mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 18:31:31 +00:00 
			
		
		
		
	 b3ad3f48d9
			
		
	
	
		b3ad3f48d9
		
			
		
	
	
	
	
		
			
			... instead of list_head() + list_remove(). On FreeBSD the list functions are not inlined, so in addition to more compact code this also saves another function call. Reviewed-by: Brian Atkinson <batkinson@lanl.gov> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Alexander Motin <mav@FreeBSD.org> Sponsored by: iXsystems, Inc. Closes #14955
		
			
				
	
	
		
			1792 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1792 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
 | |
|  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 | |
|  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
 | |
|  * LLNL-CODE-403049.
 | |
|  *
 | |
|  * ZFS volume emulation driver.
 | |
|  *
 | |
|  * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
 | |
|  * Volumes are accessed through the symbolic links named:
 | |
|  *
 | |
|  * /dev/<pool_name>/<dataset_name>
 | |
|  *
 | |
|  * Volumes are persistent through reboot and module load.  No user command
 | |
|  * needs to be run before opening and using a device.
 | |
|  *
 | |
|  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
 | |
|  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
 | |
|  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Note on locking of zvol state structures.
 | |
|  *
 | |
|  * These structures are used to maintain internal state used to emulate block
 | |
|  * devices on top of zvols. In particular, management of device minor number
 | |
|  * operations - create, remove, rename, and set_snapdev - involves access to
 | |
|  * these structures. The zvol_state_lock is primarily used to protect the
 | |
|  * zvol_state_list. The zv->zv_state_lock is used to protect the contents
 | |
|  * of the zvol_state_t structures, as well as to make sure that when the
 | |
|  * time comes to remove the structure from the list, it is not in use, and
 | |
|  * therefore, it can be taken off zvol_state_list and freed.
 | |
|  *
 | |
|  * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
 | |
|  * e.g. for the duration of receive and rollback operations. This lock can be
 | |
|  * held for significant periods of time. Given that it is undesirable to hold
 | |
|  * mutexes for long periods of time, the following lock ordering applies:
 | |
|  * - take zvol_state_lock if necessary, to protect zvol_state_list
 | |
|  * - take zv_suspend_lock if necessary, by the code path in question
 | |
|  * - take zv_state_lock to protect zvol_state_t
 | |
|  *
 | |
|  * The minor operations are issued to spa->spa_zvol_taskq queues, that are
 | |
|  * single-threaded (to preserve order of minor operations), and are executed
 | |
|  * through the zvol_task_cb that dispatches the specific operations. Therefore,
 | |
|  * these operations are serialized per pool. Consequently, we can be certain
 | |
|  * that for a given zvol, there is only one operation at a time in progress.
 | |
|  * That is why one can be sure that first, zvol_state_t for a given zvol is
 | |
|  * allocated and placed on zvol_state_list, and then other minor operations
 | |
|  * for this zvol are going to proceed in the order of issue.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <sys/dataset_kstats.h>
 | |
| #include <sys/dbuf.h>
 | |
| #include <sys/dmu_traverse.h>
 | |
| #include <sys/dsl_dataset.h>
 | |
| #include <sys/dsl_prop.h>
 | |
| #include <sys/dsl_dir.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/zfeature.h>
 | |
| #include <sys/zil_impl.h>
 | |
| #include <sys/dmu_tx.h>
 | |
| #include <sys/zio.h>
 | |
| #include <sys/zfs_rlock.h>
 | |
| #include <sys/spa_impl.h>
 | |
| #include <sys/zvol.h>
 | |
| #include <sys/zvol_impl.h>
 | |
| 
 | |
| unsigned int zvol_inhibit_dev = 0;
 | |
| unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
 | |
| 
 | |
| struct hlist_head *zvol_htable;
 | |
| static list_t zvol_state_list;
 | |
| krwlock_t zvol_state_lock;
 | |
| 
 | |
| typedef enum {
 | |
| 	ZVOL_ASYNC_REMOVE_MINORS,
 | |
| 	ZVOL_ASYNC_RENAME_MINORS,
 | |
| 	ZVOL_ASYNC_SET_SNAPDEV,
 | |
| 	ZVOL_ASYNC_SET_VOLMODE,
 | |
| 	ZVOL_ASYNC_MAX
 | |
| } zvol_async_op_t;
 | |
| 
 | |
| typedef struct {
 | |
| 	zvol_async_op_t op;
 | |
| 	char name1[MAXNAMELEN];
 | |
| 	char name2[MAXNAMELEN];
 | |
| 	uint64_t value;
 | |
| } zvol_task_t;
 | |
| 
 | |
| uint64_t
 | |
| zvol_name_hash(const char *name)
 | |
| {
 | |
| 	int i;
 | |
| 	uint64_t crc = -1ULL;
 | |
| 	const uint8_t *p = (const uint8_t *)name;
 | |
| 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
 | |
| 	for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
 | |
| 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
 | |
| 	}
 | |
| 	return (crc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
 | |
|  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
 | |
|  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
 | |
|  * before zv_state_lock. The mode argument indicates the mode (including none)
 | |
|  * for zv_suspend_lock to be taken.
 | |
|  */
 | |
| zvol_state_t *
 | |
| zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
 | |
| {
 | |
| 	zvol_state_t *zv;
 | |
| 	struct hlist_node *p = NULL;
 | |
| 
 | |
| 	rw_enter(&zvol_state_lock, RW_READER);
 | |
| 	hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
 | |
| 		zv = hlist_entry(p, zvol_state_t, zv_hlink);
 | |
| 		mutex_enter(&zv->zv_state_lock);
 | |
| 		if (zv->zv_hash == hash &&
 | |
| 		    strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
 | |
| 			/*
 | |
| 			 * this is the right zvol, take the locks in the
 | |
| 			 * right order
 | |
| 			 */
 | |
| 			if (mode != RW_NONE &&
 | |
| 			    !rw_tryenter(&zv->zv_suspend_lock, mode)) {
 | |
| 				mutex_exit(&zv->zv_state_lock);
 | |
| 				rw_enter(&zv->zv_suspend_lock, mode);
 | |
| 				mutex_enter(&zv->zv_state_lock);
 | |
| 				/*
 | |
| 				 * zvol cannot be renamed as we continue
 | |
| 				 * to hold zvol_state_lock
 | |
| 				 */
 | |
| 				ASSERT(zv->zv_hash == hash &&
 | |
| 				    strncmp(zv->zv_name, name, MAXNAMELEN)
 | |
| 				    == 0);
 | |
| 			}
 | |
| 			rw_exit(&zvol_state_lock);
 | |
| 			return (zv);
 | |
| 		}
 | |
| 		mutex_exit(&zv->zv_state_lock);
 | |
| 	}
 | |
| 	rw_exit(&zvol_state_lock);
 | |
| 
 | |
| 	return (NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a zvol_state_t given the name.
 | |
|  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
 | |
|  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
 | |
|  * before zv_state_lock. The mode argument indicates the mode (including none)
 | |
|  * for zv_suspend_lock to be taken.
 | |
|  */
 | |
| static zvol_state_t *
 | |
| zvol_find_by_name(const char *name, int mode)
 | |
| {
 | |
| 	return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
 | |
|  */
 | |
| void
 | |
| zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
 | |
| {
 | |
| 	zfs_creat_t *zct = arg;
 | |
| 	nvlist_t *nvprops = zct->zct_props;
 | |
| 	int error;
 | |
| 	uint64_t volblocksize, volsize;
 | |
| 
 | |
| 	VERIFY(nvlist_lookup_uint64(nvprops,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
 | |
| 	if (nvlist_lookup_uint64(nvprops,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
 | |
| 		volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * These properties must be removed from the list so the generic
 | |
| 	 * property setting step won't apply to them.
 | |
| 	 */
 | |
| 	VERIFY(nvlist_remove_all(nvprops,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
 | |
| 	(void) nvlist_remove_all(nvprops,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
 | |
| 
 | |
| 	error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
 | |
| 	    DMU_OT_NONE, 0, tx);
 | |
| 	ASSERT(error == 0);
 | |
| 
 | |
| 	error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
 | |
| 	    DMU_OT_NONE, 0, tx);
 | |
| 	ASSERT(error == 0);
 | |
| 
 | |
| 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
 | |
| 	ASSERT(error == 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ZFS_IOC_OBJSET_STATS entry point.
