwards to the beginning of this chunk */
 | 
						|
		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
 | 
						|
		if (err)
 | 
						|
			return (err);
 | 
						|
		ASSERT3U(chunk_begin, >=, offset);
 | 
						|
		ASSERT3U(chunk_begin, <=, chunk_end);
 | 
						|
 | 
						|
		chunk_len = chunk_end - chunk_begin;
 | 
						|
 | 
						|
		tx = dmu_tx_create(os);
 | 
						|
		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Mark this transaction as typically resulting in a net
 | 
						|
		 * reduction in space used.
 | 
						|
		 */
 | 
						|
		dmu_tx_mark_netfree(tx);
 | 
						|
		err = dmu_tx_assign(tx, TXG_WAIT);
 | 
						|
		if (err) {
 | 
						|
			dmu_tx_abort(tx);
 | 
						|
			return (err);
 | 
						|
		}
 | 
						|
 | 
						|
		uint64_t txg = dmu_tx_get_txg(tx);
 | 
						|
 | 
						|
		mutex_enter(&dp->dp_lock);
 | 
						|
		uint64_t long_free_dirty =
 | 
						|
		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
 | 
						|
		mutex_exit(&dp->dp_lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * To avoid filling up a TXG with just frees, wait for
 | 
						|
		 * the next TXG to open before freeing more chunks if
 | 
						|
		 * we have reached the threshold of frees.
 | 
						|
		 */
 | 
						|
		if (dirty_frees_threshold != 0 &&
 | 
						|
		    long_free_dirty >= dirty_frees_threshold) {
 | 
						|
			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
 | 
						|
			dmu_tx_commit(tx);
 | 
						|
			txg_wait_open(dp, 0, B_TRUE);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * In order to prevent unnecessary write throttling, for each
 | 
						|
		 * TXG, we track the cumulative size of L1 blocks being dirtied
 | 
						|
		 * in dnode_free_range() below. We compare this number to a
 | 
						|
		 * tunable threshold, past which we prevent new L1 dirty freeing
 | 
						|
		 * blocks from being added into the open TXG. See
 | 
						|
		 * dmu_free_long_range_impl() for details. The threshold
 | 
						|
		 * prevents write throttle activation due to dirty freeing L1
 | 
						|
		 * blocks taking up a large percentage of zfs_dirty_data_max.
 | 
						|
		 */
 | 
						|
		mutex_enter(&dp->dp_lock);
 | 
						|
		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
 | 
						|
		    l1blks << dn->dn_indblkshift;
 | 
						|
		mutex_exit(&dp->dp_lock);
 | 
						|
		DTRACE_PROBE3(free__long__range,
 | 
						|
		    uint64_t, long_free_dirty, uint64_t, chunk_len,
 | 
						|
		    uint64_t, txg);
 | 
						|
		dnode_free_range(dn, chunk_begin, chunk_len, tx);
 | 
						|
 | 
						|
		dmu_tx_commit(tx);
 | 
						|
 | 
						|
		length -= chunk_len;
 | 
						|
	}
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_free_long_range(objset_t *os, uint64_t object,
 | 
						|
    uint64_t offset, uint64_t length)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = dnode_hold(os, object, FTAG, &dn);
 | 
						|
	if (err != 0)
 | 
						|
		return (err);
 | 
						|
	err = dmu_free_long_range_impl(os, dn, offset, length);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It is important to zero out the maxblkid when freeing the entire
 | 
						|
	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
 | 
						|
	 * will take the fast path, and (b) dnode_reallocate() can verify
 | 
						|
	 * that the entire file has been freed.
 | 
						|
	 */
 | 
						|
	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
 | 
						|
		dn->dn_maxblkid = 0;
 | 
						|
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_free_long_object(objset_t *os, uint64_t object)
 | 
						|
{
 | 
						|
	dmu_tx_t *tx;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
 | 
						|
	if (err != 0)
 | 
						|
		return (err);
 | 
						|
 | 
						|
	tx = dmu_tx_create(os);
 | 
						|
	dmu_tx_hold_bonus(tx, object);
 | 
						|
	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
 | 
						|
	dmu_tx_mark_netfree(tx);
 | 
						|
	err = dmu_tx_assign(tx, TXG_WAIT);
 | 
						|
	if (err == 0) {
 | 
						|
		err = dmu_object_free(os, object, tx);
 | 
						|
		dmu_tx_commit(tx);
 | 
						|
	} else {
 | 
						|
		dmu_tx_abort(tx);
 | 
						|
	}
 | 
						|
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
 | 
						|
    uint64_t size, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	int err = dnode_hold(os, object, FTAG, &dn);
 | 
						|
	if (err)
 | 
						|
		return (err);
 | 
						|
	ASSERT(offset < UINT64_MAX);
 | 
						|
	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
 | 
						|
	dnode_free_range(dn, offset, size, tx);
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
 | 
						|
    void *buf, uint32_t flags)
 | 
						|
{
 | 
						|
	dmu_buf_t **dbp;
 | 
						|
	int numbufs, err = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Deal with odd block sizes, where there can't be data past the first
 | 
						|
	 * block.  If we ever do the tail block optimization, we will need to
 | 
						|
	 * handle that here as well.
 | 
						|
	 */
 | 
						|
	if (dn->dn_maxblkid == 0) {
 | 
						|
		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
 | 
						|
		    MIN(size, dn->dn_datablksz - offset);
 | 
						|
		memset((char *)buf + newsz, 0, size - newsz);
 | 
						|
		size = newsz;
 | 
						|
	}
 | 
						|
 | 
						|
	while (size > 0) {
 | 
						|
		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
 | 
						|
		int i;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * NB: we could do this block-at-a-time, but it's nice
 | 
						|
		 * to be reading in parallel.
 | 
						|
		 */
 | 
						|
		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
 | 
						|
		    TRUE, FTAG, &numbufs, &dbp, flags);
 | 
						|
		if (err)
 | 
						|
			break;
 | 
						|
 | 
						|
		for (i = 0; i < numbufs; i++) {
 | 
						|
			uint64_t tocpy;
 | 
						|
			int64_t bufoff;
 | 
						|
			dmu_buf_t *db = dbp[i];
 | 
						|
 | 
						|
			ASSERT(size > 0);
 | 
						|
 | 
						|
			bufoff = offset - db->db_offset;
 | 
						|
			tocpy = MIN(db->db_size - bufoff, size);
 | 
						|
 | 
						|
			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
 | 
						|
 | 
						|
			offset += tocpy;
 | 
						|
			size -= tocpy;
 | 
						|
			buf = (char *)buf + tocpy;
 | 
						|
		}
 | 
						|
		dmu_buf_rele_array(dbp, numbufs, FTAG);
 | 
						|
	}
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 | 
						|
    void *buf, uint32_t flags)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = dnode_hold(os, object, FTAG, &dn);
 | 
						|
	if (err != 0)
 | 
						|
		return (err);
 | 
						|
 | 
						|
	err = dmu_read_impl(dn, offset, size, buf, flags);
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
 | 
						|
    uint32_t flags)
 | 
						|
{
 | 
						|
	return (dmu_read_impl(dn, offset, size, buf, flags));
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
 | 
						|
    const void *buf, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < numbufs; i++) {
 | 
						|
		uint64_t tocpy;
 | 
						|
		int64_t bufoff;
 | 
						|
		dmu_buf_t *db = dbp[i];
 | 
						|
 | 
						|
		ASSERT(size > 0);
 | 
						|
 | 
						|
		bufoff = offset - db->db_offset;
 | 
						|
		tocpy = MIN(db->db_size - bufoff, size);
 | 
						|
 | 
						|
		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
 | 
						|
 | 
						|
		if (tocpy == db->db_size)
 | 
						|
			dmu_buf_will_fill(db, tx, B_FALSE);
 | 
						|
		else
 | 
						|
			dmu_buf_will_dirty(db, tx);
 | 
						|
 | 
						|
		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
 | 
						|
 | 
						|
		if (tocpy == db->db_size)
 | 
						|
			dmu_buf_fill_done(db, tx, B_FALSE);
 | 
						|
 | 
						|
		offset += tocpy;
 | 
						|
		size -= tocpy;
 | 
						|
		buf = (char *)buf + tocpy;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 | 
						|
    const void *buf, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dmu_buf_t **dbp;
 | 
						|
	int numbufs;
 | 
						|
 | 
						|
	if (size == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
 | 
						|
	    FALSE, FTAG, &numbufs, &dbp));
 | 
						|
	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
 | 
						|
	dmu_buf_rele_array(dbp, numbufs, FTAG);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note: Lustre is an external consumer of this interface.
