mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 20:33:04 +00:00 
			
		
		
		
	 5dd0f019cd
			
		
	
	
		5dd0f019cd
		
	
	
	
	
		
			
			Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #14575
		
			
				
	
	
		
			1616 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1616 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <sys/dataset_kstats.h>
 | |
| #include <sys/dbuf.h>
 | |
| #include <sys/dmu_traverse.h>
 | |
| #include <sys/dsl_dataset.h>
 | |
| #include <sys/dsl_prop.h>
 | |
| #include <sys/dsl_dir.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/zfeature.h>
 | |
| #include <sys/zil_impl.h>
 | |
| #include <sys/dmu_tx.h>
 | |
| #include <sys/zio.h>
 | |
| #include <sys/zfs_rlock.h>
 | |
| #include <sys/spa_impl.h>
 | |
| #include <sys/zvol.h>
 | |
| #include <sys/zvol_impl.h>
 | |
| 
 | |
| #include <linux/blkdev_compat.h>
 | |
| #include <linux/task_io_accounting_ops.h>
 | |
| 
 | |
| #ifdef HAVE_BLK_MQ
 | |
| #include <linux/blk-mq.h>
 | |
| #endif
 | |
| 
 | |
| static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
 | |
|     struct request *rq, boolean_t force_sync);
 | |
| 
 | |
| static unsigned int zvol_major = ZVOL_MAJOR;
 | |
| static unsigned int zvol_request_sync = 0;
 | |
| static unsigned int zvol_prefetch_bytes = (128 * 1024);
 | |
| static unsigned long zvol_max_discard_blocks = 16384;
 | |
| 
 | |
| #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
 | |
| static const unsigned int zvol_open_timeout_ms = 1000;
 | |
| #endif
 | |
| 
 | |
| static unsigned int zvol_threads = 0;
 | |
| #ifdef HAVE_BLK_MQ
 | |
| static unsigned int zvol_blk_mq_threads = 0;
 | |
| static unsigned int zvol_blk_mq_actual_threads;
 | |
| static boolean_t zvol_use_blk_mq = B_FALSE;
 | |
| 
 | |
| /*
 | |
|  * The maximum number of volblocksize blocks to process per thread.  Typically,
 | |
|  * write heavy workloads preform better with higher values here, and read
 | |
|  * heavy workloads preform better with lower values, but that's not a hard
 | |
|  * and fast rule.  It's basically a knob to tune between "less overhead with
 | |
|  * less parallelism" and "more overhead, but more parallelism".
 | |
|  *
 | |
|  * '8' was chosen as a reasonable, balanced, default based off of sequential
 | |
|  * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
 | |
|  */
 | |
| static unsigned int zvol_blk_mq_blocks_per_thread = 8;
 | |
| #endif
 | |
| 
 | |
| #ifndef	BLKDEV_DEFAULT_RQ
 | |
| /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
 | |
| #define	BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Finalize our BIO or request.
 | |
|  */
 | |
| #ifdef	HAVE_BLK_MQ
 | |
| #define	END_IO(zv, bio, rq, error)  do { \
 | |
| 	if (bio) { \
 | |
| 		BIO_END_IO(bio, error); \
 | |
| 	} else { \
 | |
| 		blk_mq_end_request(rq, errno_to_bi_status(error)); \
 | |
| 	} \
 | |
| } while (0)
 | |
| #else
 | |
| #define	END_IO(zv, bio, rq, error)	BIO_END_IO(bio, error)
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_BLK_MQ
 | |
| static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
 | |
| static unsigned int zvol_actual_blk_mq_queue_depth;
 | |
| #endif
 | |
| 
 | |
| struct zvol_state_os {
 | |
| 	struct gendisk		*zvo_disk;	/* generic disk */
 | |
| 	struct request_queue	*zvo_queue;	/* request queue */
 | |
| 	dev_t			zvo_dev;	/* device id */
 | |
| 
 | |
| #ifdef HAVE_BLK_MQ
 | |
| 	struct blk_mq_tag_set tag_set;
 | |
| #endif
 | |
| 
 | |
| 	/* Set from the global 'zvol_use_blk_mq' at zvol load */
 | |
| 	boolean_t use_blk_mq;
 | |
| };
 | |
| 
 | |
| static taskq_t *zvol_taskq;
 | |
| static struct ida zvol_ida;
 | |
| 
 | |
| typedef struct zv_request_stack {
 | |
| 	zvol_state_t	*zv;
 | |
| 	struct bio	*bio;
 | |
| 	struct request *rq;
 | |
| } zv_request_t;
 | |
| 
 | |
| typedef struct zv_work {
 | |
| 	struct request  *rq;
 | |
| 	struct work_struct work;
 | |
| } zv_work_t;
 | |
| 
 | |
| typedef struct zv_request_task {
 | |
| 	zv_request_t zvr;
 | |
| 	taskq_ent_t	ent;
 | |
| } zv_request_task_t;
 | |
| 
 | |
| static zv_request_task_t *
 | |
| zv_request_task_create(zv_request_t zvr)
 | |
| {
 | |
| 	zv_request_task_t *task;
 | |
| 	task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
 | |
| 	taskq_init_ent(&task->ent);
 | |
| 	task->zvr = zvr;
 | |
| 	return (task);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zv_request_task_free(zv_request_task_t *task)
 | |
| {
 | |
| 	kmem_free(task, sizeof (*task));
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_BLK_MQ
 | |
| 
 | |
| /*
 | |
|  * This is called when a new block multiqueue request comes in.  A request
 | |
|  * contains one or more BIOs.
 | |
|  */
 | |
| static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
 | |
|     const struct blk_mq_queue_data *bd)
 | |
| {
 | |
| 	struct request *rq = bd->rq;
 | |
| 	zvol_state_t *zv = rq->q->queuedata;
 | |
| 
 | |
| 	/* Tell the kernel that we are starting to process this request */
 | |
| 	blk_mq_start_request(rq);
 | |
| 
 | |
| 	if (blk_rq_is_passthrough(rq)) {
 | |
| 		/* Skip non filesystem request */
 | |
| 		blk_mq_end_request(rq, BLK_STS_IOERR);
 | |
| 		return (BLK_STS_IOERR);
 | |
| 	}
 | |
| 
 | |
| 	zvol_request_impl(zv, NULL, rq, 0);
 | |
| 
 | |
| 	/* Acknowledge to the kernel that we got this request */
 | |
| 	return (BLK_STS_OK);
 | |
| }
 | |
| 
 | |
| static struct blk_mq_ops zvol_blk_mq_queue_ops = {
 | |
| 	.queue_rq = zvol_mq_queue_rq,
 | |
| };
 | |
| 
 | |
| /* Initialize our blk-mq struct */
 | |
| static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
 | |
| {
 | |
| 	struct zvol_state_os *zso = zv->zv_zso;
 | |
| 
 | |
| 	memset(&zso->tag_set, 0, sizeof (zso->tag_set));
 | |
| 
 | |
| 	/* Initialize tag set. */
 | |
| 	zso->tag_set.ops = &zvol_blk_mq_queue_ops;
 | |
| 	zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
 | |
| 	zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
 | |
| 	zso->tag_set.numa_node = NUMA_NO_NODE;
 | |
| 	zso->tag_set.cmd_size = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
 | |
| 	 * zvol_request_impl()
 | |
| 	 */
 | |
| 	zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
 | |
| 	zso->tag_set.driver_data = zv;
 | |
| 
 | |
| 	return (blk_mq_alloc_tag_set(&zso->tag_set));
 | |
| }
 | |
| #endif /* HAVE_BLK_MQ */
 | |
| 
 | |
| /*
 | |
|  * Given a path, return TRUE if path is a ZVOL.