 | |
|  */
 | |
| int
 | |
| zvol_get_stats(objset_t *os, nvlist_t *nv)
 | |
| {
 | |
| 	int error;
 | |
| 	dmu_object_info_t *doi;
 | |
| 	uint64_t val;
 | |
| 
 | |
| 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
 | |
| 	if (error)
 | |
| 		return (SET_ERROR(error));
 | |
| 
 | |
| 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
 | |
| 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
 | |
| 	error = dmu_object_info(os, ZVOL_OBJ, doi);
 | |
| 
 | |
| 	if (error == 0) {
 | |
| 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
 | |
| 		    doi->doi_data_block_size);
 | |
| 	}
 | |
| 
 | |
| 	kmem_free(doi, sizeof (dmu_object_info_t));
 | |
| 
 | |
| 	return (SET_ERROR(error));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sanity check volume size.
 | |
|  */
 | |
| int
 | |
| zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
 | |
| {
 | |
| 	if (volsize == 0)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if (volsize % blocksize != 0)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| #ifdef _ILP32
 | |
| 	if (volsize - 1 > SPEC_MAXOFFSET_T)
 | |
| 		return (SET_ERROR(EOVERFLOW));
 | |
| #endif
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensure the zap is flushed then inform the VFS of the capacity change.
 | |
|  */
 | |
| static int
 | |
| zvol_update_volsize(uint64_t volsize, objset_t *os)
 | |
| {
 | |
| 	dmu_tx_t *tx;
 | |
| 	int error;
 | |
| 	uint64_t txg;
 | |
| 
 | |
| 	tx = dmu_tx_create(os);
 | |
| 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
 | |
| 	dmu_tx_mark_netfree(tx);
 | |
| 	error = dmu_tx_assign(tx, TXG_WAIT);
 | |
| 	if (error) {
 | |
| 		dmu_tx_abort(tx);
 | |
| 		return (SET_ERROR(error));
 | |
| 	}
 | |
| 	txg = dmu_tx_get_txg(tx);
 | |
| 
 | |
| 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
 | |
| 	    &volsize, tx);
 | |
| 	dmu_tx_commit(tx);
 | |
| 
 | |
| 	txg_wait_synced(dmu_objset_pool(os), txg);
 | |
| 
 | |
| 	if (error == 0)
 | |
| 		error = dmu_free_long_range(os,
 | |
| 		    ZVOL_OBJ, volsize, DMU_OBJECT_END);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set ZFS_PROP_VOLSIZE set entry point.  Note that modifying the volume
 | |
|  * size will result in a udev "change" event being generated.
 | |
|  */
 | |
| int
 | |
| zvol_set_volsize(const char *name, uint64_t volsize)
 | |
| {
 | |
| 	objset_t *os = NULL;
 | |
| 	uint64_t readonly;
 | |
| 	int error;
 | |
| 	boolean_t owned = B_FALSE;
 | |
| 
 | |
| 	error = dsl_prop_get_integer(name,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
 | |
| 	if (error != 0)
 | |
| 		return (SET_ERROR(error));
 | |
| 	if (readonly)
 | |
| 		return (SET_ERROR(EROFS));
 | |
| 
 | |
| 	zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
 | |
| 
 | |
| 	ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
 | |
| 	    RW_READ_HELD(&zv->zv_suspend_lock)));
 | |
| 
 | |
| 	if (zv == NULL || zv->zv_objset == NULL) {
 | |
| 		if (zv != NULL)
 | |
| 			rw_exit(&zv->zv_suspend_lock);
 | |
| 		if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
 | |
| 		    FTAG, &os)) != 0) {
 | |
| 			if (zv != NULL)
 | |
| 				mutex_exit(&zv->zv_state_lock);
 | |
| 			return (SET_ERROR(error));
 | |
| 		}
 | |
| 		owned = B_TRUE;
 | |
| 		if (zv != NULL)
 | |
| 			zv->zv_objset = os;
 | |
| 	} else {
 | |
| 		os = zv->zv_objset;
 | |
| 	}
 | |
| 
 | |
| 	dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
 | |
| 
 | |
| 	if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
 | |
| 	    (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
 | |
| 		goto out;
 | |
| 
 | |
| 	error = zvol_update_volsize(volsize, os);
 | |
| 	if (error == 0 && zv != NULL) {
 | |
| 		zv->zv_volsize = volsize;
 | |
| 		zv->zv_changed = 1;
 | |
| 	}
 | |
| out:
 | |
| 	kmem_free(doi, sizeof (dmu_object_info_t));
 | |
| 
 | |
| 	if (owned) {
 | |
| 		dmu_objset_disown(os, B_TRUE, FTAG);
 | |
| 		if (zv != NULL)
 | |
| 			zv->zv_objset = NULL;
 | |
| 	} else {
 | |
| 		rw_exit(&zv->zv_suspend_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (zv != NULL)
 | |
| 		mutex_exit(&zv->zv_state_lock);
 | |
| 
 | |
| 	if (error == 0 && zv != NULL)
 | |
| 		zvol_os_update_volsize(zv, volsize);
 | |
| 
 | |
| 	return (SET_ERROR(error));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sanity check volume block size.
 | |
|  */
 | |
| int
 | |
| zvol_check_volblocksize(const char *name, uint64_t volblocksize)
 | |
| {
 | |
| 	/* Record sizes above 128k need the feature to be enabled */
 | |
| 	if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
 | |
| 		spa_t *spa;
 | |
| 		int error;
 | |
| 
 | |
| 		if ((error = spa_open(name, &spa, FTAG)) != 0)
 | |
| 			return (error);
 | |
| 
 | |
| 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
 | |
| 			spa_close(spa, FTAG);
 | |
| 			return (SET_ERROR(ENOTSUP));
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't allow setting the property above 1MB,
 | |
| 		 * unless the tunable has been changed.
 | |
| 		 */
 | |
| 		if (volblocksize > zfs_max_recordsize)
 | |
| 			return (SET_ERROR(EDOM));
 | |
| 
 | |
| 		spa_close(spa, FTAG);
 | |
| 	}
 | |
| 
 | |
| 	if (volblocksize < SPA_MINBLOCKSIZE ||
 | |
| 	    volblocksize > SPA_MAXBLOCKSIZE ||
 | |
| 	    !ISP2(volblocksize))
 | |
| 		return (SET_ERROR(EDOM));
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Replay a TX_TRUNCATE ZIL transaction if asked.  TX_TRUNCATE is how we
 | |
|  * implement DKIOCFREE/free-long-range.
 | |
|  */
 | |
| static int
 | |
| zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
 | |
| {
 | |
| 	zvol_state_t *zv = arg1;
 | |
| 	lr_truncate_t *lr = arg2;
 | |
| 	uint64_t offset, length;
 | |
| 
 | |
| 	if (byteswap)
 | |
| 		byteswap_uint64_array(lr, sizeof (*lr));
 | |
| 
 | |
| 	offset = lr->lr_offset;
 | |
| 	length = lr->lr_length;
 | |
| 
 | |
| 	dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
 | |
| 	dmu_tx_mark_netfree(tx);
 | |
| 	int error = dmu_tx_assign(tx, TXG_WAIT);
 | |
| 	if (error != 0) {
 | |
| 		dmu_tx_abort(tx);
 | |
| 	} else {
 | |
| 		(void) zil_replaying(zv->zv_zilog, tx);
 | |
| 		dmu_tx_commit(tx);
 | |
| 		error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
 | |
| 		    length);
 | |
| 	}
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Replay a TX_WRITE ZIL transaction that didn't get committed
 | |
|  * after a system failure
 | |
|  */
 | |
| static int
 | |
| zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
 | |
| {
 | |
| 	zvol_state_t *zv = arg1;
 | |
| 	lr_write_t *lr = arg2;
 | |
| 	objset_t *os = zv->zv_objset;
 | |
| 	char *data = (char *)(lr + 1);  /* data follows lr_write_t */
 | |
| 	uint64_t offset, length;
 | |
| 	dmu_tx_t *tx;
 | |
| 	int error;
 | |
| 
 | |
| 	if (byteswap)
 | |
| 		byteswap_uint64_array(lr, sizeof (*lr));
 | |
| 
 | |
| 	offset = lr->lr_offset;
 | |
| 	length = lr->lr_length;
 | |
| 
 | |
| 	/* If it's a dmu_sync() block, write the whole block */
 | |
| 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
 | |
| 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
 | |
| 		if (length < blocksize) {
 | |
| 			offset -= offset % blocksize;
 | |
| 			length = blocksize;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tx = dmu_tx_create(os);
 | |
| 	dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
 | |
| 	error = dmu_tx_assign(tx, TXG_WAIT);
 | |
| 	if (error) {
 | |
| 		dmu_tx_abort(tx);
 | |
| 	} else {
 | |
| 		dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
 | |
| 		(void) zil_replaying(zv->zv_zilog, tx);
 | |
| 		dmu_tx_commit(tx);
 | |
| 	}
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed
 | |
|  * after a system failure.