 | 
						|
 */
 | 
						|
void
 | 
						|
dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
 | 
						|
    const void *buf, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dmu_buf_t **dbp;
 | 
						|
	int numbufs;
 | 
						|
 | 
						|
	if (size == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
 | 
						|
	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
 | 
						|
	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
 | 
						|
	dmu_buf_rele_array(dbp, numbufs, FTAG);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 | 
						|
    dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dmu_buf_t **dbp;
 | 
						|
	int numbufs, i;
 | 
						|
 | 
						|
	if (size == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
 | 
						|
	    FALSE, FTAG, &numbufs, &dbp));
 | 
						|
 | 
						|
	for (i = 0; i < numbufs; i++) {
 | 
						|
		dmu_buf_t *db = dbp[i];
 | 
						|
 | 
						|
		dmu_buf_will_not_fill(db, tx);
 | 
						|
	}
 | 
						|
	dmu_buf_rele_array(dbp, numbufs, FTAG);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
 | 
						|
    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
 | 
						|
    int compressed_size, int byteorder, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dmu_buf_t *db;
 | 
						|
 | 
						|
	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
 | 
						|
	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
 | 
						|
	VERIFY0(dmu_buf_hold_noread(os, object, offset,
 | 
						|
	    FTAG, &db));
 | 
						|
 | 
						|
	dmu_buf_write_embedded(db,
 | 
						|
	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
 | 
						|
	    uncompressed_size, compressed_size, byteorder, tx);
 | 
						|
 | 
						|
	dmu_buf_rele(db, FTAG);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 | 
						|
    dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	int numbufs, i;
 | 
						|
	dmu_buf_t **dbp;
 | 
						|
 | 
						|
	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
 | 
						|
	    &numbufs, &dbp));
 | 
						|
	for (i = 0; i < numbufs; i++)
 | 
						|
		dmu_buf_redact(dbp[i], tx);
 | 
						|
	dmu_buf_rele_array(dbp, numbufs, FTAG);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef _KERNEL
 | 
						|
int
 | 
						|
dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
 | 
						|
{
 | 
						|
	dmu_buf_t **dbp;
 | 
						|
	int numbufs, i, err;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * NB: we could do this block-at-a-time, but it's nice
 | 
						|
	 * to be reading in parallel.
 | 
						|
	 */
 | 
						|
	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
 | 
						|
	    TRUE, FTAG, &numbufs, &dbp, 0);
 | 
						|
	if (err)
 | 
						|
		return (err);
 | 
						|
 | 
						|
	for (i = 0; i < numbufs; i++) {
 | 
						|
		uint64_t tocpy;
 | 
						|
		int64_t bufoff;
 | 
						|
		dmu_buf_t *db = dbp[i];
 | 
						|
 | 
						|
		ASSERT(size > 0);
 | 
						|
 | 
						|
		bufoff = zfs_uio_offset(uio) - db->db_offset;
 | 
						|
		tocpy = MIN(db->db_size - bufoff, size);
 | 
						|
 | 
						|
		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
 | 
						|
		    UIO_READ, uio);
 | 
						|
 | 
						|
		if (err)
 | 
						|
			break;
 | 
						|
 | 
						|
		size -= tocpy;
 | 
						|
	}
 | 
						|
	dmu_buf_rele_array(dbp, numbufs, FTAG);
 | 
						|
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read 'size' bytes into the uio buffer.
 | 
						|
 * From object zdb->db_object.
 | 
						|
 * Starting at zfs_uio_offset(uio).
 | 
						|
 *
 | 
						|
 * If the caller already has a dbuf in the target object
 | 
						|
 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
 | 
						|
 * because we don't have to find the dnode_t for the object.
 | 
						|
 */
 | 
						|
int
 | 
						|
dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (size == 0)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	DB_DNODE_ENTER(db);
 | 
						|
	err = dmu_read_uio_dnode(DB_DNODE(db), uio, size);
 | 
						|
	DB_DNODE_EXIT(db);
 | 
						|
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read 'size' bytes into the uio buffer.
 | 
						|
 * From the specified object
 | 
						|
 * Starting at offset zfs_uio_offset(uio).
 | 
						|
 */
 | 
						|
int
 | 
						|
dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (size == 0)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	err = dnode_hold(os, object, FTAG, &dn);
 | 
						|
	if (err)
 | 
						|
		return (err);
 | 
						|
 | 
						|
	err = dmu_read_uio_dnode(dn, uio, size);
 | 
						|
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dmu_buf_t **dbp;
 | 
						|
	int numbufs;
 | 
						|
	int err = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
 | 
						|
	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
 | 
						|
	if (err)
 | 
						|
		return (err);
 | 
						|
 | 
						|
	for (i = 0; i < numbufs; i++) {
 | 
						|
		uint64_t tocpy;
 | 
						|
		int64_t bufoff;
 | 
						|
		dmu_buf_t *db = dbp[i];
 | 
						|
 | 
						|
		ASSERT(size > 0);
 | 
						|
 | 
						|
		offset_t off = zfs_uio_offset(uio);
 | 
						|
		bufoff = off - db->db_offset;
 | 
						|
		tocpy = MIN(db->db_size - bufoff, size);
 | 
						|
 | 
						|
		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
 | 
						|
 | 
						|
		if (tocpy == db->db_size)
 | 
						|
			dmu_buf_will_fill(db, tx, B_TRUE);
 | 
						|
		else
 | 
						|
			dmu_buf_will_dirty(db, tx);
 | 
						|
 | 
						|
		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
 | 
						|
		    tocpy, UIO_WRITE, uio);
 | 
						|
 | 
						|
		if (tocpy == db->db_size && dmu_buf_fill_done(db, tx, err)) {
 | 
						|
			/* The fill was reverted.  Undo any uio progress. */
 | 
						|
			zfs_uio_advance(uio, off - zfs_uio_offset(uio));
 | 
						|
		}
 | 
						|
 | 
						|
		if (err)
 | 
						|
			break;
 | 
						|
 | 
						|
		size -= tocpy;
 | 
						|
	}
 | 
						|
 | 
						|
	dmu_buf_rele_array(dbp, numbufs, FTAG);
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Write 'size' bytes from the uio buffer.
 | 
						|
 * To object zdb->db_object.
 | 
						|
 * Starting at offset zfs_uio_offset(uio).
 | 
						|
 *
 | 
						|
 * If the caller already has a dbuf in the target object
 | 
						|
 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
 | 
						|
 * because we don't have to find the dnode_t for the object.
 | 
						|
 */
 | 
						|
int
 | 
						|
dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
 | 
						|
    dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (size == 0)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	DB_DNODE_ENTER(db);
 | 
						|
	err = dmu_write_uio_dnode(DB_DNODE(db), uio, size, tx);
 | 
						|
	DB_DNODE_EXIT(db);
 | 
						|
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Write 'size' bytes from the uio buffer.
 | 
						|
 * To the specified object.
 | 
						|
 * Starting at offset zfs_uio_offset(uio).