 | |
|  */
 | |
| boolean_t
 | |
| zvol_os_is_zvol(const char *path)
 | |
| {
 | |
| 	dev_t dev = 0;
 | |
| 
 | |
| 	if (vdev_lookup_bdev(path, &dev) != 0)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	if (MAJOR(dev) == zvol_major)
 | |
| 		return (B_TRUE);
 | |
| 
 | |
| 	return (B_FALSE);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zvol_write(zv_request_t *zvr)
 | |
| {
 | |
| 	struct bio *bio = zvr->bio;
 | |
| 	struct request *rq = zvr->rq;
 | |
| 	int error = 0;
 | |
| 	zfs_uio_t uio;
 | |
| 	zvol_state_t *zv = zvr->zv;
 | |
| 	struct request_queue *q;
 | |
| 	struct gendisk *disk;
 | |
| 	unsigned long start_time = 0;
 | |
| 	boolean_t acct = B_FALSE;
 | |
| 
 | |
| 	ASSERT3P(zv, !=, NULL);
 | |
| 	ASSERT3U(zv->zv_open_count, >, 0);
 | |
| 	ASSERT3P(zv->zv_zilog, !=, NULL);
 | |
| 
 | |
| 	q = zv->zv_zso->zvo_queue;
 | |
| 	disk = zv->zv_zso->zvo_disk;
 | |
| 
 | |
| 	/* bio marked as FLUSH need to flush before write */
 | |
| 	if (io_is_flush(bio, rq))
 | |
| 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
 | |
| 
 | |
| 	/* Some requests are just for flush and nothing else. */
 | |
| 	if (io_size(bio, rq) == 0) {
 | |
| 		rw_exit(&zv->zv_suspend_lock);
 | |
| 		END_IO(zv, bio, rq, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	zfs_uio_bvec_init(&uio, bio, rq);
 | |
| 
 | |
| 	ssize_t start_resid = uio.uio_resid;
 | |
| 
 | |
| 	/*
 | |
| 	 * With use_blk_mq, accounting is done by blk_mq_start_request()
 | |
| 	 * and blk_mq_end_request(), so we can skip it here.
 | |
| 	 */
 | |
| 	if (bio) {
 | |
| 		acct = blk_queue_io_stat(q);
 | |
| 		if (acct) {
 | |
| 			start_time = blk_generic_start_io_acct(q, disk, WRITE,
 | |
| 			    bio);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	boolean_t sync =
 | |
| 	    io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
 | |
| 
 | |
| 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
 | |
| 	    uio.uio_loffset, uio.uio_resid, RL_WRITER);
 | |
| 
 | |
| 	uint64_t volsize = zv->zv_volsize;
 | |
| 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
 | |
| 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
 | |
| 		uint64_t off = uio.uio_loffset;
 | |
| 		dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
 | |
| 
 | |
| 		if (bytes > volsize - off)	/* don't write past the end */
 | |
| 			bytes = volsize - off;
 | |
| 
 | |
| 		dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
 | |
| 
 | |
| 		/* This will only fail for ENOSPC */
 | |
| 		error = dmu_tx_assign(tx, TXG_WAIT);
 | |
| 		if (error) {
 | |
| 			dmu_tx_abort(tx);
 | |
| 			break;
 | |
| 		}
 | |
| 		error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
 | |
| 		if (error == 0) {
 | |
| 			zvol_log_write(zv, tx, off, bytes, sync);
 | |
| 		}
 | |
| 		dmu_tx_commit(tx);
 | |
| 
 | |
| 		if (error)
 | |
| 			break;
 | |
| 	}
 | |
| 	zfs_rangelock_exit(lr);
 | |
| 
 | |
| 	int64_t nwritten = start_resid - uio.uio_resid;
 | |
| 	dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
 | |
| 	task_io_account_write(nwritten);
 | |
| 
 | |
| 	if (sync)
 | |
| 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
 | |
| 
 | |
| 	rw_exit(&zv->zv_suspend_lock);
 | |
| 
 | |
| 	if (bio && acct) {
 | |
| 		blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
 | |
| 	}
 | |
| 
 | |
| 	END_IO(zv, bio, rq, -error);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zvol_write_task(void *arg)
 | |
| {
 | |
| 	zv_request_task_t *task = arg;
 | |
| 	zvol_write(&task->zvr);
 | |
| 	zv_request_task_free(task);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zvol_discard(zv_request_t *zvr)
 | |
| {
 | |
| 	struct bio *bio = zvr->bio;
 | |
| 	struct request *rq = zvr->rq;
 | |
| 	zvol_state_t *zv = zvr->zv;
 | |
| 	uint64_t start = io_offset(bio, rq);
 | |
| 	uint64_t size = io_size(bio, rq);
 | |
| 	uint64_t end = start + size;
 | |
| 	boolean_t sync;
 | |
| 	int error = 0;
 | |
| 	dmu_tx_t *tx;
 | |
| 	struct request_queue *q = zv->zv_zso->zvo_queue;
 | |
| 	struct gendisk *disk = zv->zv_zso->zvo_disk;
 | |
| 	unsigned long start_time = 0;
 | |
| 	boolean_t acct = B_FALSE;
 | |
| 
 | |
| 	ASSERT3P(zv, !=, NULL);
 | |
| 	ASSERT3U(zv->zv_open_count, >, 0);
 | |
| 	ASSERT3P(zv->zv_zilog, !=, NULL);
 | |
| 
 | |
| 	if (bio) {
 | |
| 		acct = blk_queue_io_stat(q);
 | |
| 		if (acct) {
 | |
| 			start_time = blk_generic_start_io_acct(q, disk, WRITE,
 | |
| 			    bio);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
 | |
| 
 | |
| 	if (end > zv->zv_volsize) {
 | |
| 		error = SET_ERROR(EIO);
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Align the request to volume block boundaries when a secure erase is
 | |
| 	 * not required.  This will prevent dnode_free_range() from zeroing out
 | |
| 	 * the unaligned parts which is slow (read-modify-write) and useless
 | |
| 	 * since we are not freeing any space by doing so.
 | |
| 	 */
 | |
| 	if (!io_is_secure_erase(bio, rq)) {
 | |
| 		start = P2ROUNDUP(start, zv->zv_volblocksize);
 | |
| 		end = P2ALIGN(end, zv->zv_volblocksize);
 | |
| 		size = end - start;
 | |
| 	}
 | |
| 
 | |
| 	if (start >= end)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
 | |
| 	    start, size, RL_WRITER);
 | |
| 
 | |
| 	tx = dmu_tx_create(zv->zv_objset);
 | |
| 	dmu_tx_mark_netfree(tx);
 | |
| 	error = dmu_tx_assign(tx, TXG_WAIT);
 | |
| 	if (error != 0) {
 | |
| 		dmu_tx_abort(tx);
 | |
| 	} else {
 | |
| 		zvol_log_truncate(zv, tx, start, size, B_TRUE);
 | |
| 		dmu_tx_commit(tx);
 | |
| 		error = dmu_free_long_range(zv->zv_objset,
 | |
| 		    ZVOL_OBJ, start, size);
 | |
| 	}
 | |
| 	zfs_rangelock_exit(lr);
 | |
| 
 | |
| 	if (error == 0 && sync)
 | |
| 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
 | |
| 
 | |
| unlock:
 | |
| 	rw_exit(&zv->zv_suspend_lock);
 | |
| 
 | |
| 	if (bio && acct) {
 | |
| 		blk_generic_end_io_acct(q, disk, WRITE, bio,
 | |
| 		    start_time);
 | |
| 	}
 | |
| 
 | |
| 	END_IO(zv, bio, rq, -error);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zvol_discard_task(void *arg)
 | |
| {
 | |
| 	zv_request_task_t *task = arg;
 | |
| 	zvol_discard(&task->zvr);
 | |
| 	zv_request_task_free(task);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zvol_read(zv_request_t *zvr)
 | |
| {
 | |
| 	struct bio *bio = zvr->bio;
 | |
| 	struct request *rq = zvr->rq;
 | |
| 	int error = 0;
 | |
| 	zfs_uio_t uio;
 | |
| 	boolean_t acct = B_FALSE;
 | |
| 	zvol_state_t *zv = zvr->zv;
 | |
| 	struct request_queue *q;
 | |
| 	struct gendisk *disk;
 | |
| 	unsigned long start_time = 0;
 | |
| 
 | |
| 	ASSERT3P(zv, !=, NULL);
 | |
| 	ASSERT3U(zv->zv_open_count, >, 0);
 | |
| 
 | |
| 	zfs_uio_bvec_init(&uio, bio, rq);
 | |
| 
 | |
| 	q = zv->zv_zso->zvo_queue;
 | |
| 	disk = zv->zv_zso->zvo_disk;
 | |
| 
 | |
| 	ssize_t start_resid = uio.uio_resid;
 | |
| 
 | |
| 	/*
 | |
| 	 * When blk-mq is being used, accounting is done by
 | |
| 	 * blk_mq_start_request() and blk_mq_end_request().
