mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 15:26:31 +00:00 
			
		
		
		
	 7ca7bb7fd7
			
		
	
	
		7ca7bb7fd7
		
	
	
	
	
		
			
			This helper was introduced long ago, in 5.16. Since 6.10, bd_inode no longer exists, but the helper has been updated, so detect it and use it in all versions where it is available. Signed-off-by: Rob Norris <robn@despairlabs.com> Sponsored-by: https://despairlabs.com/sponsor/ Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
		
			
				
	
	
		
			1666 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1666 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
 | |
|  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 | |
|  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
 | |
|  * LLNL-CODE-403049.
 | |
|  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
 | |
|  * Copyright (c) 2023, 2024, Klara Inc.
 | |
|  */
 | |
| 
 | |
| #include <sys/zfs_context.h>
 | |
| #include <sys/spa_impl.h>
 | |
| #include <sys/vdev_disk.h>
 | |
| #include <sys/vdev_impl.h>
 | |
| #include <sys/vdev_trim.h>
 | |
| #include <sys/abd.h>
 | |
| #include <sys/fs/zfs.h>
 | |
| #include <sys/zio.h>
 | |
| #include <linux/blkpg.h>
 | |
| #include <linux/msdos_fs.h>
 | |
| #include <linux/vfs_compat.h>
 | |
| #ifdef HAVE_LINUX_BLK_CGROUP_HEADER
 | |
| #include <linux/blk-cgroup.h>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying
 | |
|  * block_device. Since it carries the block_device inside, its convenient to
 | |
|  * just use the handle as a proxy.
 | |
|  *
 | |
|  * Linux 6.9.x uses a file for the same purpose.
 | |
|  *
 | |
|  * For pre-6.8, we just emulate this with a cast, since we don't need any of
 | |
|  * the other fields inside the handle.
 | |
|  */
 | |
| #if defined(HAVE_BDEV_OPEN_BY_PATH)
 | |
| typedef struct bdev_handle zfs_bdev_handle_t;
 | |
| #define	BDH_BDEV(bdh)		((bdh)->bdev)
 | |
| #define	BDH_IS_ERR(bdh)		(IS_ERR(bdh))
 | |
| #define	BDH_PTR_ERR(bdh)	(PTR_ERR(bdh))
 | |
| #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
 | |
| #elif defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
 | |
| typedef struct file zfs_bdev_handle_t;
 | |
| #define	BDH_BDEV(bdh)		(file_bdev(bdh))
 | |
| #define	BDH_IS_ERR(bdh)		(IS_ERR(bdh))
 | |
| #define	BDH_PTR_ERR(bdh)	(PTR_ERR(bdh))
 | |
| #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
 | |
| #else
 | |
| typedef void zfs_bdev_handle_t;
 | |
| #define	BDH_BDEV(bdh)		((struct block_device *)bdh)
 | |
| #define	BDH_IS_ERR(bdh)		(IS_ERR(BDH_BDEV(bdh)))
 | |
| #define	BDH_PTR_ERR(bdh)	(PTR_ERR(BDH_BDEV(bdh)))
 | |
| #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
 | |
| #endif
 | |
| 
 | |
| typedef struct vdev_disk {
 | |
| 	zfs_bdev_handle_t		*vd_bdh;
 | |
| 	krwlock_t			vd_lock;
 | |
| } vdev_disk_t;
 | |
| 
 | |
| /*
 | |
|  * Maximum number of segments to add to a bio (min 4). If this is higher than
 | |
|  * the maximum allowed by the device queue or the kernel itself, it will be
 | |
|  * clamped. Setting it to zero will cause the kernel's ideal size to be used.
 | |
|  */
 | |
| uint_t zfs_vdev_disk_max_segs = 0;
 | |
| 
 | |
| /*
 | |
|  * Unique identifier for the exclusive vdev holder.
 | |
|  */
 | |
| static void *zfs_vdev_holder = VDEV_HOLDER;
 | |
| 
 | |
| /*
 | |
|  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
 | |
|  * device is missing. The missing path may be transient since the links
 | |
|  * can be briefly removed and recreated in response to udev events.
 | |
|  */
 | |
| static uint_t zfs_vdev_open_timeout_ms = 1000;
 | |
| 
 | |
| /*
 | |
|  * Size of the "reserved" partition, in blocks.
 | |
|  */
 | |
| #define	EFI_MIN_RESV_SIZE	(16 * 1024)
 | |
| 
 | |
| /*
 | |
|  * BIO request failfast mask.
 | |
|  */
 | |
| 
 | |
| static unsigned int zfs_vdev_failfast_mask = 1;
 | |
| 
 | |
| /*
 | |
|  * Convert SPA mode flags into bdev open mode flags.
 | |
|  */
 | |
| #ifdef HAVE_BLK_MODE_T
 | |
| typedef blk_mode_t vdev_bdev_mode_t;
 | |
| #define	VDEV_BDEV_MODE_READ	BLK_OPEN_READ
 | |
| #define	VDEV_BDEV_MODE_WRITE	BLK_OPEN_WRITE
 | |
| #define	VDEV_BDEV_MODE_EXCL	BLK_OPEN_EXCL
 | |
| #define	VDEV_BDEV_MODE_MASK	(BLK_OPEN_READ|BLK_OPEN_WRITE|BLK_OPEN_EXCL)
 | |
| #else
 | |
| typedef fmode_t vdev_bdev_mode_t;
 | |
| #define	VDEV_BDEV_MODE_READ	FMODE_READ
 | |
| #define	VDEV_BDEV_MODE_WRITE	FMODE_WRITE
 | |
| #define	VDEV_BDEV_MODE_EXCL	FMODE_EXCL
 | |
| #define	VDEV_BDEV_MODE_MASK	(FMODE_READ|FMODE_WRITE|FMODE_EXCL)
 | |
| #endif
 | |
| 
 | |
| static vdev_bdev_mode_t
 | |
| vdev_bdev_mode(spa_mode_t smode)
 | |
| {
 | |
| 	ASSERT3U(smode, !=, SPA_MODE_UNINIT);
 | |
| 	ASSERT0(smode & ~(SPA_MODE_READ|SPA_MODE_WRITE));
 | |
| 
 | |
| 	vdev_bdev_mode_t bmode = VDEV_BDEV_MODE_EXCL;
 | |
| 
 | |
| 	if (smode & SPA_MODE_READ)
 | |
| 		bmode |= VDEV_BDEV_MODE_READ;
 | |
| 
 | |
| 	if (smode & SPA_MODE_WRITE)
 | |
| 		bmode |= VDEV_BDEV_MODE_WRITE;
 | |
| 
 | |
| 	ASSERT(bmode & VDEV_BDEV_MODE_MASK);
 | |
| 	ASSERT0(bmode & ~VDEV_BDEV_MODE_MASK);
 | |
| 
 | |
| 	return (bmode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the usable capacity (in bytes) for the partition or disk.
 | |
|  */
 | |
| static uint64_t
 | |
| bdev_capacity(struct block_device *bdev)
 | |
| {
 | |
| #ifdef HAVE_BDEV_NR_BYTES
 | |
| 	return (bdev_nr_bytes(bdev));
 | |
| #else
 | |
| 	return (i_size_read(bdev->bd_inode));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if !defined(HAVE_BDEV_WHOLE)
 | |
| static inline struct block_device *
 | |
| bdev_whole(struct block_device *bdev)
 | |
| {
 | |
| 	return (bdev->bd_contains);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(HAVE_BDEVNAME)
 | |
| #define	vdev_bdevname(bdev, name)	bdevname(bdev, name)
 | |
| #else
 | |
| static inline void
 | |
| vdev_bdevname(struct block_device *bdev, char *name)
 | |
| {
 | |
| 	snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Returns the maximum expansion capacity of the block device (in bytes).
 | |
|  *
 | |
|  * It is possible to expand a vdev when it has been created as a wholedisk
 | |
|  * and the containing block device has increased in capacity.  Or when the
 | |
|  * partition containing the pool has been manually increased in size.
 | |
|  *
 | |
|  * This function is only responsible for calculating the potential expansion
 | |
|  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
 | |
|  * responsible for verifying the expected partition layout in the wholedisk
 | |
|  * case, and updating the partition table if appropriate.  Once the partition
 | |
|  * size has been increased the additional capacity will be visible using
 | |
|  * bdev_capacity().