 | 
						|
 */
 | 
						|
int
 | 
						|
dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
 | 
						|
    dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (size == 0)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	err = dnode_hold(os, object, FTAG, &dn);
 | 
						|
	if (err)
 | 
						|
		return (err);
 | 
						|
 | 
						|
	err = dmu_write_uio_dnode(dn, uio, size, tx);
 | 
						|
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
#endif /* _KERNEL */
 | 
						|
 | 
						|
static void
 | 
						|
dmu_cached_bps(spa_t *spa, blkptr_t *bps, uint_t nbps,
 | 
						|
    uint64_t *l1sz, uint64_t *l2sz)
 | 
						|
{
 | 
						|
	int cached_flags;
 | 
						|
 | 
						|
	if (bps == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	for (size_t blk_off = 0; blk_off < nbps; blk_off++) {
 | 
						|
		blkptr_t *bp = &bps[blk_off];
 | 
						|
 | 
						|
		if (BP_IS_HOLE(bp))
 | 
						|
			continue;
 | 
						|
 | 
						|
		cached_flags = arc_cached(spa, bp);
 | 
						|
		if (cached_flags == 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if ((cached_flags & (ARC_CACHED_IN_L1 | ARC_CACHED_IN_L2)) ==
 | 
						|
		    ARC_CACHED_IN_L2)
 | 
						|
			*l2sz += BP_GET_LSIZE(bp);
 | 
						|
		else
 | 
						|
			*l1sz += BP_GET_LSIZE(bp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Estimate DMU object cached size.
 | 
						|
 */
 | 
						|
int
 | 
						|
dmu_object_cached_size(objset_t *os, uint64_t object,
 | 
						|
    uint64_t *l1sz, uint64_t *l2sz)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	dmu_object_info_t doi;
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	*l1sz = *l2sz = 0;
 | 
						|
 | 
						|
	if (dnode_hold(os, object, FTAG, &dn) != 0)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	if (dn->dn_nlevels < 2) {
 | 
						|
		dnode_rele(dn, FTAG);
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
 | 
						|
	dmu_object_info_from_dnode(dn, &doi);
 | 
						|
 | 
						|
	for (uint64_t off = 0; off < doi.doi_max_offset;
 | 
						|
	    off += dmu_prefetch_max) {
 | 
						|
		/* dbuf_read doesn't prefetch L1 blocks. */
 | 
						|
		dmu_prefetch_by_dnode(dn, 1, off,
 | 
						|
		    dmu_prefetch_max, ZIO_PRIORITY_SYNC_READ);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Hold all valid L1 blocks, asking ARC the status of each BP
 | 
						|
	 * contained in each such L1 block.
 | 
						|
	 */
 | 
						|
	uint_t nbps = bp_span_in_blocks(dn->dn_indblkshift, 1);
 | 
						|
	uint64_t l1blks = 1 + (dn->dn_maxblkid / nbps);
 | 
						|
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
	for (uint64_t blk = 0; blk < l1blks; blk++) {
 | 
						|
		dmu_buf_impl_t *db = NULL;
 | 
						|
 | 
						|
		if (issig()) {
 | 
						|
			/*
 | 
						|
			 * On interrupt, get out, and bubble up EINTR
 | 
						|
			 */
 | 
						|
			err = EINTR;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we get an i/o error here, the L1 can't be read,
 | 
						|
		 * and nothing under it could be cached, so we just
 | 
						|
		 * continue. Ignoring the error from dbuf_hold_impl
 | 
						|
		 * or from dbuf_read is then a reasonable choice.
 | 
						|
		 */
 | 
						|
		err = dbuf_hold_impl(dn, 1, blk, B_TRUE, B_FALSE, FTAG, &db);
 | 
						|
		if (err != 0) {
 | 
						|
			/*
 | 
						|
			 * ignore error and continue
 | 
						|
			 */
 | 
						|
			err = 0;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		err = dbuf_read(db, NULL, DB_RF_CANFAIL);
 | 
						|
		if (err == 0) {
 | 
						|
			dmu_cached_bps(dmu_objset_spa(os), db->db.db_data,
 | 
						|
			    nbps, l1sz, l2sz);
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * error may be ignored, and we continue
 | 
						|
		 */
 | 
						|
		err = 0;
 | 
						|
		dbuf_rele(db, FTAG);
 | 
						|
	}
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a loaned anonymous arc buffer.
 | 
						|
 */
 | 
						|
arc_buf_t *
 | 
						|
dmu_request_arcbuf(dmu_buf_t *handle, int size)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
 | 
						|
 | 
						|
	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free a loaned arc buffer.
 | 
						|
 */
 | 
						|
void
 | 
						|
dmu_return_arcbuf(arc_buf_t *buf)
 | 
						|
{
 | 
						|
	arc_return_buf(buf, FTAG);
 | 
						|
	arc_buf_destroy(buf, FTAG);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A "lightweight" write is faster than a regular write (e.g.
 | 
						|
 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
 | 
						|
 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
 | 
						|
 * data can not be read or overwritten until the transaction's txg has been
 | 
						|
 * synced.  This makes it appropriate for workloads that are known to be
 | 
						|
 * (temporarily) write-only, like "zfs receive".
 | 
						|
 *
 | 
						|
 * A single block is written, starting at the specified offset in bytes.  If
 | 
						|
 * the call is successful, it returns 0 and the provided abd has been
 | 
						|
 * consumed (the caller should not free it).
 | 
						|
 */
 | 
						|
int
 | 
						|
dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
 | 
						|
    const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dbuf_dirty_record_t *dr =
 | 
						|
	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
 | 
						|
	if (dr == NULL)
 | 
						|
		return (SET_ERROR(EIO));
 | 
						|
	dr->dt.dll.dr_abd = abd;
 | 
						|
	dr->dt.dll.dr_props = *zp;
 | 
						|
	dr->dt.dll.dr_flags = flags;
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When possible directly assign passed loaned arc buffer to a dbuf.
 | 
						|
 * If this is not possible copy the contents of passed arc buf via
 | 
						|
 * dmu_write().
 | 
						|
 */
 | 
						|
int
 | 
						|
dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
 | 
						|
    dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db;
 | 
						|
	objset_t *os = dn->dn_objset;
 | 
						|
	uint64_t object = dn->dn_object;
 | 
						|
	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
 | 
						|
	uint64_t blkid;
 | 
						|
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
	blkid = dbuf_whichblock(dn, 0, offset);
 | 
						|
	db = dbuf_hold(dn, blkid, FTAG);
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
	if (db == NULL)
 | 
						|
		return (SET_ERROR(EIO));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can only assign if the offset is aligned and the arc buf is the
 | 
						|
	 * same size as the dbuf.
 | 
						|
	 */
 | 
						|
	if (offset == db->db.db_offset && blksz == db->db.db_size) {
 | 
						|
		zfs_racct_write(blksz, 1);
 | 
						|
		dbuf_assign_arcbuf(db, buf, tx);
 | 
						|
		dbuf_rele(db, FTAG);
 | 
						|
	} else {
 | 
						|
		/* compressed bufs must always be assignable to their dbuf */
 | 
						|
		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
 | 
						|
		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
 | 
						|
 | 
						|
		dbuf_rele(db, FTAG);
 | 
						|
		dmu_write(os, object, offset, blksz, buf->b_data, tx);
 | 
						|
		dmu_return_arcbuf(buf);
 | 
						|
	}
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
 | 
						|
    dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
 | 
						|
 | 
						|
	DB_DNODE_ENTER(db);
 | 
						|
	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(db), offset, buf, tx);
 | 
						|
	DB_DNODE_EXIT(db);
 | 
						|
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
typedef struct {
 | 
						|
	dbuf_dirty_record_t	*dsa_dr;
 | 
						|
	dmu_sync_cb_t		*dsa_done;
 | 
						|
	zgd_t			*dsa_zgd;
 | 
						|
	dmu_tx_t		*dsa_tx;
 | 
						|
} dmu_sync_arg_t;
 | 
						|
 | 
						|
static void
 | 
						|
dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
 | 
						|
{
 | 
						|
	(void) buf;
 | 
						|
	dmu_sync_arg_t *dsa = varg;
 | 
						|
	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
 | 
						|
	blkptr_t *bp = zio->io_bp;
 | 
						|
 | 
						|
	if (zio->io_error == 0) {
 | 
						|
		if (BP_IS_HOLE(bp)) {
 | 
						|
			/*
 | 
						|
			 * A block of zeros may compress to a hole, but the
 | 
						|
			 * block size still needs to be known for replay.