 | |
| 	 */
 | |
| 	if (bio) {
 | |
| 		acct = blk_queue_io_stat(q);
 | |
| 		if (acct)
 | |
| 			start_time = blk_generic_start_io_acct(q, disk, READ,
 | |
| 			    bio);
 | |
| 	}
 | |
| 
 | |
| 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
 | |
| 	    uio.uio_loffset, uio.uio_resid, RL_READER);
 | |
| 
 | |
| 	uint64_t volsize = zv->zv_volsize;
 | |
| 
 | |
| 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
 | |
| 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
 | |
| 
 | |
| 		/* don't read past the end */
 | |
| 		if (bytes > volsize - uio.uio_loffset)
 | |
| 			bytes = volsize - uio.uio_loffset;
 | |
| 
 | |
| 		error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
 | |
| 		if (error) {
 | |
| 			/* convert checksum errors into IO errors */
 | |
| 			if (error == ECKSUM)
 | |
| 				error = SET_ERROR(EIO);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	zfs_rangelock_exit(lr);
 | |
| 
 | |
| 	int64_t nread = start_resid - uio.uio_resid;
 | |
| 	dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
 | |
| 	task_io_account_read(nread);
 | |
| 
 | |
| 	rw_exit(&zv->zv_suspend_lock);
 | |
| 
 | |
| 	if (bio && acct) {
 | |
| 		blk_generic_end_io_acct(q, disk, READ, bio, start_time);
 | |
| 	}
 | |
| 
 | |
| 	END_IO(zv, bio, rq, -error);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zvol_read_task(void *arg)
 | |
| {
 | |
| 	zv_request_task_t *task = arg;
 | |
| 	zvol_read(&task->zvr);
 | |
| 	zv_request_task_free(task);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Process a BIO or request
 | |
|  *
 | |
|  * Either 'bio' or 'rq' should be set depending on if we are processing a
 | |
|  * bio or a request (both should not be set).
 | |
|  *
 | |
|  * force_sync:	Set to 0 to defer processing to a background taskq
 | |
|  *			Set to 1 to process data synchronously
 | |
|  */
 | |
| static void
 | |
| zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
 | |
|     boolean_t force_sync)
 | |
| {
 | |
| 	fstrans_cookie_t cookie = spl_fstrans_mark();
 | |
| 	uint64_t offset = io_offset(bio, rq);
 | |
| 	uint64_t size = io_size(bio, rq);
 | |
| 	int rw = io_data_dir(bio, rq);
 | |
| 
 | |
| 	if (zvol_request_sync)
 | |
| 		force_sync = 1;
 | |
| 
 | |
| 	zv_request_t zvr = {
 | |
| 		.zv = zv,
 | |
| 		.bio = bio,
 | |
| 		.rq = rq,
 | |
| 	};
 | |
| 
 | |
| 	if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
 | |
| 		printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
 | |
| 		    zv->zv_zso->zvo_disk->disk_name,
 | |
| 		    (long long unsigned)offset,
 | |
| 		    (long unsigned)size);
 | |
| 
 | |
| 		END_IO(zv, bio, rq, -SET_ERROR(EIO));
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	zv_request_task_t *task;
 | |
| 
 | |
| 	if (rw == WRITE) {
 | |
| 		if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
 | |
| 			END_IO(zv, bio, rq, -SET_ERROR(EROFS));
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Prevents the zvol from being suspended, or the ZIL being
 | |
| 		 * concurrently opened.  Will be released after the i/o
 | |
| 		 * completes.
 | |
| 		 */
 | |
| 		rw_enter(&zv->zv_suspend_lock, RW_READER);
 | |
| 
 | |
| 		/*
 | |
| 		 * Open a ZIL if this is the first time we have written to this
 | |
| 		 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
 | |
| 		 * than zv_state_lock so that we don't need to acquire an
 | |
| 		 * additional lock in this path.
 | |
| 		 */
 | |
| 		if (zv->zv_zilog == NULL) {
 | |
| 			rw_exit(&zv->zv_suspend_lock);
 | |
| 			rw_enter(&zv->zv_suspend_lock, RW_WRITER);
 | |
| 			if (zv->zv_zilog == NULL) {
 | |
| 				zv->zv_zilog = zil_open(zv->zv_objset,
 | |
| 				    zvol_get_data, &zv->zv_kstat.dk_zil_sums);
 | |
| 				zv->zv_flags |= ZVOL_WRITTEN_TO;
 | |
| 				/* replay / destroy done in zvol_create_minor */
 | |
| 				VERIFY0((zv->zv_zilog->zl_header->zh_flags &
 | |
| 				    ZIL_REPLAY_NEEDED));
 | |
| 			}
 | |
| 			rw_downgrade(&zv->zv_suspend_lock);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't want this thread to be blocked waiting for i/o to
 | |
| 		 * complete, so we instead wait from a taskq callback. The
 | |
| 		 * i/o may be a ZIL write (via zil_commit()), or a read of an
 | |
| 		 * indirect block, or a read of a data block (if this is a
 | |
| 		 * partial-block write).  We will indicate that the i/o is
 | |
| 		 * complete by calling END_IO() from the taskq callback.
 | |
| 		 *
 | |
| 		 * This design allows the calling thread to continue and
 | |
| 		 * initiate more concurrent operations by calling
 | |
| 		 * zvol_request() again. There are typically only a small
 | |
| 		 * number of threads available to call zvol_request() (e.g.
 | |
| 		 * one per iSCSI target), so keeping the latency of
 | |
| 		 * zvol_request() low is important for performance.
 | |
| 		 *
 | |
| 		 * The zvol_request_sync module parameter allows this
 | |
| 		 * behavior to be altered, for performance evaluation
 | |
| 		 * purposes.  If the callback blocks, setting
 | |
| 		 * zvol_request_sync=1 will result in much worse performance.
 | |
| 		 *
 | |
| 		 * We can have up to zvol_threads concurrent i/o's being
 | |
| 		 * processed for all zvols on the system.  This is typically
 | |
| 		 * a vast improvement over the zvol_request_sync=1 behavior
 | |
| 		 * of one i/o at a time per zvol.  However, an even better
 | |
| 		 * design would be for zvol_request() to initiate the zio
 | |
| 		 * directly, and then be notified by the zio_done callback,
 | |
| 		 * which would call END_IO().  Unfortunately, the DMU/ZIL
 | |
| 		 * interfaces lack this functionality (they block waiting for
 | |
| 		 * the i/o to complete).