 | |
|  *
 | |
|  * The returned maximum expansion capacity is always expected to be larger, or
 | |
|  * at the very least equal, to its usable capacity to prevent overestimating
 | |
|  * the pool expandsize.
 | |
|  */
 | |
| static uint64_t
 | |
| bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
 | |
| {
 | |
| 	uint64_t psize;
 | |
| 	int64_t available;
 | |
| 
 | |
| 	if (wholedisk && bdev != bdev_whole(bdev)) {
 | |
| 		/*
 | |
| 		 * When reporting maximum expansion capacity for a wholedisk
 | |
| 		 * deduct any capacity which is expected to be lost due to
 | |
| 		 * alignment restrictions.  Over reporting this value isn't
 | |
| 		 * harmful and would only result in slightly less capacity
 | |
| 		 * than expected post expansion.
 | |
| 		 * The estimated available space may be slightly smaller than
 | |
| 		 * bdev_capacity() for devices where the number of sectors is
 | |
| 		 * not a multiple of the alignment size and the partition layout
 | |
| 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
 | |
| 		 * "reserved" EFI partition: in such cases return the device
 | |
| 		 * usable capacity.
 | |
| 		 */
 | |
| 		available = bdev_capacity(bdev_whole(bdev)) -
 | |
| 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
 | |
| 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
 | |
| 		psize = MAX(available, bdev_capacity(bdev));
 | |
| 	} else {
 | |
| 		psize = bdev_capacity(bdev);
 | |
| 	}
 | |
| 
 | |
| 	return (psize);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_disk_error(zio_t *zio)
 | |
| {
 | |
| 	/*
 | |
| 	 * This function can be called in interrupt context, for instance while
 | |
| 	 * handling IRQs coming from a misbehaving disk device; use printk()
 | |
| 	 * which is safe from any context.
 | |
| 	 */
 | |
| 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
 | |
| 	    "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
 | |
| 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
 | |
| 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
 | |
| 	    zio->io_flags);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_disk_kobj_evt_post(vdev_t *v)
 | |
| {
 | |
| 	vdev_disk_t *vd = v->vdev_tsd;
 | |
| 	if (vd && vd->vd_bdh) {
 | |
| 		spl_signal_kobj_evt(BDH_BDEV(vd->vd_bdh));
 | |
| 	} else {
 | |
| 		vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
 | |
| 		    v->vdev_path);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static zfs_bdev_handle_t *
 | |
| vdev_blkdev_get_by_path(const char *path, spa_mode_t smode, void *holder)
 | |
| {
 | |
| 	vdev_bdev_mode_t bmode = vdev_bdev_mode(smode);
 | |
| 
 | |
| #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
 | |
| 	return (bdev_file_open_by_path(path, bmode, holder, NULL));
 | |
| #elif defined(HAVE_BDEV_OPEN_BY_PATH)
 | |
| 	return (bdev_open_by_path(path, bmode, holder, NULL));
 | |
| #elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
 | |
| 	return (blkdev_get_by_path(path, bmode, holder, NULL));
 | |
| #else
 | |
| 	return (blkdev_get_by_path(path, bmode, holder));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_blkdev_put(zfs_bdev_handle_t *bdh, spa_mode_t smode, void *holder)
 | |
| {
 | |
| #if defined(HAVE_BDEV_RELEASE)
 | |
| 	return (bdev_release(bdh));
 | |
| #elif defined(HAVE_BLKDEV_PUT_HOLDER)
 | |
| 	return (blkdev_put(BDH_BDEV(bdh), holder));
 | |
| #elif defined(HAVE_BLKDEV_PUT)
 | |
| 	return (blkdev_put(BDH_BDEV(bdh), vdev_bdev_mode(smode)));
 | |
| #else
 | |
| 	fput(bdh);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int
 | |
| vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
 | |
|     uint64_t *logical_ashift, uint64_t *physical_ashift)
 | |
| {
 | |
| 	zfs_bdev_handle_t *bdh;
 | |
| 	spa_mode_t smode = spa_mode(v->vdev_spa);
 | |
| 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
 | |
| 	vdev_disk_t *vd;
 | |
| 
 | |
| 	/* Must have a pathname and it must be absolute. */
 | |
| 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
 | |
| 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
 | |
| 		vdev_dbgmsg(v, "invalid vdev_path");
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Reopen the device if it is currently open.  When expanding a
 | |
| 	 * partition force re-scanning the partition table if userland
 | |
| 	 * did not take care of this already. We need to do this while closed
 | |
| 	 * in order to get an accurate updated block device size.  Then
 | |
| 	 * since udev may need to recreate the device links increase the
 | |
| 	 * open retry timeout before reporting the device as unavailable.
 | |
| 	 */
 | |
| 	vd = v->vdev_tsd;
 | |
| 	if (vd) {
 | |
| 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
 | |
| 		boolean_t reread_part = B_FALSE;
 | |
| 
 | |
| 		rw_enter(&vd->vd_lock, RW_WRITER);
 | |
| 		bdh = vd->vd_bdh;
 | |
| 		vd->vd_bdh = NULL;
 | |
| 
 | |
| 		if (bdh) {
 | |
| 			struct block_device *bdev = BDH_BDEV(bdh);
 | |
| 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
 | |
| 				vdev_bdevname(bdev_whole(bdev), disk_name + 5);
 | |
| 				/*
 | |
| 				 * If userland has BLKPG_RESIZE_PARTITION,
 | |
| 				 * then it should have updated the partition
 | |
| 				 * table already. We can detect this by
 | |
| 				 * comparing our current physical size
 | |
| 				 * with that of the device. If they are
 | |
| 				 * the same, then we must not have
 | |
| 				 * BLKPG_RESIZE_PARTITION or it failed to
 | |
| 				 * update the partition table online. We
 | |
| 				 * fallback to rescanning the partition
 | |
| 				 * table from the kernel below. However,
 | |
| 				 * if the capacity already reflects the
 | |
| 				 * updated partition, then we skip
 | |
| 				 * rescanning the partition table here.
 | |
| 				 */
 | |
| 				if (v->vdev_psize == bdev_capacity(bdev))
 | |
| 					reread_part = B_TRUE;
 | |
| 			}
 | |
| 
 | |
| 			vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
 | |
| 		}
 | |
| 
 | |
| 		if (reread_part) {
 | |
| 			bdh = vdev_blkdev_get_by_path(disk_name, smode,
 | |
| 			    zfs_vdev_holder);
 | |
| 			if (!BDH_IS_ERR(bdh)) {
 | |
| 				int error =
 | |
| 				    vdev_bdev_reread_part(BDH_BDEV(bdh));
 | |
| 				vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
 | |
| 				if (error == 0) {
 | |
| 					timeout = MSEC2NSEC(
 | |
| 					    zfs_vdev_open_timeout_ms * 2);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
 | |
| 
 | |
| 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
 | |
| 		rw_enter(&vd->vd_lock, RW_WRITER);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Devices are always opened by the path provided at configuration
 | |
| 	 * time.  This means that if the provided path is a udev by-id path
 | |
| 	 * then drives may be re-cabled without an issue.  If the provided
 | |
| 	 * path is a udev by-path path, then the physical location information
 | |
| 	 * will be preserved.  This can be critical for more complicated
 | |
| 	 * configurations where drives are located in specific physical
 | |
| 	 * locations to maximize the systems tolerance to component failure.
 | |
| 	 *
 | |
| 	 * Alternatively, you can provide your own udev rule to flexibly map
 | |
| 	 * the drives as you see fit.  It is not advised that you use the
 | |
| 	 * /dev/[hd]d devices which may be reordered due to probing order.
 | |
| 	 * Devices in the wrong locations will be detected by the higher
 | |
| 	 * level vdev validation.
 | |
| 	 *
 | |
| 	 * The specified paths may be briefly removed and recreated in
 | |
| 	 * response to udev events.  This should be exceptionally unlikely
 | |
| 	 * because the zpool command makes every effort to verify these paths
 | |
| 	 * have already settled prior to reaching this point.  Therefore,
 | |
| 	 * a ENOENT failure at this point is highly likely to be transient
 | |
| 	 * and it is reasonable to sleep and retry before giving up.  In
 | |
| 	 * practice delays have been observed to be on the order of 100ms.
 | |
| 	 *
 | |
| 	 * When ERESTARTSYS is returned it indicates the block device is
 | |
| 	 * a zvol which could not be opened due to the deadlock detection
 | |
| 	 * logic in zvol_open().  Extend the timeout and retry the open
 | |
| 	 * subsequent attempts are expected to eventually succeed.
