mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-11-04 07:10:11 +00:00 
			
		
		
		
	Authored by: Matt Ahrens <Matt.Ahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/9280 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/243952c Closes #7445
		
			
				
	
	
		
			3909 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3909 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * CDDL HEADER START
 | 
						|
 *
 | 
						|
 * The contents of this file are subject to the terms of the
 | 
						|
 * Common Development and Distribution License (the "License").
 | 
						|
 * You may not use this file except in compliance with the License.
 | 
						|
 *
 | 
						|
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | 
						|
 * or http://www.opensolaris.org/os/licensing.
 | 
						|
 * See the License for the specific language governing permissions
 | 
						|
 * and limitations under the License.
 | 
						|
 *
 | 
						|
 * When distributing Covered Code, include this CDDL HEADER in each
 | 
						|
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | 
						|
 * If applicable, add the following below this CDDL HEADER, with the
 | 
						|
 * fields enclosed by brackets "[]" replaced with your own identifying
 | 
						|
 * information: Portions Copyright [yyyy] [name of copyright owner]
 | 
						|
 *
 | 
						|
 * CDDL HEADER END
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | 
						|
 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
 | 
						|
 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
 | 
						|
 */
 | 
						|
 | 
						|
#include <sys/zfs_context.h>
 | 
						|
#include <sys/dmu.h>
 | 
						|
#include <sys/dmu_tx.h>
 | 
						|
#include <sys/space_map.h>
 | 
						|
#include <sys/metaslab_impl.h>
 | 
						|
#include <sys/vdev_impl.h>
 | 
						|
#include <sys/zio.h>
 | 
						|
#include <sys/spa_impl.h>
 | 
						|
#include <sys/zfeature.h>
 | 
						|
#include <sys/vdev_indirect_mapping.h>
 | 
						|
 | 
						|
#define	WITH_DF_BLOCK_ALLOCATOR
 | 
						|
 | 
						|
#define	GANG_ALLOCATION(flags) \
 | 
						|
	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
 | 
						|
 | 
						|
/*
 | 
						|
 * Metaslab granularity, in bytes. This is roughly similar to what would be
 | 
						|
 * referred to as the "stripe size" in traditional RAID arrays. In normal
 | 
						|
 * operation, we will try to write this amount of data to a top-level vdev
 | 
						|
 * before moving on to the next one.
 | 
						|
 */
 | 
						|
unsigned long metaslab_aliquot = 512 << 10;
 | 
						|
 | 
						|
/*
 | 
						|
 * For testing, make some blocks above a certain size be gang blocks.
 | 
						|
 */
 | 
						|
unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
 | 
						|
 | 
						|
/*
 | 
						|
 * The in-core space map representation is more compact than its on-disk form.
 | 
						|
 * The zfs_condense_pct determines how much more compact the in-core
 | 
						|
 * space map representation must be before we compact it on-disk.
 | 
						|
 * Values should be greater than or equal to 100.
 | 
						|
 */
 | 
						|
int zfs_condense_pct = 200;
 | 
						|
 | 
						|
/*
 | 
						|
 * Condensing a metaslab is not guaranteed to actually reduce the amount of
 | 
						|
 * space used on disk. In particular, a space map uses data in increments of
 | 
						|
 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
 | 
						|
 * same number of blocks after condensing. Since the goal of condensing is to
 | 
						|
 * reduce the number of IOPs required to read the space map, we only want to
 | 
						|
 * condense when we can be sure we will reduce the number of blocks used by the
 | 
						|
 * space map. Unfortunately, we cannot precisely compute whether or not this is
 | 
						|
 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
 | 
						|
 * we apply the following heuristic: do not condense a spacemap unless the
 | 
						|
 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
 | 
						|
 * blocks.
 | 
						|
 */
 | 
						|
int zfs_metaslab_condense_block_threshold = 4;
 | 
						|
 | 
						|
/*
 | 
						|
 * The zfs_mg_noalloc_threshold defines which metaslab groups should
 | 
						|
 * be eligible for allocation. The value is defined as a percentage of
 | 
						|
 * free space. Metaslab groups that have more free space than
 | 
						|
 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
 | 
						|
 * a metaslab group's free space is less than or equal to the
 | 
						|
 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
 | 
						|
 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
 | 
						|
 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
 | 
						|
 * groups are allowed to accept allocations. Gang blocks are always
 | 
						|
 * eligible to allocate on any metaslab group. The default value of 0 means
 | 
						|
 * no metaslab group will be excluded based on this criterion.
 | 
						|
 */
 | 
						|
int zfs_mg_noalloc_threshold = 0;
 | 
						|
 | 
						|
/*
 | 
						|
 * Metaslab groups are considered eligible for allocations if their
 | 
						|
 * fragmenation metric (measured as a percentage) is less than or equal to
 | 
						|
 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
 | 
						|
 * then it will be skipped unless all metaslab groups within the metaslab
 | 
						|
 * class have also crossed this threshold.
 | 
						|
 */
 | 
						|
int zfs_mg_fragmentation_threshold = 85;
 | 
						|
 | 
						|
/*
 | 
						|
 * Allow metaslabs to keep their active state as long as their fragmentation
 | 
						|
 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
 | 
						|
 * active metaslab that exceeds this threshold will no longer keep its active
 | 
						|
 * status allowing better metaslabs to be selected.
 | 
						|
 */
 | 
						|
int zfs_metaslab_fragmentation_threshold = 70;
 | 
						|
 | 
						|
/*
 | 
						|
 * When set will load all metaslabs when pool is first opened.
 | 
						|
 */
 | 
						|
int metaslab_debug_load = 0;
 | 
						|
 | 
						|
/*
 | 
						|
 * When set will prevent metaslabs from being unloaded.
 | 
						|
 */
 | 
						|
int metaslab_debug_unload = 0;
 | 
						|
 | 
						|
/*
 | 
						|
 * Minimum size which forces the dynamic allocator to change
 | 
						|
 * it's allocation strategy.  Once the space map cannot satisfy
 | 
						|
 * an allocation of this size then it switches to using more
 | 
						|
 * aggressive strategy (i.e search by size rather than offset).
 | 
						|
 */
 | 
						|
uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
 | 
						|
 | 
						|
/*
 | 
						|
 * The minimum free space, in percent, which must be available
 | 
						|
 * in a space map to continue allocations in a first-fit fashion.
 | 
						|
 * Once the space map's free space drops below this level we dynamically
 | 
						|
 * switch to using best-fit allocations.
 | 
						|
 */
 | 
						|
int metaslab_df_free_pct = 4;
 | 
						|
 | 
						|
/*
 | 
						|
 * Percentage of all cpus that can be used by the metaslab taskq.
 | 
						|
 */
 | 
						|
int metaslab_load_pct = 50;
 | 
						|
 | 
						|
/*
 | 
						|
 * Determines how many txgs a metaslab may remain loaded without having any
 | 
						|
 * allocations from it. As long as a metaslab continues to be used we will
 | 
						|
 * keep it loaded.
 | 
						|
 */
 | 
						|
int metaslab_unload_delay = TXG_SIZE * 2;
 | 
						|
 | 
						|
/*
 | 
						|
 * Max number of metaslabs per group to preload.
 | 
						|
 */
 | 
						|
int metaslab_preload_limit = SPA_DVAS_PER_BP;
 | 
						|
 | 
						|
/*
 | 
						|
 * Enable/disable preloading of metaslab.
 | 
						|
 */
 | 
						|
int metaslab_preload_enabled = B_TRUE;
 | 
						|
 | 
						|
/*
 | 
						|
 * Enable/disable fragmentation weighting on metaslabs.
 | 
						|
 */
 | 
						|
int metaslab_fragmentation_factor_enabled = B_TRUE;
 | 
						|
 | 
						|
/*
 | 
						|
 * Enable/disable lba weighting (i.e. outer tracks are given preference).
 | 
						|
 */
 | 
						|
int metaslab_lba_weighting_enabled = B_TRUE;
 | 
						|
 | 
						|
/*
 | 
						|
 * Enable/disable metaslab group biasing.
 | 
						|
 */
 | 
						|
int metaslab_bias_enabled = B_TRUE;
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
 | 
						|
 */
 | 
						|
boolean_t zfs_remap_blkptr_enable = B_TRUE;
 | 
						|
 | 
						|
/*
 | 
						|
 * Enable/disable segment-based metaslab selection.
 | 
						|
 */
 | 
						|
int zfs_metaslab_segment_weight_enabled = B_TRUE;
 | 
						|
 | 
						|
/*
 | 
						|
 * When using segment-based metaslab selection, we will continue
 | 
						|
 * allocating from the active metaslab until we have exhausted
 | 
						|
 * zfs_metaslab_switch_threshold of its buckets.
 | 
						|
 */
 | 
						|
int zfs_metaslab_switch_threshold = 2;
 | 
						|
 | 
						|
/*
 | 
						|
 * Internal switch to enable/disable the metaslab allocation tracing
 | 
						|
 * facility.
 | 
						|
 */
 | 
						|
#ifdef _METASLAB_TRACING
 | 
						|
boolean_t metaslab_trace_enabled = B_TRUE;
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Maximum entries that the metaslab allocation tracing facility will keep
 | 
						|
 * in a given list when running in non-debug mode. We limit the number
 | 
						|
 * of entries in non-debug mode to prevent us from using up too much memory.
 | 
						|
 * The limit should be sufficiently large that we don't expect any allocation
 | 
						|
 * to every exceed this value. In debug mode, the system will panic if this
 | 
						|
 * limit is ever reached allowing for further investigation.
 | 
						|
 */
 | 
						|
#ifdef _METASLAB_TRACING
 | 
						|
uint64_t metaslab_trace_max_entries = 5000;
 | 
						|
#endif
 | 
						|
 | 
						|
static uint64_t metaslab_weight(metaslab_t *);
 | 
						|
static void metaslab_set_fragmentation(metaslab_t *);
 | 
						|
static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, uint64_t);
 | 
						|
static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
 | 
						|
 | 
						|
#ifdef _METASLAB_TRACING
 | 
						|
kmem_cache_t *metaslab_alloc_trace_cache;
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * Metaslab classes
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
metaslab_class_t *
 | 
						|
metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
 | 
						|
{
 | 
						|
	metaslab_class_t *mc;
 | 
						|
 | 
						|
	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
 | 
						|
 | 
						|
	mc->mc_spa = spa;
 | 
						|
	mc->mc_rotor = NULL;
 | 
						|
	mc->mc_ops = ops;
 | 
						|
	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	refcount_create_tracked(&mc->mc_alloc_slots);
 | 
						|
 | 
						|
	return (mc);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_class_destroy(metaslab_class_t *mc)
 | 
						|
{
 | 
						|
	ASSERT(mc->mc_rotor == NULL);
 | 
						|
	ASSERT(mc->mc_alloc == 0);
 | 
						|
	ASSERT(mc->mc_deferred == 0);
 | 
						|
	ASSERT(mc->mc_space == 0);
 | 
						|
	ASSERT(mc->mc_dspace == 0);
 | 
						|
 | 
						|
	refcount_destroy(&mc->mc_alloc_slots);
 | 
						|
	mutex_destroy(&mc->mc_lock);
 | 
						|
	kmem_free(mc, sizeof (metaslab_class_t));
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
metaslab_class_validate(metaslab_class_t *mc)
 | 
						|
{
 | 
						|
	metaslab_group_t *mg;
 | 
						|
	vdev_t *vd;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Must hold one of the spa_config locks.
 | 
						|
	 */
 | 
						|
	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
 | 
						|
	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
 | 
						|
 | 
						|
	if ((mg = mc->mc_rotor) == NULL)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	do {
 | 
						|
		vd = mg->mg_vd;
 | 
						|
		ASSERT(vd->vdev_mg != NULL);
 | 
						|
		ASSERT3P(vd->vdev_top, ==, vd);
 | 
						|
		ASSERT3P(mg->mg_class, ==, mc);
 | 
						|
		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
 | 
						|
	} while ((mg = mg->mg_next) != mc->mc_rotor);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
 | 
						|
    int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
 | 
						|
{
 | 
						|
	atomic_add_64(&mc->mc_alloc, alloc_delta);
 | 
						|
	atomic_add_64(&mc->mc_deferred, defer_delta);
 | 
						|
	atomic_add_64(&mc->mc_space, space_delta);
 | 
						|
	atomic_add_64(&mc->mc_dspace, dspace_delta);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
metaslab_class_get_alloc(metaslab_class_t *mc)
 | 
						|
{
 | 
						|
	return (mc->mc_alloc);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
metaslab_class_get_deferred(metaslab_class_t *mc)
 | 
						|
{
 | 
						|
	return (mc->mc_deferred);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
metaslab_class_get_space(metaslab_class_t *mc)
 | 
						|
{
 | 
						|
	return (mc->mc_space);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
metaslab_class_get_dspace(metaslab_class_t *mc)
 | 
						|
{
 | 
						|
	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_class_histogram_verify(metaslab_class_t *mc)
 | 
						|
{
 | 
						|
	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
 | 
						|
	uint64_t *mc_hist;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
 | 
						|
	    KM_SLEEP);
 | 
						|
 | 
						|
	for (int c = 0; c < rvd->vdev_children; c++) {
 | 
						|
		vdev_t *tvd = rvd->vdev_child[c];
 | 
						|
		metaslab_group_t *mg = tvd->vdev_mg;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Skip any holes, uninitialized top-levels, or
 | 
						|
		 * vdevs that are not in this metalab class.
 | 
						|
		 */
 | 
						|
		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
 | 
						|
		    mg->mg_class != mc) {
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
 | 
						|
			mc_hist[i] += mg->mg_histogram[i];
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
 | 
						|
		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
 | 
						|
 | 
						|
	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate the metaslab class's fragmentation metric. The metric
 | 
						|
 * is weighted based on the space contribution of each metaslab group.
 | 
						|
 * The return value will be a number between 0 and 100 (inclusive), or
 | 
						|
 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
 | 
						|
 * zfs_frag_table for more information about the metric.
 | 
						|
 */
 | 
						|
uint64_t
 | 
						|
metaslab_class_fragmentation(metaslab_class_t *mc)
 | 
						|
{
 | 
						|
	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
 | 
						|
	uint64_t fragmentation = 0;
 | 
						|
 | 
						|
	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
 | 
						|
 | 
						|
	for (int c = 0; c < rvd->vdev_children; c++) {
 | 
						|
		vdev_t *tvd = rvd->vdev_child[c];
 | 
						|
		metaslab_group_t *mg = tvd->vdev_mg;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Skip any holes, uninitialized top-levels,
 | 
						|
		 * or vdevs that are not in this metalab class.
 | 
						|
		 */
 | 
						|
		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
 | 
						|
		    mg->mg_class != mc) {
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If a metaslab group does not contain a fragmentation
 | 
						|
		 * metric then just bail out.
 | 
						|
		 */
 | 
						|
		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
 | 
						|
			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
 | 
						|
			return (ZFS_FRAG_INVALID);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Determine how much this metaslab_group is contributing
 | 
						|
		 * to the overall pool fragmentation metric.
 | 
						|
		 */
 | 
						|
		fragmentation += mg->mg_fragmentation *
 | 
						|
		    metaslab_group_get_space(mg);
 | 
						|
	}
 | 
						|
	fragmentation /= metaslab_class_get_space(mc);
 | 
						|
 | 
						|
	ASSERT3U(fragmentation, <=, 100);
 | 
						|
	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
 | 
						|
	return (fragmentation);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate the amount of expandable space that is available in
 | 
						|
 * this metaslab class. If a device is expanded then its expandable
 | 
						|
 * space will be the amount of allocatable space that is currently not
 | 
						|
 * part of this metaslab class.
 | 
						|
 */
 | 
						|
uint64_t
 | 
						|
metaslab_class_expandable_space(metaslab_class_t *mc)
 | 
						|
{
 | 
						|
	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
 | 
						|
	uint64_t space = 0;
 | 
						|
 | 
						|
	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
 | 
						|
	for (int c = 0; c < rvd->vdev_children; c++) {
 | 
						|
		vdev_t *tvd = rvd->vdev_child[c];
 | 
						|
		metaslab_group_t *mg = tvd->vdev_mg;
 | 
						|
 | 
						|
		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
 | 
						|
		    mg->mg_class != mc) {
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Calculate if we have enough space to add additional
 | 
						|
		 * metaslabs. We report the expandable space in terms
 | 
						|
		 * of the metaslab size since that's the unit of expansion.
 | 
						|
		 */
 | 
						|
		space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
 | 
						|
		    1ULL << tvd->vdev_ms_shift);
 | 
						|
	}
 | 
						|
	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
 | 
						|
	return (space);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
metaslab_compare(const void *x1, const void *x2)
 | 
						|
{
 | 
						|
	const metaslab_t *m1 = (const metaslab_t *)x1;
 | 
						|
	const metaslab_t *m2 = (const metaslab_t *)x2;
 | 
						|
 | 
						|
	int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
 | 
						|
	if (likely(cmp))
 | 
						|
		return (cmp);
 | 
						|
 | 
						|
	IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
 | 
						|
 | 
						|
	return (AVL_CMP(m1->ms_start, m2->ms_start));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Verify that the space accounting on disk matches the in-core range_trees.
 | 
						|
 */
 | 
						|
void
 | 
						|
metaslab_verify_space(metaslab_t *msp, uint64_t txg)
 | 
						|
{
 | 
						|
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | 
						|
	uint64_t allocated = 0;
 | 
						|
	uint64_t sm_free_space, msp_free_space;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
 | 
						|
	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can only verify the metaslab space when we're called
 | 
						|
	 * from syncing context with a loaded metaslab that has an allocated
 | 
						|
	 * space map. Calling this in non-syncing context does not
 | 
						|
	 * provide a consistent view of the metaslab since we're performing
 | 
						|
	 * allocations in the future.
 | 
						|
	 */
 | 
						|
	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
 | 
						|
	    !msp->ms_loaded)
 | 
						|
		return;
 | 
						|
 | 
						|
	sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) -
 | 
						|
	    space_map_alloc_delta(msp->ms_sm);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Account for future allocations since we would have already
 | 
						|
	 * deducted that space from the ms_freetree.
 | 
						|
	 */
 | 
						|
	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
 | 
						|
		allocated +=
 | 
						|
		    range_tree_space(msp->ms_alloctree[(txg + t) & TXG_MASK]);
 | 
						|
	}
 | 
						|
 | 
						|
	msp_free_space = range_tree_space(msp->ms_tree) + allocated +
 | 
						|
	    msp->ms_deferspace + range_tree_space(msp->ms_freedtree);
 | 
						|
 | 
						|
	VERIFY3U(sm_free_space, ==, msp_free_space);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * Metaslab groups
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * Update the allocatable flag and the metaslab group's capacity.
 | 
						|
 * The allocatable flag is set to true if the capacity is below
 | 
						|
 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
 | 
						|
 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
 | 
						|
 * transitions from allocatable to non-allocatable or vice versa then the
 | 
						|
 * metaslab group's class is updated to reflect the transition.