 | |
| 		 */
 | |
| 		if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
 | |
| 			if (force_sync) {
 | |
| 				zvol_discard(&zvr);
 | |
| 			} else {
 | |
| 				task = zv_request_task_create(zvr);
 | |
| 				taskq_dispatch_ent(zvol_taskq,
 | |
| 				    zvol_discard_task, task, 0, &task->ent);
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (force_sync) {
 | |
| 				zvol_write(&zvr);
 | |
| 			} else {
 | |
| 				task = zv_request_task_create(zvr);
 | |
| 				taskq_dispatch_ent(zvol_taskq,
 | |
| 				    zvol_write_task, task, 0, &task->ent);
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The SCST driver, and possibly others, may issue READ I/Os
 | |
| 		 * with a length of zero bytes.  These empty I/Os contain no
 | |
| 		 * data and require no additional handling.
 | |
| 		 */
 | |
| 		if (size == 0) {
 | |
| 			END_IO(zv, bio, rq, 0);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		rw_enter(&zv->zv_suspend_lock, RW_READER);
 | |
| 
 | |
| 		/* See comment in WRITE case above. */
 | |
| 		if (force_sync) {
 | |
| 			zvol_read(&zvr);
 | |
| 		} else {
 | |
| 			task = zv_request_task_create(zvr);
 | |
| 			taskq_dispatch_ent(zvol_taskq,
 | |
| 			    zvol_read_task, task, 0, &task->ent);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
 | |
| #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
 | |
| static void
 | |
| zvol_submit_bio(struct bio *bio)
 | |
| #else
 | |
| static blk_qc_t
 | |
| zvol_submit_bio(struct bio *bio)
 | |
| #endif
 | |
| #else
 | |
| static MAKE_REQUEST_FN_RET
 | |
| zvol_request(struct request_queue *q, struct bio *bio)
 | |
| #endif
 | |
| {
 | |
| #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
 | |
| #if defined(HAVE_BIO_BDEV_DISK)
 | |
| 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
 | |
| #else
 | |
| 	struct request_queue *q = bio->bi_disk->queue;
 | |
| #endif
 | |
| #endif
 | |
| 	zvol_state_t *zv = q->queuedata;
 | |
| 
 | |
| 	zvol_request_impl(zv, bio, NULL, 0);
 | |
| #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
 | |
| 	defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
 | |
| 	!defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
 | |
| 	return (BLK_QC_T_NONE);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int
 | |
| zvol_open(struct block_device *bdev, fmode_t flag)
 | |
| {
 | |
| 	zvol_state_t *zv;
 | |
| 	int error = 0;
 | |
| 	boolean_t drop_suspend = B_FALSE;
 | |
| #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
 | |
| 	hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
 | |
| 	hrtime_t start = gethrtime();
 | |
| 
 | |
| retry:
 | |
| #endif
 | |
| 	rw_enter(&zvol_state_lock, RW_READER);
 | |
| 	/*
 | |
| 	 * Obtain a copy of private_data under the zvol_state_lock to make
 | |
| 	 * sure that either the result of zvol free code path setting
 | |
| 	 * bdev->bd_disk->private_data to NULL is observed, or zvol_os_free()
 | |
| 	 * is not called on this zv because of the positive zv_open_count.
 | |
| 	 */
 | |
| 	zv = bdev->bd_disk->private_data;
 | |
| 	if (zv == NULL) {
 | |
| 		rw_exit(&zvol_state_lock);
 | |
| 		return (SET_ERROR(-ENXIO));
 | |
| 	}
 | |
| 
 | |
| 	mutex_enter(&zv->zv_state_lock);
 | |
| 	/*
 | |
| 	 * Make sure zvol is not suspended during first open
 | |
| 	 * (hold zv_suspend_lock) and respect proper lock acquisition
 | |
| 	 * ordering - zv_suspend_lock before zv_state_lock
 | |
| 	 */
 | |
| 	if (zv->zv_open_count == 0) {
 | |
| 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
 | |
| 			mutex_exit(&zv->zv_state_lock);
 | |
| 			rw_enter(&zv->zv_suspend_lock, RW_READER);
 | |
| 			mutex_enter(&zv->zv_state_lock);
 | |
| 			/* check to see if zv_suspend_lock is needed */
 | |
| 			if (zv->zv_open_count != 0) {
 | |
| 				rw_exit(&zv->zv_suspend_lock);
 | |
| 			} else {
 | |
| 				drop_suspend = B_TRUE;
 | |
| 			}
 | |
| 		} else {
 | |
| 			drop_suspend = B_TRUE;
 | |
| 		}
 | |
| 	}
 | |
| 	rw_exit(&zvol_state_lock);
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 | |
| 
 | |
| 	if (zv->zv_open_count == 0) {
 | |
| 		boolean_t drop_namespace = B_FALSE;
 | |
| 
 | |
| 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
 | |
| 
 | |
| 		/*
 | |
| 		 * In all other call paths the spa_namespace_lock is taken
 | |
| 		 * before the bdev->bd_mutex lock.  However, on open(2)
 | |
| 		 * the __blkdev_get() function calls fops->open() with the
 | |
| 		 * bdev->bd_mutex lock held.  This can result in a deadlock
 | |
| 		 * when zvols from one pool are used as vdevs in another.
 | |
| 		 *
 | |
| 		 * To prevent a lock inversion deadlock we preemptively
 | |
| 		 * take the spa_namespace_lock.  Normally the lock will not
 | |
| 		 * be contended and this is safe because spa_open_common()
 | |
| 		 * handles the case where the caller already holds the
 | |
| 		 * spa_namespace_lock.
 | |
| 		 *
 | |
| 		 * When the lock cannot be aquired after multiple retries
 | |
| 		 * this must be the vdev on zvol deadlock case and we have
 | |
| 		 * no choice but to return an error.  For 5.12 and older
 | |
| 		 * kernels returning -ERESTARTSYS will result in the
 | |
| 		 * bdev->bd_mutex being dropped, then reacquired, and
 | |
| 		 * fops->open() being called again.  This process can be
 | |
| 		 * repeated safely until both locks are acquired.  For 5.13
 | |
| 		 * and newer the -ERESTARTSYS retry logic was removed from
 | |
| 		 * the kernel so the only option is to return the error for
 | |
| 		 * the caller to handle it.