 | |
|  *
 | |
|  * TODO: For now we drop block cloning transations for ZVOLs as they are
 | |
|  *       unsupported, but we still need to inform BRT about that as we
 | |
|  *       claimed them during pool import.
 | |
|  *       This situation can occur when we try to import a pool from a ZFS
 | |
|  *       version supporting block cloning for ZVOLs into a system that
 | |
|  *       has this ZFS version, that doesn't support block cloning for ZVOLs.
 | |
|  */
 | |
| static int
 | |
| zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap)
 | |
| {
 | |
| 	char name[ZFS_MAX_DATASET_NAME_LEN];
 | |
| 	zvol_state_t *zv = arg1;
 | |
| 	objset_t *os = zv->zv_objset;
 | |
| 	lr_clone_range_t *lr = arg2;
 | |
| 	blkptr_t *bp;
 | |
| 	dmu_tx_t *tx;
 | |
| 	spa_t *spa;
 | |
| 	uint_t ii;
 | |
| 	int error;
 | |
| 
 | |
| 	dmu_objset_name(os, name);
 | |
| 	cmn_err(CE_WARN, "ZFS dropping block cloning transaction for %s.",
 | |
| 	    name);
 | |
| 
 | |
| 	if (byteswap)
 | |
| 		byteswap_uint64_array(lr, sizeof (*lr));
 | |
| 
 | |
| 	tx = dmu_tx_create(os);
 | |
| 	error = dmu_tx_assign(tx, TXG_WAIT);
 | |
| 	if (error) {
 | |
| 		dmu_tx_abort(tx);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	spa = os->os_spa;
 | |
| 
 | |
| 	for (ii = 0; ii < lr->lr_nbps; ii++) {
 | |
| 		bp = &lr->lr_bps[ii];
 | |
| 
 | |
| 		if (!BP_IS_HOLE(bp)) {
 | |
| 			zio_free(spa, dmu_tx_get_txg(tx), bp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	(void) zil_replaying(zv->zv_zilog, tx);
 | |
| 	dmu_tx_commit(tx);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
 | |
| {
 | |
| 	(void) arg1, (void) arg2, (void) byteswap;
 | |
| 	return (SET_ERROR(ENOTSUP));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Callback vectors for replaying records.
 | |
|  * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
 | |
|  */
 | |
| zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
 | |
| 	zvol_replay_err,	/* no such transaction type */
 | |
| 	zvol_replay_err,	/* TX_CREATE */
 | |
| 	zvol_replay_err,	/* TX_MKDIR */
 | |
| 	zvol_replay_err,	/* TX_MKXATTR */
 | |
| 	zvol_replay_err,	/* TX_SYMLINK */
 | |
| 	zvol_replay_err,	/* TX_REMOVE */
 | |
| 	zvol_replay_err,	/* TX_RMDIR */
 | |
| 	zvol_replay_err,	/* TX_LINK */
 | |
| 	zvol_replay_err,	/* TX_RENAME */
 | |
| 	zvol_replay_write,	/* TX_WRITE */
 | |
| 	zvol_replay_truncate,	/* TX_TRUNCATE */
 | |
| 	zvol_replay_err,	/* TX_SETATTR */
 | |
| 	zvol_replay_err,	/* TX_ACL */
 | |
| 	zvol_replay_err,	/* TX_CREATE_ATTR */
 | |
| 	zvol_replay_err,	/* TX_CREATE_ACL_ATTR */
 | |
| 	zvol_replay_err,	/* TX_MKDIR_ACL */
 | |
| 	zvol_replay_err,	/* TX_MKDIR_ATTR */
 | |
| 	zvol_replay_err,	/* TX_MKDIR_ACL_ATTR */
 | |
| 	zvol_replay_err,	/* TX_WRITE2 */
 | |
| 	zvol_replay_err,	/* TX_SETSAXATTR */
 | |
| 	zvol_replay_err,	/* TX_RENAME_EXCHANGE */
 | |
| 	zvol_replay_err,	/* TX_RENAME_WHITEOUT */
 | |
| 	zvol_replay_clone_range	/* TX_CLONE_RANGE */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
 | |
|  *
 | |
|  * We store data in the log buffers if it's small enough.
 | |
|  * Otherwise we will later flush the data out via dmu_sync().
 | |
|  */
 | |
| static const ssize_t zvol_immediate_write_sz = 32768;
 | |
| 
 | |
| void
 | |
| zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
 | |
|     uint64_t size, int sync)
 | |
| {
 | |
| 	uint32_t blocksize = zv->zv_volblocksize;
 | |
| 	zilog_t *zilog = zv->zv_zilog;
 | |
| 	itx_wr_state_t write_state;
 | |
| 	uint64_t sz = size;
 | |
| 
 | |
| 	if (zil_replaying(zilog, tx))
 | |
| 		return;
 | |
| 
 | |
| 	if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
 | |
| 		write_state = WR_INDIRECT;
 | |
| 	else if (!spa_has_slogs(zilog->zl_spa) &&
 | |
| 	    size >= blocksize && blocksize > zvol_immediate_write_sz)
 | |
| 		write_state = WR_INDIRECT;
 | |
| 	else if (sync)
 | |
| 		write_state = WR_COPIED;
 | |
| 	else
 | |
| 		write_state = WR_NEED_COPY;
 | |
| 
 | |
| 	while (size) {
 | |
| 		itx_t *itx;
 | |
| 		lr_write_t *lr;
 | |
| 		itx_wr_state_t wr_state = write_state;
 | |
| 		ssize_t len = size;
 | |
| 
 | |
| 		if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
 | |
| 			wr_state = WR_NEED_COPY;
 | |
| 		else if (wr_state == WR_INDIRECT)
 | |
| 			len = MIN(blocksize - P2PHASE(offset, blocksize), size);
 | |
| 
 | |
| 		itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
 | |
| 		    (wr_state == WR_COPIED ? len : 0));
 | |
| 		lr = (lr_write_t *)&itx->itx_lr;
 | |
| 		if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
 | |
| 		    offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
 | |
| 			zil_itx_destroy(itx);
 | |
| 			itx = zil_itx_create(TX_WRITE, sizeof (*lr));
 | |
| 			lr = (lr_write_t *)&itx->itx_lr;
 | |
| 			wr_state = WR_NEED_COPY;
 | |
| 		}
 | |
| 
 | |
| 		itx->itx_wr_state = wr_state;
 | |
| 		lr->lr_foid = ZVOL_OBJ;
 | |
| 		lr->lr_offset = offset;
 | |
| 		lr->lr_length = len;
 | |
| 		lr->lr_blkoff = 0;
 | |
| 		BP_ZERO(&lr->lr_blkptr);
 | |
| 
 | |
| 		itx->itx_private = zv;
 | |
| 		itx->itx_sync = sync;
 | |
| 
 | |
| 		(void) zil_itx_assign(zilog, itx, tx);
 | |
| 
 | |
| 		offset += len;
 | |
| 		size -= len;
 | |
| 	}
 | |
| 
 | |
| 	if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
 | |
| 		dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
 | |
|  */
 | |
| void
 | |
| zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
 | |
|     boolean_t sync)
 | |
| {
 | |
| 	itx_t *itx;
 | |
| 	lr_truncate_t *lr;
 | |
| 	zilog_t *zilog = zv->zv_zilog;
 | |
| 
 | |
| 	if (zil_replaying(zilog, tx))
 | |
| 		return;
 | |
| 
 | |
| 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
 | |
| 	lr = (lr_truncate_t *)&itx->itx_lr;
 | |
| 	lr->lr_foid = ZVOL_OBJ;
 | |
| 	lr->lr_offset = off;
 | |
| 	lr->lr_length = len;
 | |
| 
 | |
| 	itx->itx_sync = sync;
 | |
| 	zil_itx_assign(zilog, itx, tx);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| zvol_get_done(zgd_t *zgd, int error)
 | |
| {
 | |
| 	(void) error;
 | |
| 	if (zgd->zgd_db)
 | |
| 		dmu_buf_rele(zgd->zgd_db, zgd);
 | |
| 
 | |
| 	zfs_rangelock_exit(zgd->zgd_lr);
 | |
| 
 | |
| 	kmem_free(zgd, sizeof (zgd_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get data to generate a TX_WRITE intent log record.