 | 
						|
			 */
 | 
						|
			BP_SET_LSIZE(bp, db->db_size);
 | 
						|
		} else if (!BP_IS_EMBEDDED(bp)) {
 | 
						|
			ASSERT(BP_GET_LEVEL(bp) == 0);
 | 
						|
			BP_SET_FILL(bp, 1);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dmu_sync_late_arrival_ready(zio_t *zio)
 | 
						|
{
 | 
						|
	dmu_sync_ready(zio, NULL, zio->io_private);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
 | 
						|
{
 | 
						|
	(void) buf;
 | 
						|
	dmu_sync_arg_t *dsa = varg;
 | 
						|
	dbuf_dirty_record_t *dr = dsa->dsa_dr;
 | 
						|
	dmu_buf_impl_t *db = dr->dr_dbuf;
 | 
						|
	zgd_t *zgd = dsa->dsa_zgd;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Record the vdev(s) backing this blkptr so they can be flushed after
 | 
						|
	 * the writes for the lwb have completed.
 | 
						|
	 */
 | 
						|
	if (zio->io_error == 0) {
 | 
						|
		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_enter(&db->db_mtx);
 | 
						|
	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
 | 
						|
	if (zio->io_error == 0) {
 | 
						|
		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
 | 
						|
		if (dr->dt.dl.dr_nopwrite) {
 | 
						|
			blkptr_t *bp = zio->io_bp;
 | 
						|
			blkptr_t *bp_orig = &zio->io_bp_orig;
 | 
						|
			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
 | 
						|
 | 
						|
			ASSERT(BP_EQUAL(bp, bp_orig));
 | 
						|
			VERIFY(BP_EQUAL(bp, db->db_blkptr));
 | 
						|
			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
 | 
						|
			VERIFY(zio_checksum_table[chksum].ci_flags &
 | 
						|
			    ZCHECKSUM_FLAG_NOPWRITE);
 | 
						|
		}
 | 
						|
		dr->dt.dl.dr_overridden_by = *zio->io_bp;
 | 
						|
		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
 | 
						|
		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Old style holes are filled with all zeros, whereas
 | 
						|
		 * new-style holes maintain their lsize, type, level,
 | 
						|
		 * and birth time (see zio_write_compress). While we
 | 
						|
		 * need to reset the BP_SET_LSIZE() call that happened
 | 
						|
		 * in dmu_sync_ready for old style holes, we do *not*
 | 
						|
		 * want to wipe out the information contained in new
 | 
						|
		 * style holes. Thus, only zero out the block pointer if
 | 
						|
		 * it's an old style hole.
 | 
						|
		 */
 | 
						|
		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
 | 
						|
		    BP_GET_LOGICAL_BIRTH(&dr->dt.dl.dr_overridden_by) == 0)
 | 
						|
			BP_ZERO(&dr->dt.dl.dr_overridden_by);
 | 
						|
	} else {
 | 
						|
		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
 | 
						|
	}
 | 
						|
	cv_broadcast(&db->db_changed);
 | 
						|
	mutex_exit(&db->db_mtx);
 | 
						|
 | 
						|
	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
 | 
						|
 | 
						|
	kmem_free(dsa, sizeof (*dsa));
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dmu_sync_late_arrival_done(zio_t *zio)
 | 
						|
{
 | 
						|
	blkptr_t *bp = zio->io_bp;
 | 
						|
	dmu_sync_arg_t *dsa = zio->io_private;
 | 
						|
	zgd_t *zgd = dsa->dsa_zgd;
 | 
						|
 | 
						|
	if (zio->io_error == 0) {
 | 
						|
		/*
 | 
						|
		 * Record the vdev(s) backing this blkptr so they can be
 | 
						|
		 * flushed after the writes for the lwb have completed.
 | 
						|
		 */
 | 
						|
		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
 | 
						|
 | 
						|
		if (!BP_IS_HOLE(bp)) {
 | 
						|
			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
 | 
						|
			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
 | 
						|
			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
 | 
						|
			ASSERT(BP_GET_LOGICAL_BIRTH(zio->io_bp) == zio->io_txg);
 | 
						|
			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
 | 
						|
			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	dmu_tx_commit(dsa->dsa_tx);
 | 
						|
 | 
						|
	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
 | 
						|
 | 
						|
	abd_free(zio->io_abd);
 | 
						|
	kmem_free(dsa, sizeof (*dsa));
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
 | 
						|
    zio_prop_t *zp, zbookmark_phys_t *zb)
 | 
						|
{
 | 
						|
	dmu_sync_arg_t *dsa;
 | 
						|
	dmu_tx_t *tx;
 | 
						|
	int error;
 | 
						|
 | 
						|
	error = dbuf_read((dmu_buf_impl_t *)zgd->zgd_db, NULL,
 | 
						|
	    DB_RF_CANFAIL | DB_RF_NOPREFETCH);
 | 
						|
	if (error != 0)
 | 
						|
		return (error);
 | 
						|
 | 
						|
	tx = dmu_tx_create(os);
 | 
						|
	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
 | 
						|
	/*
 | 
						|
	 * This transaction does not produce any dirty data or log blocks, so
 | 
						|
	 * it should not be throttled.  All other cases wait for TXG sync, by
 | 
						|
	 * which time the log block we are writing will be obsolete, so we can
 | 
						|
	 * skip waiting and just return error here instead.
 | 
						|
	 */
 | 
						|
	if (dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE) != 0) {
 | 
						|
		dmu_tx_abort(tx);
 | 
						|
		/* Make zl_get_data do txg_waited_synced() */
 | 
						|
		return (SET_ERROR(EIO));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In order to prevent the zgd's lwb from being free'd prior to
 | 
						|
	 * dmu_sync_late_arrival_done() being called, we have to ensure
 | 
						|
	 * the lwb's "max txg" takes this tx's txg into account.
 | 
						|
	 */
 | 
						|
	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
 | 
						|
 | 
						|
	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
 | 
						|
	dsa->dsa_dr = NULL;
 | 
						|
	dsa->dsa_done = done;
 | 
						|
	dsa->dsa_zgd = zgd;
 | 
						|
	dsa->dsa_tx = tx;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since we are currently syncing this txg, it's nontrivial to
 | 
						|
	 * determine what BP to nopwrite against, so we disable nopwrite.
 | 
						|
	 *
 | 
						|
	 * When syncing, the db_blkptr is initially the BP of the previous
 | 
						|
	 * txg.  We can not nopwrite against it because it will be changed
 | 
						|
	 * (this is similar to the non-late-arrival case where the dbuf is
 | 
						|
	 * dirty in a future txg).
 | 
						|
	 *
 | 
						|
	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
 | 
						|
	 * We can not nopwrite against it because although the BP will not
 | 
						|
	 * (typically) be changed, the data has not yet been persisted to this
 | 
						|
	 * location.
 | 
						|
	 *
 | 
						|
	 * Finally, when dbuf_write_done() is called, it is theoretically
 | 
						|
	 * possible to always nopwrite, because the data that was written in
 | 
						|
	 * this txg is the same data that we are trying to write.  However we
 | 
						|
	 * would need to check that this dbuf is not dirty in any future
 | 
						|
	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
 | 
						|
	 * don't nopwrite in this case.
 | 
						|
	 */
 | 
						|
	zp->zp_nopwrite = B_FALSE;
 | 
						|
 | 
						|
	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
 | 
						|
	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
 | 
						|
	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
 | 
						|
	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done,
 | 
						|
	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Intent log support: sync the block associated with db to disk.
 | 
						|
 * N.B. and XXX: the caller is responsible for making sure that the
 | 
						|
 * data isn't changing while dmu_sync() is writing it.
 | 
						|
 *
 | 
						|
 * Return values:
 | 
						|
 *
 | 
						|
 *	EEXIST: this txg has already been synced, so there's nothing to do.
 | 
						|
 *		The caller should not log the write.
 | 
						|
 *
 | 
						|
 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
 | 
						|
 *		The caller should not log the write.
 | 
						|
 *
 | 
						|
 *	EALREADY: this block is already in the process of being synced.
 | 
						|
 *		The caller should track its progress (somehow).
 | 
						|
 *
 | 
						|
 *	EIO: could not do the I/O.
 | 
						|
 *		The caller should do a txg_wait_synced().
 | 
						|
 *
 | 
						|
 *	0: the I/O has been initiated.
 | 
						|
 *		The caller should log this blkptr in the done callback.