 | |
| 		 */
 | |
| 		if (!mutex_owned(&spa_namespace_lock)) {
 | |
| 			if (!mutex_tryenter(&spa_namespace_lock)) {
 | |
| 				mutex_exit(&zv->zv_state_lock);
 | |
| 				rw_exit(&zv->zv_suspend_lock);
 | |
| 
 | |
| #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
 | |
| 				schedule();
 | |
| 				return (SET_ERROR(-ERESTARTSYS));
 | |
| #else
 | |
| 				if ((gethrtime() - start) > timeout)
 | |
| 					return (SET_ERROR(-ERESTARTSYS));
 | |
| 
 | |
| 				schedule_timeout(MSEC_TO_TICK(10));
 | |
| 				goto retry;
 | |
| #endif
 | |
| 			} else {
 | |
| 				drop_namespace = B_TRUE;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		error = -zvol_first_open(zv, !(flag & FMODE_WRITE));
 | |
| 
 | |
| 		if (drop_namespace)
 | |
| 			mutex_exit(&spa_namespace_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (error == 0) {
 | |
| 		if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
 | |
| 			if (zv->zv_open_count == 0)
 | |
| 				zvol_last_close(zv);
 | |
| 
 | |
| 			error = SET_ERROR(-EROFS);
 | |
| 		} else {
 | |
| 			zv->zv_open_count++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_exit(&zv->zv_state_lock);
 | |
| 	if (drop_suspend)
 | |
| 		rw_exit(&zv->zv_suspend_lock);
 | |
| 
 | |
| 	if (error == 0)
 | |
| 		zfs_check_media_change(bdev);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zvol_release(struct gendisk *disk, fmode_t mode)
 | |
| {
 | |
| 	zvol_state_t *zv;
 | |
| 	boolean_t drop_suspend = B_TRUE;
 | |
| 
 | |
| 	rw_enter(&zvol_state_lock, RW_READER);
 | |
| 	zv = disk->private_data;
 | |
| 
 | |
| 	mutex_enter(&zv->zv_state_lock);
 | |
| 	ASSERT3U(zv->zv_open_count, >, 0);
 | |
| 	/*
 | |
| 	 * make sure zvol is not suspended during last close
 | |
| 	 * (hold zv_suspend_lock) and respect proper lock acquisition
 | |
| 	 * ordering - zv_suspend_lock before zv_state_lock
 | |
| 	 */
 | |
| 	if (zv->zv_open_count == 1) {
 | |
| 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
 | |
| 			mutex_exit(&zv->zv_state_lock);
 | |
| 			rw_enter(&zv->zv_suspend_lock, RW_READER);
 | |
| 			mutex_enter(&zv->zv_state_lock);
 | |
| 			/* check to see if zv_suspend_lock is needed */
 | |
| 			if (zv->zv_open_count != 1) {
 | |
| 				rw_exit(&zv->zv_suspend_lock);
 | |
| 				drop_suspend = B_FALSE;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		drop_suspend = B_FALSE;
 | |
| 	}
 | |
| 	rw_exit(&zvol_state_lock);
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 | |
| 
 | |
| 	zv->zv_open_count--;
 | |
| 	if (zv->zv_open_count == 0) {
 | |
| 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
 | |
| 		zvol_last_close(zv);
 | |
| 	}
 | |
| 
 | |
| 	mutex_exit(&zv->zv_state_lock);
 | |
| 
 | |
| 	if (drop_suspend)
 | |
| 		rw_exit(&zv->zv_suspend_lock);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zvol_ioctl(struct block_device *bdev, fmode_t mode,
 | |
|     unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	zvol_state_t *zv = bdev->bd_disk->private_data;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	ASSERT3U(zv->zv_open_count, >, 0);
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case BLKFLSBUF:
 | |
| 		fsync_bdev(bdev);
 | |
| 		invalidate_bdev(bdev);
 | |
| 		rw_enter(&zv->zv_suspend_lock, RW_READER);
 | |
| 
 | |
| 		if (!(zv->zv_flags & ZVOL_RDONLY))
 | |
| 			txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
 | |
| 
 | |
| 		rw_exit(&zv->zv_suspend_lock);
 | |
| 		break;
 | |
| 
 | |
| 	case BLKZNAME:
 | |
| 		mutex_enter(&zv->zv_state_lock);
 | |
| 		error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
 | |
| 		mutex_exit(&zv->zv_state_lock);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		error = -ENOTTY;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return (SET_ERROR(error));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| static int
 | |
| zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
 | |
|     unsigned cmd, unsigned long arg)
 | |
| {
 | |
| 	return (zvol_ioctl(bdev, mode, cmd, arg));
 | |
| }
 | |
| #else
 | |
| #define	zvol_compat_ioctl	NULL
 | |
| #endif
 | |
| 
 | |
| static unsigned int
 | |
| zvol_check_events(struct gendisk *disk, unsigned int clearing)
 | |
| {
 | |
| 	unsigned int mask = 0;
 | |
| 
 | |
| 	rw_enter(&zvol_state_lock, RW_READER);
 | |
| 
 | |
| 	zvol_state_t *zv = disk->private_data;
 | |
| 	if (zv != NULL) {
 | |
| 		mutex_enter(&zv->zv_state_lock);
 | |
| 		mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
 | |
| 		zv->zv_changed = 0;
 | |
| 		mutex_exit(&zv->zv_state_lock);
 | |
| 	}
 | |
| 
 | |
| 	rw_exit(&zvol_state_lock);
 | |
| 
 | |
| 	return (mask);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zvol_revalidate_disk(struct gendisk *disk)
 | |
| {
 | |
| 	rw_enter(&zvol_state_lock, RW_READER);
 | |
| 
 | |
| 	zvol_state_t *zv = disk->private_data;
 | |
| 	if (zv != NULL) {
 | |
| 		mutex_enter(&zv->zv_state_lock);
 | |
| 		set_capacity(zv->zv_zso->zvo_disk,
 | |
| 		    zv->zv_volsize >> SECTOR_BITS);
 | |
| 		mutex_exit(&zv->zv_state_lock);
 | |
| 	}
 | |
| 
 | |
| 	rw_exit(&zvol_state_lock);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| int
 | |
| zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
 | |
| {
 | |
| 	struct gendisk *disk = zv->zv_zso->zvo_disk;
 | |
| 
 | |
| #if defined(HAVE_REVALIDATE_DISK_SIZE)
 | |
| 	revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
 | |
| #elif defined(HAVE_REVALIDATE_DISK)
 | |
| 	revalidate_disk(disk);
 | |
| #else
 | |
| 	zvol_revalidate_disk(disk);
 | |
| #endif
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| void
 | |
| zvol_os_clear_private(zvol_state_t *zv)
 | |
| {
 | |
| 	/*
 | |
| 	 * Cleared while holding zvol_state_lock as a writer
 | |
| 	 * which will prevent zvol_open() from opening it.
 | |
| 	 */
 | |
| 	zv->zv_zso->zvo_disk->private_data = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Provide a simple virtual geometry for legacy compatibility.  For devices
 | |
|  * smaller than 1 MiB a small head and sector count is used to allow very
 | |
|  * tiny devices.  For devices over 1 Mib a standard head and sector count
 | |
|  * is used to keep the cylinders count reasonable.
 | |
|  */
 | |
| static int
 | |
| zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 | |
| {
 | |
| 	zvol_state_t *zv = bdev->bd_disk->private_data;
 | |
| 	sector_t sectors;
 | |
| 
 | |
| 	ASSERT3U(zv->zv_open_count, >, 0);
 | |
| 
 | |
| 	sectors = get_capacity(zv->zv_zso->zvo_disk);
 | |
| 
 | |
| 	if (sectors > 2048) {
 | |
| 		geo->heads = 16;
 | |
| 		geo->sectors = 63;
 | |
| 	} else {
 | |
| 		geo->heads = 2;
 | |
| 		geo->sectors = 4;
 | |
| 	}
 | |
| 
 | |
| 	geo->start = 0;
 | |
| 	geo->cylinders = sectors / (geo->heads * geo->sectors);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Why have two separate block_device_operations structs?
 | |
|  *
 | |
|  * Normally we'd just have one, and assign 'submit_bio' as needed.  However,
 | |
|  * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
 | |
|  * can't just change submit_bio dynamically at runtime.  So just create two
 | |
|  * separate structs to get around this.