 | 
						|
 */
 | 
						|
static void
 | 
						|
metaslab_group_alloc_update(metaslab_group_t *mg)
 | 
						|
{
 | 
						|
	vdev_t *vd = mg->mg_vd;
 | 
						|
	metaslab_class_t *mc = mg->mg_class;
 | 
						|
	vdev_stat_t *vs = &vd->vdev_stat;
 | 
						|
	boolean_t was_allocatable;
 | 
						|
	boolean_t was_initialized;
 | 
						|
 | 
						|
	ASSERT(vd == vd->vdev_top);
 | 
						|
	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
 | 
						|
	    SCL_ALLOC);
 | 
						|
 | 
						|
	mutex_enter(&mg->mg_lock);
 | 
						|
	was_allocatable = mg->mg_allocatable;
 | 
						|
	was_initialized = mg->mg_initialized;
 | 
						|
 | 
						|
	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
 | 
						|
	    (vs->vs_space + 1);
 | 
						|
 | 
						|
	mutex_enter(&mc->mc_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the metaslab group was just added then it won't
 | 
						|
	 * have any space until we finish syncing out this txg.
 | 
						|
	 * At that point we will consider it initialized and available
 | 
						|
	 * for allocations.  We also don't consider non-activated
 | 
						|
	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
 | 
						|
	 * to be initialized, because they can't be used for allocation.
 | 
						|
	 */
 | 
						|
	mg->mg_initialized = metaslab_group_initialized(mg);
 | 
						|
	if (!was_initialized && mg->mg_initialized) {
 | 
						|
		mc->mc_groups++;
 | 
						|
	} else if (was_initialized && !mg->mg_initialized) {
 | 
						|
		ASSERT3U(mc->mc_groups, >, 0);
 | 
						|
		mc->mc_groups--;
 | 
						|
	}
 | 
						|
	if (mg->mg_initialized)
 | 
						|
		mg->mg_no_free_space = B_FALSE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A metaslab group is considered allocatable if it has plenty
 | 
						|
	 * of free space or is not heavily fragmented. We only take
 | 
						|
	 * fragmentation into account if the metaslab group has a valid
 | 
						|
	 * fragmentation metric (i.e. a value between 0 and 100).
 | 
						|
	 */
 | 
						|
	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
 | 
						|
	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
 | 
						|
	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
 | 
						|
	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The mc_alloc_groups maintains a count of the number of
 | 
						|
	 * groups in this metaslab class that are still above the
 | 
						|
	 * zfs_mg_noalloc_threshold. This is used by the allocating
 | 
						|
	 * threads to determine if they should avoid allocations to
 | 
						|
	 * a given group. The allocator will avoid allocations to a group
 | 
						|
	 * if that group has reached or is below the zfs_mg_noalloc_threshold
 | 
						|
	 * and there are still other groups that are above the threshold.
 | 
						|
	 * When a group transitions from allocatable to non-allocatable or
 | 
						|
	 * vice versa we update the metaslab class to reflect that change.
 | 
						|
	 * When the mc_alloc_groups value drops to 0 that means that all
 | 
						|
	 * groups have reached the zfs_mg_noalloc_threshold making all groups
 | 
						|
	 * eligible for allocations. This effectively means that all devices
 | 
						|
	 * are balanced again.
 | 
						|
	 */
 | 
						|
	if (was_allocatable && !mg->mg_allocatable)
 | 
						|
		mc->mc_alloc_groups--;
 | 
						|
	else if (!was_allocatable && mg->mg_allocatable)
 | 
						|
		mc->mc_alloc_groups++;
 | 
						|
	mutex_exit(&mc->mc_lock);
 | 
						|
 | 
						|
	mutex_exit(&mg->mg_lock);
 | 
						|
}
 | 
						|
 | 
						|
metaslab_group_t *
 | 
						|
metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
 | 
						|
{
 | 
						|
	metaslab_group_t *mg;
 | 
						|
 | 
						|
	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
 | 
						|
	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
 | 
						|
	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
 | 
						|
	mg->mg_vd = vd;
 | 
						|
	mg->mg_class = mc;
 | 
						|
	mg->mg_activation_count = 0;
 | 
						|
	mg->mg_initialized = B_FALSE;
 | 
						|
	mg->mg_no_free_space = B_TRUE;
 | 
						|
	refcount_create_tracked(&mg->mg_alloc_queue_depth);
 | 
						|
 | 
						|
	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
 | 
						|
	    maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
 | 
						|
 | 
						|
	return (mg);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_group_destroy(metaslab_group_t *mg)
 | 
						|
{
 | 
						|
	ASSERT(mg->mg_prev == NULL);
 | 
						|
	ASSERT(mg->mg_next == NULL);
 | 
						|
	/*
 | 
						|
	 * We may have gone below zero with the activation count
 | 
						|
	 * either because we never activated in the first place or
 | 
						|
	 * because we're done, and possibly removing the vdev.
 | 
						|
	 */
 | 
						|
	ASSERT(mg->mg_activation_count <= 0);
 | 
						|
 | 
						|
	taskq_destroy(mg->mg_taskq);
 | 
						|
	avl_destroy(&mg->mg_metaslab_tree);
 | 
						|
	mutex_destroy(&mg->mg_lock);
 | 
						|
	refcount_destroy(&mg->mg_alloc_queue_depth);
 | 
						|
	kmem_free(mg, sizeof (metaslab_group_t));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_group_activate(metaslab_group_t *mg)
 | 
						|
{
 | 
						|
	metaslab_class_t *mc = mg->mg_class;
 | 
						|
	metaslab_group_t *mgprev, *mgnext;
 | 
						|
 | 
						|
	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
 | 
						|
 | 
						|
	ASSERT(mc->mc_rotor != mg);
 | 
						|
	ASSERT(mg->mg_prev == NULL);
 | 
						|
	ASSERT(mg->mg_next == NULL);
 | 
						|
	ASSERT(mg->mg_activation_count <= 0);
 | 
						|
 | 
						|
	if (++mg->mg_activation_count <= 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
 | 
						|
	metaslab_group_alloc_update(mg);
 | 
						|
 | 
						|
	if ((mgprev = mc->mc_rotor) == NULL) {
 | 
						|
		mg->mg_prev = mg;
 | 
						|
		mg->mg_next = mg;
 | 
						|
	} else {
 | 
						|
		mgnext = mgprev->mg_next;
 | 
						|
		mg->mg_prev = mgprev;
 | 
						|
		mg->mg_next = mgnext;
 | 
						|
		mgprev->mg_next = mg;
 | 
						|
		mgnext->mg_prev = mg;
 | 
						|
	}
 | 
						|
	mc->mc_rotor = mg;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Passivate a metaslab group and remove it from the allocation rotor.
 | 
						|
 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
 | 
						|
 * a metaslab group. This function will momentarily drop spa_config_locks
 | 
						|
 * that are lower than the SCL_ALLOC lock (see comment below).
 | 
						|
 */
 | 
						|
void
 | 
						|
metaslab_group_passivate(metaslab_group_t *mg)
 | 
						|
{
 | 
						|
	metaslab_class_t *mc = mg->mg_class;
 | 
						|
	spa_t *spa = mc->mc_spa;
 | 
						|
	metaslab_group_t *mgprev, *mgnext;
 | 
						|
	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
 | 
						|
 | 
						|
	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
 | 
						|
	    (SCL_ALLOC | SCL_ZIO));
 | 
						|
 | 
						|
	if (--mg->mg_activation_count != 0) {
 | 
						|
		ASSERT(mc->mc_rotor != mg);
 | 
						|
		ASSERT(mg->mg_prev == NULL);
 | 
						|
		ASSERT(mg->mg_next == NULL);
 | 
						|
		ASSERT(mg->mg_activation_count < 0);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The spa_config_lock is an array of rwlocks, ordered as
 | 
						|
	 * follows (from highest to lowest):
 | 
						|
	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
 | 
						|
	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
 | 
						|
	 * (For more information about the spa_config_lock see spa_misc.c)
 | 
						|
	 * The higher the lock, the broader its coverage. When we passivate
 | 
						|
	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
 | 
						|
	 * config locks. However, the metaslab group's taskq might be trying
 | 
						|
	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
 | 
						|
	 * lower locks to allow the I/O to complete. At a minimum,
 | 
						|
	 * we continue to hold the SCL_ALLOC lock, which prevents any future
 | 
						|
	 * allocations from taking place and any changes to the vdev tree.
 | 
						|
	 */
 | 
						|
	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
 | 
						|
	taskq_wait_outstanding(mg->mg_taskq, 0);
 | 
						|
	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
 | 
						|
	metaslab_group_alloc_update(mg);
 | 
						|
 | 
						|
	mgprev = mg->mg_prev;
 | 
						|
	mgnext = mg->mg_next;
 | 
						|
 | 
						|
	if (mg == mgnext) {
 | 
						|
		mc->mc_rotor = NULL;
 | 
						|
	} else {
 | 
						|
		mc->mc_rotor = mgnext;
 | 
						|
		mgprev->mg_next = mgnext;
 | 
						|
		mgnext->mg_prev = mgprev;
 | 
						|
	}
 | 
						|
 | 
						|
	mg->mg_prev = NULL;
 | 
						|
	mg->mg_next = NULL;
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
metaslab_group_initialized(metaslab_group_t *mg)
 | 
						|
{
 | 
						|
	vdev_t *vd = mg->mg_vd;
 | 
						|
	vdev_stat_t *vs = &vd->vdev_stat;
 | 
						|
 | 
						|
	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
metaslab_group_get_space(metaslab_group_t *mg)
 | 
						|
{
 | 
						|
	return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_group_histogram_verify(metaslab_group_t *mg)
 | 
						|
{
 | 
						|
	uint64_t *mg_hist;
 | 
						|
	vdev_t *vd = mg->mg_vd;
 | 
						|
	uint64_t ashift = vd->vdev_ashift;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
 | 
						|
	    KM_SLEEP);
 | 
						|
 | 
						|
	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
 | 
						|
	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
 | 
						|
 | 
						|
	for (int m = 0; m < vd->vdev_ms_count; m++) {
 | 
						|
		metaslab_t *msp = vd->vdev_ms[m];
 | 
						|
 | 
						|
		if (msp->ms_sm == NULL)
 | 
						|
			continue;
 | 
						|
 | 
						|
		for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
 | 
						|
			mg_hist[i + ashift] +=
 | 
						|
			    msp->ms_sm->sm_phys->smp_histogram[i];
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
 | 
						|
		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
 | 
						|
 | 
						|
	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
 | 
						|
{
 | 
						|
	metaslab_class_t *mc = mg->mg_class;
 | 
						|
	uint64_t ashift = mg->mg_vd->vdev_ashift;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
	if (msp->ms_sm == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	mutex_enter(&mg->mg_lock);
 | 
						|
	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
 | 
						|
		mg->mg_histogram[i + ashift] +=
 | 
						|
		    msp->ms_sm->sm_phys->smp_histogram[i];
 | 
						|
		mc->mc_histogram[i + ashift] +=
 | 
						|
		    msp->ms_sm->sm_phys->smp_histogram[i];
 | 
						|
	}
 | 
						|
	mutex_exit(&mg->mg_lock);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
 | 
						|
{
 | 
						|
	metaslab_class_t *mc = mg->mg_class;
 | 
						|
	uint64_t ashift = mg->mg_vd->vdev_ashift;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
	if (msp->ms_sm == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	mutex_enter(&mg->mg_lock);
 | 
						|
	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
 | 
						|
		ASSERT3U(mg->mg_histogram[i + ashift], >=,
 | 
						|
		    msp->ms_sm->sm_phys->smp_histogram[i]);
 | 
						|
		ASSERT3U(mc->mc_histogram[i + ashift], >=,
 | 
						|
		    msp->ms_sm->sm_phys->smp_histogram[i]);
 | 
						|
 | 
						|
		mg->mg_histogram[i + ashift] -=
 | 
						|
		    msp->ms_sm->sm_phys->smp_histogram[i];
 | 
						|
		mc->mc_histogram[i + ashift] -=
 | 
						|
		    msp->ms_sm->sm_phys->smp_histogram[i];
 | 
						|
	}
 | 
						|
	mutex_exit(&mg->mg_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
 | 
						|
{
 | 
						|
	ASSERT(msp->ms_group == NULL);
 | 
						|
	mutex_enter(&mg->mg_lock);
 | 
						|
	msp->ms_group = mg;
 | 
						|
	msp->ms_weight = 0;
 | 
						|
	avl_add(&mg->mg_metaslab_tree, msp);
 | 
						|
	mutex_exit(&mg->mg_lock);
 | 
						|
 | 
						|
	mutex_enter(&msp->ms_lock);
 | 
						|
	metaslab_group_histogram_add(mg, msp);
 | 
						|
	mutex_exit(&msp->ms_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
 | 
						|
{
 | 
						|
	mutex_enter(&msp->ms_lock);
 | 
						|
	metaslab_group_histogram_remove(mg, msp);
 | 
						|
	mutex_exit(&msp->ms_lock);
 | 
						|
 | 
						|
	mutex_enter(&mg->mg_lock);
 | 
						|
	ASSERT(msp->ms_group == mg);
 | 
						|
	avl_remove(&mg->mg_metaslab_tree, msp);
 | 
						|
	msp->ms_group = NULL;
 | 
						|
	mutex_exit(&mg->mg_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Although in principle the weight can be any value, in
 | 
						|
	 * practice we do not use values in the range [1, 511].
 | 
						|
	 */
 | 
						|
	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
 | 
						|
	mutex_enter(&mg->mg_lock);
 | 
						|
	ASSERT(msp->ms_group == mg);
 | 
						|
	avl_remove(&mg->mg_metaslab_tree, msp);
 | 
						|
	msp->ms_weight = weight;
 | 
						|
	avl_add(&mg->mg_metaslab_tree, msp);
 | 
						|
	mutex_exit(&mg->mg_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate the fragmentation for a given metaslab group. We can use
 | 
						|
 * a simple average here since all metaslabs within the group must have
 | 
						|
 * the same size. The return value will be a value between 0 and 100
 | 
						|
 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
 | 
						|
 * group have a fragmentation metric.
 | 
						|
 */
 | 
						|
uint64_t
 | 
						|
metaslab_group_fragmentation(metaslab_group_t *mg)
 | 
						|
{
 | 
						|
	vdev_t *vd = mg->mg_vd;
 | 
						|
	uint64_t fragmentation = 0;
 | 
						|
	uint64_t valid_ms = 0;
 | 
						|
 | 
						|
	for (int m = 0; m < vd->vdev_ms_count; m++) {
 | 
						|
		metaslab_t *msp = vd->vdev_ms[m];
 | 
						|
 | 
						|
		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
 | 
						|
			continue;
 | 
						|
 | 
						|
		valid_ms++;
 | 
						|
		fragmentation += msp->ms_fragmentation;
 | 
						|
	}
 | 
						|
 | 
						|
	if (valid_ms <= vd->vdev_ms_count / 2)
 | 
						|
		return (ZFS_FRAG_INVALID);
 | 
						|
 | 
						|
	fragmentation /= valid_ms;
 | 
						|
	ASSERT3U(fragmentation, <=, 100);
 | 
						|
	return (fragmentation);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine if a given metaslab group should skip allocations. A metaslab
 | 
						|
 * group should avoid allocations if its free capacity is less than the
 | 
						|
 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
 | 
						|
 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
 | 
						|
 * that can still handle allocations. If the allocation throttle is enabled
 | 
						|
 * then we skip allocations to devices that have reached their maximum
 | 
						|
 * allocation queue depth unless the selected metaslab group is the only
 | 
						|
 * eligible group remaining.
 | 
						|
 */
 | 
						|
static boolean_t
 | 
						|
metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
 | 
						|
    uint64_t psize)
 | 
						|
{
 | 
						|
	spa_t *spa = mg->mg_vd->vdev_spa;
 | 
						|
	metaslab_class_t *mc = mg->mg_class;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can only consider skipping this metaslab group if it's
 | 
						|
	 * in the normal metaslab class and there are other metaslab
 | 
						|
	 * groups to select from. Otherwise, we always consider it eligible
 | 
						|
	 * for allocations.
 | 
						|
	 */
 | 
						|
	if (mc != spa_normal_class(spa) || mc->mc_groups <= 1)
 | 
						|
		return (B_TRUE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the metaslab group's mg_allocatable flag is set (see comments
 | 
						|
	 * in metaslab_group_alloc_update() for more information) and
 | 
						|
	 * the allocation throttle is disabled then allow allocations to this
 | 
						|
	 * device. However, if the allocation throttle is enabled then
 | 
						|
	 * check if we have reached our allocation limit (mg_alloc_queue_depth)
 | 
						|
	 * to determine if we should allow allocations to this metaslab group.
 | 
						|
	 * If all metaslab groups are no longer considered allocatable
 | 
						|
	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
 | 
						|
	 * gang block size then we allow allocations on this metaslab group
 | 
						|
	 * regardless of the mg_allocatable or throttle settings.
 | 
						|
	 */
 | 
						|
	if (mg->mg_allocatable) {
 | 
						|
		metaslab_group_t *mgp;
 | 
						|
		int64_t qdepth;
 | 
						|
		uint64_t qmax = mg->mg_max_alloc_queue_depth;
 | 
						|
 | 
						|
		if (!mc->mc_alloc_throttle_enabled)
 | 
						|
			return (B_TRUE);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If this metaslab group does not have any free space, then
 | 
						|
		 * there is no point in looking further.
 | 
						|
		 */
 | 
						|
		if (mg->mg_no_free_space)
 | 
						|
			return (B_FALSE);
 | 
						|
 | 
						|
		qdepth = refcount_count(&mg->mg_alloc_queue_depth);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If this metaslab group is below its qmax or it's
 | 
						|
		 * the only allocatable metasable group, then attempt
 | 
						|
		 * to allocate from it.
 | 
						|
		 */
 | 
						|
		if (qdepth < qmax || mc->mc_alloc_groups == 1)
 | 
						|
			return (B_TRUE);
 | 
						|
		ASSERT3U(mc->mc_alloc_groups, >, 1);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Since this metaslab group is at or over its qmax, we
 | 
						|
		 * need to determine if there are metaslab groups after this
 | 
						|
		 * one that might be able to handle this allocation. This is
 | 
						|
		 * racy since we can't hold the locks for all metaslab
 | 
						|
		 * groups at the same time when we make this check.
 | 
						|
		 */
 | 
						|
		for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
 | 
						|
			qmax = mgp->mg_max_alloc_queue_depth;
 | 
						|
 | 
						|
			qdepth = refcount_count(&mgp->mg_alloc_queue_depth);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If there is another metaslab group that
 | 
						|
			 * might be able to handle the allocation, then
 | 
						|
			 * we return false so that we skip this group.