 | 
						|
 *		It is possible that the I/O will fail, in which case
 | 
						|
 *		the error will be reported to the done callback and
 | 
						|
 *		propagated to pio from zio_done().
 | 
						|
 */
 | 
						|
int
 | 
						|
dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
 | 
						|
	objset_t *os = db->db_objset;
 | 
						|
	dsl_dataset_t *ds = os->os_dsl_dataset;
 | 
						|
	dbuf_dirty_record_t *dr, *dr_next;
 | 
						|
	dmu_sync_arg_t *dsa;
 | 
						|
	zbookmark_phys_t zb;
 | 
						|
	zio_prop_t zp;
 | 
						|
 | 
						|
	ASSERT(pio != NULL);
 | 
						|
	ASSERT(txg != 0);
 | 
						|
 | 
						|
	SET_BOOKMARK(&zb, ds->ds_object,
 | 
						|
	    db->db.db_object, db->db_level, db->db_blkid);
 | 
						|
 | 
						|
	DB_DNODE_ENTER(db);
 | 
						|
	dmu_write_policy(os, DB_DNODE(db), db->db_level, WP_DMU_SYNC, &zp);
 | 
						|
	DB_DNODE_EXIT(db);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we're frozen (running ziltest), we always need to generate a bp.
 | 
						|
	 */
 | 
						|
	if (txg > spa_freeze_txg(os->os_spa))
 | 
						|
		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
 | 
						|
	 * and us.  If we determine that this txg is not yet syncing,
 | 
						|
	 * but it begins to sync a moment later, that's OK because the
 | 
						|
	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
 | 
						|
	 */
 | 
						|
	mutex_enter(&db->db_mtx);
 | 
						|
 | 
						|
	if (txg <= spa_last_synced_txg(os->os_spa)) {
 | 
						|
		/*
 | 
						|
		 * This txg has already synced.  There's nothing to do.
 | 
						|
		 */
 | 
						|
		mutex_exit(&db->db_mtx);
 | 
						|
		return (SET_ERROR(EEXIST));
 | 
						|
	}
 | 
						|
 | 
						|
	if (txg <= spa_syncing_txg(os->os_spa)) {
 | 
						|
		/*
 | 
						|
		 * This txg is currently syncing, so we can't mess with
 | 
						|
		 * the dirty record anymore; just write a new log block.
 | 
						|
		 */
 | 
						|
		mutex_exit(&db->db_mtx);
 | 
						|
		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
 | 
						|
	}
 | 
						|
 | 
						|
	dr = dbuf_find_dirty_eq(db, txg);
 | 
						|
 | 
						|
	if (dr == NULL) {
 | 
						|
		/*
 | 
						|
		 * There's no dr for this dbuf, so it must have been freed.
 | 
						|
		 * There's no need to log writes to freed blocks, so we're done.
 | 
						|
		 */
 | 
						|
		mutex_exit(&db->db_mtx);
 | 
						|
		return (SET_ERROR(ENOENT));
 | 
						|
	}
 | 
						|
 | 
						|
	dr_next = list_next(&db->db_dirty_records, dr);
 | 
						|
	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
 | 
						|
 | 
						|
	if (db->db_blkptr != NULL) {
 | 
						|
		/*
 | 
						|
		 * We need to fill in zgd_bp with the current blkptr so that
 | 
						|
		 * the nopwrite code can check if we're writing the same
 | 
						|
		 * data that's already on disk.  We can only nopwrite if we
 | 
						|
		 * are sure that after making the copy, db_blkptr will not
 | 
						|
		 * change until our i/o completes.  We ensure this by
 | 
						|
		 * holding the db_mtx, and only allowing nopwrite if the
 | 
						|
		 * block is not already dirty (see below).  This is verified
 | 
						|
		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
 | 
						|
		 * not changed.
 | 
						|
		 */
 | 
						|
		*zgd->zgd_bp = *db->db_blkptr;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Assume the on-disk data is X, the current syncing data (in
 | 
						|
	 * txg - 1) is Y, and the current in-memory data is Z (currently
 | 
						|
	 * in dmu_sync).
 | 
						|
	 *
 | 
						|
	 * We usually want to perform a nopwrite if X and Z are the
 | 
						|
	 * same.  However, if Y is different (i.e. the BP is going to
 | 
						|
	 * change before this write takes effect), then a nopwrite will
 | 
						|
	 * be incorrect - we would override with X, which could have
 | 
						|
	 * been freed when Y was written.
 | 
						|
	 *
 | 
						|
	 * (Note that this is not a concern when we are nop-writing from
 | 
						|
	 * syncing context, because X and Y must be identical, because
 | 
						|
	 * all previous txgs have been synced.)
 | 
						|
	 *
 | 
						|
	 * Therefore, we disable nopwrite if the current BP could change
 | 
						|
	 * before this TXG.  There are two ways it could change: by
 | 
						|
	 * being dirty (dr_next is non-NULL), or by being freed
 | 
						|
	 * (dnode_block_freed()).  This behavior is verified by
 | 
						|
	 * zio_done(), which VERIFYs that the override BP is identical
 | 
						|
	 * to the on-disk BP.
 | 
						|
	 */
 | 
						|
	if (dr_next != NULL) {
 | 
						|
		zp.zp_nopwrite = B_FALSE;
 | 
						|
	} else {
 | 
						|
		DB_DNODE_ENTER(db);
 | 
						|
		if (dnode_block_freed(DB_DNODE(db), db->db_blkid))
 | 
						|
			zp.zp_nopwrite = B_FALSE;
 | 
						|
		DB_DNODE_EXIT(db);
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(dr->dr_txg == txg);
 | 
						|
	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
 | 
						|
	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
 | 
						|
		/*
 | 
						|
		 * We have already issued a sync write for this buffer,
 | 
						|
		 * or this buffer has already been synced.  It could not
 | 
						|
		 * have been dirtied since, or we would have cleared the state.
 | 
						|
		 */
 | 
						|
		mutex_exit(&db->db_mtx);
 | 
						|
		return (SET_ERROR(EALREADY));
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
 | 
						|
	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
 | 
						|
	mutex_exit(&db->db_mtx);
 | 
						|
 | 
						|
	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
 | 
						|
	dsa->dsa_dr = dr;
 | 
						|
	dsa->dsa_done = done;
 | 
						|
	dsa->dsa_zgd = zgd;
 | 
						|
	dsa->dsa_tx = NULL;
 | 
						|
 | 
						|
	zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
 | 
						|
	    dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db),
 | 
						|
	    &zp, dmu_sync_ready, NULL, dmu_sync_done, dsa,
 | 
						|
	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = dnode_hold(os, object, FTAG, &dn);
 | 
						|
	if (err)
 | 
						|
		return (err);
 | 
						|
	err = dnode_set_nlevels(dn, nlevels, tx);
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
 | 
						|
    dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = dnode_hold(os, object, FTAG, &dn);
 | 
						|
	if (err)
 | 
						|
		return (err);
 | 
						|
	err = dnode_set_blksz(dn, size, ibs, tx);
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
 | 
						|
    dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = dnode_hold(os, object, FTAG, &dn);
 | 
						|
	if (err)
 | 
						|
		return (err);
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 | 
						|
	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
 | 
						|
    dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Send streams include each object's checksum function.  This
 | 
						|
	 * check ensures that the receiving system can understand the
 | 
						|
	 * checksum function transmitted.
 | 
						|
	 */
 | 
						|
	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
 | 
						|
 | 
						|
	VERIFY0(dnode_hold(os, object, FTAG, &dn));
 | 
						|
	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
 | 
						|
	dn->dn_checksum = checksum;
 | 
						|
	dnode_setdirty(dn, tx);
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
 | 
						|
    dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Send streams include each object's compression function.  This
 | 
						|
	 * check ensures that the receiving system can understand the
 | 
						|
	 * compression function transmitted.
 | 
						|
	 */
 | 
						|
	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
 | 
						|
 | 
						|
	VERIFY0(dnode_hold(os, object, FTAG, &dn));
 | 
						|
	dn->dn_compress = compress;
 | 
						|
	dnode_setdirty(dn, tx);
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When the "redundant_metadata" property is set to "most", only indirect
 | 
						|
 * blocks of this level and higher will have an additional ditto block.