 | |
|  */
 | |
| static const struct block_device_operations zvol_ops_blk_mq = {
 | |
| 	.open			= zvol_open,
 | |
| 	.release		= zvol_release,
 | |
| 	.ioctl			= zvol_ioctl,
 | |
| 	.compat_ioctl		= zvol_compat_ioctl,
 | |
| 	.check_events		= zvol_check_events,
 | |
| #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
 | |
| 	.revalidate_disk	= zvol_revalidate_disk,
 | |
| #endif
 | |
| 	.getgeo			= zvol_getgeo,
 | |
| 	.owner			= THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static const struct block_device_operations zvol_ops = {
 | |
| 	.open			= zvol_open,
 | |
| 	.release		= zvol_release,
 | |
| 	.ioctl			= zvol_ioctl,
 | |
| 	.compat_ioctl		= zvol_compat_ioctl,
 | |
| 	.check_events		= zvol_check_events,
 | |
| #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
 | |
| 	.revalidate_disk	= zvol_revalidate_disk,
 | |
| #endif
 | |
| 	.getgeo			= zvol_getgeo,
 | |
| 	.owner			= THIS_MODULE,
 | |
| #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
 | |
| 	.submit_bio		= zvol_submit_bio,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static int
 | |
| zvol_alloc_non_blk_mq(struct zvol_state_os *zso)
 | |
| {
 | |
| #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
 | |
| #if defined(HAVE_BLK_ALLOC_DISK)
 | |
| 	zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
 | |
| 	if (zso->zvo_disk == NULL)
 | |
| 		return (1);
 | |
| 
 | |
| 	zso->zvo_disk->minors = ZVOL_MINORS;
 | |
| 	zso->zvo_queue = zso->zvo_disk->queue;
 | |
| #else
 | |
| 	zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
 | |
| 	if (zso->zvo_queue == NULL)
 | |
| 		return (1);
 | |
| 
 | |
| 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
 | |
| 	if (zso->zvo_disk == NULL) {
 | |
| 		blk_cleanup_queue(zso->zvo_queue);
 | |
| 		return (1);
 | |
| 	}
 | |
| 
 | |
| 	zso->zvo_disk->queue = zso->zvo_queue;
 | |
| #endif /* HAVE_BLK_ALLOC_DISK */
 | |
| #else
 | |
| 	zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
 | |
| 	if (zso->zvo_queue == NULL)
 | |
| 		return (1);
 | |
| 
 | |
| 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
 | |
| 	if (zso->zvo_disk == NULL) {
 | |
| 		blk_cleanup_queue(zso->zvo_queue);
 | |
| 		return (1);
 | |
| 	}
 | |
| 
 | |
| 	zso->zvo_disk->queue = zso->zvo_queue;
 | |
| #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
 | |
| 	return (0);
 | |
| 
 | |
| }
 | |
| 
 | |
| static int
 | |
| zvol_alloc_blk_mq(zvol_state_t *zv)
 | |
| {
 | |
| #ifdef HAVE_BLK_MQ
 | |
| 	struct zvol_state_os *zso = zv->zv_zso;
 | |
| 
 | |
| 	/* Allocate our blk-mq tag_set */
 | |
| 	if (zvol_blk_mq_alloc_tag_set(zv) != 0)
 | |
| 		return (1);
 | |
| 
 | |
| #if defined(HAVE_BLK_ALLOC_DISK)
 | |
| 	zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
 | |
| 	if (zso->zvo_disk == NULL) {
 | |
| 		blk_mq_free_tag_set(&zso->tag_set);
 | |
| 		return (1);
 | |
| 	}
 | |
| 	zso->zvo_queue = zso->zvo_disk->queue;
 | |
| 	zso->zvo_disk->minors = ZVOL_MINORS;
 | |
| #else
 | |
| 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
 | |
| 	if (zso->zvo_disk == NULL) {
 | |
| 		blk_cleanup_queue(zso->zvo_queue);
 | |
| 		blk_mq_free_tag_set(&zso->tag_set);
 | |
| 		return (1);
 | |
| 	}
 | |
| 	/* Allocate queue */
 | |
| 	zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
 | |
| 	if (IS_ERR(zso->zvo_queue)) {
 | |
| 		blk_mq_free_tag_set(&zso->tag_set);
 | |
| 		return (1);
 | |
| 	}
 | |
| 
 | |
| 	/* Our queue is now created, assign it to our disk */
 | |
| 	zso->zvo_disk->queue = zso->zvo_queue;
 | |
| 
 | |
| #endif
 | |
| #endif
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate memory for a new zvol_state_t and setup the required
 | |
|  * request queue and generic disk structures for the block device.
 | |
|  */
 | |
| static zvol_state_t *
 | |
| zvol_alloc(dev_t dev, const char *name)
 | |
| {
 | |
| 	zvol_state_t *zv;
 | |
| 	struct zvol_state_os *zso;
 | |
| 	uint64_t volmode;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	if (volmode == ZFS_VOLMODE_DEFAULT)
 | |
| 		volmode = zvol_volmode;
 | |
| 
 | |
| 	if (volmode == ZFS_VOLMODE_NONE)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
 | |
| 	zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
 | |
| 	zv->zv_zso = zso;
 | |
| 	zv->zv_volmode = volmode;
 | |
| 
 | |
| 	list_link_init(&zv->zv_next);
 | |
| 	mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 
 | |
| #ifdef HAVE_BLK_MQ
 | |
| 	zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * The block layer has 3 interfaces for getting BIOs:
 | |
| 	 *
 | |
| 	 * 1. blk-mq request queues (new)
 | |
| 	 * 2. submit_bio() (oldest)
 | |
| 	 * 3. regular request queues (old).
 | |
| 	 *
 | |
| 	 * Each of those interfaces has two permutations:
 | |
| 	 *
 | |
| 	 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
 | |
| 	 *    both the disk and its queue (5.14 kernel or newer)
 | |
| 	 *
 | |
| 	 * b) We don't have blk_*alloc_disk(), and have to allocate the
 | |
| 	 *    disk and the queue separately. (5.13 kernel or older)
 | |
| 	 */
 | |
| 	if (zv->zv_zso->use_blk_mq) {
 | |
| 		ret = zvol_alloc_blk_mq(zv);
 | |
| 		zso->zvo_disk->fops = &zvol_ops_blk_mq;
 | |
| 	} else {
 | |
| 		ret = zvol_alloc_non_blk_mq(zso);
 | |
| 		zso->zvo_disk->fops = &zvol_ops;
 | |
| 	}
 | |
| 	if (ret != 0)
 | |
| 		goto out_kmem;
 | |
| 
 | |
| 	blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
 | |
| 
 | |
| 	/* Limit read-ahead to a single page to prevent over-prefetching. */
 | |
| 	blk_queue_set_read_ahead(zso->zvo_queue, 1);
 | |
| 
 | |
| 	if (!zv->zv_zso->use_blk_mq) {
 | |
| 		/* Disable write merging in favor of the ZIO pipeline. */
 | |
| 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
 | |
| 	}
 | |
| 
 | |
| 	/* Enable /proc/diskstats */
 | |
| 	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue);
 | |
| 
 | |
| 	zso->zvo_queue->queuedata = zv;
 | |
| 	zso->zvo_dev = dev;
 | |
| 	zv->zv_open_count = 0;
 | |
| 	strlcpy(zv->zv_name, name, MAXNAMELEN);
 | |
| 
 | |
| 	zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
 | |
| 	rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
 | |
| 
 | |
| 	zso->zvo_disk->major = zvol_major;
 | |
| 	zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
 | |
| 	 * This is accomplished by limiting the number of minors for the
 | |
| 	 * device to one and explicitly disabling partition scanning.
 | |
| 	 */
 | |
| 	if (volmode == ZFS_VOLMODE_DEV) {
 | |
| 		zso->zvo_disk->minors = 1;
 | |
| 		zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
 | |
| 		zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
 | |
| 	}
 | |
| 
 | |
| 	zso->zvo_disk->first_minor = (dev & MINORMASK);
 | |
| 	zso->zvo_disk->private_data = zv;
 | |
| 	snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
 | |
| 	    ZVOL_DEV_NAME, (dev & MINORMASK));
 | |
| 
 | |
| 	return (zv);
 | |
| 
 | |
| out_kmem:
 | |
| 	kmem_free(zso, sizeof (struct zvol_state_os));
 | |
| 	kmem_free(zv, sizeof (zvol_state_t));
 | |
| 	return (NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cleanup then free a zvol_state_t which was created by zvol_alloc().
 | |
|  * At this time, the structure is not opened by anyone, is taken off
 | |
|  * the zvol_state_list, and has its private data set to NULL.
 | |
|  * The zvol_state_lock is dropped.
 | |
|  *
 | |
|  * This function may take many milliseconds to complete (e.g. we've seen
 | |
|  * it take over 256ms), due to the calls to "blk_cleanup_queue" and
 | |
|  * "del_gendisk". Thus, consumers need to be careful to account for this
 | |
|  * latency when calling this function.