 | 
						|
			 */
 | 
						|
			if (qdepth < qmax && !mgp->mg_no_free_space)
 | 
						|
				return (B_FALSE);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We didn't find another group to handle the allocation
 | 
						|
		 * so we can't skip this metaslab group even though
 | 
						|
		 * we are at or over our qmax.
 | 
						|
		 */
 | 
						|
		return (B_TRUE);
 | 
						|
 | 
						|
	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
 | 
						|
		return (B_TRUE);
 | 
						|
	}
 | 
						|
	return (B_FALSE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * Range tree callbacks
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Comparison function for the private size-ordered tree. Tree is sorted
 | 
						|
 * by size, larger sizes at the end of the tree.
 | 
						|
 */
 | 
						|
static int
 | 
						|
metaslab_rangesize_compare(const void *x1, const void *x2)
 | 
						|
{
 | 
						|
	const range_seg_t *r1 = x1;
 | 
						|
	const range_seg_t *r2 = x2;
 | 
						|
	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
 | 
						|
	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
 | 
						|
 | 
						|
	int cmp = AVL_CMP(rs_size1, rs_size2);
 | 
						|
	if (likely(cmp))
 | 
						|
		return (cmp);
 | 
						|
 | 
						|
	return (AVL_CMP(r1->rs_start, r2->rs_start));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * Common allocator routines
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the maximum contiguous segment within the metaslab.
 | 
						|
 */
 | 
						|
uint64_t
 | 
						|
metaslab_block_maxsize(metaslab_t *msp)
 | 
						|
{
 | 
						|
	avl_tree_t *t = &msp->ms_size_tree;
 | 
						|
	range_seg_t *rs;
 | 
						|
 | 
						|
	if (t == NULL || (rs = avl_last(t)) == NULL)
 | 
						|
		return (0ULL);
 | 
						|
 | 
						|
	return (rs->rs_end - rs->rs_start);
 | 
						|
}
 | 
						|
 | 
						|
static range_seg_t *
 | 
						|
metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
 | 
						|
{
 | 
						|
	range_seg_t *rs, rsearch;
 | 
						|
	avl_index_t where;
 | 
						|
 | 
						|
	rsearch.rs_start = start;
 | 
						|
	rsearch.rs_end = start + size;
 | 
						|
 | 
						|
	rs = avl_find(t, &rsearch, &where);
 | 
						|
	if (rs == NULL) {
 | 
						|
		rs = avl_nearest(t, where, AVL_AFTER);
 | 
						|
	}
 | 
						|
 | 
						|
	return (rs);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(WITH_FF_BLOCK_ALLOCATOR) || \
 | 
						|
    defined(WITH_DF_BLOCK_ALLOCATOR) || \
 | 
						|
    defined(WITH_CF_BLOCK_ALLOCATOR)
 | 
						|
/*
 | 
						|
 * This is a helper function that can be used by the allocator to find
 | 
						|
 * a suitable block to allocate. This will search the specified AVL
 | 
						|
 * tree looking for a block that matches the specified criteria.
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
 | 
						|
    uint64_t align)
 | 
						|
{
 | 
						|
	range_seg_t *rs = metaslab_block_find(t, *cursor, size);
 | 
						|
 | 
						|
	while (rs != NULL) {
 | 
						|
		uint64_t offset = P2ROUNDUP(rs->rs_start, align);
 | 
						|
 | 
						|
		if (offset + size <= rs->rs_end) {
 | 
						|
			*cursor = offset + size;
 | 
						|
			return (offset);
 | 
						|
		}
 | 
						|
		rs = AVL_NEXT(t, rs);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we know we've searched the whole map (*cursor == 0), give up.
 | 
						|
	 * Otherwise, reset the cursor to the beginning and try again.
 | 
						|
	 */
 | 
						|
	if (*cursor == 0)
 | 
						|
		return (-1ULL);
 | 
						|
 | 
						|
	*cursor = 0;
 | 
						|
	return (metaslab_block_picker(t, cursor, size, align));
 | 
						|
}
 | 
						|
#endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
 | 
						|
 | 
						|
#if defined(WITH_FF_BLOCK_ALLOCATOR)
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * The first-fit block allocator
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Find the largest power of 2 block size that evenly divides the
 | 
						|
	 * requested size. This is used to try to allocate blocks with similar
 | 
						|
	 * alignment from the same area of the metaslab (i.e. same cursor
 | 
						|
	 * bucket) but it does not guarantee that other allocations sizes
 | 
						|
	 * may exist in the same region.
 | 
						|
	 */
 | 
						|
	uint64_t align = size & -size;
 | 
						|
	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
 | 
						|
	avl_tree_t *t = &msp->ms_tree->rt_root;
 | 
						|
 | 
						|
	return (metaslab_block_picker(t, cursor, size, align));
 | 
						|
}
 | 
						|
 | 
						|
static metaslab_ops_t metaslab_ff_ops = {
 | 
						|
	metaslab_ff_alloc
 | 
						|
};
 | 
						|
 | 
						|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
 | 
						|
#endif /* WITH_FF_BLOCK_ALLOCATOR */
 | 
						|
 | 
						|
#if defined(WITH_DF_BLOCK_ALLOCATOR)
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * Dynamic block allocator -
 | 
						|
 * Uses the first fit allocation scheme until space get low and then
 | 
						|
 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
 | 
						|
 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
metaslab_df_alloc(metaslab_t *msp, uint64_t size)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Find the largest power of 2 block size that evenly divides the
 | 
						|
	 * requested size. This is used to try to allocate blocks with similar
 | 
						|
	 * alignment from the same area of the metaslab (i.e. same cursor
 | 
						|
	 * bucket) but it does not guarantee that other allocations sizes
 | 
						|
	 * may exist in the same region.
 | 
						|
	 */
 | 
						|
	uint64_t align = size & -size;
 | 
						|
	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
 | 
						|
	range_tree_t *rt = msp->ms_tree;
 | 
						|
	avl_tree_t *t = &rt->rt_root;
 | 
						|
	uint64_t max_size = metaslab_block_maxsize(msp);
 | 
						|
	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
 | 
						|
 | 
						|
	if (max_size < size)
 | 
						|
		return (-1ULL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we're running low on space switch to using the size
 | 
						|
	 * sorted AVL tree (best-fit).
 | 
						|
	 */
 | 
						|
	if (max_size < metaslab_df_alloc_threshold ||
 | 
						|
	    free_pct < metaslab_df_free_pct) {
 | 
						|
		t = &msp->ms_size_tree;
 | 
						|
		*cursor = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return (metaslab_block_picker(t, cursor, size, 1ULL));
 | 
						|
}
 | 
						|
 | 
						|
static metaslab_ops_t metaslab_df_ops = {
 | 
						|
	metaslab_df_alloc
 | 
						|
};
 | 
						|
 | 
						|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
 | 
						|
#endif /* WITH_DF_BLOCK_ALLOCATOR */
 | 
						|
 | 
						|
#if defined(WITH_CF_BLOCK_ALLOCATOR)
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * Cursor fit block allocator -
 | 
						|
 * Select the largest region in the metaslab, set the cursor to the beginning
 | 
						|
 * of the range and the cursor_end to the end of the range. As allocations
 | 
						|
 * are made advance the cursor. Continue allocating from the cursor until
 | 
						|
 * the range is exhausted and then find a new range.
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
 | 
						|
{
 | 
						|
	range_tree_t *rt = msp->ms_tree;
 | 
						|
	avl_tree_t *t = &msp->ms_size_tree;
 | 
						|
	uint64_t *cursor = &msp->ms_lbas[0];
 | 
						|
	uint64_t *cursor_end = &msp->ms_lbas[1];
 | 
						|
	uint64_t offset = 0;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
 | 
						|
 | 
						|
	ASSERT3U(*cursor_end, >=, *cursor);
 | 
						|
 | 
						|
	if ((*cursor + size) > *cursor_end) {
 | 
						|
		range_seg_t *rs;
 | 
						|
 | 
						|
		rs = avl_last(&msp->ms_size_tree);
 | 
						|
		if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
 | 
						|
			return (-1ULL);
 | 
						|
 | 
						|
		*cursor = rs->rs_start;
 | 
						|
		*cursor_end = rs->rs_end;
 | 
						|
	}
 | 
						|
 | 
						|
	offset = *cursor;
 | 
						|
	*cursor += size;
 | 
						|
 | 
						|
	return (offset);
 | 
						|
}
 | 
						|
 | 
						|
static metaslab_ops_t metaslab_cf_ops = {
 | 
						|
	metaslab_cf_alloc
 | 
						|
};
 | 
						|
 | 
						|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
 | 
						|
#endif /* WITH_CF_BLOCK_ALLOCATOR */
 | 
						|
 | 
						|
#if defined(WITH_NDF_BLOCK_ALLOCATOR)
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * New dynamic fit allocator -
 | 
						|
 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
 | 
						|
 * contiguous blocks. If no region is found then just use the largest segment
 | 
						|
 * that remains.
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
 | 
						|
 * to request from the allocator.
 | 
						|
 */
 | 
						|
uint64_t metaslab_ndf_clump_shift = 4;
 | 
						|
 | 
						|
static uint64_t
 | 
						|
metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
 | 
						|
{
 | 
						|
	avl_tree_t *t = &msp->ms_tree->rt_root;
 | 
						|
	avl_index_t where;
 | 
						|
	range_seg_t *rs, rsearch;
 | 
						|
	uint64_t hbit = highbit64(size);
 | 
						|
	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
 | 
						|
	uint64_t max_size = metaslab_block_maxsize(msp);
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
 | 
						|
 | 
						|
	if (max_size < size)
 | 
						|
		return (-1ULL);
 | 
						|
 | 
						|
	rsearch.rs_start = *cursor;
 | 
						|
	rsearch.rs_end = *cursor + size;
 | 
						|
 | 
						|
	rs = avl_find(t, &rsearch, &where);
 | 
						|
	if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
 | 
						|
		t = &msp->ms_size_tree;
 | 
						|
 | 
						|
		rsearch.rs_start = 0;
 | 
						|
		rsearch.rs_end = MIN(max_size,
 | 
						|
		    1ULL << (hbit + metaslab_ndf_clump_shift));
 | 
						|
		rs = avl_find(t, &rsearch, &where);
 | 
						|
		if (rs == NULL)
 | 
						|
			rs = avl_nearest(t, where, AVL_AFTER);
 | 
						|
		ASSERT(rs != NULL);
 | 
						|
	}
 | 
						|
 | 
						|
	if ((rs->rs_end - rs->rs_start) >= size) {
 | 
						|
		*cursor = rs->rs_start + size;
 | 
						|
		return (rs->rs_start);
 | 
						|
	}
 | 
						|
	return (-1ULL);
 | 
						|
}
 | 
						|
 | 
						|
static metaslab_ops_t metaslab_ndf_ops = {
 | 
						|
	metaslab_ndf_alloc
 | 
						|
};
 | 
						|
 | 
						|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
 | 
						|
#endif /* WITH_NDF_BLOCK_ALLOCATOR */
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * Metaslabs
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Wait for any in-progress metaslab loads to complete.
 | 
						|
 */
 | 
						|
void
 | 
						|
metaslab_load_wait(metaslab_t *msp)
 | 
						|
{
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
 | 
						|
	while (msp->ms_loading) {
 | 
						|
		ASSERT(!msp->ms_loaded);
 | 
						|
		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
metaslab_load(metaslab_t *msp)
 | 
						|
{
 | 
						|
	int error = 0;
 | 
						|
	boolean_t success = B_FALSE;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
	ASSERT(!msp->ms_loaded);
 | 
						|
	ASSERT(!msp->ms_loading);
 | 
						|
 | 
						|
	msp->ms_loading = B_TRUE;
 | 
						|
	/*
 | 
						|
	 * Nobody else can manipulate a loading metaslab, so it's now safe
 | 
						|
	 * to drop the lock.  This way we don't have to hold the lock while
 | 
						|
	 * reading the spacemap from disk.
 | 
						|
	 */
 | 
						|
	mutex_exit(&msp->ms_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the space map has not been allocated yet, then treat
 | 
						|
	 * all the space in the metaslab as free and add it to the
 | 
						|
	 * ms_tree.
 | 
						|
	 */
 | 
						|
	if (msp->ms_sm != NULL)
 | 
						|
		error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
 | 
						|
	else
 | 
						|
		range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
 | 
						|
 | 
						|
	success = (error == 0);
 | 
						|
 | 
						|
	mutex_enter(&msp->ms_lock);
 | 
						|
	msp->ms_loading = B_FALSE;
 | 
						|
 | 
						|
	if (success) {
 | 
						|
		ASSERT3P(msp->ms_group, !=, NULL);
 | 
						|
		msp->ms_loaded = B_TRUE;
 | 
						|
 | 
						|
		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 | 
						|
			range_tree_walk(msp->ms_defertree[t],
 | 
						|
			    range_tree_remove, msp->ms_tree);
 | 
						|
		}
 | 
						|
		msp->ms_max_size = metaslab_block_maxsize(msp);
 | 
						|
	}
 | 
						|
	cv_broadcast(&msp->ms_load_cv);
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_unload(metaslab_t *msp)
 | 
						|
{
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
	range_tree_vacate(msp->ms_tree, NULL, NULL);
 | 
						|
	msp->ms_loaded = B_FALSE;
 | 
						|
	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
 | 
						|
	msp->ms_max_size = 0;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
 | 
						|
    metaslab_t **msp)
 | 
						|
{
 | 
						|
	vdev_t *vd = mg->mg_vd;
 | 
						|
	objset_t *mos = vd->vdev_spa->spa_meta_objset;
 | 
						|
	metaslab_t *ms;
 | 
						|
	int error;
 | 
						|
 | 
						|
	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
 | 
						|
	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
	ms->ms_id = id;
 | 
						|
	ms->ms_start = id << vd->vdev_ms_shift;
 | 
						|
	ms->ms_size = 1ULL << vd->vdev_ms_shift;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We only open space map objects that already exist. All others
 | 
						|
	 * will be opened when we finally allocate an object for it.
 | 
						|
	 */
 | 
						|
	if (object != 0) {
 | 
						|
		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
 | 
						|
		    ms->ms_size, vd->vdev_ashift);
 | 
						|
 | 
						|
		if (error != 0) {
 | 
						|
			kmem_free(ms, sizeof (metaslab_t));
 | 
						|
			return (error);
 | 
						|
		}
 | 
						|
 | 
						|
		ASSERT(ms->ms_sm != NULL);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We create the main range tree here, but we don't create the
 | 
						|
	 * other range trees until metaslab_sync_done().  This serves
 | 
						|
	 * two purposes: it allows metaslab_sync_done() to detect the
 | 
						|
	 * addition of new space; and for debugging, it ensures that we'd
 | 
						|
	 * data fault on any attempt to use this metaslab before it's ready.
 | 
						|
	 */
 | 
						|
	ms->ms_tree = range_tree_create_impl(&rt_avl_ops, &ms->ms_size_tree,
 | 
						|
	    metaslab_rangesize_compare, 0);
 | 
						|
	metaslab_group_add(mg, ms);
 | 
						|
 | 
						|
	metaslab_set_fragmentation(ms);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we're opening an existing pool (txg == 0) or creating
 | 
						|
	 * a new one (txg == TXG_INITIAL), all space is available now.
 | 
						|
	 * If we're adding space to an existing pool, the new space
 | 
						|
	 * does not become available until after this txg has synced.
 | 
						|
	 * The metaslab's weight will also be initialized when we sync
 | 
						|
	 * out this txg. This ensures that we don't attempt to allocate
 | 
						|
	 * from it before we have initialized it completely.
 | 
						|
	 */
 | 
						|
	if (txg <= TXG_INITIAL)
 | 
						|
		metaslab_sync_done(ms, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If metaslab_debug_load is set and we're initializing a metaslab
 | 
						|
	 * that has an allocated space map object then load the its space
 | 
						|
	 * map so that can verify frees.
 | 
						|
	 */
 | 
						|
	if (metaslab_debug_load && ms->ms_sm != NULL) {
 | 
						|
		mutex_enter(&ms->ms_lock);
 | 
						|
		VERIFY0(metaslab_load(ms));
 | 
						|
		mutex_exit(&ms->ms_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	if (txg != 0) {
 | 
						|
		vdev_dirty(vd, 0, NULL, txg);
 | 
						|
		vdev_dirty(vd, VDD_METASLAB, ms, txg);
 | 
						|
	}
 | 
						|
 | 
						|
	*msp = ms;
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_fini(metaslab_t *msp)
 | 
						|
{
 | 
						|
	metaslab_group_t *mg = msp->ms_group;
 | 
						|
 | 
						|
	metaslab_group_remove(mg, msp);
 | 
						|
 | 
						|
	mutex_enter(&msp->ms_lock);
 | 
						|
	VERIFY(msp->ms_group == NULL);
 | 
						|
	vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
 | 
						|
	    0, -msp->ms_size);
 | 
						|
	space_map_close(msp->ms_sm);
 | 
						|
 | 
						|
	metaslab_unload(msp);
 | 
						|
	range_tree_destroy(msp->ms_tree);
 | 
						|
	range_tree_destroy(msp->ms_freeingtree);
 | 
						|
	range_tree_destroy(msp->ms_freedtree);
 | 
						|
 | 
						|
	for (int t = 0; t < TXG_SIZE; t++) {
 | 
						|
		range_tree_destroy(msp->ms_alloctree[t]);
 | 
						|
	}
 | 
						|
 | 
						|
	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 | 
						|
		range_tree_destroy(msp->ms_defertree[t]);
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT0(msp->ms_deferspace);
 | 
						|
 | 
						|
	mutex_exit(&msp->ms_lock);
 | 
						|
	cv_destroy(&msp->ms_load_cv);
 | 
						|
	mutex_destroy(&msp->ms_lock);
 | 
						|
	mutex_destroy(&msp->ms_sync_lock);
 | 
						|
 | 
						|
	kmem_free(msp, sizeof (metaslab_t));
 | 
						|
}
 | 
						|
 | 
						|
#define	FRAGMENTATION_TABLE_SIZE	17
 | 
						|
 | 
						|
/*
 | 
						|
 * This table defines a segment size based fragmentation metric that will
 | 
						|
 * allow each metaslab to derive its own fragmentation value. This is done
 | 
						|
 * by calculating the space in each bucket of the spacemap histogram and
 | 
						|
 * multiplying that by the fragmetation metric in this table. Doing
 | 
						|
 * this for all buckets and dividing it by the total amount of free
 | 
						|
 * space in this metaslab (i.e. the total free space in all buckets) gives
 | 
						|
 * us the fragmentation metric. This means that a high fragmentation metric
 | 
						|
 * equates to most of the free space being comprised of small segments.
 | 
						|
 * Conversely, if the metric is low, then most of the free space is in
 | 
						|
 * large segments. A 10% change in fragmentation equates to approximately
 | 
						|
 * double the number of segments.