 | |
| 	 */
 | |
| 	hrtime_t start = gethrtime();
 | |
| 	bdh = BDH_ERR_PTR(-ENXIO);
 | |
| 	while (BDH_IS_ERR(bdh) && ((gethrtime() - start) < timeout)) {
 | |
| 		bdh = vdev_blkdev_get_by_path(v->vdev_path, smode,
 | |
| 		    zfs_vdev_holder);
 | |
| 		if (unlikely(BDH_PTR_ERR(bdh) == -ENOENT)) {
 | |
| 			/*
 | |
| 			 * There is no point of waiting since device is removed
 | |
| 			 * explicitly
 | |
| 			 */
 | |
| 			if (v->vdev_removed)
 | |
| 				break;
 | |
| 
 | |
| 			schedule_timeout_interruptible(MSEC_TO_TICK(10));
 | |
| 		} else if (unlikely(BDH_PTR_ERR(bdh) == -ERESTARTSYS)) {
 | |
| 			timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
 | |
| 			continue;
 | |
| 		} else if (BDH_IS_ERR(bdh)) {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (BDH_IS_ERR(bdh)) {
 | |
| 		int error = -BDH_PTR_ERR(bdh);
 | |
| 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
 | |
| 		    (u_longlong_t)(gethrtime() - start),
 | |
| 		    (u_longlong_t)timeout);
 | |
| 		vd->vd_bdh = NULL;
 | |
| 		v->vdev_tsd = vd;
 | |
| 		rw_exit(&vd->vd_lock);
 | |
| 		return (SET_ERROR(error));
 | |
| 	} else {
 | |
| 		vd->vd_bdh = bdh;
 | |
| 		v->vdev_tsd = vd;
 | |
| 		rw_exit(&vd->vd_lock);
 | |
| 	}
 | |
| 
 | |
| 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
 | |
| 
 | |
| 	/*  Determine the physical block size */
 | |
| 	int physical_block_size = bdev_physical_block_size(bdev);
 | |
| 
 | |
| 	/*  Determine the logical block size */
 | |
| 	int logical_block_size = bdev_logical_block_size(bdev);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the device has a write cache, clear the nowritecache flag,
 | |
| 	 * so that we start issuing flush requests again.
 | |
| 	 */
 | |
| 	v->vdev_nowritecache = !zfs_bdev_has_write_cache(bdev);
 | |
| 
 | |
| 	/* Set when device reports it supports TRIM. */
 | |
| 	v->vdev_has_trim = bdev_discard_supported(bdev);
 | |
| 
 | |
| 	/* Set when device reports it supports secure TRIM. */
 | |
| 	v->vdev_has_securetrim = bdev_secure_discard_supported(bdev);
 | |
| 
 | |
| 	/* Inform the ZIO pipeline that we are non-rotational */
 | |
| 	v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(bdev));
 | |
| 
 | |
| 	/* Physical volume size in bytes for the partition */
 | |
| 	*psize = bdev_capacity(bdev);
 | |
| 
 | |
| 	/* Physical volume size in bytes including possible expansion space */
 | |
| 	*max_psize = bdev_max_capacity(bdev, v->vdev_wholedisk);
 | |
| 
 | |
| 	/* Based on the minimum sector size set the block size */
 | |
| 	*physical_ashift = highbit64(MAX(physical_block_size,
 | |
| 	    SPA_MINBLOCKSIZE)) - 1;
 | |
| 
 | |
| 	*logical_ashift = highbit64(MAX(logical_block_size,
 | |
| 	    SPA_MINBLOCKSIZE)) - 1;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_disk_close(vdev_t *v)
 | |
| {
 | |
| 	vdev_disk_t *vd = v->vdev_tsd;
 | |
| 
 | |
| 	if (v->vdev_reopening || vd == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	if (vd->vd_bdh != NULL)
 | |
| 		vdev_blkdev_put(vd->vd_bdh, spa_mode(v->vdev_spa),
 | |
| 		    zfs_vdev_holder);
 | |
| 
 | |
| 	rw_destroy(&vd->vd_lock);
 | |
| 	kmem_free(vd, sizeof (vdev_disk_t));
 | |
| 	v->vdev_tsd = NULL;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| vdev_submit_bio_impl(struct bio *bio)
 | |
| {
 | |
| #ifdef HAVE_1ARG_SUBMIT_BIO
 | |
| 	(void) submit_bio(bio);
 | |
| #else
 | |
| 	(void) submit_bio(bio_data_dir(bio), bio);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
 | |
|  * replace it with preempt_schedule under the following condition:
 | |
|  */
 | |
| #if defined(CONFIG_ARM64) && \
 | |
|     defined(CONFIG_PREEMPTION) && \
 | |
|     defined(CONFIG_BLK_CGROUP)
 | |
| #define	preempt_schedule_notrace(x) preempt_schedule(x)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
 | |
|  * as an argument removing the need to set it with bio_set_dev().  This
 | |
|  * removes the need for all of the following compatibility code.
 | |
|  */
 | |
| #if !defined(HAVE_BIO_ALLOC_4ARG)
 | |
| 
 | |
| #ifdef HAVE_BIO_SET_DEV
 | |
| #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
 | |
| /*
 | |
|  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
 | |
|  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
 | |
|  * As a side effect the function was converted to GPL-only.  Define our
 | |
|  * own version when needed which uses rcu_read_lock_sched().
 | |
|  *
 | |
|  * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
 | |
|  * part, moving blkg_tryget into the private one. Define our own version.
 | |
|  */
 | |
| #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
 | |
| static inline bool
 | |
| vdev_blkg_tryget(struct blkcg_gq *blkg)
 | |
| {
 | |
| 	struct percpu_ref *ref = &blkg->refcnt;
 | |
| 	unsigned long __percpu *count;
 | |
| 	bool rc;
 | |
| 
 | |
| 	rcu_read_lock_sched();
 | |
| 
 | |
| 	if (__ref_is_percpu(ref, &count)) {
 | |
| 		this_cpu_inc(*count);
 | |
| 		rc = true;
 | |
| 	} else {
 | |
| #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
 | |
| 		rc = atomic_long_inc_not_zero(&ref->data->count);
 | |
| #else
 | |
| 		rc = atomic_long_inc_not_zero(&ref->count);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_unlock_sched();
 | |
| 
 | |
| 	return (rc);
 | |
| }
 | |
| #else
 | |
| #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
 | |
| #endif
 | |
| #ifdef HAVE_BIO_SET_DEV_MACRO
 | |
| /*
 | |
|  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
 | |
|  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
 | |
|  * the entire macro.  Provide a minimal version which always assigns the
 | |
|  * request queue's root_blkg to the bio.