 | |
|  */
 | |
| void
 | |
| zvol_os_free(zvol_state_t *zv)
 | |
| {
 | |
| 
 | |
| 	ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
 | |
| 	ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
 | |
| 	ASSERT0(zv->zv_open_count);
 | |
| 	ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
 | |
| 
 | |
| 	rw_destroy(&zv->zv_suspend_lock);
 | |
| 	zfs_rangelock_fini(&zv->zv_rangelock);
 | |
| 
 | |
| 	del_gendisk(zv->zv_zso->zvo_disk);
 | |
| #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
 | |
| 	defined(HAVE_BLK_ALLOC_DISK)
 | |
| #if defined(HAVE_BLK_CLEANUP_DISK)
 | |
| 	blk_cleanup_disk(zv->zv_zso->zvo_disk);
 | |
| #else
 | |
| 	put_disk(zv->zv_zso->zvo_disk);
 | |
| #endif
 | |
| #else
 | |
| 	blk_cleanup_queue(zv->zv_zso->zvo_queue);
 | |
| 	put_disk(zv->zv_zso->zvo_disk);
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_BLK_MQ
 | |
| 	if (zv->zv_zso->use_blk_mq)
 | |
| 		blk_mq_free_tag_set(&zv->zv_zso->tag_set);
 | |
| #endif
 | |
| 
 | |
| 	ida_simple_remove(&zvol_ida,
 | |
| 	    MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
 | |
| 
 | |
| 	mutex_destroy(&zv->zv_state_lock);
 | |
| 	dataset_kstats_destroy(&zv->zv_kstat);
 | |
| 
 | |
| 	kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
 | |
| 	kmem_free(zv, sizeof (zvol_state_t));
 | |
| }
 | |
| 
 | |
| void
 | |
| zvol_wait_close(zvol_state_t *zv)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a block device minor node and setup the linkage between it
 | |
|  * and the specified volume.  Once this function returns the block
 | |
|  * device is live and ready for use.
 | |
|  */
 | |
| int
 | |
| zvol_os_create_minor(const char *name)
 | |
| {
 | |
| 	zvol_state_t *zv;
 | |
| 	objset_t *os;
 | |
| 	dmu_object_info_t *doi;
 | |
| 	uint64_t volsize;
 | |
| 	uint64_t len;
 | |
| 	unsigned minor = 0;
 | |
| 	int error = 0;
 | |
| 	int idx;
 | |
| 	uint64_t hash = zvol_name_hash(name);
 | |
| 	bool replayed_zil = B_FALSE;
 | |
| 
 | |
| 	if (zvol_inhibit_dev)
 | |
| 		return (0);
 | |
| 
 | |
| 	idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
 | |
| 	if (idx < 0)
 | |
| 		return (SET_ERROR(-idx));
 | |
| 	minor = idx << ZVOL_MINOR_BITS;
 | |
| 
 | |
| 	zv = zvol_find_by_name_hash(name, hash, RW_NONE);
 | |
| 	if (zv) {
 | |
| 		ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 | |
| 		mutex_exit(&zv->zv_state_lock);
 | |
| 		ida_simple_remove(&zvol_ida, idx);
 | |
| 		return (SET_ERROR(EEXIST));
 | |
| 	}
 | |
| 
 | |
| 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
 | |
| 
 | |
| 	error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
 | |
| 	if (error)
 | |
| 		goto out_doi;
 | |
| 
 | |
| 	error = dmu_object_info(os, ZVOL_OBJ, doi);
 | |
| 	if (error)
 | |
| 		goto out_dmu_objset_disown;
 | |
| 
 | |
| 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
 | |
| 	if (error)
 | |
| 		goto out_dmu_objset_disown;
 | |
| 
 | |
| 	zv = zvol_alloc(MKDEV(zvol_major, minor), name);
 | |
| 	if (zv == NULL) {
 | |
| 		error = SET_ERROR(EAGAIN);
 | |
| 		goto out_dmu_objset_disown;
 | |
| 	}
 | |
| 	zv->zv_hash = hash;
 | |
| 
 | |
| 	if (dmu_objset_is_snapshot(os))
 | |
| 		zv->zv_flags |= ZVOL_RDONLY;
 | |
| 
 | |
| 	zv->zv_volblocksize = doi->doi_data_block_size;
 | |
| 	zv->zv_volsize = volsize;
 | |
| 	zv->zv_objset = os;
 | |
| 
 | |
| 	set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
 | |
| 
 | |
| 	blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
 | |
| 	    (DMU_MAX_ACCESS / 4) >> 9);
 | |
| 
 | |
| 	if (zv->zv_zso->use_blk_mq) {
 | |
| 		/*
 | |
| 		 * IO requests can be really big (1MB).  When an IO request
 | |
| 		 * comes in, it is passed off to zvol_read() or zvol_write()
 | |
| 		 * in a new thread, where it is chunked up into 'volblocksize'
 | |
| 		 * sized pieces and processed.  So for example, if the request
 | |
| 		 * is a 1MB write and your volblocksize is 128k, one zvol_write
 | |
| 		 * thread will take that request and sequentially do ten 128k
 | |
| 		 * IOs.  This is due to the fact that the thread needs to lock
 | |
| 		 * each volblocksize sized block.  So you might be wondering:
 | |
| 		 * "instead of passing the whole 1MB request to one thread,
 | |
| 		 * why not pass ten individual 128k chunks to ten threads and
 | |
| 		 * process the whole write in parallel?"  The short answer is
 | |
| 		 * that there's a sweet spot number of chunks that balances
 | |
| 		 * the greater parallelism with the added overhead of more
 | |
| 		 * threads. The sweet spot can be different depending on if you
 | |
| 		 * have a read or write  heavy workload.  Writes typically want
 | |
| 		 * high chunk counts while reads typically want lower ones.  On
 | |
| 		 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
 | |
| 		 * configuration, with volblocksize=8k, the sweet spot for good
 | |
| 		 * sequential reads and writes was at 8 chunks.
 | |
| 		 */
 | |
| 
 | |
| 		/*
 | |
| 		 * Below we tell the kernel how big we want our requests
 | |
| 		 * to be.  You would think that blk_queue_io_opt() would be
 | |
| 		 * used to do this since it is used to "set optimal request
 | |
| 		 * size for the queue", but that doesn't seem to do
 | |
| 		 * anything - the kernel still gives you huge requests
 | |
| 		 * with tons of little PAGE_SIZE segments contained within it.
 | |
| 		 *
 | |
| 		 * Knowing that the kernel will just give you PAGE_SIZE segments
 | |
| 		 * no matter what, you can say "ok, I want PAGE_SIZE byte
 | |
| 		 * segments, and I want 'N' of them per request", where N is
 | |
| 		 * the correct number of segments for the volblocksize and
 | |
| 		 * number of chunks you want.
 | |
| 		 */
 | |
| #ifdef HAVE_BLK_MQ
 | |
| 		if (zvol_blk_mq_blocks_per_thread != 0) {
 | |
| 			unsigned int chunks;
 | |
| 			chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
 | |
| 
 | |
| 			blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
 | |
| 			    PAGE_SIZE);
 | |
| 			blk_queue_max_segments(zv->zv_zso->zvo_queue,
 | |
| 			    (zv->zv_volblocksize * chunks) / PAGE_SIZE);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Special case: zvol_blk_mq_blocks_per_thread = 0
 | |
| 			 * Max everything out.