 | 
						|
 */
 | 
						|
static const int zfs_redundant_metadata_most_ditto_level = 2;
 | 
						|
 | 
						|
void
 | 
						|
dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
 | 
						|
{
 | 
						|
	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
 | 
						|
	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
 | 
						|
	    (wp & WP_SPILL));
 | 
						|
	enum zio_checksum checksum = os->os_checksum;
 | 
						|
	enum zio_compress compress = os->os_compress;
 | 
						|
	uint8_t complevel = os->os_complevel;
 | 
						|
	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
 | 
						|
	boolean_t dedup = B_FALSE;
 | 
						|
	boolean_t nopwrite = B_FALSE;
 | 
						|
	boolean_t dedup_verify = os->os_dedup_verify;
 | 
						|
	boolean_t encrypt = B_FALSE;
 | 
						|
	int copies = os->os_copies;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We maintain different write policies for each of the following
 | 
						|
	 * types of data:
 | 
						|
	 *	 1. metadata
 | 
						|
	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
 | 
						|
	 *	 3. all other level 0 blocks
 | 
						|
	 */
 | 
						|
	if (ismd) {
 | 
						|
		/*
 | 
						|
		 * XXX -- we should design a compression algorithm
 | 
						|
		 * that specializes in arrays of bps.
 | 
						|
		 */
 | 
						|
		compress = zio_compress_select(os->os_spa,
 | 
						|
		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Metadata always gets checksummed.  If the data
 | 
						|
		 * checksum is multi-bit correctable, and it's not a
 | 
						|
		 * ZBT-style checksum, then it's suitable for metadata
 | 
						|
		 * as well.  Otherwise, the metadata checksum defaults
 | 
						|
		 * to fletcher4.
 | 
						|
		 */
 | 
						|
		if (!(zio_checksum_table[checksum].ci_flags &
 | 
						|
		    ZCHECKSUM_FLAG_METADATA) ||
 | 
						|
		    (zio_checksum_table[checksum].ci_flags &
 | 
						|
		    ZCHECKSUM_FLAG_EMBEDDED))
 | 
						|
			checksum = ZIO_CHECKSUM_FLETCHER_4;
 | 
						|
 | 
						|
		switch (os->os_redundant_metadata) {
 | 
						|
		case ZFS_REDUNDANT_METADATA_ALL:
 | 
						|
			copies++;
 | 
						|
			break;
 | 
						|
		case ZFS_REDUNDANT_METADATA_MOST:
 | 
						|
			if (level >= zfs_redundant_metadata_most_ditto_level ||
 | 
						|
			    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
 | 
						|
				copies++;
 | 
						|
			break;
 | 
						|
		case ZFS_REDUNDANT_METADATA_SOME:
 | 
						|
			if (DMU_OT_IS_CRITICAL(type))
 | 
						|
				copies++;
 | 
						|
			break;
 | 
						|
		case ZFS_REDUNDANT_METADATA_NONE:
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	} else if (wp & WP_NOFILL) {
 | 
						|
		ASSERT(level == 0);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we're writing preallocated blocks, we aren't actually
 | 
						|
		 * writing them so don't set any policy properties.  These
 | 
						|
		 * blocks are currently only used by an external subsystem
 | 
						|
		 * outside of zfs (i.e. dump) and not written by the zio
 | 
						|
		 * pipeline.
 | 
						|
		 */
 | 
						|
		compress = ZIO_COMPRESS_OFF;
 | 
						|
		checksum = ZIO_CHECKSUM_OFF;
 | 
						|
	} else {
 | 
						|
		compress = zio_compress_select(os->os_spa, dn->dn_compress,
 | 
						|
		    compress);
 | 
						|
		complevel = zio_complevel_select(os->os_spa, compress,
 | 
						|
		    complevel, complevel);
 | 
						|
 | 
						|
		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
 | 
						|
		    zio_checksum_select(dn->dn_checksum, checksum) :
 | 
						|
		    dedup_checksum;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Determine dedup setting.  If we are in dmu_sync(),
 | 
						|
		 * we won't actually dedup now because that's all
 | 
						|
		 * done in syncing context; but we do want to use the
 | 
						|
		 * dedup checksum.  If the checksum is not strong
 | 
						|
		 * enough to ensure unique signatures, force
 | 
						|
		 * dedup_verify.
 | 
						|
		 */
 | 
						|
		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
 | 
						|
			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
 | 
						|
			if (!(zio_checksum_table[checksum].ci_flags &
 | 
						|
			    ZCHECKSUM_FLAG_DEDUP))
 | 
						|
				dedup_verify = B_TRUE;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Enable nopwrite if we have secure enough checksum
 | 
						|
		 * algorithm (see comment in zio_nop_write) and
 | 
						|
		 * compression is enabled.  We don't enable nopwrite if
 | 
						|
		 * dedup is enabled as the two features are mutually
 | 
						|
		 * exclusive.
 | 
						|
		 */
 | 
						|
		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
 | 
						|
		    ZCHECKSUM_FLAG_NOPWRITE) &&
 | 
						|
		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * All objects in an encrypted objset are protected from modification
 | 
						|
	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
 | 
						|
	 * in the bp, so we cannot use all copies. Encrypted objects are also
 | 
						|
	 * not subject to nopwrite since writing the same data will still
 | 
						|
	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
 | 
						|
	 * to avoid ambiguity in the dedup code since the DDT does not store
 | 
						|
	 * object types.
 | 
						|
	 */
 | 
						|
	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
 | 
						|
		encrypt = B_TRUE;
 | 
						|
 | 
						|
		if (DMU_OT_IS_ENCRYPTED(type)) {
 | 
						|
			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
 | 
						|
			nopwrite = B_FALSE;
 | 
						|
		} else {
 | 
						|
			dedup = B_FALSE;
 | 
						|
		}
 | 
						|
 | 
						|
		if (level <= 0 &&
 | 
						|
		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
 | 
						|
			compress = ZIO_COMPRESS_EMPTY;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	zp->zp_compress = compress;
 | 
						|
	zp->zp_complevel = complevel;
 | 
						|
	zp->zp_checksum = checksum;
 | 
						|
	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
 | 
						|
	zp->zp_level = level;
 | 
						|
	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
 | 
						|
	zp->zp_dedup = dedup;
 | 
						|
	zp->zp_dedup_verify = dedup && dedup_verify;
 | 
						|
	zp->zp_nopwrite = nopwrite;
 | 
						|
	zp->zp_encrypt = encrypt;
 | 
						|
	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
 | 
						|
	memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
 | 
						|
	memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
 | 
						|
	memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
 | 
						|
	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
 | 
						|
	    os->os_zpl_special_smallblock : 0;
 | 
						|
	zp->zp_storage_type = dn ? dn->dn_storage_type : DMU_OT_NONE;
 | 
						|
 | 
						|
	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reports the location of data and holes in an object.  In order to
 | 
						|
 * accurately report holes all dirty data must be synced to disk.  This
 | 
						|
 * causes extremely poor performance when seeking for holes in a dirty file.
 | 
						|
 * As a compromise, only provide hole data when the dnode is clean.  When
 | 
						|
 * a dnode is dirty report the dnode as having no holes by returning EBUSY
 | 
						|
 * which is always safe to do.
 | 
						|
 */
 | 
						|
int
 | 
						|
dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	int restarted = 0, err;
 | 
						|
 | 
						|
restart:
 | 
						|
	err = dnode_hold(os, object, FTAG, &dn);
 | 
						|
	if (err)
 | 
						|
		return (err);
 | 
						|
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
 | 
						|
	if (dnode_is_dirty(dn)) {
 | 
						|
		/*
 | 
						|
		 * If the zfs_dmu_offset_next_sync module option is enabled
 | 
						|
		 * then hole reporting has been requested.  Dirty dnodes
 | 
						|
		 * must be synced to disk to accurately report holes.
 | 
						|
		 *
 | 
						|
		 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
 | 
						|
		 * held by the caller only a single restart will be required.
 | 
						|
		 * We tolerate callers which do not hold the rangelock by
 | 
						|
		 * returning EBUSY and not reporting holes after one restart.