 | |
|  */
 | |
| static inline void
 | |
| vdev_bio_associate_blkg(struct bio *bio)
 | |
| {
 | |
| #if defined(HAVE_BIO_BDEV_DISK)
 | |
| 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
 | |
| #else
 | |
| 	struct request_queue *q = bio->bi_disk->queue;
 | |
| #endif
 | |
| 
 | |
| 	ASSERT3P(q, !=, NULL);
 | |
| 	ASSERT3P(bio->bi_blkg, ==, NULL);
 | |
| 
 | |
| 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
 | |
| 		bio->bi_blkg = q->root_blkg;
 | |
| }
 | |
| 
 | |
| #define	bio_associate_blkg vdev_bio_associate_blkg
 | |
| #else
 | |
| static inline void
 | |
| vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
 | |
| {
 | |
| #if defined(HAVE_BIO_BDEV_DISK)
 | |
| 	struct request_queue *q = bdev->bd_disk->queue;
 | |
| #else
 | |
| 	struct request_queue *q = bio->bi_disk->queue;
 | |
| #endif
 | |
| 	bio_clear_flag(bio, BIO_REMAPPED);
 | |
| 	if (bio->bi_bdev != bdev)
 | |
| 		bio_clear_flag(bio, BIO_THROTTLED);
 | |
| 	bio->bi_bdev = bdev;
 | |
| 
 | |
| 	ASSERT3P(q, !=, NULL);
 | |
| 	ASSERT3P(bio->bi_blkg, ==, NULL);
 | |
| 
 | |
| 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
 | |
| 		bio->bi_blkg = q->root_blkg;
 | |
| }
 | |
| #define	bio_set_dev		vdev_bio_set_dev
 | |
| #endif
 | |
| #endif
 | |
| #else
 | |
| /*
 | |
|  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
 | |
|  */
 | |
| static inline void
 | |
| bio_set_dev(struct bio *bio, struct block_device *bdev)
 | |
| {
 | |
| 	bio->bi_bdev = bdev;
 | |
| }
 | |
| #endif /* HAVE_BIO_SET_DEV */
 | |
| #endif /* !HAVE_BIO_ALLOC_4ARG */
 | |
| 
 | |
| static inline void
 | |
| vdev_submit_bio(struct bio *bio)
 | |
| {
 | |
| 	struct bio_list *bio_list = current->bio_list;
 | |
| 	current->bio_list = NULL;
 | |
| 	vdev_submit_bio_impl(bio);
 | |
| 	current->bio_list = bio_list;
 | |
| }
 | |
| 
 | |
| static inline struct bio *
 | |
| vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
 | |
|     unsigned short nr_vecs)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 
 | |
| #ifdef HAVE_BIO_ALLOC_4ARG
 | |
| 	bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
 | |
| #else
 | |
| 	bio = bio_alloc(gfp_mask, nr_vecs);
 | |
| 	if (likely(bio != NULL))
 | |
| 		bio_set_dev(bio, bdev);
 | |
| #endif
 | |
| 
 | |
| 	return (bio);
 | |
| }
 | |
| 
 | |
| static inline uint_t
 | |
| vdev_bio_max_segs(struct block_device *bdev)
 | |
| {
 | |
| 	/*
 | |
| 	 * Smallest of the device max segs and the tuneable max segs. Minimum
 | |
| 	 * 4, so there's room to finish split pages if they come up.
 | |
| 	 */
 | |
| 	const uint_t dev_max_segs = queue_max_segments(bdev_get_queue(bdev));
 | |
| 	const uint_t tune_max_segs = (zfs_vdev_disk_max_segs > 0) ?
 | |
| 	    MAX(4, zfs_vdev_disk_max_segs) : dev_max_segs;
 | |
| 	const uint_t max_segs = MIN(tune_max_segs, dev_max_segs);
 | |
| 
 | |
| #ifdef HAVE_BIO_MAX_SEGS
 | |
| 	return (bio_max_segs(max_segs));
 | |
| #else
 | |
| 	return (MIN(max_segs, BIO_MAX_PAGES));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline uint_t
 | |
| vdev_bio_max_bytes(struct block_device *bdev)
 | |
| {
 | |
| 	return (queue_max_sectors(bdev_get_queue(bdev)) << 9);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Virtual block IO object (VBIO)
 | |
|  *
 | |
|  * Linux block IO (BIO) objects have a limit on how many data segments (pages)
 | |
|  * they can hold. Depending on how they're allocated and structured, a large
 | |
|  * ZIO can require more than one BIO to be submitted to the kernel, which then
 | |
|  * all have to complete before we can return the completed ZIO back to ZFS.
 | |
|  *
 | |
|  * A VBIO is a wrapper around multiple BIOs, carrying everything needed to
 | |
|  * translate a ZIO down into the kernel block layer and back again.
 | |
|  *
 | |
|  * Note that these are only used for data ZIOs (read/write). Meta-operations
 | |
|  * (flush/trim) don't need multiple BIOs and so can just make the call
 | |
|  * directly.
 | |
|  */
 | |
| typedef struct {
 | |
| 	zio_t		*vbio_zio;	/* parent zio */
 | |
| 
 | |
| 	struct block_device *vbio_bdev;	/* blockdev to submit bios to */
 | |
| 
 | |
| 	abd_t		*vbio_abd;	/* abd carrying borrowed linear buf */
 | |
| 
 | |
| 	uint_t		vbio_max_segs;	/* max segs per bio */
 | |
| 
 | |
| 	uint_t		vbio_max_bytes;	/* max bytes per bio */
 | |
| 	uint_t		vbio_lbs_mask;	/* logical block size mask */
 | |
| 
 | |
| 	uint64_t	vbio_offset;	/* start offset of next bio */
 | |
| 
 | |
| 	struct bio	*vbio_bio;	/* pointer to the current bio */
 | |
| 	int		vbio_flags;	/* bio flags */
 | |
| } vbio_t;
 | |
| 
 | |
| static vbio_t *
 | |
| vbio_alloc(zio_t *zio, struct block_device *bdev, int flags)
 | |
| {
 | |
| 	vbio_t *vbio = kmem_zalloc(sizeof (vbio_t), KM_SLEEP);
 | |
| 
 | |
| 	vbio->vbio_zio = zio;
 | |
| 	vbio->vbio_bdev = bdev;
 | |
| 	vbio->vbio_abd = NULL;
 | |
| 	vbio->vbio_max_segs = vdev_bio_max_segs(bdev);
 | |
| 	vbio->vbio_max_bytes = vdev_bio_max_bytes(bdev);
 | |
| 	vbio->vbio_lbs_mask = ~(bdev_logical_block_size(bdev)-1);
 | |
| 	vbio->vbio_offset = zio->io_offset;
 | |
| 	vbio->vbio_bio = NULL;
 | |
| 	vbio->vbio_flags = flags;
 | |
| 
 | |
| 	return (vbio);
 | |
| }
 | |
| 
 | |
| BIO_END_IO_PROTO(vbio_completion, bio, error);
 | |
| 
 | |
| static int
 | |
| vbio_add_page(vbio_t *vbio, struct page *page, uint_t size, uint_t offset)
 | |
| {
 | |
| 	struct bio *bio = vbio->vbio_bio;
 | |
| 	uint_t ssize;
 | |
| 
 | |
| 	while (size > 0) {
 | |
| 		if (bio == NULL) {
 | |
| 			/* New BIO, allocate and set up */
 | |
| 			bio = vdev_bio_alloc(vbio->vbio_bdev, GFP_NOIO,
 | |
| 			    vbio->vbio_max_segs);
 | |
| 			VERIFY(bio);
 | |
| 
 | |
| 			BIO_BI_SECTOR(bio) = vbio->vbio_offset >> 9;
 | |
| 			bio_set_op_attrs(bio,
 | |
| 			    vbio->vbio_zio->io_type == ZIO_TYPE_WRITE ?
 | |
| 			    WRITE : READ, vbio->vbio_flags);
 | |
| 
 | |
| 			if (vbio->vbio_bio) {
 | |
| 				bio_chain(vbio->vbio_bio, bio);
 | |
| 				vdev_submit_bio(vbio->vbio_bio);
 | |
| 			}
 | |
| 			vbio->vbio_bio = bio;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Only load as much of the current page data as will fit in
 | |
| 		 * the space left in the BIO, respecting lbs alignment. Older
 | |
| 		 * kernels will error if we try to overfill the BIO, while
 | |
| 		 * newer ones will accept it and split the BIO. This ensures
 | |
| 		 * everything works on older kernels, and avoids an additional
 | |
| 		 * overhead on the new.
 | |
| 		 */
 | |
| 		ssize = MIN(size, (vbio->vbio_max_bytes - BIO_BI_SIZE(bio)) &
 | |
| 		    vbio->vbio_lbs_mask);
 | |
| 		if (ssize > 0 &&
 | |
| 		    bio_add_page(bio, page, ssize, offset) == ssize) {
 | |
| 			/* Accepted, adjust and load any remaining. */
 | |
| 			size -= ssize;
 | |
| 			offset += ssize;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* No room, set up for a new BIO and loop */
 | |
| 		vbio->vbio_offset += BIO_BI_SIZE(bio);
 | |
| 
 | |
| 		/* Signal new BIO allocation wanted */
 | |
| 		bio = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /* Iterator callback to submit ABD pages to the vbio. */
 | |
| static int
 | |
| vbio_fill_cb(struct page *page, size_t off, size_t len, void *priv)
 | |
| {
 | |
| 	vbio_t *vbio = priv;
 | |
| 	return (vbio_add_page(vbio, page, len, off));
 | |
| }
 | |
| 
 | |
| /* Create some BIOs, fill them with data and submit them */
 | |
| static void
 | |
| vbio_submit(vbio_t *vbio, abd_t *abd, uint64_t size)
 | |
| {
 | |
| 	/*
 | |
| 	 * We plug so we can submit the BIOs as we go and only unplug them when
 | |
| 	 * they are fully created and submitted. This is important; if we don't
 | |
| 	 * plug, then the kernel may start executing earlier BIOs while we're
 | |
| 	 * still creating and executing later ones, and if the device goes
 | |
| 	 * away while that's happening, older kernels can get confused and
 | |
| 	 * trample memory.