 | |
|  */
 | |
| int
 | |
| zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
 | |
|     struct lwb *lwb, zio_t *zio)
 | |
| {
 | |
| 	zvol_state_t *zv = arg;
 | |
| 	uint64_t offset = lr->lr_offset;
 | |
| 	uint64_t size = lr->lr_length;
 | |
| 	dmu_buf_t *db;
 | |
| 	zgd_t *zgd;
 | |
| 	int error;
 | |
| 
 | |
| 	ASSERT3P(lwb, !=, NULL);
 | |
| 	ASSERT3P(zio, !=, NULL);
 | |
| 	ASSERT3U(size, !=, 0);
 | |
| 
 | |
| 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
 | |
| 	zgd->zgd_lwb = lwb;
 | |
| 
 | |
| 	/*
 | |
| 	 * Write records come in two flavors: immediate and indirect.
 | |
| 	 * For small writes it's cheaper to store the data with the
 | |
| 	 * log record (immediate); for large writes it's cheaper to
 | |
| 	 * sync the data and get a pointer to it (indirect) so that
 | |
| 	 * we don't have to write the data twice.
 | |
| 	 */
 | |
| 	if (buf != NULL) { /* immediate write */
 | |
| 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
 | |
| 		    size, RL_READER);
 | |
| 		error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
 | |
| 		    DMU_READ_NO_PREFETCH);
 | |
| 	} else { /* indirect write */
 | |
| 		/*
 | |
| 		 * Have to lock the whole block to ensure when it's written out
 | |
| 		 * and its checksum is being calculated that no one can change
 | |
| 		 * the data. Contrarily to zfs_get_data we need not re-check
 | |
| 		 * blocksize after we get the lock because it cannot be changed.
 | |
| 		 */
 | |
| 		size = zv->zv_volblocksize;
 | |
| 		offset = P2ALIGN_TYPED(offset, size, uint64_t);
 | |
| 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
 | |
| 		    size, RL_READER);
 | |
| 		error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db,
 | |
| 		    DMU_READ_NO_PREFETCH);
 | |
| 		if (error == 0) {
 | |
| 			blkptr_t *bp = &lr->lr_blkptr;
 | |
| 
 | |
| 			zgd->zgd_db = db;
 | |
| 			zgd->zgd_bp = bp;
 | |
| 
 | |
| 			ASSERT(db != NULL);
 | |
| 			ASSERT(db->db_offset == offset);
 | |
| 			ASSERT(db->db_size == size);
 | |
| 
 | |
| 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
 | |
| 			    zvol_get_done, zgd);
 | |
| 
 | |
| 			if (error == 0)
 | |
| 				return (0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	zvol_get_done(zgd, error);
 | |
| 
 | |
| 	return (SET_ERROR(error));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
 | |
|  */
 | |
| 
 | |
| void
 | |
| zvol_insert(zvol_state_t *zv)
 | |
| {
 | |
| 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
 | |
| 	list_insert_head(&zvol_state_list, zv);
 | |
| 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Simply remove the zvol from to list of zvols.
 | |
|  */
 | |
| static void
 | |
| zvol_remove(zvol_state_t *zv)
 | |
| {
 | |
| 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
 | |
| 	list_remove(&zvol_state_list, zv);
 | |
| 	hlist_del(&zv->zv_hlink);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup zv after we just own the zv->objset
 | |
|  */
 | |
| static int
 | |
| zvol_setup_zv(zvol_state_t *zv)
 | |
| {
 | |
| 	uint64_t volsize;
 | |
| 	int error;
 | |
| 	uint64_t ro;
 | |
| 	objset_t *os = zv->zv_objset;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 | |
| 	ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
 | |
| 
 | |
| 	zv->zv_zilog = NULL;
 | |
| 	zv->zv_flags &= ~ZVOL_WRITTEN_TO;
 | |
| 
 | |
| 	error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
 | |
| 	if (error)
 | |
| 		return (SET_ERROR(error));
 | |
| 
 | |
| 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
 | |
| 	if (error)
 | |
| 		return (SET_ERROR(error));
 | |
| 
 | |
| 	error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
 | |
| 	if (error)
 | |
| 		return (SET_ERROR(error));
 | |
| 
 | |
| 	zvol_os_set_capacity(zv, volsize >> 9);
 | |
| 	zv->zv_volsize = volsize;
 | |
| 
 | |
| 	if (ro || dmu_objset_is_snapshot(os) ||
 | |
| 	    !spa_writeable(dmu_objset_spa(os))) {
 | |
| 		zvol_os_set_disk_ro(zv, 1);
 | |
| 		zv->zv_flags |= ZVOL_RDONLY;
 | |
| 	} else {
 | |
| 		zvol_os_set_disk_ro(zv, 0);
 | |
| 		zv->zv_flags &= ~ZVOL_RDONLY;
 | |
| 	}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shutdown every zv_objset related stuff except zv_objset itself.
 | |
|  * The is the reverse of zvol_setup_zv.
 | |
|  */
 | |
| static void
 | |
| zvol_shutdown_zv(zvol_state_t *zv)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
 | |
| 	    RW_LOCK_HELD(&zv->zv_suspend_lock));
 | |
| 
 | |
| 	if (zv->zv_flags & ZVOL_WRITTEN_TO) {
 | |
| 		ASSERT(zv->zv_zilog != NULL);
 | |
| 		zil_close(zv->zv_zilog);
 | |
| 	}
 | |
| 
 | |
| 	zv->zv_zilog = NULL;
 | |
| 
 | |
| 	dnode_rele(zv->zv_dn, zv);
 | |
| 	zv->zv_dn = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Evict cached data. We must write out any dirty data before
 | |
| 	 * disowning the dataset.
 | |
| 	 */
 | |
| 	if (zv->zv_flags & ZVOL_WRITTEN_TO)
 | |
| 		txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
 | |
| 	(void) dmu_objset_evict_dbufs(zv->zv_objset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * return the proper tag for rollback and recv
 | |
|  */
 | |
| void *
 | |
| zvol_tag(zvol_state_t *zv)
 | |
| {
 | |
| 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
 | |
| 	return (zv->zv_open_count > 0 ? zv : NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Suspend the zvol for recv and rollback.