 | 
						|
 *
 | 
						|
 * This table defines 0% fragmented space using 16MB segments. Testing has
 | 
						|
 * shown that segments that are greater than or equal to 16MB do not suffer
 | 
						|
 * from drastic performance problems. Using this value, we derive the rest
 | 
						|
 * of the table. Since the fragmentation value is never stored on disk, it
 | 
						|
 * is possible to change these calculations in the future.
 | 
						|
 */
 | 
						|
int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
 | 
						|
	100,	/* 512B	*/
 | 
						|
	100,	/* 1K	*/
 | 
						|
	98,	/* 2K	*/
 | 
						|
	95,	/* 4K	*/
 | 
						|
	90,	/* 8K	*/
 | 
						|
	80,	/* 16K	*/
 | 
						|
	70,	/* 32K	*/
 | 
						|
	60,	/* 64K	*/
 | 
						|
	50,	/* 128K	*/
 | 
						|
	40,	/* 256K	*/
 | 
						|
	30,	/* 512K	*/
 | 
						|
	20,	/* 1M	*/
 | 
						|
	15,	/* 2M	*/
 | 
						|
	10,	/* 4M	*/
 | 
						|
	5,	/* 8M	*/
 | 
						|
	0	/* 16M	*/
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Calclate the metaslab's fragmentation metric. A return value
 | 
						|
 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
 | 
						|
 * not support this metric. Otherwise, the return value should be in the
 | 
						|
 * range [0, 100].
 | 
						|
 */
 | 
						|
static void
 | 
						|
metaslab_set_fragmentation(metaslab_t *msp)
 | 
						|
{
 | 
						|
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | 
						|
	uint64_t fragmentation = 0;
 | 
						|
	uint64_t total = 0;
 | 
						|
	boolean_t feature_enabled = spa_feature_is_enabled(spa,
 | 
						|
	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
 | 
						|
 | 
						|
	if (!feature_enabled) {
 | 
						|
		msp->ms_fragmentation = ZFS_FRAG_INVALID;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A null space map means that the entire metaslab is free
 | 
						|
	 * and thus is not fragmented.
 | 
						|
	 */
 | 
						|
	if (msp->ms_sm == NULL) {
 | 
						|
		msp->ms_fragmentation = 0;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this metaslab's space map has not been upgraded, flag it
 | 
						|
	 * so that we upgrade next time we encounter it.
 | 
						|
	 */
 | 
						|
	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
 | 
						|
		uint64_t txg = spa_syncing_txg(spa);
 | 
						|
		vdev_t *vd = msp->ms_group->mg_vd;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we've reached the final dirty txg, then we must
 | 
						|
		 * be shutting down the pool. We don't want to dirty
 | 
						|
		 * any data past this point so skip setting the condense
 | 
						|
		 * flag. We can retry this action the next time the pool
 | 
						|
		 * is imported.
 | 
						|
		 */
 | 
						|
		if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
 | 
						|
			msp->ms_condense_wanted = B_TRUE;
 | 
						|
			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
 | 
						|
			spa_dbgmsg(spa, "txg %llu, requesting force condense: "
 | 
						|
			    "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
 | 
						|
			    vd->vdev_id);
 | 
						|
		}
 | 
						|
		msp->ms_fragmentation = ZFS_FRAG_INVALID;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
 | 
						|
		uint64_t space = 0;
 | 
						|
		uint8_t shift = msp->ms_sm->sm_shift;
 | 
						|
 | 
						|
		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
 | 
						|
		    FRAGMENTATION_TABLE_SIZE - 1);
 | 
						|
 | 
						|
		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
 | 
						|
		total += space;
 | 
						|
 | 
						|
		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
 | 
						|
		fragmentation += space * zfs_frag_table[idx];
 | 
						|
	}
 | 
						|
 | 
						|
	if (total > 0)
 | 
						|
		fragmentation /= total;
 | 
						|
	ASSERT3U(fragmentation, <=, 100);
 | 
						|
 | 
						|
	msp->ms_fragmentation = fragmentation;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute a weight -- a selection preference value -- for the given metaslab.
 | 
						|
 * This is based on the amount of free space, the level of fragmentation,
 | 
						|
 * the LBA range, and whether the metaslab is loaded.
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
metaslab_space_weight(metaslab_t *msp)
 | 
						|
{
 | 
						|
	metaslab_group_t *mg = msp->ms_group;
 | 
						|
	vdev_t *vd = mg->mg_vd;
 | 
						|
	uint64_t weight, space;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
	ASSERT(!vd->vdev_removing);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The baseline weight is the metaslab's free space.
 | 
						|
	 */
 | 
						|
	space = msp->ms_size - space_map_allocated(msp->ms_sm);
 | 
						|
 | 
						|
	if (metaslab_fragmentation_factor_enabled &&
 | 
						|
	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
 | 
						|
		/*
 | 
						|
		 * Use the fragmentation information to inversely scale
 | 
						|
		 * down the baseline weight. We need to ensure that we
 | 
						|
		 * don't exclude this metaslab completely when it's 100%
 | 
						|
		 * fragmented. To avoid this we reduce the fragmented value
 | 
						|
		 * by 1.
 | 
						|
		 */
 | 
						|
		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
 | 
						|
		 * this metaslab again. The fragmentation metric may have
 | 
						|
		 * decreased the space to something smaller than
 | 
						|
		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
 | 
						|
		 * so that we can consume any remaining space.
 | 
						|
		 */
 | 
						|
		if (space > 0 && space < SPA_MINBLOCKSIZE)
 | 
						|
			space = SPA_MINBLOCKSIZE;
 | 
						|
	}
 | 
						|
	weight = space;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Modern disks have uniform bit density and constant angular velocity.
 | 
						|
	 * Therefore, the outer recording zones are faster (higher bandwidth)
 | 
						|
	 * than the inner zones by the ratio of outer to inner track diameter,
 | 
						|
	 * which is typically around 2:1.  We account for this by assigning
 | 
						|
	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
 | 
						|
	 * In effect, this means that we'll select the metaslab with the most
 | 
						|
	 * free bandwidth rather than simply the one with the most free space.
 | 
						|
	 */
 | 
						|
	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
 | 
						|
		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
 | 
						|
		ASSERT(weight >= space && weight <= 2 * space);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this metaslab is one we're actively using, adjust its
 | 
						|
	 * weight to make it preferable to any inactive metaslab so
 | 
						|
	 * we'll polish it off. If the fragmentation on this metaslab
 | 
						|
	 * has exceed our threshold, then don't mark it active.
 | 
						|
	 */
 | 
						|
	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
 | 
						|
	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
 | 
						|
		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
 | 
						|
	}
 | 
						|
 | 
						|
	WEIGHT_SET_SPACEBASED(weight);
 | 
						|
	return (weight);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the weight of the specified metaslab, according to the segment-based
 | 
						|
 * weighting algorithm. The metaslab must be loaded. This function can
 | 
						|
 * be called within a sync pass since it relies only on the metaslab's
 | 
						|
 * range tree which is always accurate when the metaslab is loaded.
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
metaslab_weight_from_range_tree(metaslab_t *msp)
 | 
						|
{
 | 
						|
	uint64_t weight = 0;
 | 
						|
	uint32_t segments = 0;
 | 
						|
 | 
						|
	ASSERT(msp->ms_loaded);
 | 
						|
 | 
						|
	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
 | 
						|
	    i--) {
 | 
						|
		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
 | 
						|
		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
 | 
						|
 | 
						|
		segments <<= 1;
 | 
						|
		segments += msp->ms_tree->rt_histogram[i];
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The range tree provides more precision than the space map
 | 
						|
		 * and must be downgraded so that all values fit within the
 | 
						|
		 * space map's histogram. This allows us to compare loaded
 | 
						|
		 * vs. unloaded metaslabs to determine which metaslab is
 | 
						|
		 * considered "best".
 | 
						|
		 */
 | 
						|
		if (i > max_idx)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (segments != 0) {
 | 
						|
			WEIGHT_SET_COUNT(weight, segments);
 | 
						|
			WEIGHT_SET_INDEX(weight, i);
 | 
						|
			WEIGHT_SET_ACTIVE(weight, 0);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (weight);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate the weight based on the on-disk histogram. This should only
 | 
						|
 * be called after a sync pass has completely finished since the on-disk
 | 
						|
 * information is updated in metaslab_sync().
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
metaslab_weight_from_spacemap(metaslab_t *msp)
 | 
						|
{
 | 
						|
	uint64_t weight = 0;
 | 
						|
 | 
						|
	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
 | 
						|
		if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) {
 | 
						|
			WEIGHT_SET_COUNT(weight,
 | 
						|
			    msp->ms_sm->sm_phys->smp_histogram[i]);
 | 
						|
			WEIGHT_SET_INDEX(weight, i +
 | 
						|
			    msp->ms_sm->sm_shift);
 | 
						|
			WEIGHT_SET_ACTIVE(weight, 0);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (weight);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute a segment-based weight for the specified metaslab. The weight
 | 
						|
 * is determined by highest bucket in the histogram. The information
 | 
						|
 * for the highest bucket is encoded into the weight value.
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
metaslab_segment_weight(metaslab_t *msp)
 | 
						|
{
 | 
						|
	metaslab_group_t *mg = msp->ms_group;
 | 
						|
	uint64_t weight = 0;
 | 
						|
	uint8_t shift = mg->mg_vd->vdev_ashift;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The metaslab is completely free.
 | 
						|
	 */
 | 
						|
	if (space_map_allocated(msp->ms_sm) == 0) {
 | 
						|
		int idx = highbit64(msp->ms_size) - 1;
 | 
						|
		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
 | 
						|
 | 
						|
		if (idx < max_idx) {
 | 
						|
			WEIGHT_SET_COUNT(weight, 1ULL);
 | 
						|
			WEIGHT_SET_INDEX(weight, idx);
 | 
						|
		} else {
 | 
						|
			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
 | 
						|
			WEIGHT_SET_INDEX(weight, max_idx);
 | 
						|
		}
 | 
						|
		WEIGHT_SET_ACTIVE(weight, 0);
 | 
						|
		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
 | 
						|
 | 
						|
		return (weight);
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the metaslab is fully allocated then just make the weight 0.
 | 
						|
	 */
 | 
						|
	if (space_map_allocated(msp->ms_sm) == msp->ms_size)
 | 
						|
		return (0);
 | 
						|
	/*
 | 
						|
	 * If the metaslab is already loaded, then use the range tree to
 | 
						|
	 * determine the weight. Otherwise, we rely on the space map information
 | 
						|
	 * to generate the weight.
 | 
						|
	 */
 | 
						|
	if (msp->ms_loaded) {
 | 
						|
		weight = metaslab_weight_from_range_tree(msp);
 | 
						|
	} else {
 | 
						|
		weight = metaslab_weight_from_spacemap(msp);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the metaslab was active the last time we calculated its weight
 | 
						|
	 * then keep it active. We want to consume the entire region that
 | 
						|
	 * is associated with this weight.
 | 
						|
	 */
 | 
						|
	if (msp->ms_activation_weight != 0 && weight != 0)
 | 
						|
		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
 | 
						|
	return (weight);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine if we should attempt to allocate from this metaslab. If the
 | 
						|
 * metaslab has a maximum size then we can quickly determine if the desired
 | 
						|
 * allocation size can be satisfied. Otherwise, if we're using segment-based
 | 
						|
 * weighting then we can determine the maximum allocation that this metaslab
 | 
						|
 * can accommodate based on the index encoded in the weight. If we're using
 | 
						|
 * space-based weights then rely on the entire weight (excluding the weight
 | 
						|
 * type bit).
 | 
						|
 */
 | 
						|
boolean_t
 | 
						|
metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
 | 
						|
{
 | 
						|
	boolean_t should_allocate;
 | 
						|
 | 
						|
	if (msp->ms_max_size != 0)
 | 
						|
		return (msp->ms_max_size >= asize);
 | 
						|
 | 
						|
	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
 | 
						|
		/*
 | 
						|
		 * The metaslab segment weight indicates segments in the
 | 
						|
		 * range [2^i, 2^(i+1)), where i is the index in the weight.
 | 
						|
		 * Since the asize might be in the middle of the range, we
 | 
						|
		 * should attempt the allocation if asize < 2^(i+1).
 | 
						|
		 */
 | 
						|
		should_allocate = (asize <
 | 
						|
		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
 | 
						|
	} else {
 | 
						|
		should_allocate = (asize <=
 | 
						|
		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
 | 
						|
	}
 | 
						|
	return (should_allocate);
 | 
						|
}
 | 
						|
static uint64_t
 | 
						|
metaslab_weight(metaslab_t *msp)
 | 
						|
{
 | 
						|
	vdev_t *vd = msp->ms_group->mg_vd;
 | 
						|
	spa_t *spa = vd->vdev_spa;
 | 
						|
	uint64_t weight;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this vdev is in the process of being removed, there is nothing
 | 
						|
	 * for us to do here.
 | 
						|
	 */
 | 
						|
	if (vd->vdev_removing)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	metaslab_set_fragmentation(msp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Update the maximum size if the metaslab is loaded. This will
 | 
						|
	 * ensure that we get an accurate maximum size if newly freed space
 | 
						|
	 * has been added back into the free tree.
 | 
						|
	 */
 | 
						|
	if (msp->ms_loaded)
 | 
						|
		msp->ms_max_size = metaslab_block_maxsize(msp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Segment-based weighting requires space map histogram support.
 | 
						|
	 */
 | 
						|
	if (zfs_metaslab_segment_weight_enabled &&
 | 
						|
	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
 | 
						|
	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
 | 
						|
	    sizeof (space_map_phys_t))) {
 | 
						|
		weight = metaslab_segment_weight(msp);
 | 
						|
	} else {
 | 
						|
		weight = metaslab_space_weight(msp);
 | 
						|
	}
 | 
						|
	return (weight);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
 | 
						|
{
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
 | 
						|
	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
 | 
						|
		metaslab_load_wait(msp);
 | 
						|
		if (!msp->ms_loaded) {
 | 
						|
			int error = metaslab_load(msp);
 | 
						|
			if (error) {
 | 
						|
				metaslab_group_sort(msp->ms_group, msp, 0);
 | 
						|
				return (error);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		msp->ms_activation_weight = msp->ms_weight;
 | 
						|
		metaslab_group_sort(msp->ms_group, msp,
 | 
						|
		    msp->ms_weight | activation_weight);
 | 
						|
	}
 | 
						|
	ASSERT(msp->ms_loaded);
 | 
						|
	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
metaslab_passivate(metaslab_t *msp, uint64_t weight)
 | 
						|
{
 | 
						|
	ASSERTV(uint64_t size = weight & ~METASLAB_WEIGHT_TYPE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
 | 
						|
	 * this metaslab again.  In that case, it had better be empty,
 | 
						|
	 * or we would be leaving space on the table.
 | 
						|
	 */
 | 
						|
	ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
 | 
						|
	    size >= SPA_MINBLOCKSIZE ||
 | 
						|
	    range_tree_space(msp->ms_tree) == 0);
 | 
						|
	ASSERT0(weight & METASLAB_ACTIVE_MASK);
 | 
						|
 | 
						|
	msp->ms_activation_weight = 0;
 | 
						|
	metaslab_group_sort(msp->ms_group, msp, weight);
 | 
						|
	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Segment-based metaslabs are activated once and remain active until
 | 
						|
 * we either fail an allocation attempt (similar to space-based metaslabs)
 | 
						|
 * or have exhausted the free space in zfs_metaslab_switch_threshold
 | 
						|
 * buckets since the metaslab was activated. This function checks to see
 | 
						|
 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
 | 
						|
 * metaslab and passivates it proactively. This will allow us to select a
 | 
						|
 * metaslab with a larger contiguous region, if any, remaining within this
 | 
						|
 * metaslab group. If we're in sync pass > 1, then we continue using this
 | 
						|
 * metaslab so that we don't dirty more block and cause more sync passes.
 | 
						|
 */
 | 
						|
void
 | 
						|
metaslab_segment_may_passivate(metaslab_t *msp)
 | 
						|
{
 | 
						|
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | 
						|
 | 
						|
	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since we are in the middle of a sync pass, the most accurate
 | 
						|
	 * information that is accessible to us is the in-core range tree
 | 
						|
	 * histogram; calculate the new weight based on that information.
 | 
						|
	 */
 | 
						|
	uint64_t weight = metaslab_weight_from_range_tree(msp);
 | 
						|
	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
 | 
						|
	int current_idx = WEIGHT_GET_INDEX(weight);
 | 
						|
 | 
						|
	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
 | 
						|
		metaslab_passivate(msp, weight);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
metaslab_preload(void *arg)
 | 
						|
{
 | 
						|
	metaslab_t *msp = arg;
 | 
						|
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | 
						|
	fstrans_cookie_t cookie = spl_fstrans_mark();
 | 
						|
 | 
						|
	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
 | 
						|
 | 
						|
	mutex_enter(&msp->ms_lock);
 | 
						|
	metaslab_load_wait(msp);
 | 
						|
	if (!msp->ms_loaded)
 | 
						|
		(void) metaslab_load(msp);
 | 
						|
	msp->ms_selected_txg = spa_syncing_txg(spa);
 | 
						|
	mutex_exit(&msp->ms_lock);
 | 
						|
	spl_fstrans_unmark(cookie);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
metaslab_group_preload(metaslab_group_t *mg)
 | 
						|
{
 | 
						|
	spa_t *spa = mg->mg_vd->vdev_spa;
 | 
						|
	metaslab_t *msp;
 | 
						|
	avl_tree_t *t = &mg->mg_metaslab_tree;
 | 
						|
	int m = 0;
 | 
						|
 | 
						|
	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
 | 
						|
		taskq_wait_outstanding(mg->mg_taskq, 0);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_enter(&mg->mg_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Load the next potential metaslabs
 | 
						|
	 */
 | 
						|
	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
 | 
						|
		ASSERT3P(msp->ms_group, ==, mg);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We preload only the maximum number of metaslabs specified
 | 
						|
		 * by metaslab_preload_limit. If a metaslab is being forced
 | 
						|
		 * to condense then we preload it too. This will ensure
 | 
						|
		 * that force condensing happens in the next txg.
 | 
						|
		 */
 | 
						|
		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
 | 
						|
		    msp, TQ_SLEEP) != TASKQID_INVALID);
 | 
						|
	}
 | 
						|
	mutex_exit(&mg->mg_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine if the space map's on-disk footprint is past our tolerance
 | 
						|
 * for inefficiency. We would like to use the following criteria to make
 | 
						|
 * our decision:
 | 
						|
 *
 | 
						|
 * 1. The size of the space map object should not dramatically increase as a
 | 
						|
 * result of writing out the free space range tree.
 | 
						|
 *
 | 
						|
 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
 | 
						|
 * times the size than the free space range tree representation
 | 
						|
 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB).
 | 
						|
 *
 | 
						|
 * 3. The on-disk size of the space map should actually decrease.