 | |
| 	 */
 | |
| 	struct blk_plug plug;
 | |
| 	blk_start_plug(&plug);
 | |
| 
 | |
| 	(void) abd_iterate_page_func(abd, 0, size, vbio_fill_cb, vbio);
 | |
| 	ASSERT(vbio->vbio_bio);
 | |
| 
 | |
| 	vbio->vbio_bio->bi_end_io = vbio_completion;
 | |
| 	vbio->vbio_bio->bi_private = vbio;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once submitted, vbio_bio now owns vbio (through bi_private) and we
 | |
| 	 * can't touch it again. The bio may complete and vbio_completion() be
 | |
| 	 * called and free the vbio before this task is run again, so we must
 | |
| 	 * consider it invalid from this point.
 | |
| 	 */
 | |
| 	vdev_submit_bio(vbio->vbio_bio);
 | |
| 
 | |
| 	blk_finish_plug(&plug);
 | |
| }
 | |
| 
 | |
| /* IO completion callback */
 | |
| BIO_END_IO_PROTO(vbio_completion, bio, error)
 | |
| {
 | |
| 	vbio_t *vbio = bio->bi_private;
 | |
| 	zio_t *zio = vbio->vbio_zio;
 | |
| 
 | |
| 	ASSERT(zio);
 | |
| 
 | |
| 	/* Capture and log any errors */
 | |
| #ifdef HAVE_1ARG_BIO_END_IO_T
 | |
| 	zio->io_error = BIO_END_IO_ERROR(bio);
 | |
| #else
 | |
| 	zio->io_error = 0;
 | |
| 	if (error)
 | |
| 		zio->io_error = -(error);
 | |
| 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
 | |
| 		zio->io_error = EIO;
 | |
| #endif
 | |
| 	ASSERT3U(zio->io_error, >=, 0);
 | |
| 
 | |
| 	if (zio->io_error)
 | |
| 		vdev_disk_error(zio);
 | |
| 
 | |
| 	/* Return the BIO to the kernel */
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we copied the ABD before issuing it, clean up and return the copy
 | |
| 	 * to the ADB, with changes if appropriate.
 | |
| 	 */
 | |
| 	if (vbio->vbio_abd != NULL) {
 | |
| 		void *buf = abd_to_buf(vbio->vbio_abd);
 | |
| 		abd_free(vbio->vbio_abd);
 | |
| 		vbio->vbio_abd = NULL;
 | |
| 
 | |
| 		if (zio->io_type == ZIO_TYPE_READ)
 | |
| 			abd_return_buf_copy(zio->io_abd, buf, zio->io_size);
 | |
| 		else
 | |
| 			abd_return_buf(zio->io_abd, buf, zio->io_size);
 | |
| 	}
 | |
| 
 | |
| 	/* Final cleanup */
 | |
| 	kmem_free(vbio, sizeof (vbio_t));
 | |
| 
 | |
| 	/* All done, submit for processing */
 | |
| 	zio_delay_interrupt(zio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterator callback to count ABD pages and check their size & alignment.
 | |
|  *
 | |
|  * On Linux, each BIO segment can take a page pointer, and an offset+length of
 | |
|  * the data within that page. A page can be arbitrarily large ("compound"
 | |
|  * pages) but we still have to ensure the data portion is correctly sized and
 | |
|  * aligned to the logical block size, to ensure that if the kernel wants to
 | |
|  * split the BIO, the two halves will still be properly aligned.
 | |
|  *
 | |
|  * NOTE: if you change this function, change the copy in
 | |
|  * tests/zfs-tests/tests/functional/vdev_disk/page_alignment.c, and add test
 | |
|  * data there to validate the change you're making.
 | |
|  *
 | |
|  */
 | |
| typedef struct {
 | |
| 	uint_t  bmask;
 | |
| 	uint_t  npages;
 | |
| 	uint_t  end;
 | |
| } vdev_disk_check_pages_t;
 | |
| 
 | |
| static int
 | |
| vdev_disk_check_pages_cb(struct page *page, size_t off, size_t len, void *priv)
 | |
| {
 | |
| 	(void) page;
 | |
| 	vdev_disk_check_pages_t *s = priv;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we didn't finish on a block size boundary last time, then there
 | |
| 	 * would be a gap if we tried to use this ABD as-is, so abort.
 | |
| 	 */
 | |
| 	if (s->end != 0)
 | |
| 		return (1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note if we're taking less than a full block, so we can check it
 | |
| 	 * above on the next call.
 | |
| 	 */
 | |
| 	s->end = (off+len) & s->bmask;
 | |
| 
 | |
| 	/* All blocks after the first must start on a block size boundary. */
 | |
| 	if (s->npages != 0 && (off & s->bmask) != 0)
 | |
| 		return (1);
 | |
| 
 | |
| 	s->npages++;
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if we can submit the pages in this ABD to the kernel as-is. Returns
 | |
|  * the number of pages, or 0 if it can't be submitted like this.
 | |
|  */
 | |
| static boolean_t
 | |
| vdev_disk_check_pages(abd_t *abd, uint64_t size, struct block_device *bdev)
 | |
| {
 | |
| 	vdev_disk_check_pages_t s = {
 | |
| 	    .bmask = bdev_logical_block_size(bdev)-1,
 | |
| 	    .npages = 0,
 | |
| 	    .end = 0,
 | |
| 	};
 | |
| 
 | |
| 	if (abd_iterate_page_func(abd, 0, size, vdev_disk_check_pages_cb, &s))
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	return (B_TRUE);
 | |
| }
 | |
| 
 | |
| static int
 | |
| vdev_disk_io_rw(zio_t *zio)
 | |
| {
 | |
| 	vdev_t *v = zio->io_vd;
 | |
| 	vdev_disk_t *vd = v->vdev_tsd;
 | |
| 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
 | |
| 	int flags = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Accessing outside the block device is never allowed.
 | |
| 	 */
 | |
| 	if (zio->io_offset + zio->io_size > bdev_capacity(bdev)) {
 | |
| 		vdev_dbgmsg(zio->io_vd,
 | |
| 		    "Illegal access %llu size %llu, device size %llu",
 | |
| 		    (u_longlong_t)zio->io_offset,
 | |
| 		    (u_longlong_t)zio->io_size,
 | |
| 		    (u_longlong_t)bdev_capacity(bdev));
 | |
| 		return (SET_ERROR(EIO));
 | |
| 	}
 | |
| 
 | |
| 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
 | |
| 	    v->vdev_failfast == B_TRUE) {
 | |
| 		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
 | |
| 		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check alignment of the incoming ABD. If any part of it would require
 | |
| 	 * submitting a page that is not aligned to the logical block size,
 | |
| 	 * then we take a copy into a linear buffer and submit that instead.
 | |
| 	 * This should be impossible on a 512b LBS, and fairly rare on 4K,
 | |
| 	 * usually requiring abnormally-small data blocks (eg gang blocks)
 | |
| 	 * mixed into the same ABD as larger ones (eg aggregated).
 | |
| 	 */
 | |
| 	abd_t *abd = zio->io_abd;
 | |
| 	if (!vdev_disk_check_pages(abd, zio->io_size, bdev)) {
 | |
| 		void *buf;
 | |
| 		if (zio->io_type == ZIO_TYPE_READ)
 | |
| 			buf = abd_borrow_buf(zio->io_abd, zio->io_size);
 | |
| 		else
 | |
| 			buf = abd_borrow_buf_copy(zio->io_abd, zio->io_size);
 | |
| 
 | |
| 		/*
 | |
| 		 * Wrap the copy in an abd_t, so we can use the same iterators
 | |
| 		 * to count and fill the vbio later.
 | |
| 		 */
 | |
| 		abd = abd_get_from_buf(buf, zio->io_size);
 | |
| 
 | |
| 		/*
 | |
| 		 * False here would mean the borrowed copy has an invalid
 | |
| 		 * alignment too, which would mean we've somehow been passed a
 | |
| 		 * linear ABD with an interior page that has a non-zero offset
 | |
| 		 * or a size not a multiple of PAGE_SIZE. This is not possible.