 | |
|  */
 | |
| zvol_state_t *
 | |
| zvol_suspend(const char *name)
 | |
| {
 | |
| 	zvol_state_t *zv;
 | |
| 
 | |
| 	zv = zvol_find_by_name(name, RW_WRITER);
 | |
| 
 | |
| 	if (zv == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	/* block all I/O, release in zvol_resume. */
 | |
| 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 | |
| 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
 | |
| 
 | |
| 	atomic_inc(&zv->zv_suspend_ref);
 | |
| 
 | |
| 	if (zv->zv_open_count > 0)
 | |
| 		zvol_shutdown_zv(zv);
 | |
| 
 | |
| 	/*
 | |
| 	 * do not hold zv_state_lock across suspend/resume to
 | |
| 	 * avoid locking up zvol lookups
 | |
| 	 */
 | |
| 	mutex_exit(&zv->zv_state_lock);
 | |
| 
 | |
| 	/* zv_suspend_lock is released in zvol_resume() */
 | |
| 	return (zv);
 | |
| }
 | |
| 
 | |
| int
 | |
| zvol_resume(zvol_state_t *zv)
 | |
| {
 | |
| 	int error = 0;
 | |
| 
 | |
| 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
 | |
| 
 | |
| 	mutex_enter(&zv->zv_state_lock);
 | |
| 
 | |
| 	if (zv->zv_open_count > 0) {
 | |
| 		VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
 | |
| 		VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
 | |
| 		VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
 | |
| 		dmu_objset_rele(zv->zv_objset, zv);
 | |
| 
 | |
| 		error = zvol_setup_zv(zv);
 | |
| 	}
 | |
| 
 | |
| 	mutex_exit(&zv->zv_state_lock);
 | |
| 
 | |
| 	rw_exit(&zv->zv_suspend_lock);
 | |
| 	/*
 | |
| 	 * We need this because we don't hold zvol_state_lock while releasing
 | |
| 	 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
 | |
| 	 * zv_suspend_lock to determine it is safe to free because rwlock is
 | |
| 	 * not inherent atomic.
 | |
| 	 */
 | |
| 	atomic_dec(&zv->zv_suspend_ref);
 | |
| 
 | |
| 	return (SET_ERROR(error));
 | |
| }
 | |
| 
 | |
| int
 | |
| zvol_first_open(zvol_state_t *zv, boolean_t readonly)
 | |
| {
 | |
| 	objset_t *os;
 | |
| 	int error;
 | |
| 
 | |
| 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
 | |
| 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 | |
| 	ASSERT(mutex_owned(&spa_namespace_lock));
 | |
| 
 | |
| 	boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
 | |
| 	error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
 | |
| 	if (error)
 | |
| 		return (SET_ERROR(error));
 | |
| 
 | |
| 	zv->zv_objset = os;
 | |
| 
 | |
| 	error = zvol_setup_zv(zv);
 | |
| 	if (error) {
 | |
| 		dmu_objset_disown(os, 1, zv);
 | |
| 		zv->zv_objset = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| void
 | |
| zvol_last_close(zvol_state_t *zv)
 | |
| {
 | |
| 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
 | |
| 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 | |
| 
 | |
| 	zvol_shutdown_zv(zv);
 | |
| 
 | |
| 	dmu_objset_disown(zv->zv_objset, 1, zv);
 | |
| 	zv->zv_objset = NULL;
 | |
| }
 | |
| 
 | |
| typedef struct minors_job {
 | |
| 	list_t *list;
 | |
| 	list_node_t link;
 | |
| 	/* input */
 | |
| 	char *name;
 | |
| 	/* output */
 | |
| 	int error;
 | |
| } minors_job_t;
 | |
| 
 | |
| /*
 | |
|  * Prefetch zvol dnodes for the minors_job
 | |
|  */
 | |
| static void
 | |
| zvol_prefetch_minors_impl(void *arg)
 | |
| {
 | |
| 	minors_job_t *job = arg;
 | |
| 	char *dsname = job->name;
 | |
| 	objset_t *os = NULL;
 | |
| 
 | |
| 	job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
 | |
| 	    FTAG, &os);
 | |
| 	if (job->error == 0) {
 | |
| 		dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
 | |
| 		dmu_objset_disown(os, B_TRUE, FTAG);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mask errors to continue dmu_objset_find() traversal
 | |
|  */
 | |
| static int
 | |
| zvol_create_snap_minor_cb(const char *dsname, void *arg)
 | |
| {
 | |
| 	minors_job_t *j = arg;
 | |
| 	list_t *minors_list = j->list;
 | |
| 	const char *name = j->name;
 | |
| 
 | |
| 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
 | |
| 
 | |
| 	/* skip the designated dataset */
 | |
| 	if (name && strcmp(dsname, name) == 0)
 | |
| 		return (0);
 | |
| 
 | |
| 	/* at this point, the dsname should name a snapshot */
 | |
| 	if (strchr(dsname, '@') == 0) {
 | |
| 		dprintf("zvol_create_snap_minor_cb(): "
 | |
| 		    "%s is not a snapshot name\n", dsname);
 | |
| 	} else {
 | |
| 		minors_job_t *job;
 | |
| 		char *n = kmem_strdup(dsname);
 | |
| 		if (n == NULL)
 | |
| 			return (0);
 | |
| 
 | |
| 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
 | |
| 		job->name = n;
 | |
| 		job->list = minors_list;
 | |
| 		job->error = 0;
 | |
| 		list_insert_tail(minors_list, job);
 | |
| 		/* don't care if dispatch fails, because job->error is 0 */
 | |
| 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
 | |
| 		    TQ_SLEEP);
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If spa_keystore_load_wkey() is called for an encrypted zvol,
 | |
|  * we need to look for any clones also using the key. This function
 | |
|  * is "best effort" - so we just skip over it if there are failures.
 | |
|  */
 | |
| static void
 | |
| zvol_add_clones(const char *dsname, list_t *minors_list)
 | |
| {
 | |
| 	/* Also check if it has clones */
 | |
| 	dsl_dir_t *dd = NULL;
 | |
| 	dsl_pool_t *dp = NULL;
 | |
| 
 | |
| 	if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (!spa_feature_is_enabled(dp->dp_spa,
 | |
| 	    SPA_FEATURE_ENCRYPTION))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (dsl_dir_phys(dd)->dd_clones == 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
 | |
| 	zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
 | |
| 	objset_t *mos = dd->dd_pool->dp_meta_objset;
 | |
| 
 | |
| 	for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
 | |
| 	    zap_cursor_retrieve(zc, za) == 0;
 | |
| 	    zap_cursor_advance(zc)) {
 | |
| 		dsl_dataset_t *clone;
 | |
| 		minors_job_t *job;
 | |
| 
 | |
| 		if (dsl_dataset_hold_obj(dd->dd_pool,
 | |
| 		    za->za_first_integer, FTAG, &clone) == 0) {
 | |
| 
 | |
| 			char name[ZFS_MAX_DATASET_NAME_LEN];
 | |
| 			dsl_dataset_name(clone, name);
 | |
| 
 | |
| 			char *n = kmem_strdup(name);
 | |
| 			job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
 | |
| 			job->name = n;
 | |
| 			job->list = minors_list;
 | |
| 			job->error = 0;
 | |
| 			list_insert_tail(minors_list, job);
 | |
| 
 | |
| 			dsl_dataset_rele(clone, FTAG);
 | |
| 		}
 | |
| 	}
 | |
| 	zap_cursor_fini(zc);
 | |
| 	kmem_free(za, sizeof (zap_attribute_t));
 | |
| 	kmem_free(zc, sizeof (zap_cursor_t));
 | |
| 
 | |
| out:
 | |
| 	if (dd != NULL)
 | |
| 		dsl_dir_rele(dd, FTAG);
 | |
| 	dsl_pool_rele(dp, FTAG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mask errors to continue dmu_objset_find() traversal
 | |
|  */
 | |
| static int
 | |
| zvol_create_minors_cb(const char *dsname, void *arg)
 | |
| {
 | |
| 	uint64_t snapdev;
 | |
| 	int error;
 | |
| 	list_t *minors_list = arg;
 | |
| 
 | |
| 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
 | |
| 
 | |
| 	error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
 | |
| 	if (error)
 | |
| 		return (0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Given the name and the 'snapdev' property, create device minor nodes
 | |
| 	 * with the linkages to zvols/snapshots as needed.
 | |
| 	 * If the name represents a zvol, create a minor node for the zvol, then
 | |
| 	 * check if its snapshots are 'visible', and if so, iterate over the
 | |
| 	 * snapshots and create device minor nodes for those.