 | 
						|
		 */
 | 
						|
		if (zfs_dmu_offset_next_sync) {
 | 
						|
			rw_exit(&dn->dn_struct_rwlock);
 | 
						|
			dnode_rele(dn, FTAG);
 | 
						|
 | 
						|
			if (restarted)
 | 
						|
				return (SET_ERROR(EBUSY));
 | 
						|
 | 
						|
			txg_wait_synced(dmu_objset_pool(os), 0);
 | 
						|
			restarted = 1;
 | 
						|
			goto restart;
 | 
						|
		}
 | 
						|
 | 
						|
		err = SET_ERROR(EBUSY);
 | 
						|
	} else {
 | 
						|
		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
 | 
						|
		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
 | 
						|
	}
 | 
						|
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
 | 
						|
    blkptr_t *bps, size_t *nbpsp)
 | 
						|
{
 | 
						|
	dmu_buf_t **dbp, *dbuf;
 | 
						|
	dmu_buf_impl_t *db;
 | 
						|
	blkptr_t *bp;
 | 
						|
	int error, numbufs;
 | 
						|
 | 
						|
	error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
 | 
						|
	    &numbufs, &dbp);
 | 
						|
	if (error != 0) {
 | 
						|
		if (error == ESRCH) {
 | 
						|
			error = SET_ERROR(ENXIO);
 | 
						|
		}
 | 
						|
		return (error);
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT3U(numbufs, <=, *nbpsp);
 | 
						|
 | 
						|
	for (int i = 0; i < numbufs; i++) {
 | 
						|
		dbuf = dbp[i];
 | 
						|
		db = (dmu_buf_impl_t *)dbuf;
 | 
						|
 | 
						|
		mutex_enter(&db->db_mtx);
 | 
						|
 | 
						|
		if (!list_is_empty(&db->db_dirty_records)) {
 | 
						|
			dbuf_dirty_record_t *dr;
 | 
						|
 | 
						|
			dr = list_head(&db->db_dirty_records);
 | 
						|
			if (dr->dt.dl.dr_brtwrite) {
 | 
						|
				/*
 | 
						|
				 * This is very special case where we clone a
 | 
						|
				 * block and in the same transaction group we
 | 
						|
				 * read its BP (most likely to clone the clone).
 | 
						|
				 */
 | 
						|
				bp = &dr->dt.dl.dr_overridden_by;
 | 
						|
			} else {
 | 
						|
				/*
 | 
						|
				 * The block was modified in the same
 | 
						|
				 * transaction group.
 | 
						|
				 */
 | 
						|
				mutex_exit(&db->db_mtx);
 | 
						|
				error = SET_ERROR(EAGAIN);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			bp = db->db_blkptr;
 | 
						|
		}
 | 
						|
 | 
						|
		mutex_exit(&db->db_mtx);
 | 
						|
 | 
						|
		if (bp == NULL) {
 | 
						|
			/*
 | 
						|
			 * The file size was increased, but the block was never
 | 
						|
			 * written, otherwise we would either have the block
 | 
						|
			 * pointer or the dirty record and would not get here.
 | 
						|
			 * It is effectively a hole, so report it as such.
 | 
						|
			 */
 | 
						|
			BP_ZERO(&bps[i]);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * Make sure we clone only data blocks.
 | 
						|
		 */
 | 
						|
		if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) {
 | 
						|
			error = SET_ERROR(EINVAL);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the block was allocated in transaction group that is not
 | 
						|
		 * yet synced, we could clone it, but we couldn't write this
 | 
						|
		 * operation into ZIL, or it may be impossible to replay, since
 | 
						|
		 * the block may appear not yet allocated at that point.
 | 
						|
		 */
 | 
						|
		if (BP_GET_BIRTH(bp) > spa_freeze_txg(os->os_spa)) {
 | 
						|
			error = SET_ERROR(EINVAL);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		if (BP_GET_BIRTH(bp) > spa_last_synced_txg(os->os_spa)) {
 | 
						|
			error = SET_ERROR(EAGAIN);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		bps[i] = *bp;
 | 
						|
	}
 | 
						|
 | 
						|
	*nbpsp = numbufs;
 | 
						|
out:
 | 
						|
	dmu_buf_rele_array(dbp, numbufs, FTAG);
 | 
						|
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
 | 
						|
    dmu_tx_t *tx, const blkptr_t *bps, size_t nbps)
 | 
						|
{
 | 
						|
	spa_t *spa;
 | 
						|
	dmu_buf_t **dbp, *dbuf;
 | 
						|
	dmu_buf_impl_t *db;
 | 
						|
	struct dirty_leaf *dl;
 | 
						|
	dbuf_dirty_record_t *dr;
 | 
						|
	const blkptr_t *bp;
 | 
						|
	int error = 0, i, numbufs;
 | 
						|
 | 
						|
	spa = os->os_spa;
 | 
						|
 | 
						|
	VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
 | 
						|
	    &numbufs, &dbp));
 | 
						|
	ASSERT3U(nbps, ==, numbufs);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Before we start cloning make sure that the dbufs sizes match new BPs
 | 
						|
	 * sizes. If they don't, that's a no-go, as we are not able to shrink
 | 
						|
	 * dbufs.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < numbufs; i++) {
 | 
						|
		dbuf = dbp[i];
 | 
						|
		db = (dmu_buf_impl_t *)dbuf;
 | 
						|
		bp = &bps[i];
 | 
						|
 | 
						|
		ASSERT0(db->db_level);
 | 
						|
		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
 | 
						|
		ASSERT(db->db_blkid != DMU_SPILL_BLKID);
 | 
						|
 | 
						|
		if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) {
 | 
						|
			error = SET_ERROR(EXDEV);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < numbufs; i++) {
 | 
						|
		dbuf = dbp[i];
 | 
						|
		db = (dmu_buf_impl_t *)dbuf;
 | 
						|
		bp = &bps[i];
 | 
						|
 | 
						|
		ASSERT0(db->db_level);
 | 
						|
		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
 | 
						|
		ASSERT(db->db_blkid != DMU_SPILL_BLKID);
 | 
						|
		ASSERT(BP_IS_HOLE(bp) || dbuf->db_size == BP_GET_LSIZE(bp));
 | 
						|
 | 
						|
		dmu_buf_will_clone(dbuf, tx);
 | 
						|
 | 
						|
		mutex_enter(&db->db_mtx);
 | 
						|
 | 
						|
		dr = list_head(&db->db_dirty_records);
 | 
						|
		VERIFY(dr != NULL);
 | 
						|
		ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
 | 
						|
		dl = &dr->dt.dl;
 | 
						|
		dl->dr_overridden_by = *bp;
 | 
						|
		if (!BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) != 0) {
 | 
						|
			if (!BP_IS_EMBEDDED(bp)) {
 | 
						|
				BP_SET_BIRTH(&dl->dr_overridden_by, dr->dr_txg,
 | 
						|
				    BP_GET_BIRTH(bp));
 | 
						|
			} else {
 | 
						|
				BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by,
 | 
						|
				    dr->dr_txg);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		dl->dr_brtwrite = B_TRUE;
 | 
						|
		dl->dr_override_state = DR_OVERRIDDEN;
 | 
						|
 | 
						|
		mutex_exit(&db->db_mtx);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * When data in embedded into BP there is no need to create
 | 
						|
		 * BRT entry as there is no data block. Just copy the BP as
 | 
						|
		 * it contains the data.
 | 
						|
		 */
 | 
						|
		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
 | 
						|
			brt_pending_add(spa, bp, tx);
 | 
						|
		}
 | 
						|
	}
 | 
						|
out:
 | 
						|
	dmu_buf_rele_array(dbp, numbufs, FTAG);
 | 
						|
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
 | 
						|
{
 | 
						|
	dnode_phys_t *dnp = dn->dn_phys;
 | 
						|
 | 
						|
	doi->doi_data_block_size = dn->dn_datablksz;
 | 
						|
	doi->doi_metadata_block_size = dn->dn_indblkshift ?