 | |
| 		 * It would mean either zio_buf_alloc() or its underlying
 | |
| 		 * allocators have done something extremely strange, or our
 | |
| 		 * math in vdev_disk_check_pages() is wrong. In either case,
 | |
| 		 * something in seriously wrong and its not safe to continue.
 | |
| 		 */
 | |
| 		VERIFY(vdev_disk_check_pages(abd, zio->io_size, bdev));
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate vbio, with a pointer to the borrowed ABD if necessary */
 | |
| 	vbio_t *vbio = vbio_alloc(zio, bdev, flags);
 | |
| 	if (abd != zio->io_abd)
 | |
| 		vbio->vbio_abd = abd;
 | |
| 
 | |
| 	/* Fill it with data pages and submit it to the kernel */
 | |
| 	vbio_submit(vbio, abd, zio->io_size);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /* ========== */
 | |
| 
 | |
| /*
 | |
|  * This is the classic, battle-tested BIO submission code. Until we're totally
 | |
|  * sure that the new code is safe and correct in all cases, this will remain
 | |
|  * available and can be enabled by setting zfs_vdev_disk_classic=1 at module
 | |
|  * load time.
 | |
|  *
 | |
|  * These functions have been renamed to vdev_classic_* to make it clear what
 | |
|  * they belong to, but their implementations are unchanged.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Virtual device vector for disks.
 | |
|  */
 | |
| typedef struct dio_request {
 | |
| 	zio_t			*dr_zio;	/* Parent ZIO */
 | |
| 	atomic_t		dr_ref;		/* References */
 | |
| 	int			dr_error;	/* Bio error */
 | |
| 	int			dr_bio_count;	/* Count of bio's */
 | |
| 	struct bio		*dr_bio[];	/* Attached bio's */
 | |
| } dio_request_t;
 | |
| 
 | |
| static dio_request_t *
 | |
| vdev_classic_dio_alloc(int bio_count)
 | |
| {
 | |
| 	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
 | |
| 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
 | |
| 	atomic_set(&dr->dr_ref, 0);
 | |
| 	dr->dr_bio_count = bio_count;
 | |
| 	dr->dr_error = 0;
 | |
| 
 | |
| 	for (int i = 0; i < dr->dr_bio_count; i++)
 | |
| 		dr->dr_bio[i] = NULL;
 | |
| 
 | |
| 	return (dr);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_classic_dio_free(dio_request_t *dr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < dr->dr_bio_count; i++)
 | |
| 		if (dr->dr_bio[i])
 | |
| 			bio_put(dr->dr_bio[i]);
 | |
| 
 | |
| 	kmem_free(dr, sizeof (dio_request_t) +
 | |
| 	    sizeof (struct bio *) * dr->dr_bio_count);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_classic_dio_get(dio_request_t *dr)
 | |
| {
 | |
| 	atomic_inc(&dr->dr_ref);
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_classic_dio_put(dio_request_t *dr)
 | |
| {
 | |
| 	int rc = atomic_dec_return(&dr->dr_ref);
 | |
| 
 | |
| 	/*
 | |
| 	 * Free the dio_request when the last reference is dropped and
 | |
| 	 * ensure zio_interpret is called only once with the correct zio
 | |
| 	 */
 | |
| 	if (rc == 0) {
 | |
| 		zio_t *zio = dr->dr_zio;
 | |
| 		int error = dr->dr_error;
 | |
| 
 | |
| 		vdev_classic_dio_free(dr);
 | |
| 
 | |
| 		if (zio) {
 | |
| 			zio->io_error = error;
 | |
| 			ASSERT3S(zio->io_error, >=, 0);
 | |
| 			if (zio->io_error)
 | |
| 				vdev_disk_error(zio);
 | |
| 
 | |
| 			zio_delay_interrupt(zio);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| BIO_END_IO_PROTO(vdev_classic_physio_completion, bio, error)
 | |
| {
 | |
| 	dio_request_t *dr = bio->bi_private;
 | |
| 
 | |
| 	if (dr->dr_error == 0) {
 | |
| #ifdef HAVE_1ARG_BIO_END_IO_T
 | |
| 		dr->dr_error = BIO_END_IO_ERROR(bio);
 | |
| #else
 | |
| 		if (error)
 | |
| 			dr->dr_error = -(error);
 | |
| 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
 | |
| 			dr->dr_error = EIO;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* Drop reference acquired by vdev_classic_physio */
 | |
| 	vdev_classic_dio_put(dr);
 | |
| }
 | |
| 
 | |
| static inline unsigned int
 | |
| vdev_classic_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
 | |
| {
 | |
| 	unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
 | |
| 	    bio_size, abd_offset);
 | |
| 
 | |
| #ifdef HAVE_BIO_MAX_SEGS
 | |
| 	return (bio_max_segs(nr_segs));
 | |
| #else
 | |
| 	return (MIN(nr_segs, BIO_MAX_PAGES));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int
 | |
| vdev_classic_physio(zio_t *zio)
 | |
| {
 | |
| 	vdev_t *v = zio->io_vd;
 | |
| 	vdev_disk_t *vd = v->vdev_tsd;
 | |
| 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
 | |
| 	size_t io_size = zio->io_size;
 | |
| 	uint64_t io_offset = zio->io_offset;
 | |
| 	int rw = zio->io_type == ZIO_TYPE_READ ? READ : WRITE;
 | |
| 	int flags = 0;
 | |
| 
 | |
| 	dio_request_t *dr;
 | |
| 	uint64_t abd_offset;
 | |
| 	uint64_t bio_offset;
 | |
| 	int bio_size;
 | |
| 	int bio_count = 16;
 | |
| 	int error = 0;
 | |
| 	struct blk_plug plug;
 | |
| 	unsigned short nr_vecs;
 | |
| 
 | |
| 	/*
 | |
| 	 * Accessing outside the block device is never allowed.
 | |
| 	 */
 | |
| 	if (io_offset + io_size > bdev_capacity(bdev)) {
 | |
| 		vdev_dbgmsg(zio->io_vd,
 | |
| 		    "Illegal access %llu size %llu, device size %llu",
 | |
| 		    (u_longlong_t)io_offset,
 | |
| 		    (u_longlong_t)io_size,
 | |
| 		    (u_longlong_t)bdev_capacity(bdev));
 | |
| 		return (SET_ERROR(EIO));
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	dr = vdev_classic_dio_alloc(bio_count);
 | |
| 
 | |
| 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
 | |
| 	    zio->io_vd->vdev_failfast == B_TRUE) {
 | |
| 		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
 | |
| 		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
 | |
| 	}
 | |
| 
 | |
| 	dr->dr_zio = zio;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
 | |
| 	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
 | |
| 	 * can cover at least 128KB and at most 1MB.  When the required number
 | |
| 	 * of iovec's exceeds this, we are forced to break the IO in multiple
 | |
| 	 * bio's and wait for them all to complete.  This is likely if the
 | |
| 	 * recordsize property is increased beyond 1MB.  The default
 | |
| 	 * bio_count=16 should typically accommodate the maximum-size zio of
 | |
| 	 * 16MB.
 | |
| 	 */
 | |
| 
 | |
| 	abd_offset = 0;
 | |
| 	bio_offset = io_offset;
 | |
| 	bio_size = io_size;
 | |
| 	for (int i = 0; i <= dr->dr_bio_count; i++) {
 | |
| 
 | |
| 		/* Finished constructing bio's for given buffer */
 | |
| 		if (bio_size <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * If additional bio's are required, we have to retry, but
 | |
| 		 * this should be rare - see the comment above.