 | 
						|
 *
 | 
						|
 * Checking the first condition is tricky since we don't want to walk
 | 
						|
 * the entire AVL tree calculating the estimated on-disk size. Instead we
 | 
						|
 * use the size-ordered range tree in the metaslab and calculate the
 | 
						|
 * size required to write out the largest segment in our free tree. If the
 | 
						|
 * size required to represent that segment on disk is larger than the space
 | 
						|
 * map object then we avoid condensing this map.
 | 
						|
 *
 | 
						|
 * To determine the second criterion we use a best-case estimate and assume
 | 
						|
 * each segment can be represented on-disk as a single 64-bit entry. We refer
 | 
						|
 * to this best-case estimate as the space map's minimal form.
 | 
						|
 *
 | 
						|
 * Unfortunately, we cannot compute the on-disk size of the space map in this
 | 
						|
 * context because we cannot accurately compute the effects of compression, etc.
 | 
						|
 * Instead, we apply the heuristic described in the block comment for
 | 
						|
 * zfs_metaslab_condense_block_threshold - we only condense if the space used
 | 
						|
 * is greater than a threshold number of blocks.
 | 
						|
 */
 | 
						|
static boolean_t
 | 
						|
metaslab_should_condense(metaslab_t *msp)
 | 
						|
{
 | 
						|
	space_map_t *sm = msp->ms_sm;
 | 
						|
	range_seg_t *rs;
 | 
						|
	uint64_t size, entries, segsz, object_size, optimal_size, record_size;
 | 
						|
	dmu_object_info_t doi;
 | 
						|
	uint64_t vdev_blocksize = 1ULL << msp->ms_group->mg_vd->vdev_ashift;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
	ASSERT(msp->ms_loaded);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use the ms_size_tree range tree, which is ordered by size, to
 | 
						|
	 * obtain the largest segment in the free tree. We always condense
 | 
						|
	 * metaslabs that are empty and metaslabs for which a condense
 | 
						|
	 * request has been made.
 | 
						|
	 */
 | 
						|
	rs = avl_last(&msp->ms_size_tree);
 | 
						|
	if (rs == NULL || msp->ms_condense_wanted)
 | 
						|
		return (B_TRUE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Calculate the number of 64-bit entries this segment would
 | 
						|
	 * require when written to disk. If this single segment would be
 | 
						|
	 * larger on-disk than the entire current on-disk structure, then
 | 
						|
	 * clearly condensing will increase the on-disk structure size.
 | 
						|
	 */
 | 
						|
	size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
 | 
						|
	entries = size / (MIN(size, SM_RUN_MAX));
 | 
						|
	segsz = entries * sizeof (uint64_t);
 | 
						|
 | 
						|
	optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
 | 
						|
	object_size = space_map_length(msp->ms_sm);
 | 
						|
 | 
						|
	dmu_object_info_from_db(sm->sm_dbuf, &doi);
 | 
						|
	record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
 | 
						|
 | 
						|
	return (segsz <= object_size &&
 | 
						|
	    object_size >= (optimal_size * zfs_condense_pct / 100) &&
 | 
						|
	    object_size > zfs_metaslab_condense_block_threshold * record_size);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Condense the on-disk space map representation to its minimized form.
 | 
						|
 * The minimized form consists of a small number of allocations followed by
 | 
						|
 * the entries of the free range tree.
 | 
						|
 */
 | 
						|
static void
 | 
						|
metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 | 
						|
	range_tree_t *condense_tree;
 | 
						|
	space_map_t *sm = msp->ms_sm;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&msp->ms_lock));
 | 
						|
	ASSERT3U(spa_sync_pass(spa), ==, 1);
 | 
						|
	ASSERT(msp->ms_loaded);
 | 
						|
 | 
						|
 | 
						|
	spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
 | 
						|
	    "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
 | 
						|
	    msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
 | 
						|
	    msp->ms_group->mg_vd->vdev_spa->spa_name,
 | 
						|
	    space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root),
 | 
						|
	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
 | 
						|
 | 
						|
	msp->ms_condense_wanted = B_FALSE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Create an range tree that is 100% allocated. We remove segments
 | 
						|
	 * that have been freed in this txg, any deferred frees that exist,
 | 
						|
	 * and any allocation in the future. Removing segments should be
 | 
						|
	 * a relatively inexpensive operation since we expect these trees to
 | 
						|
	 * have a small number of nodes.
 | 
						|
	 */
 | 
						|
	condense_tree = range_tree_create(NULL, NULL);
 | 
						|
	range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Remove what's been freed in this txg from the condense_tree.
 | 
						|
	 * Since we're in sync_pass 1, we know that all the frees from
 | 
						|
	 * this txg are in the freeingtree.
 | 
						|
	 */
 | 
						|
	range_tree_walk(msp->ms_freeingtree, range_tree_remove, condense_tree);
 | 
						|
 | 
						|
	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 | 
						|
		range_tree_walk(msp->ms_defertree[t],
 | 
						|
		    range_tree_remove, condense_tree);
 | 
						|
	}
 | 
						|
 | 
						|
	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
 | 
						|
		range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
 | 
						|
		    range_tree_remove, condense_tree);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're about to drop the metaslab's lock thus allowing
 | 
						|
	 * other consumers to change it's content. Set the
 | 
						|
	 * metaslab's ms_condensing flag to ensure that
 | 
						|
	 * allocations on this metaslab do not occur while we're
 | 
						|
	 * in the middle of committing it to disk. This is only critical
 | 
						|
	 * for the ms_tree as all other range trees use per txg
 | 
						|
	 * views of their content.
 | 
						|
	 */
 | 
						|
	msp->ms_condensing = B_TRUE;
 | 
						|
 | 
						|
	mutex_exit(&msp->ms_lock);
 | 
						|
	space_map_truncate(sm, tx);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * While we would ideally like to create a space map representation
 | 
						|
	 * that consists only of allocation records, doing so can be
 | 
						|
	 * prohibitively expensive because the in-core free tree can be
 | 
						|
	 * large, and therefore computationally expensive to subtract
 | 
						|
	 * from the condense_tree. Instead we sync out two trees, a cheap
 | 
						|
	 * allocation only tree followed by the in-core free tree. While not
 | 
						|
	 * optimal, this is typically close to optimal, and much cheaper to
 | 
						|
	 * compute.
 | 
						|
	 */
 | 
						|
	space_map_write(sm, condense_tree, SM_ALLOC, tx);
 | 
						|
	range_tree_vacate(condense_tree, NULL, NULL);
 | 
						|
	range_tree_destroy(condense_tree);
 | 
						|
 | 
						|
	space_map_write(sm, msp->ms_tree, SM_FREE, tx);
 | 
						|
	mutex_enter(&msp->ms_lock);
 | 
						|
	msp->ms_condensing = B_FALSE;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Write a metaslab to disk in the context of the specified transaction group.
 | 
						|
 */
 | 
						|
void
 | 
						|
metaslab_sync(metaslab_t *msp, uint64_t txg)
 | 
						|
{
 | 
						|
	metaslab_group_t *mg = msp->ms_group;
 | 
						|
	vdev_t *vd = mg->mg_vd;
 | 
						|
	spa_t *spa = vd->vdev_spa;
 | 
						|
	objset_t *mos = spa_meta_objset(spa);
 | 
						|
	range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
 | 
						|
	dmu_tx_t *tx;
 | 
						|
	uint64_t object = space_map_object(msp->ms_sm);
 | 
						|
 | 
						|
	ASSERT(!vd->vdev_ishole);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This metaslab has just been added so there's no work to do now.
 | 
						|
	 */
 | 
						|
	if (msp->ms_freeingtree == NULL) {
 | 
						|
		ASSERT3P(alloctree, ==, NULL);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT3P(alloctree, !=, NULL);
 | 
						|
	ASSERT3P(msp->ms_freeingtree, !=, NULL);
 | 
						|
	ASSERT3P(msp->ms_freedtree, !=, NULL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Normally, we don't want to process a metaslab if there
 | 
						|
	 * are no allocations or frees to perform. However, if the metaslab
 | 
						|
	 * is being forced to condense and it's loaded, we need to let it
 | 
						|
	 * through.
 | 
						|
	 */
 | 
						|
	if (range_tree_space(alloctree) == 0 &&
 | 
						|
	    range_tree_space(msp->ms_freeingtree) == 0 &&
 | 
						|
	    !(msp->ms_loaded && msp->ms_condense_wanted))
 | 
						|
		return;
 | 
						|
 | 
						|
 | 
						|
	VERIFY(txg <= spa_final_dirty_txg(spa));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The only state that can actually be changing concurrently with
 | 
						|
	 * metaslab_sync() is the metaslab's ms_tree.  No other thread can
 | 
						|
	 * be modifying this txg's alloctree, freeingtree, freedtree, or
 | 
						|
	 * space_map_phys_t.  We drop ms_lock whenever we could call
 | 
						|
	 * into the DMU, because the DMU can call down to us
 | 
						|
	 * (e.g. via zio_free()) at any time.
 | 
						|
	 *
 | 
						|
	 * The spa_vdev_remove_thread() can be reading metaslab state
 | 
						|
	 * concurrently, and it is locked out by the ms_sync_lock.  Note
 | 
						|
	 * that the ms_lock is insufficient for this, because it is dropped
 | 
						|
	 * by space_map_write().
 | 
						|
	 */
 | 
						|
 | 
						|
	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
 | 
						|
 | 
						|
	if (msp->ms_sm == NULL) {
 | 
						|
		uint64_t new_object;
 | 
						|
 | 
						|
		new_object = space_map_alloc(mos, tx);
 | 
						|
		VERIFY3U(new_object, !=, 0);
 | 
						|
 | 
						|
		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
 | 
						|
		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
 | 
						|
		ASSERT(msp->ms_sm != NULL);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_enter(&msp->ms_sync_lock);
 | 
						|
	mutex_enter(&msp->ms_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Note: metaslab_condense() clears the space map's histogram.
 | 
						|
	 * Therefore we must verify and remove this histogram before
 | 
						|
	 * condensing.
 | 
						|
	 */
 | 
						|
	metaslab_group_histogram_verify(mg);
 | 
						|
	metaslab_class_histogram_verify(mg->mg_class);
 | 
						|
	metaslab_group_histogram_remove(mg, msp);
 | 
						|
 | 
						|
	if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
 | 
						|
	    metaslab_should_condense(msp)) {
 | 
						|
		metaslab_condense(msp, txg, tx);
 | 
						|
	} else {
 | 
						|
		mutex_exit(&msp->ms_lock);
 | 
						|
		space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
 | 
						|
		space_map_write(msp->ms_sm, msp->ms_freeingtree, SM_FREE, tx);
 | 
						|
		mutex_enter(&msp->ms_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	if (msp->ms_loaded) {
 | 
						|
		/*
 | 
						|
		 * When the space map is loaded, we have an accurate
 | 
						|
		 * histogram in the range tree. This gives us an opportunity
 | 
						|
		 * to bring the space map's histogram up-to-date so we clear
 | 
						|
		 * it first before updating it.
 | 
						|
		 */
 | 
						|
		space_map_histogram_clear(msp->ms_sm);
 | 
						|
		space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Since we've cleared the histogram we need to add back
 | 
						|
		 * any free space that has already been processed, plus
 | 
						|
		 * any deferred space. This allows the on-disk histogram
 | 
						|
		 * to accurately reflect all free space even if some space
 | 
						|
		 * is not yet available for allocation (i.e. deferred).
 | 
						|
		 */
 | 
						|
		space_map_histogram_add(msp->ms_sm, msp->ms_freedtree, tx);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Add back any deferred free space that has not been
 | 
						|
		 * added back into the in-core free tree yet. This will
 | 
						|
		 * ensure that we don't end up with a space map histogram
 | 
						|
		 * that is completely empty unless the metaslab is fully
 | 
						|
		 * allocated.
 | 
						|
		 */
 | 
						|
		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 | 
						|
			space_map_histogram_add(msp->ms_sm,
 | 
						|
			    msp->ms_defertree[t], tx);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Always add the free space from this sync pass to the space
 | 
						|
	 * map histogram. We want to make sure that the on-disk histogram
 | 
						|
	 * accounts for all free space. If the space map is not loaded,
 | 
						|
	 * then we will lose some accuracy but will correct it the next
 | 
						|
	 * time we load the space map.
 | 
						|
	 */
 | 
						|
	space_map_histogram_add(msp->ms_sm, msp->ms_freeingtree, tx);
 | 
						|
 | 
						|
	metaslab_group_histogram_add(mg, msp);
 | 
						|
	metaslab_group_histogram_verify(mg);
 | 
						|
	metaslab_class_histogram_verify(mg->mg_class);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For sync pass 1, we avoid traversing this txg's free range tree
 | 
						|
	 * and instead will just swap the pointers for freeingtree and
 | 
						|
	 * freedtree. We can safely do this since the freed_tree is
 | 
						|
	 * guaranteed to be empty on the initial pass.
 | 
						|
	 */
 | 
						|
	if (spa_sync_pass(spa) == 1) {
 | 
						|
		range_tree_swap(&msp->ms_freeingtree, &msp->ms_freedtree);
 | 
						|
	} else {
 | 
						|
		range_tree_vacate(msp->ms_freeingtree,
 | 
						|
		    range_tree_add, msp->ms_freedtree);
 | 
						|
	}
 | 
						|
	range_tree_vacate(alloctree, NULL, NULL);
 | 
						|
 | 
						|
	ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
 | 
						|
	ASSERT0(range_tree_space(msp->ms_alloctree[TXG_CLEAN(txg) & TXG_MASK]));
 | 
						|
	ASSERT0(range_tree_space(msp->ms_freeingtree));
 | 
						|
 | 
						|
	mutex_exit(&msp->ms_lock);
 | 
						|
 | 
						|
	if (object != space_map_object(msp->ms_sm)) {
 | 
						|
		object = space_map_object(msp->ms_sm);
 | 
						|
		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
 | 
						|
		    msp->ms_id, sizeof (uint64_t), &object, tx);
 | 
						|
	}
 | 
						|
	mutex_exit(&msp->ms_sync_lock);
 | 
						|
	dmu_tx_commit(tx);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called after a transaction group has completely synced to mark
 | 
						|
 * all of the metaslab's free space as usable.
 | 
						|
 */
 | 
						|
void
 | 
						|
metaslab_sync_done(metaslab_t *msp, uint64_t txg)
 | 
						|
{
 | 
						|
	metaslab_group_t *mg = msp->ms_group;
 | 
						|
	vdev_t *vd = mg->mg_vd;
 | 
						|
	spa_t *spa = vd->vdev_spa;
 | 
						|
	range_tree_t **defer_tree;
 | 
						|
	int64_t alloc_delta, defer_delta;
 | 
						|
	boolean_t defer_allowed = B_TRUE;
 | 
						|
 | 
						|
	ASSERT(!vd->vdev_ishole);
 | 
						|
 | 
						|
	mutex_enter(&msp->ms_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this metaslab is just becoming available, initialize its
 | 
						|
	 * range trees and add its capacity to the vdev.
 | 
						|
	 */
 | 
						|
	if (msp->ms_freedtree == NULL) {
 | 
						|
		for (int t = 0; t < TXG_SIZE; t++) {
 | 
						|
			ASSERT(msp->ms_alloctree[t] == NULL);
 | 
						|
 | 
						|
			msp->ms_alloctree[t] = range_tree_create(NULL, NULL);
 | 
						|
		}
 | 
						|
 | 
						|
		ASSERT3P(msp->ms_freeingtree, ==, NULL);
 | 
						|
		msp->ms_freeingtree = range_tree_create(NULL, NULL);
 | 
						|
 | 
						|
		ASSERT3P(msp->ms_freedtree, ==, NULL);
 | 
						|
		msp->ms_freedtree = range_tree_create(NULL, NULL);
 | 
						|
 | 
						|
		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 | 
						|
			ASSERT(msp->ms_defertree[t] == NULL);
 | 
						|
 | 
						|
			msp->ms_defertree[t] = range_tree_create(NULL, NULL);
 | 
						|
		}
 | 
						|
 | 
						|
		vdev_space_update(vd, 0, 0, msp->ms_size);
 | 
						|
	}
 | 
						|
 | 
						|
	defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
 | 
						|
 | 
						|
	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
 | 
						|
	    metaslab_class_get_alloc(spa_normal_class(spa));
 | 
						|
	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
 | 
						|
		defer_allowed = B_FALSE;
 | 
						|
	}
 | 
						|
 | 
						|
	defer_delta = 0;
 | 
						|
	alloc_delta = space_map_alloc_delta(msp->ms_sm);
 | 
						|
	if (defer_allowed) {
 | 
						|
		defer_delta = range_tree_space(msp->ms_freedtree) -
 | 
						|
		    range_tree_space(*defer_tree);
 | 
						|
	} else {
 | 
						|
		defer_delta -= range_tree_space(*defer_tree);
 | 
						|
	}
 | 
						|
 | 
						|
	vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If there's a metaslab_load() in progress, wait for it to complete
 | 
						|
	 * so that we have a consistent view of the in-core space map.
 | 
						|
	 */
 | 
						|
	metaslab_load_wait(msp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Move the frees from the defer_tree back to the free
 | 
						|
	 * range tree (if it's loaded). Swap the freed_tree and the
 | 
						|
	 * defer_tree -- this is safe to do because we've just emptied out
 | 
						|
	 * the defer_tree.
 | 
						|
	 */
 | 
						|
	range_tree_vacate(*defer_tree,
 | 
						|
	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
 | 
						|
	if (defer_allowed) {
 | 
						|
		range_tree_swap(&msp->ms_freedtree, defer_tree);
 | 
						|
	} else {
 | 
						|
		range_tree_vacate(msp->ms_freedtree,
 | 
						|
		    msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
 | 
						|
	}
 | 
						|
 | 
						|
	space_map_update(msp->ms_sm);
 | 
						|
 | 
						|
	msp->ms_deferspace += defer_delta;
 | 
						|
	ASSERT3S(msp->ms_deferspace, >=, 0);
 | 
						|
	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
 | 
						|
	if (msp->ms_deferspace != 0) {
 | 
						|
		/*
 | 
						|
		 * Keep syncing this metaslab until all deferred frees
 | 
						|
		 * are back in circulation.
 | 
						|
		 */
 | 
						|
		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Calculate the new weights before unloading any metaslabs.
 | 
						|
	 * This will give us the most accurate weighting.
 | 
						|
	 */
 | 
						|
	metaslab_group_sort(mg, msp, metaslab_weight(msp));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the metaslab is loaded and we've not tried to load or allocate
 | 
						|
	 * from it in 'metaslab_unload_delay' txgs, then unload it.