 | 
						|
	    1ULL << dn->dn_indblkshift : 0;
 | 
						|
	doi->doi_type = dn->dn_type;
 | 
						|
	doi->doi_bonus_type = dn->dn_bonustype;
 | 
						|
	doi->doi_bonus_size = dn->dn_bonuslen;
 | 
						|
	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
 | 
						|
	doi->doi_indirection = dn->dn_nlevels;
 | 
						|
	doi->doi_checksum = dn->dn_checksum;
 | 
						|
	doi->doi_compress = dn->dn_compress;
 | 
						|
	doi->doi_nblkptr = dn->dn_nblkptr;
 | 
						|
	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
 | 
						|
	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
 | 
						|
	doi->doi_fill_count = 0;
 | 
						|
	for (int i = 0; i < dnp->dn_nblkptr; i++)
 | 
						|
		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
 | 
						|
{
 | 
						|
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
 | 
						|
	mutex_enter(&dn->dn_mtx);
 | 
						|
 | 
						|
	__dmu_object_info_from_dnode(dn, doi);
 | 
						|
 | 
						|
	mutex_exit(&dn->dn_mtx);
 | 
						|
	rw_exit(&dn->dn_struct_rwlock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get information on a DMU object.
 | 
						|
 * If doi is NULL, just indicates whether the object exists.
 | 
						|
 */
 | 
						|
int
 | 
						|
dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
 | 
						|
{
 | 
						|
	dnode_t *dn;
 | 
						|
	int err = dnode_hold(os, object, FTAG, &dn);
 | 
						|
 | 
						|
	if (err)
 | 
						|
		return (err);
 | 
						|
 | 
						|
	if (doi != NULL)
 | 
						|
		dmu_object_info_from_dnode(dn, doi);
 | 
						|
 | 
						|
	dnode_rele(dn, FTAG);
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * As above, but faster; can be used when you have a held dbuf in hand.
 | 
						|
 */
 | 
						|
void
 | 
						|
dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 | 
						|
 | 
						|
	DB_DNODE_ENTER(db);
 | 
						|
	dmu_object_info_from_dnode(DB_DNODE(db), doi);
 | 
						|
	DB_DNODE_EXIT(db);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Faster still when you only care about the size.
 | 
						|
 */
 | 
						|
void
 | 
						|
dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
 | 
						|
    u_longlong_t *nblk512)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 | 
						|
	dnode_t *dn;
 | 
						|
 | 
						|
	DB_DNODE_ENTER(db);
 | 
						|
	dn = DB_DNODE(db);
 | 
						|
 | 
						|
	*blksize = dn->dn_datablksz;
 | 
						|
	/* add in number of slots used for the dnode itself */
 | 
						|
	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
 | 
						|
	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
 | 
						|
	DB_DNODE_EXIT(db);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
 | 
						|
{
 | 
						|
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 | 
						|
 | 
						|
	DB_DNODE_ENTER(db);
 | 
						|
	*dnsize = DB_DNODE(db)->dn_num_slots << DNODE_SHIFT;
 | 
						|
	DB_DNODE_EXIT(db);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
byteswap_uint64_array(void *vbuf, size_t size)
 | 
						|
{
 | 
						|
	uint64_t *buf = vbuf;
 | 
						|
	size_t count = size >> 3;
 | 
						|
	int i;
 | 
						|
 | 
						|
	ASSERT((size & 7) == 0);
 | 
						|
 | 
						|
	for (i = 0; i < count; i++)
 | 
						|
		buf[i] = BSWAP_64(buf[i]);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
byteswap_uint32_array(void *vbuf, size_t size)
 | 
						|
{
 | 
						|
	uint32_t *buf = vbuf;
 | 
						|
	size_t count = size >> 2;
 | 
						|
	int i;
 | 
						|
 | 
						|
	ASSERT((size & 3) == 0);
 | 
						|
 | 
						|
	for (i = 0; i < count; i++)
 | 
						|
		buf[i] = BSWAP_32(buf[i]);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
byteswap_uint16_array(void *vbuf, size_t size)
 | 
						|
{
 | 
						|
	uint16_t *buf = vbuf;
 | 
						|
	size_t count = size >> 1;
 | 
						|
	int i;
 | 
						|
 | 
						|
	ASSERT((size & 1) == 0);
 | 
						|
 | 
						|
	for (i = 0; i < count; i++)
 | 
						|
		buf[i] = BSWAP_16(buf[i]);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
byteswap_uint8_array(void *vbuf, size_t size)
 | 
						|
{
 | 
						|
	(void) vbuf, (void) size;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_init(void)
 | 
						|
{
 | 
						|
	abd_init();
 | 
						|
	zfs_dbgmsg_init();
 | 
						|
	sa_cache_init();
 | 
						|
	dmu_objset_init();
 | 
						|
	dnode_init();
 | 
						|
	zfetch_init();
 | 
						|
	dmu_tx_init();
 | 
						|
	l2arc_init();
 | 
						|
	arc_init();
 | 
						|
	dbuf_init();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
dmu_fini(void)
 | 
						|
{
 | 
						|
	arc_fini(); /* arc depends on l2arc, so arc must go first */
 | 
						|
	l2arc_fini();
 | 
						|
	dmu_tx_fini();
 | 
						|
	zfetch_fini();
 | 
						|
	dbuf_fini();
 | 
						|
	dnode_fini();
 | 
						|
	dmu_objset_fini();
 | 
						|
	sa_cache_fini();
 | 
						|
	zfs_dbgmsg_fini();
 | 
						|
	abd_fini();
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(dmu_bonus_hold);
 | 
						|
EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
 | 
						|
EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
 | 
						|
EXPORT_SYMBOL(dmu_buf_rele_array);
 | 
						|
EXPORT_SYMBOL(dmu_prefetch);
 | 
						|
EXPORT_SYMBOL(dmu_prefetch_by_dnode);
 | 
						|
EXPORT_SYMBOL(dmu_prefetch_dnode);
 | 
						|
EXPORT_SYMBOL(dmu_free_range);
 | 
						|
EXPORT_SYMBOL(dmu_free_long_range);
 | 
						|
EXPORT_SYMBOL(dmu_free_long_object);
 | 
						|
EXPORT_SYMBOL(dmu_read);
 | 
						|
EXPORT_SYMBOL(dmu_read_by_dnode);
 | 
						|
EXPORT_SYMBOL(dmu_write);
 | 
						|
EXPORT_SYMBOL(dmu_write_by_dnode);
 | 
						|
EXPORT_SYMBOL(dmu_prealloc);
 | 
						|
EXPORT_SYMBOL(dmu_object_info);
 | 
						|
EXPORT_SYMBOL(dmu_object_info_from_dnode);
 | 
						|
EXPORT_SYMBOL(dmu_object_info_from_db);
 | 
						|
EXPORT_SYMBOL(dmu_object_size_from_db);
 | 
						|
EXPORT_SYMBOL(dmu_object_dnsize_from_db);
 | 
						|
EXPORT_SYMBOL(dmu_object_set_nlevels);
 | 
						|
EXPORT_SYMBOL(dmu_object_set_blocksize);
 | 
						|
EXPORT_SYMBOL(dmu_object_set_maxblkid);
 | 
						|
EXPORT_SYMBOL(dmu_object_set_checksum);
 | 
						|
EXPORT_SYMBOL(dmu_object_set_compress);
 | 
						|
EXPORT_SYMBOL(dmu_offset_next);
 | 
						|
EXPORT_SYMBOL(dmu_write_policy);
 | 
						|
EXPORT_SYMBOL(dmu_sync);
 | 
						|
EXPORT_SYMBOL(dmu_request_arcbuf);
 | 
						|
EXPORT_SYMBOL(dmu_return_arcbuf);
 | 
						|
EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
 | 
						|
EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
 | 
						|
EXPORT_SYMBOL(dmu_buf_hold);
 | 
						|
EXPORT_SYMBOL(dmu_ot);
 | 
						|
 | 
						|
ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
 | 
						|
	"Enable NOP writes");
 | 
						|
 | 
						|
ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
 | 
						|
	"Percentage of dirtied blocks from frees in one TXG");
 | 
						|
 | 
						|
ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
 | 
						|
	"Enable forcing txg sync to find holes");
 | 
						|
 | 
						|
/* CSTYLED */
 | 
						|
ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
 | 
						|
	"Limit one prefetch call to this size");
 |