 | |
| 		 */
 | |
| 		if (dr->dr_bio_count == i) {
 | |
| 			vdev_classic_dio_free(dr);
 | |
| 			bio_count *= 2;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		nr_vecs = vdev_classic_bio_max_segs(zio, bio_size, abd_offset);
 | |
| 		dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
 | |
| 		if (unlikely(dr->dr_bio[i] == NULL)) {
 | |
| 			vdev_classic_dio_free(dr);
 | |
| 			return (SET_ERROR(ENOMEM));
 | |
| 		}
 | |
| 
 | |
| 		/* Matching put called by vdev_classic_physio_completion */
 | |
| 		vdev_classic_dio_get(dr);
 | |
| 
 | |
| 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
 | |
| 		dr->dr_bio[i]->bi_end_io = vdev_classic_physio_completion;
 | |
| 		dr->dr_bio[i]->bi_private = dr;
 | |
| 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
 | |
| 
 | |
| 		/* Remaining size is returned to become the new size */
 | |
| 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
 | |
| 		    bio_size, abd_offset);
 | |
| 
 | |
| 		/* Advance in buffer and construct another bio if needed */
 | |
| 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
 | |
| 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* Extra reference to protect dio_request during vdev_submit_bio */
 | |
| 	vdev_classic_dio_get(dr);
 | |
| 
 | |
| 	if (dr->dr_bio_count > 1)
 | |
| 		blk_start_plug(&plug);
 | |
| 
 | |
| 	/* Submit all bio's associated with this dio */
 | |
| 	for (int i = 0; i < dr->dr_bio_count; i++) {
 | |
| 		if (dr->dr_bio[i])
 | |
| 			vdev_submit_bio(dr->dr_bio[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (dr->dr_bio_count > 1)
 | |
| 		blk_finish_plug(&plug);
 | |
| 
 | |
| 	vdev_classic_dio_put(dr);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /* ========== */
 | |
| 
 | |
| BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
 | |
| {
 | |
| 	zio_t *zio = bio->bi_private;
 | |
| #ifdef HAVE_1ARG_BIO_END_IO_T
 | |
| 	zio->io_error = BIO_END_IO_ERROR(bio);
 | |
| #else
 | |
| 	zio->io_error = -error;
 | |
| #endif
 | |
| 
 | |
| 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
 | |
| 		zio->io_vd->vdev_nowritecache = B_TRUE;
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 	ASSERT3S(zio->io_error, >=, 0);
 | |
| 	if (zio->io_error)
 | |
| 		vdev_disk_error(zio);
 | |
| 	zio_interrupt(zio);
 | |
| }
 | |
| 
 | |
| static int
 | |
| vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
 | |
| {
 | |
| 	struct request_queue *q;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	q = bdev_get_queue(bdev);
 | |
| 	if (!q)
 | |
| 		return (SET_ERROR(ENXIO));
 | |
| 
 | |
| 	bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
 | |
| 	if (unlikely(bio == NULL))
 | |
| 		return (SET_ERROR(ENOMEM));
 | |
| 
 | |
| 	bio->bi_end_io = vdev_disk_io_flush_completion;
 | |
| 	bio->bi_private = zio;
 | |
| 	bio_set_flush(bio);
 | |
| 	vdev_submit_bio(bio);
 | |
| 	invalidate_bdev(bdev);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| BIO_END_IO_PROTO(vdev_disk_discard_end_io, bio, error)
 | |
| {
 | |
| 	zio_t *zio = bio->bi_private;
 | |
| #ifdef HAVE_1ARG_BIO_END_IO_T
 | |
| 	zio->io_error = BIO_END_IO_ERROR(bio);
 | |
| #else
 | |
| 	zio->io_error = -error;
 | |
| #endif
 | |
| 	bio_put(bio);
 | |
| 	if (zio->io_error)
 | |
| 		vdev_disk_error(zio);
 | |
| 	zio_interrupt(zio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrappers for the different secure erase and discard APIs. We use async
 | |
|  * when available; in this case, *biop is set to the last bio in the chain.
 | |
|  */
 | |
| static int
 | |
| vdev_bdev_issue_secure_erase(zfs_bdev_handle_t *bdh, sector_t sector,
 | |
|     sector_t nsect, struct bio **biop)
 | |
| {
 | |
| 	*biop = NULL;
 | |
| 	int error;
 | |
| 
 | |
| #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
 | |
| 	error = blkdev_issue_secure_erase(BDH_BDEV(bdh),
 | |
| 	    sector, nsect, GFP_NOFS);
 | |
| #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
 | |
| 	error = __blkdev_issue_discard(BDH_BDEV(bdh),
 | |
| 	    sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE, biop);
 | |
| #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
 | |
| 	error = blkdev_issue_discard(BDH_BDEV(bdh),
 | |
| 	    sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE);
 | |
| #else
 | |
| #error "unsupported kernel"
 | |
| #endif
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| static int
 | |
| vdev_bdev_issue_discard(zfs_bdev_handle_t *bdh, sector_t sector,
 | |
|     sector_t nsect, struct bio **biop)
 | |
| {
 | |
| 	*biop = NULL;
 | |
| 	int error;
 | |
| 
 | |
| #if defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
 | |
| 	error = __blkdev_issue_discard(BDH_BDEV(bdh),
 | |
| 	    sector, nsect, GFP_NOFS, 0, biop);
 | |
| #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_NOFLAGS)
 | |
| 	error = __blkdev_issue_discard(BDH_BDEV(bdh),
 | |
| 	    sector, nsect, GFP_NOFS, biop);
 | |
| #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
 | |
| 	error = blkdev_issue_discard(BDH_BDEV(bdh),
 | |
| 	    sector, nsect, GFP_NOFS, 0);
 | |
| #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_NOFLAGS)
 | |
| 	error = blkdev_issue_discard(BDH_BDEV(bdh),
 | |
| 	    sector, nsect, GFP_NOFS);
 | |
| #else
 | |
| #error "unsupported kernel"
 | |
| #endif
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Entry point for TRIM ops. This calls the right wrapper for secure erase or
 | |
|  * discard, and then does the appropriate finishing work for error vs success
 | |
|  * and async vs sync.
 | |
|  */
 | |
| static int
 | |
| vdev_disk_io_trim(zio_t *zio)
 | |
| {
 | |
| 	int error;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	zfs_bdev_handle_t *bdh = ((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh;
 | |
| 	sector_t sector = zio->io_offset >> 9;
 | |
| 	sector_t nsects = zio->io_size >> 9;
 | |
| 
 | |
| 	if (zio->io_trim_flags & ZIO_TRIM_SECURE)
 | |
| 		error = vdev_bdev_issue_secure_erase(bdh, sector, nsects, &bio);
 | |
| 	else
 | |
| 		error = vdev_bdev_issue_discard(bdh, sector, nsects, &bio);
 | |
| 
 | |
| 	if (error != 0)
 | |
| 		return (SET_ERROR(-error));
 | |
| 
 | |
| 	if (bio == NULL) {
 | |
| 		/*
 | |
| 		 * This was a synchronous op that completed successfully, so
 | |
| 		 * return it to ZFS immediately.
 | |
| 		 */
 | |
| 		zio_interrupt(zio);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * This was an asynchronous op; set up completion callback and
 | |
| 		 * issue it.
 | |
| 		 */
 | |
| 		bio->bi_private = zio;
 | |
| 		bio->bi_end_io = vdev_disk_discard_end_io;
 | |
| 		vdev_submit_bio(bio);
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| int (*vdev_disk_io_rw_fn)(zio_t *zio) = NULL;
 | |
| 
 | |
| static void
 | |
| vdev_disk_io_start(zio_t *zio)
 | |
| {
 | |
| 	vdev_t *v = zio->io_vd;
 | |
| 	vdev_disk_t *vd = v->vdev_tsd;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
 | |
| 	 * Nothing to be done here but return failure.
 | |
| 	 */
 | |
| 	if (vd == NULL) {
 | |
| 		zio->io_error = ENXIO;
 | |
| 		zio_interrupt(zio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rw_enter(&vd->vd_lock, RW_READER);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the vdev is closed, it's likely due to a failed reopen and is
 | |
| 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
 | |
| 	 */
 | |
| 	if (vd->vd_bdh == NULL) {
 | |
| 		rw_exit(&vd->vd_lock);
 | |
| 		zio->io_error = ENXIO;
 | |
| 		zio_interrupt(zio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	switch (zio->io_type) {
 | |
| 	case ZIO_TYPE_FLUSH:
 | |
| 
 | |
| 		if (!vdev_readable(v)) {
 | |
| 			/* Drive not there, can't flush */
 | |
| 			error = SET_ERROR(ENXIO);
 | |
| 		} else if (zfs_nocacheflush) {
 | |
| 			/* Flushing disabled by operator, declare success */
 | |
| 			error = 0;
 | |
| 		} else if (v->vdev_nowritecache) {
 | |
| 			/* This vdev not capable of flushing */
 | |
| 			error = SET_ERROR(ENOTSUP);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Issue the flush. If successful, the response will
 | |
| 			 * be handled in the completion callback, so we're done.