 | |
| 	 */
 | |
| 	if (strchr(dsname, '@') == 0) {
 | |
| 		minors_job_t *job;
 | |
| 		char *n = kmem_strdup(dsname);
 | |
| 		if (n == NULL)
 | |
| 			return (0);
 | |
| 
 | |
| 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
 | |
| 		job->name = n;
 | |
| 		job->list = minors_list;
 | |
| 		job->error = 0;
 | |
| 		list_insert_tail(minors_list, job);
 | |
| 		/* don't care if dispatch fails, because job->error is 0 */
 | |
| 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
 | |
| 		    TQ_SLEEP);
 | |
| 
 | |
| 		zvol_add_clones(dsname, minors_list);
 | |
| 
 | |
| 		if (snapdev == ZFS_SNAPDEV_VISIBLE) {
 | |
| 			/*
 | |
| 			 * traverse snapshots only, do not traverse children,
 | |
| 			 * and skip the 'dsname'
 | |
| 			 */
 | |
| 			(void) dmu_objset_find(dsname,
 | |
| 			    zvol_create_snap_minor_cb, (void *)job,
 | |
| 			    DS_FIND_SNAPSHOTS);
 | |
| 		}
 | |
| 	} else {
 | |
| 		dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
 | |
| 		    dsname);
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create minors for the specified dataset, including children and snapshots.
 | |
|  * Pay attention to the 'snapdev' property and iterate over the snapshots
 | |
|  * only if they are 'visible'. This approach allows one to assure that the
 | |
|  * snapshot metadata is read from disk only if it is needed.
 | |
|  *
 | |
|  * The name can represent a dataset to be recursively scanned for zvols and
 | |
|  * their snapshots, or a single zvol snapshot. If the name represents a
 | |
|  * dataset, the scan is performed in two nested stages:
 | |
|  * - scan the dataset for zvols, and
 | |
|  * - for each zvol, create a minor node, then check if the zvol's snapshots
 | |
|  *   are 'visible', and only then iterate over the snapshots if needed
 | |
|  *
 | |
|  * If the name represents a snapshot, a check is performed if the snapshot is
 | |
|  * 'visible' (which also verifies that the parent is a zvol), and if so,
 | |
|  * a minor node for that snapshot is created.
 | |
|  */
 | |
| void
 | |
| zvol_create_minors_recursive(const char *name)
 | |
| {
 | |
| 	list_t minors_list;
 | |
| 	minors_job_t *job;
 | |
| 
 | |
| 	if (zvol_inhibit_dev)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is the list for prefetch jobs. Whenever we found a match
 | |
| 	 * during dmu_objset_find, we insert a minors_job to the list and do
 | |
| 	 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
 | |
| 	 * any lock because all list operation is done on the current thread.
 | |
| 	 *
 | |
| 	 * We will use this list to do zvol_os_create_minor after prefetch
 | |
| 	 * so we don't have to traverse using dmu_objset_find again.
 | |
| 	 */
 | |
| 	list_create(&minors_list, sizeof (minors_job_t),
 | |
| 	    offsetof(minors_job_t, link));
 | |
| 
 | |
| 
 | |
| 	if (strchr(name, '@') != NULL) {
 | |
| 		uint64_t snapdev;
 | |
| 
 | |
| 		int error = dsl_prop_get_integer(name, "snapdev",
 | |
| 		    &snapdev, NULL);
 | |
| 
 | |
| 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
 | |
| 			(void) zvol_os_create_minor(name);
 | |
| 	} else {
 | |
| 		fstrans_cookie_t cookie = spl_fstrans_mark();
 | |
| 		(void) dmu_objset_find(name, zvol_create_minors_cb,
 | |
| 		    &minors_list, DS_FIND_CHILDREN);
 | |
| 		spl_fstrans_unmark(cookie);
 | |
| 	}
 | |
| 
 | |
| 	taskq_wait_outstanding(system_taskq, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Prefetch is completed, we can do zvol_os_create_minor
 | |
| 	 * sequentially.
 | |
| 	 */
 | |
| 	while ((job = list_remove_head(&minors_list)) != NULL) {
 | |
| 		if (!job->error)
 | |
| 			(void) zvol_os_create_minor(job->name);
 | |
| 		kmem_strfree(job->name);
 | |
| 		kmem_free(job, sizeof (minors_job_t));
 | |
| 	}
 | |
| 
 | |
| 	list_destroy(&minors_list);
 | |
| }
 | |
| 
 | |
| void
 | |
| zvol_create_minor(const char *name)
 | |
| {
 | |
| 	/*
 | |
| 	 * Note: the dsl_pool_config_lock must not be held.
 | |
| 	 * Minor node creation needs to obtain the zvol_state_lock.
 | |
| 	 * zvol_open() obtains the zvol_state_lock and then the dsl pool
 | |
| 	 * config lock.  Therefore, we can't have the config lock now if
 | |
| 	 * we are going to wait for the zvol_state_lock, because it
 | |
| 	 * would be a lock order inversion which could lead to deadlock.
 | |
| 	 */
 | |
| 
 | |
| 	if (zvol_inhibit_dev)
 | |
| 		return;
 | |
| 
 | |
| 	if (strchr(name, '@') != NULL) {
 | |
| 		uint64_t snapdev;
 | |
| 
 | |
| 		int error = dsl_prop_get_integer(name,
 | |
| 		    "snapdev", &snapdev, NULL);
 | |
| 
 | |
| 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
 | |
| 			(void) zvol_os_create_minor(name);
 | |
| 	} else {
 | |
| 		(void) zvol_os_create_minor(name);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove minors for specified dataset including children and snapshots.
 | |
|  */
 | |
| 
 | |
| static void
 | |
| zvol_free_task(void *arg)
 | |
| {
 | |
| 	zvol_os_free(arg);
 | |
| }
 | |
| 
 | |
| void
 | |
| zvol_remove_minors_impl(const char *name)
 | |
| {
 | |
| 	zvol_state_t *zv, *zv_next;
 | |
| 	int namelen = ((name) ? strlen(name) : 0);
 | |
| 	taskqid_t t;
 | |
| 	list_t free_list;
 | |
| 
 | |
| 	if (zvol_inhibit_dev)
 | |
| 		return;
 | |
| 
 | |
| 	list_create(&free_list, sizeof (zvol_state_t),
 | |
| 	    offsetof(zvol_state_t, zv_next));
 | |
| 
 | |
| 	rw_enter(&zvol_state_lock, RW_WRITER);
 | |
| 
 | |
| 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
 | |
| 		zv_next = list_next(&zvol_state_list, zv);
 | |
| 
 | |
| 		mutex_enter(&zv->zv_state_lock);
 | |
| 		if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
 | |
| 		    (strncmp(zv->zv_name, name, namelen) == 0 &&
 | |
| 		    (zv->zv_name[namelen] == '/' ||
 | |
| 		    zv->zv_name[namelen] == '@'))) {
 | |
| 			/*
 | |
| 			 * By holding zv_state_lock here, we guarantee that no
 | |
| 			 * one is currently using this zv
 | |
| 			 */
 | |
| 
 | |
| 			/* If in use, leave alone */
 | |
| 			if (zv->zv_open_count > 0 ||
 | |
| 			    atomic_read(&zv->zv_suspend_ref)) {
 | |
| 				mutex_exit(&zv->zv_state_lock);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			zvol_remove(zv);
 | |
| 
 | |
| 			/*
 | |
| 			 * Cleared while holding zvol_state_lock as a writer
 | |
| 			 * which will prevent zvol_open() from opening it.