 | 
						|
	 */
 | 
						|
	if (msp->ms_loaded &&
 | 
						|
	    msp->ms_selected_txg + metaslab_unload_delay < txg) {
 | 
						|
 | 
						|
		for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
 | 
						|
			VERIFY0(range_tree_space(
 | 
						|
			    msp->ms_alloctree[(txg + t) & TXG_MASK]));
 | 
						|
		}
 | 
						|
 | 
						|
		if (!metaslab_debug_unload)
 | 
						|
			metaslab_unload(msp);
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
 | 
						|
	ASSERT0(range_tree_space(msp->ms_freeingtree));
 | 
						|
	ASSERT0(range_tree_space(msp->ms_freedtree));
 | 
						|
 | 
						|
	mutex_exit(&msp->ms_lock);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_sync_reassess(metaslab_group_t *mg)
 | 
						|
{
 | 
						|
	spa_t *spa = mg->mg_class->mc_spa;
 | 
						|
 | 
						|
	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
 | 
						|
	metaslab_group_alloc_update(mg);
 | 
						|
	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Preload the next potential metaslabs but only on active
 | 
						|
	 * metaslab groups. We can get into a state where the metaslab
 | 
						|
	 * is no longer active since we dirty metaslabs as we remove a
 | 
						|
	 * a device, thus potentially making the metaslab group eligible
 | 
						|
	 * for preloading.
 | 
						|
	 */
 | 
						|
	if (mg->mg_activation_count > 0) {
 | 
						|
		metaslab_group_preload(mg);
 | 
						|
	}
 | 
						|
	spa_config_exit(spa, SCL_ALLOC, FTAG);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t
 | 
						|
metaslab_distance(metaslab_t *msp, dva_t *dva)
 | 
						|
{
 | 
						|
	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
 | 
						|
	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
 | 
						|
	uint64_t start = msp->ms_id;
 | 
						|
 | 
						|
	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
 | 
						|
		return (1ULL << 63);
 | 
						|
 | 
						|
	if (offset < start)
 | 
						|
		return ((start - offset) << ms_shift);
 | 
						|
	if (offset > start)
 | 
						|
		return ((offset - start) << ms_shift);
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * Metaslab allocation tracing facility
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
#ifdef _METASLAB_TRACING
 | 
						|
kstat_t *metaslab_trace_ksp;
 | 
						|
kstat_named_t metaslab_trace_over_limit;
 | 
						|
 | 
						|
void
 | 
						|
metaslab_alloc_trace_init(void)
 | 
						|
{
 | 
						|
	ASSERT(metaslab_alloc_trace_cache == NULL);
 | 
						|
	metaslab_alloc_trace_cache = kmem_cache_create(
 | 
						|
	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
 | 
						|
	    0, NULL, NULL, NULL, NULL, NULL, 0);
 | 
						|
	metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
 | 
						|
	    "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
 | 
						|
	if (metaslab_trace_ksp != NULL) {
 | 
						|
		metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
 | 
						|
		kstat_named_init(&metaslab_trace_over_limit,
 | 
						|
		    "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
 | 
						|
		kstat_install(metaslab_trace_ksp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_alloc_trace_fini(void)
 | 
						|
{
 | 
						|
	if (metaslab_trace_ksp != NULL) {
 | 
						|
		kstat_delete(metaslab_trace_ksp);
 | 
						|
		metaslab_trace_ksp = NULL;
 | 
						|
	}
 | 
						|
	kmem_cache_destroy(metaslab_alloc_trace_cache);
 | 
						|
	metaslab_alloc_trace_cache = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add an allocation trace element to the allocation tracing list.
 | 
						|
 */
 | 
						|
static void
 | 
						|
metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
 | 
						|
    metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset)
 | 
						|
{
 | 
						|
	metaslab_alloc_trace_t *mat;
 | 
						|
 | 
						|
	if (!metaslab_trace_enabled)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When the tracing list reaches its maximum we remove
 | 
						|
	 * the second element in the list before adding a new one.
 | 
						|
	 * By removing the second element we preserve the original
 | 
						|
	 * entry as a clue to what allocations steps have already been
 | 
						|
	 * performed.
 | 
						|
	 */
 | 
						|
	if (zal->zal_size == metaslab_trace_max_entries) {
 | 
						|
		metaslab_alloc_trace_t *mat_next;
 | 
						|
#ifdef DEBUG
 | 
						|
		panic("too many entries in allocation list");
 | 
						|
#endif
 | 
						|
		atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
 | 
						|
		zal->zal_size--;
 | 
						|
		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
 | 
						|
		list_remove(&zal->zal_list, mat_next);
 | 
						|
		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
 | 
						|
	}
 | 
						|
 | 
						|
	mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
 | 
						|
	list_link_init(&mat->mat_list_node);
 | 
						|
	mat->mat_mg = mg;
 | 
						|
	mat->mat_msp = msp;
 | 
						|
	mat->mat_size = psize;
 | 
						|
	mat->mat_dva_id = dva_id;
 | 
						|
	mat->mat_offset = offset;
 | 
						|
	mat->mat_weight = 0;
 | 
						|
 | 
						|
	if (msp != NULL)
 | 
						|
		mat->mat_weight = msp->ms_weight;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The list is part of the zio so locking is not required. Only
 | 
						|
	 * a single thread will perform allocations for a given zio.
 | 
						|
	 */
 | 
						|
	list_insert_tail(&zal->zal_list, mat);
 | 
						|
	zal->zal_size++;
 | 
						|
 | 
						|
	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_trace_init(zio_alloc_list_t *zal)
 | 
						|
{
 | 
						|
	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
 | 
						|
	    offsetof(metaslab_alloc_trace_t, mat_list_node));
 | 
						|
	zal->zal_size = 0;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_trace_fini(zio_alloc_list_t *zal)
 | 
						|
{
 | 
						|
	metaslab_alloc_trace_t *mat;
 | 
						|
 | 
						|
	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
 | 
						|
		kmem_cache_free(metaslab_alloc_trace_cache, mat);
 | 
						|
	list_destroy(&zal->zal_list);
 | 
						|
	zal->zal_size = 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
 | 
						|
#define	metaslab_trace_add(zal, mg, msp, psize, id, off)
 | 
						|
 | 
						|
void
 | 
						|
metaslab_alloc_trace_init(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_alloc_trace_fini(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_trace_init(zio_alloc_list_t *zal)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_trace_fini(zio_alloc_list_t *zal)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
#endif /* _METASLAB_TRACING */
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * Metaslab block operations
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
 | 
						|
static void
 | 
						|
metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags)
 | 
						|
{
 | 
						|
	if (!(flags & METASLAB_ASYNC_ALLOC) ||
 | 
						|
	    flags & METASLAB_DONT_THROTTLE)
 | 
						|
		return;
 | 
						|
 | 
						|
	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
 | 
						|
	if (!mg->mg_class->mc_alloc_throttle_enabled)
 | 
						|
		return;
 | 
						|
 | 
						|
	(void) refcount_add(&mg->mg_alloc_queue_depth, tag);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags)
 | 
						|
{
 | 
						|
	if (!(flags & METASLAB_ASYNC_ALLOC) ||
 | 
						|
	    flags & METASLAB_DONT_THROTTLE)
 | 
						|
		return;
 | 
						|
 | 
						|
	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
 | 
						|
	if (!mg->mg_class->mc_alloc_throttle_enabled)
 | 
						|
		return;
 | 
						|
 | 
						|
	(void) refcount_remove(&mg->mg_alloc_queue_depth, tag);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag)
 | 
						|
{
 | 
						|
#ifdef ZFS_DEBUG
 | 
						|
	const dva_t *dva = bp->blk_dva;
 | 
						|
	int ndvas = BP_GET_NDVAS(bp);
 | 
						|
 | 
						|
	for (int d = 0; d < ndvas; d++) {
 | 
						|
		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
 | 
						|
		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
 | 
						|
		VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth, tag));
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t
 | 
						|
metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
 | 
						|
{
 | 
						|
	uint64_t start;
 | 
						|
	range_tree_t *rt = msp->ms_tree;
 | 
						|
	metaslab_class_t *mc = msp->ms_group->mg_class;
 | 
						|
 | 
						|
	VERIFY(!msp->ms_condensing);
 | 
						|
 | 
						|
	start = mc->mc_ops->msop_alloc(msp, size);
 | 
						|
	if (start != -1ULL) {
 | 
						|
		metaslab_group_t *mg = msp->ms_group;
 | 
						|
		vdev_t *vd = mg->mg_vd;
 | 
						|
 | 
						|
		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
 | 
						|
		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
 | 
						|
		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
 | 
						|
		range_tree_remove(rt, start, size);
 | 
						|
 | 
						|
		if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
 | 
						|
			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
 | 
						|
 | 
						|
		range_tree_add(msp->ms_alloctree[txg & TXG_MASK], start, size);
 | 
						|
 | 
						|
		/* Track the last successful allocation */
 | 
						|
		msp->ms_alloc_txg = txg;
 | 
						|
		metaslab_verify_space(msp, txg);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now that we've attempted the allocation we need to update the
 | 
						|
	 * metaslab's maximum block size since it may have changed.
 | 
						|
	 */
 | 
						|
	msp->ms_max_size = metaslab_block_maxsize(msp);
 | 
						|
	return (start);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t
 | 
						|
metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
 | 
						|
    uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
 | 
						|
{
 | 
						|
	metaslab_t *msp = NULL;
 | 
						|
	uint64_t offset = -1ULL;
 | 
						|
	uint64_t activation_weight;
 | 
						|
	uint64_t target_distance;
 | 
						|
	int i;
 | 
						|
 | 
						|
	activation_weight = METASLAB_WEIGHT_PRIMARY;
 | 
						|
	for (i = 0; i < d; i++) {
 | 
						|
		if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
 | 
						|
			activation_weight = METASLAB_WEIGHT_SECONDARY;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
 | 
						|
	search->ms_weight = UINT64_MAX;
 | 
						|
	search->ms_start = 0;
 | 
						|
	for (;;) {
 | 
						|
		boolean_t was_active;
 | 
						|
		avl_tree_t *t = &mg->mg_metaslab_tree;
 | 
						|
		avl_index_t idx;
 | 
						|
 | 
						|
		mutex_enter(&mg->mg_lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Find the metaslab with the highest weight that is less
 | 
						|
		 * than what we've already tried.  In the common case, this
 | 
						|
		 * means that we will examine each metaslab at most once.
 | 
						|
		 * Note that concurrent callers could reorder metaslabs
 | 
						|
		 * by activation/passivation once we have dropped the mg_lock.
 | 
						|
		 * If a metaslab is activated by another thread, and we fail
 | 
						|
		 * to allocate from the metaslab we have selected, we may
 | 
						|
		 * not try the newly-activated metaslab, and instead activate
 | 
						|
		 * another metaslab.  This is not optimal, but generally
 | 
						|
		 * does not cause any problems (a possible exception being
 | 
						|
		 * if every metaslab is completely full except for the
 | 
						|
		 * the newly-activated metaslab which we fail to examine).
 | 
						|
		 */
 | 
						|
		msp = avl_find(t, search, &idx);
 | 
						|
		if (msp == NULL)
 | 
						|
			msp = avl_nearest(t, idx, AVL_AFTER);
 | 
						|
		for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
 | 
						|
 | 
						|
			if (!metaslab_should_allocate(msp, asize)) {
 | 
						|
				metaslab_trace_add(zal, mg, msp, asize, d,
 | 
						|
				    TRACE_TOO_SMALL);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If the selected metaslab is condensing, skip it.
 | 
						|
			 */
 | 
						|
			if (msp->ms_condensing)
 | 
						|
				continue;
 | 
						|
 | 
						|
			was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
 | 
						|
			if (activation_weight == METASLAB_WEIGHT_PRIMARY)
 | 
						|
				break;
 | 
						|
 | 
						|
			target_distance = min_distance +
 | 
						|
			    (space_map_allocated(msp->ms_sm) != 0 ? 0 :
 | 
						|
			    min_distance >> 1);
 | 
						|
 | 
						|
			for (i = 0; i < d; i++) {
 | 
						|
				if (metaslab_distance(msp, &dva[i]) <
 | 
						|
				    target_distance)
 | 
						|
					break;
 | 
						|
			}
 | 
						|
			if (i == d)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		mutex_exit(&mg->mg_lock);
 | 
						|
		if (msp == NULL) {
 | 
						|
			kmem_free(search, sizeof (*search));
 | 
						|
			return (-1ULL);
 | 
						|
		}
 | 
						|
		search->ms_weight = msp->ms_weight;
 | 
						|
		search->ms_start = msp->ms_start + 1;
 | 
						|
 | 
						|
		mutex_enter(&msp->ms_lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Ensure that the metaslab we have selected is still
 | 
						|
		 * capable of handling our request. It's possible that
 | 
						|
		 * another thread may have changed the weight while we
 | 
						|
		 * were blocked on the metaslab lock. We check the
 | 
						|
		 * active status first to see if we need to reselect
 | 
						|
		 * a new metaslab.
 | 
						|
		 */
 | 
						|
		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
 | 
						|
			mutex_exit(&msp->ms_lock);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
 | 
						|
		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
 | 
						|
			metaslab_passivate(msp,
 | 
						|
			    msp->ms_weight & ~METASLAB_ACTIVE_MASK);
 | 
						|
			mutex_exit(&msp->ms_lock);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (metaslab_activate(msp, activation_weight) != 0) {
 | 
						|
			mutex_exit(&msp->ms_lock);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		msp->ms_selected_txg = txg;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Now that we have the lock, recheck to see if we should
 | 
						|
		 * continue to use this metaslab for this allocation. The
 | 
						|
		 * the metaslab is now loaded so metaslab_should_allocate() can
 | 
						|
		 * accurately determine if the allocation attempt should
 | 
						|
		 * proceed.
 | 
						|
		 */
 | 
						|
		if (!metaslab_should_allocate(msp, asize)) {
 | 
						|
			/* Passivate this metaslab and select a new one. */
 | 
						|
			metaslab_trace_add(zal, mg, msp, asize, d,
 | 
						|
			    TRACE_TOO_SMALL);
 | 
						|
			goto next;
 | 
						|
		}
 | 
						|
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If this metaslab is currently condensing then pick again as
 | 
						|
		 * we can't manipulate this metaslab until it's committed
 | 
						|
		 * to disk.
 | 
						|
		 */
 | 
						|
		if (msp->ms_condensing) {
 | 
						|
			metaslab_trace_add(zal, mg, msp, asize, d,
 | 
						|
			    TRACE_CONDENSING);
 | 
						|
			mutex_exit(&msp->ms_lock);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		offset = metaslab_block_alloc(msp, asize, txg);
 | 
						|
		metaslab_trace_add(zal, mg, msp, asize, d, offset);
 | 
						|
 | 
						|
		if (offset != -1ULL) {
 | 
						|
			/* Proactively passivate the metaslab, if needed */
 | 
						|
			metaslab_segment_may_passivate(msp);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
next:
 | 
						|
		ASSERT(msp->ms_loaded);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We were unable to allocate from this metaslab so determine
 | 
						|
		 * a new weight for this metaslab. Now that we have loaded
 | 
						|
		 * the metaslab we can provide a better hint to the metaslab
 | 
						|
		 * selector.
 | 
						|
		 *
 | 
						|
		 * For space-based metaslabs, we use the maximum block size.
 | 
						|
		 * This information is only available when the metaslab
 | 
						|
		 * is loaded and is more accurate than the generic free
 | 
						|
		 * space weight that was calculated by metaslab_weight().
 | 
						|
		 * This information allows us to quickly compare the maximum
 | 
						|
		 * available allocation in the metaslab to the allocation
 | 
						|
		 * size being requested.
 | 
						|
		 *
 | 
						|
		 * For segment-based metaslabs, determine the new weight
 | 
						|
		 * based on the highest bucket in the range tree. We
 | 
						|
		 * explicitly use the loaded segment weight (i.e. the range
 | 
						|
		 * tree histogram) since it contains the space that is
 | 
						|
		 * currently available for allocation and is accurate
 | 
						|
		 * even within a sync pass.
 | 
						|
		 */
 | 
						|
		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
 | 
						|
			uint64_t weight = metaslab_block_maxsize(msp);
 | 
						|
			WEIGHT_SET_SPACEBASED(weight);
 | 
						|
			metaslab_passivate(msp, weight);
 | 
						|
		} else {
 | 
						|
			metaslab_passivate(msp,
 | 
						|
			    metaslab_weight_from_range_tree(msp));
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We have just failed an allocation attempt, check
 | 
						|
		 * that metaslab_should_allocate() agrees. Otherwise,
 | 
						|
		 * we may end up in an infinite loop retrying the same
 | 
						|
		 * metaslab.
 | 
						|
		 */
 | 
						|
		ASSERT(!metaslab_should_allocate(msp, asize));
 | 
						|
		mutex_exit(&msp->ms_lock);
 | 
						|
	}
 | 
						|
	mutex_exit(&msp->ms_lock);
 | 
						|
	kmem_free(search, sizeof (*search));
 | 
						|
	return (offset);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t
 | 
						|
metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
 | 
						|
    uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
 | 
						|
{
 | 
						|
	uint64_t offset;
 | 
						|
	ASSERT(mg->mg_initialized);
 | 
						|
 | 
						|
	offset = metaslab_group_alloc_normal(mg, zal, asize, txg,
 | 
						|
	    min_distance, dva, d);
 | 
						|
 | 
						|
	mutex_enter(&mg->mg_lock);
 | 
						|
	if (offset == -1ULL) {
 | 
						|
		mg->mg_failed_allocations++;
 | 
						|
		metaslab_trace_add(zal, mg, NULL, asize, d,
 | 
						|
		    TRACE_GROUP_FAILURE);
 | 
						|
		if (asize == SPA_GANGBLOCKSIZE) {
 | 
						|
			/*
 | 
						|
			 * This metaslab group was unable to allocate
 | 
						|
			 * the minimum gang block size so it must be out of
 | 
						|
			 * space. We must notify the allocation throttle
 | 
						|
			 * to start skipping allocation attempts to this
 | 
						|
			 * metaslab group until more space becomes available.
 | 
						|
			 * Note: this failure cannot be caused by the
 | 
						|
			 * allocation throttle since the allocation throttle
 | 
						|
			 * is only responsible for skipping devices and
 | 
						|
			 * not failing block allocations.
 | 
						|
			 */
 | 
						|
			mg->mg_no_free_space = B_TRUE;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	mg->mg_allocations++;
 | 
						|
	mutex_exit(&mg->mg_lock);
 | 
						|
	return (offset);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If we have to write a ditto block (i.e. more than one DVA for a given BP)
 | 
						|
 * on the same vdev as an existing DVA of this BP, then try to allocate it
 | 
						|
 * at least (vdev_asize / (2 ^ ditto_same_vdev_distance_shift)) away from the
 | 
						|
 * existing DVAs.
 | 
						|
 */
 | 
						|
int ditto_same_vdev_distance_shift = 3;
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a block for the specified i/o.