 | |
| 			 */
 | |
| 			error = vdev_disk_io_flush(BDH_BDEV(vd->vd_bdh), zio);
 | |
| 			if (error == 0) {
 | |
| 				rw_exit(&vd->vd_lock);
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Couldn't issue the flush, so set the error and return it */
 | |
| 		rw_exit(&vd->vd_lock);
 | |
| 		zio->io_error = error;
 | |
| 		zio_execute(zio);
 | |
| 		return;
 | |
| 
 | |
| 	case ZIO_TYPE_TRIM:
 | |
| 		error = vdev_disk_io_trim(zio);
 | |
| 		rw_exit(&vd->vd_lock);
 | |
| 		if (error) {
 | |
| 			zio->io_error = error;
 | |
| 			zio_execute(zio);
 | |
| 		}
 | |
| 		return;
 | |
| 
 | |
| 	case ZIO_TYPE_READ:
 | |
| 	case ZIO_TYPE_WRITE:
 | |
| 		zio->io_target_timestamp = zio_handle_io_delay(zio);
 | |
| 		error = vdev_disk_io_rw_fn(zio);
 | |
| 		rw_exit(&vd->vd_lock);
 | |
| 		if (error) {
 | |
| 			zio->io_error = error;
 | |
| 			zio_interrupt(zio);
 | |
| 		}
 | |
| 		return;
 | |
| 
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * Getting here means our parent vdev has made a very strange
 | |
| 		 * request of us, and shouldn't happen. Assert here to force a
 | |
| 		 * crash in dev builds, but in production return the IO
 | |
| 		 * unhandled. The pool will likely suspend anyway but that's
 | |
| 		 * nicer than crashing the kernel.
 | |
| 		 */
 | |
| 		ASSERT3S(zio->io_type, ==, -1);
 | |
| 
 | |
| 		rw_exit(&vd->vd_lock);
 | |
| 		zio->io_error = SET_ERROR(ENOTSUP);
 | |
| 		zio_interrupt(zio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	__builtin_unreachable();
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_disk_io_done(zio_t *zio)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the device returned EIO, we revalidate the media.  If it is
 | |
| 	 * determined the media has changed this triggers the asynchronous
 | |
| 	 * removal of the device from the configuration.
 | |
| 	 */
 | |
| 	if (zio->io_error == EIO) {
 | |
| 		vdev_t *v = zio->io_vd;
 | |
| 		vdev_disk_t *vd = v->vdev_tsd;
 | |
| 
 | |
| 		if (!zfs_check_disk_status(BDH_BDEV(vd->vd_bdh))) {
 | |
| 			invalidate_bdev(BDH_BDEV(vd->vd_bdh));
 | |
| 			v->vdev_remove_wanted = B_TRUE;
 | |
| 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_disk_hold(vdev_t *vd)
 | |
| {
 | |
| 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
 | |
| 
 | |
| 	/* We must have a pathname, and it must be absolute. */
 | |
| 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only prefetch path and devid info if the device has
 | |
| 	 * never been opened.
 | |
| 	 */
 | |
| 	if (vd->vdev_tsd != NULL)
 | |
| 		return;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void
 | |
| vdev_disk_rele(vdev_t *vd)
 | |
| {
 | |
| 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
 | |
| 
 | |
| 	/* XXX: Implement me as a vnode rele for the device */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * BIO submission method. See comment above about vdev_classic.
 | |
|  * Set zfs_vdev_disk_classic=0 for new, =1 for classic
 | |
|  */
 | |
| static uint_t zfs_vdev_disk_classic = 0;	/* default new */
 | |
| 
 | |
| /* Set submission function from module parameter */
 | |
| static int
 | |
| vdev_disk_param_set_classic(const char *buf, zfs_kernel_param_t *kp)
 | |
| {
 | |
| 	int err = param_set_uint(buf, kp);
 | |
| 	if (err < 0)
 | |
| 		return (SET_ERROR(err));
 | |
| 
 | |
| 	vdev_disk_io_rw_fn =
 | |
| 	    zfs_vdev_disk_classic ? vdev_classic_physio : vdev_disk_io_rw;
 | |
| 
 | |
| 	printk(KERN_INFO "ZFS: forcing %s BIO submission\n",
 | |
| 	    zfs_vdev_disk_classic ? "classic" : "new");
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * At first use vdev use, set the submission function from the default value if
 | |
|  * it hasn't been set already.
 | |
|  */
 | |
| static int
 | |
| vdev_disk_init(spa_t *spa, nvlist_t *nv, void **tsd)
 | |
| {
 | |
| 	(void) spa;
 | |
| 	(void) nv;
 | |
| 	(void) tsd;
 | |
| 
 | |
| 	if (vdev_disk_io_rw_fn == NULL)
 | |
| 		vdev_disk_io_rw_fn = zfs_vdev_disk_classic ?
 | |
| 		    vdev_classic_physio : vdev_disk_io_rw;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| vdev_ops_t vdev_disk_ops = {
 | |
| 	.vdev_op_init = vdev_disk_init,
 | |
| 	.vdev_op_fini = NULL,
 | |
| 	.vdev_op_open = vdev_disk_open,
 | |
| 	.vdev_op_close = vdev_disk_close,
 | |
| 	.vdev_op_asize = vdev_default_asize,
 | |
| 	.vdev_op_min_asize = vdev_default_min_asize,
 | |
| 	.vdev_op_min_alloc = NULL,
 | |
| 	.vdev_op_io_start = vdev_disk_io_start,
 | |
| 	.vdev_op_io_done = vdev_disk_io_done,
 | |
| 	.vdev_op_state_change = NULL,
 | |
| 	.vdev_op_need_resilver = NULL,
 | |
| 	.vdev_op_hold = vdev_disk_hold,
 | |
| 	.vdev_op_rele = vdev_disk_rele,
 | |
| 	.vdev_op_remap = NULL,
 | |
| 	.vdev_op_xlate = vdev_default_xlate,
 | |
| 	.vdev_op_rebuild_asize = NULL,
 | |
| 	.vdev_op_metaslab_init = NULL,
 | |
| 	.vdev_op_config_generate = NULL,
 | |
| 	.vdev_op_nparity = NULL,
 | |
| 	.vdev_op_ndisks = NULL,
 | |
| 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
 | |
| 	.vdev_op_leaf = B_TRUE,			/* leaf vdev */
 | |
| 	.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The zfs_vdev_scheduler module option has been deprecated. Setting this
 | |
|  * value no longer has any effect.  It has not yet been entirely removed
 | |
|  * to allow the module to be loaded if this option is specified in the
 | |
|  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
 | |
|  */
 | |
| static int
 | |
| param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
 | |
| {
 | |
| 	int error = param_set_charp(val, kp);
 | |
| 	if (error == 0) {
 | |
| 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
 | |
| 		    "is not supported.\n");
 | |
| 	}
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| static const char *zfs_vdev_scheduler = "unused";
 | |
| module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
 | |
|     param_get_charp, &zfs_vdev_scheduler, 0644);
 | |
| MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
 | |
| 
 | |
| int
 | |
| param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
 | |
| {
 | |
| 	uint_t val;
 | |
| 	int error;
 | |
| 
 | |
| 	error = kstrtouint(buf, 0, &val);
 | |
| 	if (error < 0)
 | |
| 		return (SET_ERROR(error));
 | |
| 
 | |
| 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
 | |
| 		return (SET_ERROR(-EINVAL));
 | |
| 
 | |
| 	error = param_set_uint(buf, kp);
 | |
| 	if (error < 0)
 | |
| 		return (SET_ERROR(error));
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| int
 | |
| param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
 | |
| {
 | |
| 	uint_t val;
 | |
| 	int error;
 | |
| 
 | |
| 	error = kstrtouint(buf, 0, &val);
 | |
| 	if (error < 0)
 | |
| 		return (SET_ERROR(error));
 | |
| 
 | |
| 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
 | |
| 		return (SET_ERROR(-EINVAL));
 | |
| 
 | |
| 	error = param_set_uint(buf, kp);
 | |
| 	if (error < 0)
 | |
| 		return (SET_ERROR(error));
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
 | |
| 	"Timeout before determining that a device is missing");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
 | |
| 	"Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_vdev_disk, zfs_vdev_disk_, max_segs, UINT, ZMOD_RW,
 | |
| 	"Maximum number of data segments to add to an IO request (min 4)");
 | |
| 
 | |
| ZFS_MODULE_PARAM_CALL(zfs_vdev_disk, zfs_vdev_disk_, classic,
 | |
|     vdev_disk_param_set_classic, param_get_uint, ZMOD_RD,
 | |
| 	"Use classic BIO submission method");
 |