 | |
| 			 */
 | |
| 			zvol_os_clear_private(zv);
 | |
| 
 | |
| 			/* Drop zv_state_lock before zvol_free() */
 | |
| 			mutex_exit(&zv->zv_state_lock);
 | |
| 
 | |
| 			/* Try parallel zv_free, if failed do it in place */
 | |
| 			t = taskq_dispatch(system_taskq, zvol_free_task, zv,
 | |
| 			    TQ_SLEEP);
 | |
| 			if (t == TASKQID_INVALID)
 | |
| 				list_insert_head(&free_list, zv);
 | |
| 		} else {
 | |
| 			mutex_exit(&zv->zv_state_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	rw_exit(&zvol_state_lock);
 | |
| 
 | |
| 	/* Drop zvol_state_lock before calling zvol_free() */
 | |
| 	while ((zv = list_remove_head(&free_list)) != NULL)
 | |
| 		zvol_os_free(zv);
 | |
| }
 | |
| 
 | |
| /* Remove minor for this specific volume only */
 | |
| static void
 | |
| zvol_remove_minor_impl(const char *name)
 | |
| {
 | |
| 	zvol_state_t *zv = NULL, *zv_next;
 | |
| 
 | |
| 	if (zvol_inhibit_dev)
 | |
| 		return;
 | |
| 
 | |
| 	rw_enter(&zvol_state_lock, RW_WRITER);
 | |
| 
 | |
| 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
 | |
| 		zv_next = list_next(&zvol_state_list, zv);
 | |
| 
 | |
| 		mutex_enter(&zv->zv_state_lock);
 | |
| 		if (strcmp(zv->zv_name, name) == 0) {
 | |
| 			/*
 | |
| 			 * By holding zv_state_lock here, we guarantee that no
 | |
| 			 * one is currently using this zv
 | |
| 			 */
 | |
| 
 | |
| 			/* If in use, leave alone */
 | |
| 			if (zv->zv_open_count > 0 ||
 | |
| 			    atomic_read(&zv->zv_suspend_ref)) {
 | |
| 				mutex_exit(&zv->zv_state_lock);
 | |
| 				continue;
 | |
| 			}
 | |
| 			zvol_remove(zv);
 | |
| 
 | |
| 			zvol_os_clear_private(zv);
 | |
| 			mutex_exit(&zv->zv_state_lock);
 | |
| 			break;
 | |
| 		} else {
 | |
| 			mutex_exit(&zv->zv_state_lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Drop zvol_state_lock before calling zvol_free() */
 | |
| 	rw_exit(&zvol_state_lock);
 | |
| 
 | |
| 	if (zv != NULL)
 | |
| 		zvol_os_free(zv);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rename minors for specified dataset including children and snapshots.
 | |
|  */
 | |
| static void
 | |
| zvol_rename_minors_impl(const char *oldname, const char *newname)
 | |
| {
 | |
| 	zvol_state_t *zv, *zv_next;
 | |
| 	int oldnamelen;
 | |
| 
 | |
| 	if (zvol_inhibit_dev)
 | |
| 		return;
 | |
| 
 | |
| 	oldnamelen = strlen(oldname);
 | |
| 
 | |
| 	rw_enter(&zvol_state_lock, RW_READER);
 | |
| 
 | |
| 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
 | |
| 		zv_next = list_next(&zvol_state_list, zv);
 | |
| 
 | |
| 		mutex_enter(&zv->zv_state_lock);
 | |
| 
 | |
| 		if (strcmp(zv->zv_name, oldname) == 0) {
 | |
| 			zvol_os_rename_minor(zv, newname);
 | |
| 		} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
 | |
| 		    (zv->zv_name[oldnamelen] == '/' ||
 | |
| 		    zv->zv_name[oldnamelen] == '@')) {
 | |
| 			char *name = kmem_asprintf("%s%c%s", newname,
 | |
| 			    zv->zv_name[oldnamelen],
 | |
| 			    zv->zv_name + oldnamelen + 1);
 | |
| 			zvol_os_rename_minor(zv, name);
 | |
| 			kmem_strfree(name);
 | |
| 		}
 | |
| 
 | |
| 		mutex_exit(&zv->zv_state_lock);
 | |
| 	}
 | |
| 
 | |
| 	rw_exit(&zvol_state_lock);
 | |
| }
 | |
| 
 | |
| typedef struct zvol_snapdev_cb_arg {
 | |
| 	uint64_t snapdev;
 | |
| } zvol_snapdev_cb_arg_t;
 | |
| 
 | |
| static int
 | |
| zvol_set_snapdev_cb(const char *dsname, void *param)
 | |
| {
 | |
| 	zvol_snapdev_cb_arg_t *arg = param;
 | |
| 
 | |
| 	if (strchr(dsname, '@') == NULL)
 | |
| 		return (0);
 | |
| 
 | |
| 	switch (arg->snapdev) {
 | |
| 		case ZFS_SNAPDEV_VISIBLE:
 | |
| 			(void) zvol_os_create_minor(dsname);
 | |
| 			break;
 | |
| 		case ZFS_SNAPDEV_HIDDEN:
 | |
| 			(void) zvol_remove_minor_impl(dsname);
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zvol_set_snapdev_impl(char *name, uint64_t snapdev)
 | |
| {
 | |
| 	zvol_snapdev_cb_arg_t arg = {snapdev};
 | |
| 	fstrans_cookie_t cookie = spl_fstrans_mark();
 | |
| 	/*
 | |
| 	 * The zvol_set_snapdev_sync() sets snapdev appropriately
 | |
| 	 * in the dataset hierarchy. Here, we only scan snapshots.
 | |
| 	 */
 | |
| 	dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zvol_set_volmode_impl(char *name, uint64_t volmode)
 | |
| {
 | |
| 	fstrans_cookie_t cookie;
 | |
| 	uint64_t old_volmode;
 | |
| 	zvol_state_t *zv;
 | |
| 
 | |
| 	if (strchr(name, '@') != NULL)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * It's unfortunate we need to remove minors before we create new ones:
 | |
| 	 * this is necessary because our backing gendisk (zvol_state->zv_disk)
 | |
| 	 * could be different when we set, for instance, volmode from "geom"
 | |
| 	 * to "dev" (or vice versa).
 | |
| 	 */
 | |
| 	zv = zvol_find_by_name(name, RW_NONE);
 | |
| 	if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
 | |
| 			return;
 | |
| 	if (zv != NULL) {
 | |
| 		old_volmode = zv->zv_volmode;
 | |
| 		mutex_exit(&zv->zv_state_lock);
 | |
| 		if (old_volmode == volmode)
 | |
| 			return;
 | |
| 		zvol_wait_close(zv);
 | |
| 	}
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 	switch (volmode) {
 | |
| 		case ZFS_VOLMODE_NONE:
 | |
| 			(void) zvol_remove_minor_impl(name);
 | |
| 			break;
 | |
| 		case ZFS_VOLMODE_GEOM:
 | |
| 		case ZFS_VOLMODE_DEV:
 | |
| 			(void) zvol_remove_minor_impl(name);
 | |
| 			(void) zvol_os_create_minor(name);
 | |
| 			break;
 | |
| 		case ZFS_VOLMODE_DEFAULT:
 | |
| 			(void) zvol_remove_minor_impl(name);
 | |
| 			if (zvol_volmode == ZFS_VOLMODE_NONE)
 | |
| 				break;
 | |
| 			else /* if zvol_volmode is invalid defaults to "geom" */
 | |
| 				(void) zvol_os_create_minor(name);
 | |
| 			break;
 | |
| 	}
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| }
 | |
| 
 | |
| static zvol_task_t *
 | |
| zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
 | |
|     uint64_t value)
 | |
| {
 | |
| 	zvol_task_t *task;
 | |
| 
 | |
| 	/* Never allow tasks on hidden names. */
 | |
| 	if (name1[0] == '$')
 | |
| 		return (NULL);
 | |
| 
 | |
| 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
 | |
| 	task->op = op;
 | |
| 	task->value = value;
 | |
| 
 | |
| 	strlcpy(task->name1, name1, MAXNAMELEN);
 | |
| 	if (name2 != NULL)
 | |
| 		strlcpy(task->name2, name2, MAXNAMELEN);
 | |
| 
 | |
| 	return (task);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zvol_task_free(zvol_task_t *task)
 | |
| {
 | |
| 	kmem_free(task, sizeof (zvol_task_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The worker thread function performed asynchronously.