 | |
| 			 */
 | |
| 			blk_queue_max_segments(zv->zv_zso->zvo_queue,
 | |
| 			    UINT16_MAX);
 | |
| 			blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
 | |
| 			    UINT_MAX);
 | |
| 		}
 | |
| #endif
 | |
| 	} else {
 | |
| 		blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
 | |
| 		blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
 | |
| 	}
 | |
| 
 | |
| 	blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
 | |
| 	    zv->zv_volblocksize);
 | |
| 	blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
 | |
| 	blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
 | |
| 	    (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
 | |
| 	blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
 | |
| 	    zv->zv_volblocksize);
 | |
| #ifdef QUEUE_FLAG_DISCARD
 | |
| 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
 | |
| #endif
 | |
| #ifdef QUEUE_FLAG_NONROT
 | |
| 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
 | |
| #endif
 | |
| #ifdef QUEUE_FLAG_ADD_RANDOM
 | |
| 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
 | |
| #endif
 | |
| 	/* This flag was introduced in kernel version 4.12. */
 | |
| #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
 | |
| 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
 | |
| #endif
 | |
| 
 | |
| 	ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
 | |
| 	error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
 | |
| 	if (error)
 | |
| 		goto out_dmu_objset_disown;
 | |
| 	ASSERT3P(zv->zv_zilog, ==, NULL);
 | |
| 	zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
 | |
| 	if (spa_writeable(dmu_objset_spa(os))) {
 | |
| 		if (zil_replay_disable)
 | |
| 			replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
 | |
| 		else
 | |
| 			replayed_zil = zil_replay(os, zv, zvol_replay_vector);
 | |
| 	}
 | |
| 	if (replayed_zil)
 | |
| 		zil_close(zv->zv_zilog);
 | |
| 	zv->zv_zilog = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * When udev detects the addition of the device it will immediately
 | |
| 	 * invoke blkid(8) to determine the type of content on the device.
 | |
| 	 * Prefetching the blocks commonly scanned by blkid(8) will speed
 | |
| 	 * up this process.
 | |
| 	 */
 | |
| 	len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
 | |
| 	if (len > 0) {
 | |
| 		dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
 | |
| 		dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
 | |
| 		    ZIO_PRIORITY_SYNC_READ);
 | |
| 	}
 | |
| 
 | |
| 	zv->zv_objset = NULL;
 | |
| out_dmu_objset_disown:
 | |
| 	dmu_objset_disown(os, B_TRUE, FTAG);
 | |
| out_doi:
 | |
| 	kmem_free(doi, sizeof (dmu_object_info_t));
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep in mind that once add_disk() is called, the zvol is
 | |
| 	 * announced to the world, and zvol_open()/zvol_release() can
 | |
| 	 * be called at any time. Incidentally, add_disk() itself calls
 | |
| 	 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
 | |
| 	 * directly as well.
 | |
| 	 */
 | |
| 	if (error == 0) {
 | |
| 		rw_enter(&zvol_state_lock, RW_WRITER);
 | |
| 		zvol_insert(zv);
 | |
| 		rw_exit(&zvol_state_lock);
 | |
| #ifdef HAVE_ADD_DISK_RET
 | |
| 		error = add_disk(zv->zv_zso->zvo_disk);
 | |
| #else
 | |
| 		add_disk(zv->zv_zso->zvo_disk);
 | |
| #endif
 | |
| 	} else {
 | |
| 		ida_simple_remove(&zvol_ida, idx);
 | |
| 	}
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| void
 | |
| zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
 | |
| {
 | |
| 	int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
 | |
| 
 | |
| 	ASSERT(RW_LOCK_HELD(&zvol_state_lock));
 | |
| 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 | |
| 
 | |
| 	strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
 | |
| 
 | |
| 	/* move to new hashtable entry  */
 | |
| 	zv->zv_hash = zvol_name_hash(zv->zv_name);
 | |
| 	hlist_del(&zv->zv_hlink);
 | |
| 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
 | |
| 
 | |
| 	/*
 | |
| 	 * The block device's read-only state is briefly changed causing
 | |
| 	 * a KOBJ_CHANGE uevent to be issued.  This ensures udev detects
 | |
| 	 * the name change and fixes the symlinks.  This does not change
 | |
| 	 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
 | |
| 	 * changes.  This would normally be done using kobject_uevent() but
 | |
| 	 * that is a GPL-only symbol which is why we need this workaround.
 | |
| 	 */
 | |
| 	set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
 | |
| 	set_disk_ro(zv->zv_zso->zvo_disk, readonly);
 | |
| }
 | |
| 
 | |
| void
 | |
| zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
 | |
| {
 | |
| 
 | |
| 	set_disk_ro(zv->zv_zso->zvo_disk, flags);
 | |
| }
 | |
| 
 | |
| void
 | |
| zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
 | |
| {
 | |
| 
 | |
| 	set_capacity(zv->zv_zso->zvo_disk, capacity);
 | |
| }
 | |
| 
 | |
| int
 | |
| zvol_init(void)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * zvol_threads is the module param the user passes in.
 | |
| 	 *
 | |
| 	 * zvol_actual_threads is what we use internally, since the user can
 | |
| 	 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
 | |
| 	 */
 | |
| 	static unsigned int zvol_actual_threads;
 | |
| 
 | |
| 	if (zvol_threads == 0) {
 | |
| 		/*
 | |
| 		 * See dde9380a1 for why 32 was chosen here.  This should
 | |
| 		 * probably be refined to be some multiple of the number
 | |
| 		 * of CPUs.
 | |
| 		 */
 | |
| 		zvol_actual_threads = MAX(num_online_cpus(), 32);
 | |
| 	} else {
 | |
| 		zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
 | |
| 	}
 | |
| 
 | |
| 	error = register_blkdev(zvol_major, ZVOL_DRIVER);
 | |
| 	if (error) {
 | |
| 		printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| #ifdef HAVE_BLK_MQ
 | |
| 	if (zvol_blk_mq_queue_depth == 0) {
 | |
| 		zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
 | |
| 	} else {
 | |
| 		zvol_actual_blk_mq_queue_depth =
 | |
| 		    MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
 | |
| 	}
 | |
| 
 | |
| 	if (zvol_blk_mq_threads == 0) {
 | |
| 		zvol_blk_mq_actual_threads = num_online_cpus();
 | |
| 	} else {
 | |
| 		zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
 | |
| 		    1024);
 | |
| 	}
 | |
| #endif
 | |
| 	zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_actual_threads, maxclsyspri,
 | |
| 	    zvol_actual_threads, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
 | |
| 	if (zvol_taskq == NULL) {
 | |
| 		unregister_blkdev(zvol_major, ZVOL_DRIVER);
 | |
| 		return (-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	zvol_init_impl();
 | |
| 	ida_init(&zvol_ida);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| void
 | |
| zvol_fini(void)
 | |
| {
 | |
| 	zvol_fini_impl();
 | |
| 	unregister_blkdev(zvol_major, ZVOL_DRIVER);
 | |
| 	taskq_destroy(zvol_taskq);
 | |
| 	ida_destroy(&zvol_ida);
 | |
| }
 | |
| 
 | |
| /* BEGIN CSTYLED */
 | |
| module_param(zvol_inhibit_dev, uint, 0644);
 | |
| MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
 | |
| 
 | |
| module_param(zvol_major, uint, 0444);
 | |
| MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
 | |
| 
 | |
| module_param(zvol_threads, uint, 0444);
 | |
| MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
 | |
|     "to 0 to use all active CPUs");
 | |
| 
 | |
| module_param(zvol_request_sync, uint, 0644);
 | |
| MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
 | |
| 
 | |
| module_param(zvol_max_discard_blocks, ulong, 0444);
 | |
| MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
 | |
| 
 | |
| module_param(zvol_prefetch_bytes, uint, 0644);
 | |
| MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
 | |
| 
 | |
| module_param(zvol_volmode, uint, 0644);
 | |
| MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
 | |
| 
 | |
| #ifdef HAVE_BLK_MQ
 | |
| module_param(zvol_blk_mq_queue_depth, uint, 0644);
 | |
| MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
 | |
| 
 | |
| module_param(zvol_use_blk_mq, uint, 0644);
 | |
| MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
 | |
| 
 | |
| module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
 | |
| MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
 | |
|     "Process volblocksize blocks per thread");
 | |
| #endif
 | |
| 
 | |
| /* END CSTYLED */
 |