 | 
						|
 */
 | 
						|
int
 | 
						|
metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
 | 
						|
    dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
 | 
						|
    zio_alloc_list_t *zal)
 | 
						|
{
 | 
						|
	metaslab_group_t *mg, *fast_mg, *rotor;
 | 
						|
	vdev_t *vd;
 | 
						|
	boolean_t try_hard = B_FALSE;
 | 
						|
 | 
						|
	ASSERT(!DVA_IS_VALID(&dva[d]));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For testing, make some blocks above a certain size be gang blocks.
 | 
						|
	 */
 | 
						|
	if (psize >= metaslab_force_ganging && (ddi_get_lbolt() & 3) == 0) {
 | 
						|
		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG);
 | 
						|
		return (SET_ERROR(ENOSPC));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Start at the rotor and loop through all mgs until we find something.
 | 
						|
	 * Note that there's no locking on mc_rotor or mc_aliquot because
 | 
						|
	 * nothing actually breaks if we miss a few updates -- we just won't
 | 
						|
	 * allocate quite as evenly.  It all balances out over time.
 | 
						|
	 *
 | 
						|
	 * If we are doing ditto or log blocks, try to spread them across
 | 
						|
	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
 | 
						|
	 * allocated all of our ditto blocks, then try and spread them out on
 | 
						|
	 * that vdev as much as possible.  If it turns out to not be possible,
 | 
						|
	 * gradually lower our standards until anything becomes acceptable.
 | 
						|
	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
 | 
						|
	 * gives us hope of containing our fault domains to something we're
 | 
						|
	 * able to reason about.  Otherwise, any two top-level vdev failures
 | 
						|
	 * will guarantee the loss of data.  With consecutive allocation,
 | 
						|
	 * only two adjacent top-level vdev failures will result in data loss.
 | 
						|
	 *
 | 
						|
	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
 | 
						|
	 * ourselves on the same vdev as our gang block header.  That
 | 
						|
	 * way, we can hope for locality in vdev_cache, plus it makes our
 | 
						|
	 * fault domains something tractable.
 | 
						|
	 */
 | 
						|
	if (hintdva) {
 | 
						|
		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * It's possible the vdev we're using as the hint no
 | 
						|
		 * longer exists or its mg has been closed (e.g. by
 | 
						|
		 * device removal).  Consult the rotor when
 | 
						|
		 * all else fails.
 | 
						|
		 */
 | 
						|
		if (vd != NULL && vd->vdev_mg != NULL) {
 | 
						|
			mg = vd->vdev_mg;
 | 
						|
 | 
						|
			if (flags & METASLAB_HINTBP_AVOID &&
 | 
						|
			    mg->mg_next != NULL)
 | 
						|
				mg = mg->mg_next;
 | 
						|
		} else {
 | 
						|
			mg = mc->mc_rotor;
 | 
						|
		}
 | 
						|
	} else if (d != 0) {
 | 
						|
		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
 | 
						|
		mg = vd->vdev_mg->mg_next;
 | 
						|
	} else if (flags & METASLAB_FASTWRITE) {
 | 
						|
		mg = fast_mg = mc->mc_rotor;
 | 
						|
 | 
						|
		do {
 | 
						|
			if (fast_mg->mg_vd->vdev_pending_fastwrite <
 | 
						|
			    mg->mg_vd->vdev_pending_fastwrite)
 | 
						|
				mg = fast_mg;
 | 
						|
		} while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
 | 
						|
 | 
						|
	} else {
 | 
						|
		mg = mc->mc_rotor;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the hint put us into the wrong metaslab class, or into a
 | 
						|
	 * metaslab group that has been passivated, just follow the rotor.
 | 
						|
	 */
 | 
						|
	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
 | 
						|
		mg = mc->mc_rotor;
 | 
						|
 | 
						|
	rotor = mg;
 | 
						|
top:
 | 
						|
	do {
 | 
						|
		boolean_t allocatable;
 | 
						|
 | 
						|
		ASSERT(mg->mg_activation_count == 1);
 | 
						|
		vd = mg->mg_vd;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Don't allocate from faulted devices.
 | 
						|
		 */
 | 
						|
		if (try_hard) {
 | 
						|
			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
 | 
						|
			allocatable = vdev_allocatable(vd);
 | 
						|
			spa_config_exit(spa, SCL_ZIO, FTAG);
 | 
						|
		} else {
 | 
						|
			allocatable = vdev_allocatable(vd);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Determine if the selected metaslab group is eligible
 | 
						|
		 * for allocations. If we're ganging then don't allow
 | 
						|
		 * this metaslab group to skip allocations since that would
 | 
						|
		 * inadvertently return ENOSPC and suspend the pool
 | 
						|
		 * even though space is still available.
 | 
						|
		 */
 | 
						|
		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
 | 
						|
			allocatable = metaslab_group_allocatable(mg, rotor,
 | 
						|
			    psize);
 | 
						|
		}
 | 
						|
 | 
						|
		if (!allocatable) {
 | 
						|
			metaslab_trace_add(zal, mg, NULL, psize, d,
 | 
						|
			    TRACE_NOT_ALLOCATABLE);
 | 
						|
			goto next;
 | 
						|
		}
 | 
						|
 | 
						|
		ASSERT(mg->mg_initialized);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Avoid writing single-copy data to a failing,
 | 
						|
		 * non-redundant vdev, unless we've already tried all
 | 
						|
		 * other vdevs.
 | 
						|
		 */
 | 
						|
		if ((vd->vdev_stat.vs_write_errors > 0 ||
 | 
						|
		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
 | 
						|
		    d == 0 && !try_hard && vd->vdev_children == 0) {
 | 
						|
			metaslab_trace_add(zal, mg, NULL, psize, d,
 | 
						|
			    TRACE_VDEV_ERROR);
 | 
						|
			goto next;
 | 
						|
		}
 | 
						|
 | 
						|
		ASSERT(mg->mg_class == mc);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we don't need to try hard, then require that the
 | 
						|
		 * block be 1/8th of the device away from any other DVAs
 | 
						|
		 * in this BP.  If we are trying hard, allow any offset
 | 
						|
		 * to be used (distance=0).
 | 
						|
		 */
 | 
						|
		uint64_t distance = 0;
 | 
						|
		if (!try_hard) {
 | 
						|
			distance = vd->vdev_asize >>
 | 
						|
			    ditto_same_vdev_distance_shift;
 | 
						|
			if (distance <= (1ULL << vd->vdev_ms_shift))
 | 
						|
				distance = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		uint64_t asize = vdev_psize_to_asize(vd, psize);
 | 
						|
		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
 | 
						|
 | 
						|
		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
 | 
						|
		    distance, dva, d);
 | 
						|
 | 
						|
		if (offset != -1ULL) {
 | 
						|
			/*
 | 
						|
			 * If we've just selected this metaslab group,
 | 
						|
			 * figure out whether the corresponding vdev is
 | 
						|
			 * over- or under-used relative to the pool,
 | 
						|
			 * and set an allocation bias to even it out.
 | 
						|
			 *
 | 
						|
			 * Bias is also used to compensate for unequally
 | 
						|
			 * sized vdevs so that space is allocated fairly.
 | 
						|
			 */
 | 
						|
			if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
 | 
						|
				vdev_stat_t *vs = &vd->vdev_stat;
 | 
						|
				int64_t vs_free = vs->vs_space - vs->vs_alloc;
 | 
						|
				int64_t mc_free = mc->mc_space - mc->mc_alloc;
 | 
						|
				int64_t ratio;
 | 
						|
 | 
						|
				/*
 | 
						|
				 * Calculate how much more or less we should
 | 
						|
				 * try to allocate from this device during
 | 
						|
				 * this iteration around the rotor.
 | 
						|
				 *
 | 
						|
				 * This basically introduces a zero-centered
 | 
						|
				 * bias towards the devices with the most
 | 
						|
				 * free space, while compensating for vdev
 | 
						|
				 * size differences.
 | 
						|
				 *
 | 
						|
				 * Examples:
 | 
						|
				 *  vdev V1 = 16M/128M
 | 
						|
				 *  vdev V2 = 16M/128M
 | 
						|
				 *  ratio(V1) = 100% ratio(V2) = 100%
 | 
						|
				 *
 | 
						|
				 *  vdev V1 = 16M/128M
 | 
						|
				 *  vdev V2 = 64M/128M
 | 
						|
				 *  ratio(V1) = 127% ratio(V2) =  72%
 | 
						|
				 *
 | 
						|
				 *  vdev V1 = 16M/128M
 | 
						|
				 *  vdev V2 = 64M/512M
 | 
						|
				 *  ratio(V1) =  40% ratio(V2) = 160%
 | 
						|
				 */
 | 
						|
				ratio = (vs_free * mc->mc_alloc_groups * 100) /
 | 
						|
				    (mc_free + 1);
 | 
						|
				mg->mg_bias = ((ratio - 100) *
 | 
						|
				    (int64_t)mg->mg_aliquot) / 100;
 | 
						|
			} else if (!metaslab_bias_enabled) {
 | 
						|
				mg->mg_bias = 0;
 | 
						|
			}
 | 
						|
 | 
						|
			if ((flags & METASLAB_FASTWRITE) ||
 | 
						|
			    atomic_add_64_nv(&mc->mc_aliquot, asize) >=
 | 
						|
			    mg->mg_aliquot + mg->mg_bias) {
 | 
						|
				mc->mc_rotor = mg->mg_next;
 | 
						|
				mc->mc_aliquot = 0;
 | 
						|
			}
 | 
						|
 | 
						|
			DVA_SET_VDEV(&dva[d], vd->vdev_id);
 | 
						|
			DVA_SET_OFFSET(&dva[d], offset);
 | 
						|
			DVA_SET_GANG(&dva[d],
 | 
						|
			    ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
 | 
						|
			DVA_SET_ASIZE(&dva[d], asize);
 | 
						|
 | 
						|
			if (flags & METASLAB_FASTWRITE) {
 | 
						|
				atomic_add_64(&vd->vdev_pending_fastwrite,
 | 
						|
				    psize);
 | 
						|
			}
 | 
						|
 | 
						|
			return (0);
 | 
						|
		}
 | 
						|
next:
 | 
						|
		mc->mc_rotor = mg->mg_next;
 | 
						|
		mc->mc_aliquot = 0;
 | 
						|
	} while ((mg = mg->mg_next) != rotor);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we haven't tried hard, do so now.
 | 
						|
	 */
 | 
						|
	if (!try_hard) {
 | 
						|
		try_hard = B_TRUE;
 | 
						|
		goto top;
 | 
						|
	}
 | 
						|
 | 
						|
	bzero(&dva[d], sizeof (dva_t));
 | 
						|
 | 
						|
	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC);
 | 
						|
	return (SET_ERROR(ENOSPC));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
 | 
						|
    uint64_t txg)
 | 
						|
{
 | 
						|
	metaslab_t *msp;
 | 
						|
	ASSERTV(spa_t *spa = vd->vdev_spa);
 | 
						|
 | 
						|
	ASSERT3U(txg, ==, spa->spa_syncing_txg);
 | 
						|
	ASSERT(vdev_is_concrete(vd));
 | 
						|
	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 | 
						|
	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
 | 
						|
 | 
						|
	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 | 
						|
 | 
						|
	VERIFY(!msp->ms_condensing);
 | 
						|
	VERIFY3U(offset, >=, msp->ms_start);
 | 
						|
	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
 | 
						|
	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
 | 
						|
	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
 | 
						|
 | 
						|
	metaslab_check_free_impl(vd, offset, asize);
 | 
						|
	mutex_enter(&msp->ms_lock);
 | 
						|
	if (range_tree_space(msp->ms_freeingtree) == 0) {
 | 
						|
		vdev_dirty(vd, VDD_METASLAB, msp, txg);
 | 
						|
	}
 | 
						|
	range_tree_add(msp->ms_freeingtree, offset, asize);
 | 
						|
	mutex_exit(&msp->ms_lock);
 | 
						|
}
 | 
						|
 | 
						|
/* ARGSUSED */
 | 
						|
void
 | 
						|
metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
 | 
						|
    uint64_t size, void *arg)
 | 
						|
{
 | 
						|
	uint64_t *txgp = arg;
 | 
						|
 | 
						|
	if (vd->vdev_ops->vdev_op_remap != NULL)
 | 
						|
		vdev_indirect_mark_obsolete(vd, offset, size, *txgp);
 | 
						|
	else
 | 
						|
		metaslab_free_impl(vd, offset, size, *txgp);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
 | 
						|
    uint64_t txg)
 | 
						|
{
 | 
						|
	spa_t *spa = vd->vdev_spa;
 | 
						|
 | 
						|
	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 | 
						|
 | 
						|
	if (txg > spa_freeze_txg(spa))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (spa->spa_vdev_removal != NULL &&
 | 
						|
	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
 | 
						|
	    vdev_is_concrete(vd)) {
 | 
						|
		/*
 | 
						|
		 * Note: we check if the vdev is concrete because when
 | 
						|
		 * we complete the removal, we first change the vdev to be
 | 
						|
		 * an indirect vdev (in open context), and then (in syncing
 | 
						|
		 * context) clear spa_vdev_removal.
 | 
						|
		 */
 | 
						|
		free_from_removing_vdev(vd, offset, size, txg);
 | 
						|
	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
 | 
						|
		vdev_indirect_mark_obsolete(vd, offset, size, txg);
 | 
						|
		vd->vdev_ops->vdev_op_remap(vd, offset, size,
 | 
						|
		    metaslab_free_impl_cb, &txg);
 | 
						|
	} else {
 | 
						|
		metaslab_free_concrete(vd, offset, size, txg);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
typedef struct remap_blkptr_cb_arg {
 | 
						|
	blkptr_t *rbca_bp;
 | 
						|
	spa_remap_cb_t rbca_cb;
 | 
						|
	vdev_t *rbca_remap_vd;
 | 
						|
	uint64_t rbca_remap_offset;
 | 
						|
	void *rbca_cb_arg;
 | 
						|
} remap_blkptr_cb_arg_t;
 | 
						|
 | 
						|
void
 | 
						|
remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
 | 
						|
    uint64_t size, void *arg)
 | 
						|
{
 | 
						|
	remap_blkptr_cb_arg_t *rbca = arg;
 | 
						|
	blkptr_t *bp = rbca->rbca_bp;
 | 
						|
 | 
						|
	/* We can not remap split blocks. */
 | 
						|
	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
 | 
						|
		return;
 | 
						|
	ASSERT0(inner_offset);
 | 
						|
 | 
						|
	if (rbca->rbca_cb != NULL) {
 | 
						|
		/*
 | 
						|
		 * At this point we know that we are not handling split
 | 
						|
		 * blocks and we invoke the callback on the previous
 | 
						|
		 * vdev which must be indirect.
 | 
						|
		 */
 | 
						|
		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
 | 
						|
 | 
						|
		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
 | 
						|
		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
 | 
						|
 | 
						|
		/* set up remap_blkptr_cb_arg for the next call */
 | 
						|
		rbca->rbca_remap_vd = vd;
 | 
						|
		rbca->rbca_remap_offset = offset;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The phys birth time is that of dva[0].  This ensures that we know
 | 
						|
	 * when each dva was written, so that resilver can determine which
 | 
						|
	 * blocks need to be scrubbed (i.e. those written during the time
 | 
						|
	 * the vdev was offline).  It also ensures that the key used in
 | 
						|
	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
 | 
						|
	 * we didn't change the phys_birth, a lookup in the ARC for a
 | 
						|
	 * remapped BP could find the data that was previously stored at
 | 
						|
	 * this vdev + offset.
 | 
						|
	 */
 | 
						|
	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
 | 
						|
	    DVA_GET_VDEV(&bp->blk_dva[0]));
 | 
						|
	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
 | 
						|
	bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
 | 
						|
	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
 | 
						|
 | 
						|
	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
 | 
						|
	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If the block pointer contains any indirect DVAs, modify them to refer to
 | 
						|
 * concrete DVAs.  Note that this will sometimes not be possible, leaving
 | 
						|
 * the indirect DVA in place.  This happens if the indirect DVA spans multiple
 | 
						|
 * segments in the mapping (i.e. it is a "split block").
 | 
						|
 *
 | 
						|
 * If the BP was remapped, calls the callback on the original dva (note the
 | 
						|
 * callback can be called multiple times if the original indirect DVA refers
 | 
						|
 * to another indirect DVA, etc).
 | 
						|
 *
 | 
						|
 * Returns TRUE if the BP was remapped.
 | 
						|
 */
 | 
						|
boolean_t
 | 
						|
spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
 | 
						|
{
 | 
						|
	remap_blkptr_cb_arg_t rbca;
 | 
						|
 | 
						|
	if (!zfs_remap_blkptr_enable)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
 | 
						|
	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
 | 
						|
	 */
 | 
						|
	if (BP_GET_DEDUP(bp))
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Gang blocks can not be remapped, because
 | 
						|
	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
 | 
						|
	 * the BP used to read the gang block header (GBH) being the same
 | 
						|
	 * as the DVA[0] that we allocated for the GBH.
 | 
						|
	 */
 | 
						|
	if (BP_IS_GANG(bp))
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Embedded BP's have no DVA to remap.
 | 
						|
	 */
 | 
						|
	if (BP_GET_NDVAS(bp) < 1)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Note: we only remap dva[0].  If we remapped other dvas, we
 | 
						|
	 * would no longer know what their phys birth txg is.
 | 
						|
	 */
 | 
						|
	dva_t *dva = &bp->blk_dva[0];
 | 
						|
 | 
						|
	uint64_t offset = DVA_GET_OFFSET(dva);
 | 
						|
	uint64_t size = DVA_GET_ASIZE(dva);
 | 
						|
	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
 | 
						|
 | 
						|
	if (vd->vdev_ops->vdev_op_remap == NULL)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	rbca.rbca_bp = bp;
 | 
						|
	rbca.rbca_cb = callback;
 | 
						|
	rbca.rbca_remap_vd = vd;
 | 
						|
	rbca.rbca_remap_offset = offset;
 | 
						|
	rbca.rbca_cb_arg = arg;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * remap_blkptr_cb() will be called in order for each level of
 | 
						|
	 * indirection, until a concrete vdev is reached or a split block is
 | 
						|
	 * encountered. old_vd and old_offset are updated within the callback
 | 
						|
	 * as we go from the one indirect vdev to the next one (either concrete
 | 
						|
	 * or indirect again) in that order.
 | 
						|
	 */
 | 
						|
	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
 | 
						|
 | 
						|
	/* Check if the DVA wasn't remapped because it is a split block */
 | 
						|
	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	return (B_TRUE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Undo the allocation of a DVA which happened in the given transaction group.