 | |
|  */
 | |
| static void
 | |
| zvol_task_cb(void *arg)
 | |
| {
 | |
| 	zvol_task_t *task = arg;
 | |
| 
 | |
| 	switch (task->op) {
 | |
| 	case ZVOL_ASYNC_REMOVE_MINORS:
 | |
| 		zvol_remove_minors_impl(task->name1);
 | |
| 		break;
 | |
| 	case ZVOL_ASYNC_RENAME_MINORS:
 | |
| 		zvol_rename_minors_impl(task->name1, task->name2);
 | |
| 		break;
 | |
| 	case ZVOL_ASYNC_SET_SNAPDEV:
 | |
| 		zvol_set_snapdev_impl(task->name1, task->value);
 | |
| 		break;
 | |
| 	case ZVOL_ASYNC_SET_VOLMODE:
 | |
| 		zvol_set_volmode_impl(task->name1, task->value);
 | |
| 		break;
 | |
| 	default:
 | |
| 		VERIFY(0);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	zvol_task_free(task);
 | |
| }
 | |
| 
 | |
| typedef struct zvol_set_prop_int_arg {
 | |
| 	const char *zsda_name;
 | |
| 	uint64_t zsda_value;
 | |
| 	zprop_source_t zsda_source;
 | |
| 	dmu_tx_t *zsda_tx;
 | |
| } zvol_set_prop_int_arg_t;
 | |
| 
 | |
| /*
 | |
|  * Sanity check the dataset for safe use by the sync task.  No additional
 | |
|  * conditions are imposed.
 | |
|  */
 | |
| static int
 | |
| zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	zvol_set_prop_int_arg_t *zsda = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	dsl_dir_t *dd;
 | |
| 	int error;
 | |
| 
 | |
| 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	dsl_dir_rele(dd, FTAG);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
 | |
| {
 | |
| 	(void) arg;
 | |
| 	char dsname[MAXNAMELEN];
 | |
| 	zvol_task_t *task;
 | |
| 	uint64_t snapdev;
 | |
| 
 | |
| 	dsl_dataset_name(ds, dsname);
 | |
| 	if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
 | |
| 		return (0);
 | |
| 	task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
 | |
| 	if (task == NULL)
 | |
| 		return (0);
 | |
| 
 | |
| 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
 | |
| 	    task, TQ_SLEEP);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Traverse all child datasets and apply snapdev appropriately.
 | |
|  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
 | |
|  * dataset and read the effective "snapdev" on every child in the callback
 | |
|  * function: this is because the value is not guaranteed to be the same in the
 | |
|  * whole dataset hierarchy.
 | |
|  */
 | |
| static void
 | |
| zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	zvol_set_prop_int_arg_t *zsda = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	dsl_dir_t *dd;
 | |
| 	dsl_dataset_t *ds;
 | |
| 	int error;
 | |
| 
 | |
| 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
 | |
| 	zsda->zsda_tx = tx;
 | |
| 
 | |
| 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
 | |
| 	if (error == 0) {
 | |
| 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
 | |
| 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
 | |
| 		    &zsda->zsda_value, zsda->zsda_tx);
 | |
| 		dsl_dataset_rele(ds, FTAG);
 | |
| 	}
 | |
| 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
 | |
| 	    zsda, DS_FIND_CHILDREN);
 | |
| 
 | |
| 	dsl_dir_rele(dd, FTAG);
 | |
| }
 | |
| 
 | |
| int
 | |
| zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
 | |
| {
 | |
| 	zvol_set_prop_int_arg_t zsda;
 | |
| 
 | |
| 	zsda.zsda_name = ddname;
 | |
| 	zsda.zsda_source = source;
 | |
| 	zsda.zsda_value = snapdev;
 | |
| 
 | |
| 	return (dsl_sync_task(ddname, zvol_set_snapdev_check,
 | |
| 	    zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sanity check the dataset for safe use by the sync task.  No additional
 | |
|  * conditions are imposed.
 | |
|  */
 | |
| static int
 | |
| zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	zvol_set_prop_int_arg_t *zsda = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	dsl_dir_t *dd;
 | |
| 	int error;
 | |
| 
 | |
| 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	dsl_dir_rele(dd, FTAG);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
 | |
| {
 | |
| 	(void) arg;
 | |
| 	char dsname[MAXNAMELEN];
 | |
| 	zvol_task_t *task;
 | |
| 	uint64_t volmode;
 | |
| 
 | |
| 	dsl_dataset_name(ds, dsname);
 | |
| 	if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
 | |
| 		return (0);
 | |
| 	task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
 | |
| 	if (task == NULL)
 | |
| 		return (0);
 | |
| 
 | |
| 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
 | |
| 	    task, TQ_SLEEP);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Traverse all child datasets and apply volmode appropriately.
 | |
|  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
 | |
|  * dataset and read the effective "volmode" on every child in the callback
 | |
|  * function: this is because the value is not guaranteed to be the same in the
 | |
|  * whole dataset hierarchy.
 | |
|  */
 | |
| static void
 | |
| zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	zvol_set_prop_int_arg_t *zsda = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	dsl_dir_t *dd;
 | |
| 	dsl_dataset_t *ds;
 | |
| 	int error;
 | |
| 
 | |
| 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
 | |
| 	zsda->zsda_tx = tx;
 | |
| 
 | |
| 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
 | |
| 	if (error == 0) {
 | |
| 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
 | |
| 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
 | |
| 		    &zsda->zsda_value, zsda->zsda_tx);
 | |
| 		dsl_dataset_rele(ds, FTAG);
 | |
| 	}
 | |
| 
 | |
| 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
 | |
| 	    zsda, DS_FIND_CHILDREN);
 | |
| 
 | |
| 	dsl_dir_rele(dd, FTAG);
 | |
| }
 | |
| 
 | |
| int
 | |
| zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
 | |
| {
 | |
| 	zvol_set_prop_int_arg_t zsda;
 | |
| 
 | |
| 	zsda.zsda_name = ddname;
 | |
| 	zsda.zsda_source = source;
 | |
| 	zsda.zsda_value = volmode;
 | |
| 
 | |
| 	return (dsl_sync_task(ddname, zvol_set_volmode_check,
 | |
| 	    zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
 | |
| }
 | |
| 
 | |
| void
 | |
| zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
 | |
| {
 | |
| 	zvol_task_t *task;
 | |
| 	taskqid_t id;
 | |
| 
 | |
| 	task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
 | |
| 	if (task == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
 | |
| 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
 | |
| 		taskq_wait_id(spa->spa_zvol_taskq, id);
 | |
| }
 | |
| 
 | |
| void
 | |
| zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
 | |
|     boolean_t async)
 | |
| {
 | |
| 	zvol_task_t *task;
 | |
| 	taskqid_t id;
 | |
| 
 | |
| 	task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
 | |
| 	if (task == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
 | |
| 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
 | |
| 		taskq_wait_id(spa->spa_zvol_taskq, id);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| zvol_is_zvol(const char *name)
 | |
| {
 | |
| 
 | |
| 	return (zvol_os_is_zvol(name));
 | |
| }
 | |
| 
 | |
| int
 | |
| zvol_init_impl(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	list_create(&zvol_state_list, sizeof (zvol_state_t),
 | |
| 	    offsetof(zvol_state_t, zv_next));
 | |
| 	rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
 | |
| 
 | |
| 	zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
 | |
| 	    KM_SLEEP);
 | |
| 	for (i = 0; i < ZVOL_HT_SIZE; i++)
 | |
| 		INIT_HLIST_HEAD(&zvol_htable[i]);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| void
 | |
| zvol_fini_impl(void)
 | |
| {
 | |
| 	zvol_remove_minors_impl(NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * The call to "zvol_remove_minors_impl" may dispatch entries to
 | |
| 	 * the system_taskq, but it doesn't wait for those entries to
 | |
| 	 * complete before it returns. Thus, we must wait for all of the
 | |
| 	 * removals to finish, before we can continue.
 | |
| 	 */
 | |
| 	taskq_wait_outstanding(system_taskq, 0);
 | |
| 
 | |
| 	kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
 | |
| 	list_destroy(&zvol_state_list);
 | |
| 	rw_destroy(&zvol_state_lock);
 | |
| }
 |