 | 
						|
 */
 | 
						|
void
 | 
						|
metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
 | 
						|
{
 | 
						|
	metaslab_t *msp;
 | 
						|
	vdev_t *vd;
 | 
						|
	uint64_t vdev = DVA_GET_VDEV(dva);
 | 
						|
	uint64_t offset = DVA_GET_OFFSET(dva);
 | 
						|
	uint64_t size = DVA_GET_ASIZE(dva);
 | 
						|
 | 
						|
	ASSERT(DVA_IS_VALID(dva));
 | 
						|
	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 | 
						|
 | 
						|
	if (txg > spa_freeze_txg(spa))
 | 
						|
		return;
 | 
						|
 | 
						|
	if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
 | 
						|
	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
 | 
						|
		zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
 | 
						|
		    (u_longlong_t)vdev, (u_longlong_t)offset,
 | 
						|
		    (u_longlong_t)size);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(!vd->vdev_removing);
 | 
						|
	ASSERT(vdev_is_concrete(vd));
 | 
						|
	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
 | 
						|
	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
 | 
						|
 | 
						|
	if (DVA_GET_GANG(dva))
 | 
						|
		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
 | 
						|
 | 
						|
	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 | 
						|
 | 
						|
	mutex_enter(&msp->ms_lock);
 | 
						|
	range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
 | 
						|
	    offset, size);
 | 
						|
 | 
						|
	VERIFY(!msp->ms_condensing);
 | 
						|
	VERIFY3U(offset, >=, msp->ms_start);
 | 
						|
	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
 | 
						|
	VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
 | 
						|
	    msp->ms_size);
 | 
						|
	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
 | 
						|
	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
 | 
						|
	range_tree_add(msp->ms_tree, offset, size);
 | 
						|
	mutex_exit(&msp->ms_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free the block represented by DVA in the context of the specified
 | 
						|
 * transaction group.
 | 
						|
 */
 | 
						|
void
 | 
						|
metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
 | 
						|
{
 | 
						|
	uint64_t vdev = DVA_GET_VDEV(dva);
 | 
						|
	uint64_t offset = DVA_GET_OFFSET(dva);
 | 
						|
	uint64_t size = DVA_GET_ASIZE(dva);
 | 
						|
	vdev_t *vd = vdev_lookup_top(spa, vdev);
 | 
						|
 | 
						|
	ASSERT(DVA_IS_VALID(dva));
 | 
						|
	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 | 
						|
 | 
						|
	if (DVA_GET_GANG(dva)) {
 | 
						|
		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
 | 
						|
	}
 | 
						|
 | 
						|
	metaslab_free_impl(vd, offset, size, txg);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reserve some allocation slots. The reservation system must be called
 | 
						|
 * before we call into the allocator. If there aren't any available slots
 | 
						|
 * then the I/O will be throttled until an I/O completes and its slots are
 | 
						|
 * freed up. The function returns true if it was successful in placing
 | 
						|
 * the reservation.
 | 
						|
 */
 | 
						|
boolean_t
 | 
						|
metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, zio_t *zio,
 | 
						|
    int flags)
 | 
						|
{
 | 
						|
	uint64_t available_slots = 0;
 | 
						|
	boolean_t slot_reserved = B_FALSE;
 | 
						|
 | 
						|
	ASSERT(mc->mc_alloc_throttle_enabled);
 | 
						|
	mutex_enter(&mc->mc_lock);
 | 
						|
 | 
						|
	uint64_t reserved_slots = refcount_count(&mc->mc_alloc_slots);
 | 
						|
	if (reserved_slots < mc->mc_alloc_max_slots)
 | 
						|
		available_slots = mc->mc_alloc_max_slots - reserved_slots;
 | 
						|
 | 
						|
	if (slots <= available_slots || GANG_ALLOCATION(flags)) {
 | 
						|
		/*
 | 
						|
		 * We reserve the slots individually so that we can unreserve
 | 
						|
		 * them individually when an I/O completes.
 | 
						|
		 */
 | 
						|
		for (int d = 0; d < slots; d++) {
 | 
						|
			reserved_slots = refcount_add(&mc->mc_alloc_slots, zio);
 | 
						|
		}
 | 
						|
		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
 | 
						|
		slot_reserved = B_TRUE;
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_exit(&mc->mc_lock);
 | 
						|
	return (slot_reserved);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, zio_t *zio)
 | 
						|
{
 | 
						|
	ASSERT(mc->mc_alloc_throttle_enabled);
 | 
						|
	mutex_enter(&mc->mc_lock);
 | 
						|
	for (int d = 0; d < slots; d++) {
 | 
						|
		(void) refcount_remove(&mc->mc_alloc_slots, zio);
 | 
						|
	}
 | 
						|
	mutex_exit(&mc->mc_lock);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
 | 
						|
    uint64_t txg)
 | 
						|
{
 | 
						|
	metaslab_t *msp;
 | 
						|
	spa_t *spa = vd->vdev_spa;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
 | 
						|
		return (ENXIO);
 | 
						|
 | 
						|
	ASSERT3P(vd->vdev_ms, !=, NULL);
 | 
						|
	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 | 
						|
 | 
						|
	mutex_enter(&msp->ms_lock);
 | 
						|
 | 
						|
	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
 | 
						|
		error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
 | 
						|
 | 
						|
	if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
 | 
						|
		error = SET_ERROR(ENOENT);
 | 
						|
 | 
						|
	if (error || txg == 0) {	/* txg == 0 indicates dry run */
 | 
						|
		mutex_exit(&msp->ms_lock);
 | 
						|
		return (error);
 | 
						|
	}
 | 
						|
 | 
						|
	VERIFY(!msp->ms_condensing);
 | 
						|
	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
 | 
						|
	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
 | 
						|
	VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
 | 
						|
	range_tree_remove(msp->ms_tree, offset, size);
 | 
						|
 | 
						|
	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
 | 
						|
		if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
 | 
						|
			vdev_dirty(vd, VDD_METASLAB, msp, txg);
 | 
						|
		range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_exit(&msp->ms_lock);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
typedef struct metaslab_claim_cb_arg_t {
 | 
						|
	uint64_t	mcca_txg;
 | 
						|
	int		mcca_error;
 | 
						|
} metaslab_claim_cb_arg_t;
 | 
						|
 | 
						|
/* ARGSUSED */
 | 
						|
static void
 | 
						|
metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
 | 
						|
    uint64_t size, void *arg)
 | 
						|
{
 | 
						|
	metaslab_claim_cb_arg_t *mcca_arg = arg;
 | 
						|
 | 
						|
	if (mcca_arg->mcca_error == 0) {
 | 
						|
		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
 | 
						|
		    size, mcca_arg->mcca_txg);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
 | 
						|
{
 | 
						|
	if (vd->vdev_ops->vdev_op_remap != NULL) {
 | 
						|
		metaslab_claim_cb_arg_t arg;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Only zdb(1M) can claim on indirect vdevs.  This is used
 | 
						|
		 * to detect leaks of mapped space (that are not accounted
 | 
						|
		 * for in the obsolete counts, spacemap, or bpobj).
 | 
						|
		 */
 | 
						|
		ASSERT(!spa_writeable(vd->vdev_spa));
 | 
						|
		arg.mcca_error = 0;
 | 
						|
		arg.mcca_txg = txg;
 | 
						|
 | 
						|
		vd->vdev_ops->vdev_op_remap(vd, offset, size,
 | 
						|
		    metaslab_claim_impl_cb, &arg);
 | 
						|
 | 
						|
		if (arg.mcca_error == 0) {
 | 
						|
			arg.mcca_error = metaslab_claim_concrete(vd,
 | 
						|
			    offset, size, txg);
 | 
						|
		}
 | 
						|
		return (arg.mcca_error);
 | 
						|
	} else {
 | 
						|
		return (metaslab_claim_concrete(vd, offset, size, txg));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Intent log support: upon opening the pool after a crash, notify the SPA
 | 
						|
 * of blocks that the intent log has allocated for immediate write, but
 | 
						|
 * which are still considered free by the SPA because the last transaction
 | 
						|
 * group didn't commit yet.
 | 
						|
 */
 | 
						|
static int
 | 
						|
metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
 | 
						|
{
 | 
						|
	uint64_t vdev = DVA_GET_VDEV(dva);
 | 
						|
	uint64_t offset = DVA_GET_OFFSET(dva);
 | 
						|
	uint64_t size = DVA_GET_ASIZE(dva);
 | 
						|
	vdev_t *vd;
 | 
						|
 | 
						|
	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
 | 
						|
		return (SET_ERROR(ENXIO));
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(DVA_IS_VALID(dva));
 | 
						|
 | 
						|
	if (DVA_GET_GANG(dva))
 | 
						|
		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
 | 
						|
 | 
						|
	return (metaslab_claim_impl(vd, offset, size, txg));
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
 | 
						|
    int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
 | 
						|
    zio_alloc_list_t *zal, zio_t *zio)
 | 
						|
{
 | 
						|
	dva_t *dva = bp->blk_dva;
 | 
						|
	dva_t *hintdva = hintbp->blk_dva;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	ASSERT(bp->blk_birth == 0);
 | 
						|
	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
 | 
						|
 | 
						|
	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
 | 
						|
 | 
						|
	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
 | 
						|
		spa_config_exit(spa, SCL_ALLOC, FTAG);
 | 
						|
		return (SET_ERROR(ENOSPC));
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
 | 
						|
	ASSERT(BP_GET_NDVAS(bp) == 0);
 | 
						|
	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
 | 
						|
	ASSERT3P(zal, !=, NULL);
 | 
						|
 | 
						|
	for (int d = 0; d < ndvas; d++) {
 | 
						|
		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
 | 
						|
		    txg, flags, zal);
 | 
						|
		if (error != 0) {
 | 
						|
			for (d--; d >= 0; d--) {
 | 
						|
				metaslab_unalloc_dva(spa, &dva[d], txg);
 | 
						|
				metaslab_group_alloc_decrement(spa,
 | 
						|
				    DVA_GET_VDEV(&dva[d]), zio, flags);
 | 
						|
				bzero(&dva[d], sizeof (dva_t));
 | 
						|
			}
 | 
						|
			spa_config_exit(spa, SCL_ALLOC, FTAG);
 | 
						|
			return (error);
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * Update the metaslab group's queue depth
 | 
						|
			 * based on the newly allocated dva.
 | 
						|
			 */
 | 
						|
			metaslab_group_alloc_increment(spa,
 | 
						|
			    DVA_GET_VDEV(&dva[d]), zio, flags);
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
	ASSERT(error == 0);
 | 
						|
	ASSERT(BP_GET_NDVAS(bp) == ndvas);
 | 
						|
 | 
						|
	spa_config_exit(spa, SCL_ALLOC, FTAG);
 | 
						|
 | 
						|
	BP_SET_BIRTH(bp, txg, 0);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
 | 
						|
{
 | 
						|
	const dva_t *dva = bp->blk_dva;
 | 
						|
	int ndvas = BP_GET_NDVAS(bp);
 | 
						|
 | 
						|
	ASSERT(!BP_IS_HOLE(bp));
 | 
						|
	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
 | 
						|
 | 
						|
	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
 | 
						|
 | 
						|
	for (int d = 0; d < ndvas; d++) {
 | 
						|
		if (now) {
 | 
						|
			metaslab_unalloc_dva(spa, &dva[d], txg);
 | 
						|
		} else {
 | 
						|
			metaslab_free_dva(spa, &dva[d], txg);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	spa_config_exit(spa, SCL_FREE, FTAG);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
 | 
						|
{
 | 
						|
	const dva_t *dva = bp->blk_dva;
 | 
						|
	int ndvas = BP_GET_NDVAS(bp);
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	ASSERT(!BP_IS_HOLE(bp));
 | 
						|
 | 
						|
	if (txg != 0) {
 | 
						|
		/*
 | 
						|
		 * First do a dry run to make sure all DVAs are claimable,
 | 
						|
		 * so we don't have to unwind from partial failures below.
 | 
						|
		 */
 | 
						|
		if ((error = metaslab_claim(spa, bp, 0)) != 0)
 | 
						|
			return (error);
 | 
						|
	}
 | 
						|
 | 
						|
	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
 | 
						|
 | 
						|
	for (int d = 0; d < ndvas; d++)
 | 
						|
		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
 | 
						|
			break;
 | 
						|
 | 
						|
	spa_config_exit(spa, SCL_ALLOC, FTAG);
 | 
						|
 | 
						|
	ASSERT(error == 0 || txg == 0);
 | 
						|
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
 | 
						|
{
 | 
						|
	const dva_t *dva = bp->blk_dva;
 | 
						|
	int ndvas = BP_GET_NDVAS(bp);
 | 
						|
	uint64_t psize = BP_GET_PSIZE(bp);
 | 
						|
	int d;
 | 
						|
	vdev_t *vd;
 | 
						|
 | 
						|
	ASSERT(!BP_IS_HOLE(bp));
 | 
						|
	ASSERT(!BP_IS_EMBEDDED(bp));
 | 
						|
	ASSERT(psize > 0);
 | 
						|
 | 
						|
	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 | 
						|
 | 
						|
	for (d = 0; d < ndvas; d++) {
 | 
						|
		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
 | 
						|
			continue;
 | 
						|
		atomic_add_64(&vd->vdev_pending_fastwrite, psize);
 | 
						|
	}
 | 
						|
 | 
						|
	spa_config_exit(spa, SCL_VDEV, FTAG);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
 | 
						|
{
 | 
						|
	const dva_t *dva = bp->blk_dva;
 | 
						|
	int ndvas = BP_GET_NDVAS(bp);
 | 
						|
	uint64_t psize = BP_GET_PSIZE(bp);
 | 
						|
	int d;
 | 
						|
	vdev_t *vd;
 | 
						|
 | 
						|
	ASSERT(!BP_IS_HOLE(bp));
 | 
						|
	ASSERT(!BP_IS_EMBEDDED(bp));
 | 
						|
	ASSERT(psize > 0);
 | 
						|
 | 
						|
	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 | 
						|
 | 
						|
	for (d = 0; d < ndvas; d++) {
 | 
						|
		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
 | 
						|
			continue;
 | 
						|
		ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
 | 
						|
		atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
 | 
						|
	}
 | 
						|
 | 
						|
	spa_config_exit(spa, SCL_VDEV, FTAG);
 | 
						|
}
 | 
						|
 | 
						|
/* ARGSUSED */
 | 
						|
static void
 | 
						|
metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
 | 
						|
    uint64_t size, void *arg)
 | 
						|
{
 | 
						|
	if (vd->vdev_ops == &vdev_indirect_ops)
 | 
						|
		return;
 | 
						|
 | 
						|
	metaslab_check_free_impl(vd, offset, size);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
 | 
						|
{
 | 
						|
	metaslab_t *msp;
 | 
						|
	ASSERTV(spa_t *spa = vd->vdev_spa);
 | 
						|
 | 
						|
	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (vd->vdev_ops->vdev_op_remap != NULL) {
 | 
						|
		vd->vdev_ops->vdev_op_remap(vd, offset, size,
 | 
						|
		    metaslab_check_free_impl_cb, NULL);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(vdev_is_concrete(vd));
 | 
						|
	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
 | 
						|
	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 | 
						|
 | 
						|
	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 | 
						|
 | 
						|
	mutex_enter(&msp->ms_lock);
 | 
						|
	if (msp->ms_loaded)
 | 
						|
		range_tree_verify(msp->ms_tree, offset, size);
 | 
						|
 | 
						|
	range_tree_verify(msp->ms_freeingtree, offset, size);
 | 
						|
	range_tree_verify(msp->ms_freedtree, offset, size);
 | 
						|
	for (int j = 0; j < TXG_DEFER_SIZE; j++)
 | 
						|
		range_tree_verify(msp->ms_defertree[j], offset, size);
 | 
						|
	mutex_exit(&msp->ms_lock);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
metaslab_check_free(spa_t *spa, const blkptr_t *bp)
 | 
						|
{
 | 
						|
	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 | 
						|
	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
 | 
						|
		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
 | 
						|
		vdev_t *vd = vdev_lookup_top(spa, vdev);
 | 
						|
		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
 | 
						|
		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
 | 
						|
 | 
						|
		if (DVA_GET_GANG(&bp->blk_dva[i]))
 | 
						|
			size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
 | 
						|
 | 
						|
		ASSERT3P(vd, !=, NULL);
 | 
						|
 | 
						|
		metaslab_check_free_impl(vd, offset, size);
 | 
						|
	}
 | 
						|
	spa_config_exit(spa, SCL_VDEV, FTAG);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(_KERNEL) && defined(HAVE_SPL)
 | 
						|
/* CSTYLED */
 | 
						|
module_param(metaslab_aliquot, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(metaslab_aliquot,
 | 
						|
	"allocation granularity (a.k.a. stripe size)");
 | 
						|
 | 
						|
module_param(metaslab_debug_load, int, 0644);
 | 
						|
MODULE_PARM_DESC(metaslab_debug_load,
 | 
						|
	"load all metaslabs when pool is first opened");
 | 
						|
 | 
						|
module_param(metaslab_debug_unload, int, 0644);
 | 
						|
MODULE_PARM_DESC(metaslab_debug_unload,
 | 
						|
	"prevent metaslabs from being unloaded");
 | 
						|
 | 
						|
module_param(metaslab_preload_enabled, int, 0644);
 | 
						|
MODULE_PARM_DESC(metaslab_preload_enabled,
 | 
						|
	"preload potential metaslabs during reassessment");
 | 
						|
 | 
						|
module_param(zfs_mg_noalloc_threshold, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
 | 
						|
	"percentage of free space for metaslab group to allow allocation");
 | 
						|
 | 
						|
module_param(zfs_mg_fragmentation_threshold, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
 | 
						|
	"fragmentation for metaslab group to allow allocation");
 | 
						|
 | 
						|
module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
 | 
						|
	"fragmentation for metaslab to allow allocation");
 | 
						|
 | 
						|
module_param(metaslab_fragmentation_factor_enabled, int, 0644);
 | 
						|
MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
 | 
						|
	"use the fragmentation metric to prefer less fragmented metaslabs");
 | 
						|
 | 
						|
module_param(metaslab_lba_weighting_enabled, int, 0644);
 | 
						|
MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
 | 
						|
	"prefer metaslabs with lower LBAs");
 | 
						|
 | 
						|
module_param(metaslab_bias_enabled, int, 0644);
 | 
						|
MODULE_PARM_DESC(metaslab_bias_enabled,
 | 
						|
	"enable metaslab group biasing");
 | 
						|
 | 
						|
module_param(zfs_metaslab_segment_weight_enabled, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_metaslab_segment_weight_enabled,
 | 
						|
	"enable segment-based metaslab selection");
 | 
						|
 | 
						|
module_param(zfs_metaslab_switch_threshold, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_metaslab_switch_threshold,
 | 
						|
	"segment-based metaslab selection maximum buckets before switching");
 | 
						|
 | 
						|
/* CSTYLED */
 | 
						|
module_param(metaslab_force_ganging, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(metaslab_force_ganging,
 | 
						|
	"blocks larger than this size are forced to be gang blocks");
 | 
						|
#endif /* _KERNEL && HAVE_SPL */
 |