mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-11-04 03:00:20 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2282 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2282 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * CDDL HEADER START
 | 
						|
 *
 | 
						|
 * The contents of this file are subject to the terms of the
 | 
						|
 * Common Development and Distribution License (the "License").
 | 
						|
 * You may not use this file except in compliance with the License.
 | 
						|
 *
 | 
						|
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | 
						|
 * or http://www.opensolaris.org/os/licensing.
 | 
						|
 * See the License for the specific language governing permissions
 | 
						|
 * and limitations under the License.
 | 
						|
 *
 | 
						|
 * When distributing Covered Code, include this CDDL HEADER in each
 | 
						|
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | 
						|
 * If applicable, add the following below this CDDL HEADER, with the
 | 
						|
 * fields enclosed by brackets "[]" replaced with your own identifying
 | 
						|
 * information: Portions Copyright [yyyy] [name of copyright owner]
 | 
						|
 *
 | 
						|
 * CDDL HEADER END
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | 
						|
 */
 | 
						|
 | 
						|
/* Portions Copyright 2010 Robert Milkowski */
 | 
						|
 | 
						|
#include <sys/types.h>
 | 
						|
#include <sys/param.h>
 | 
						|
#include <sys/systm.h>
 | 
						|
#include <sys/sysmacros.h>
 | 
						|
#include <sys/kmem.h>
 | 
						|
#include <sys/pathname.h>
 | 
						|
#include <sys/vnode.h>
 | 
						|
#include <sys/vfs.h>
 | 
						|
#include <sys/vfs_opreg.h>
 | 
						|
#include <sys/mntent.h>
 | 
						|
#include <sys/mount.h>
 | 
						|
#include <sys/cmn_err.h>
 | 
						|
#include "fs/fs_subr.h"
 | 
						|
#include <sys/zfs_znode.h>
 | 
						|
#include <sys/zfs_dir.h>
 | 
						|
#include <sys/zil.h>
 | 
						|
#include <sys/fs/zfs.h>
 | 
						|
#include <sys/dmu.h>
 | 
						|
#include <sys/dsl_prop.h>
 | 
						|
#include <sys/dsl_dataset.h>
 | 
						|
#include <sys/dsl_deleg.h>
 | 
						|
#include <sys/spa.h>
 | 
						|
#include <sys/zap.h>
 | 
						|
#include <sys/sa.h>
 | 
						|
#include <sys/varargs.h>
 | 
						|
#include <sys/policy.h>
 | 
						|
#include <sys/atomic.h>
 | 
						|
#include <sys/mkdev.h>
 | 
						|
#include <sys/modctl.h>
 | 
						|
#include <sys/refstr.h>
 | 
						|
#include <sys/zfs_ioctl.h>
 | 
						|
#include <sys/zfs_ctldir.h>
 | 
						|
#include <sys/zfs_fuid.h>
 | 
						|
#include <sys/bootconf.h>
 | 
						|
#include <sys/sunddi.h>
 | 
						|
#include <sys/dnlc.h>
 | 
						|
#include <sys/dmu_objset.h>
 | 
						|
#include <sys/spa_boot.h>
 | 
						|
#include <sys/sa.h>
 | 
						|
#include "zfs_comutil.h"
 | 
						|
 | 
						|
int zfsfstype;
 | 
						|
vfsops_t *zfs_vfsops = NULL;
 | 
						|
static major_t zfs_major;
 | 
						|
static minor_t zfs_minor;
 | 
						|
static kmutex_t	zfs_dev_mtx;
 | 
						|
 | 
						|
extern int sys_shutdown;
 | 
						|
 | 
						|
static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
 | 
						|
static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
 | 
						|
static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
 | 
						|
static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
 | 
						|
static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
 | 
						|
static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
 | 
						|
static void zfs_freevfs(vfs_t *vfsp);
 | 
						|
 | 
						|
static const fs_operation_def_t zfs_vfsops_template[] = {
 | 
						|
	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
 | 
						|
	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
 | 
						|
	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
 | 
						|
	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
 | 
						|
	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
 | 
						|
	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
 | 
						|
	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
 | 
						|
	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
 | 
						|
	NULL,			NULL
 | 
						|
};
 | 
						|
 | 
						|
static const fs_operation_def_t zfs_vfsops_eio_template[] = {
 | 
						|
	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
 | 
						|
	NULL,			NULL
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * We need to keep a count of active fs's.
 | 
						|
 * This is necessary to prevent our module
 | 
						|
 * from being unloaded after a umount -f
 | 
						|
 */
 | 
						|
static uint32_t	zfs_active_fs_count = 0;
 | 
						|
 | 
						|
static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
 | 
						|
static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
 | 
						|
static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
 | 
						|
static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
 | 
						|
 | 
						|
/*
 | 
						|
 * MO_DEFAULT is not used since the default value is determined
 | 
						|
 * by the equivalent property.
 | 
						|
 */
 | 
						|
static mntopt_t mntopts[] = {
 | 
						|
	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
 | 
						|
	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
 | 
						|
	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
 | 
						|
	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
 | 
						|
};
 | 
						|
 | 
						|
static mntopts_t zfs_mntopts = {
 | 
						|
	sizeof (mntopts) / sizeof (mntopt_t),
 | 
						|
	mntopts
 | 
						|
};
 | 
						|
 | 
						|
/*ARGSUSED*/
 | 
						|
int
 | 
						|
zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Data integrity is job one.  We don't want a compromised kernel
 | 
						|
	 * writing to the storage pool, so we never sync during panic.
 | 
						|
	 */
 | 
						|
	if (panicstr)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
 | 
						|
	 * to sync metadata, which they would otherwise cache indefinitely.
 | 
						|
	 * Semantically, the only requirement is that the sync be initiated.
 | 
						|
	 * The DMU syncs out txgs frequently, so there's nothing to do.
 | 
						|
	 */
 | 
						|
	if (flag & SYNC_ATTR)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	if (vfsp != NULL) {
 | 
						|
		/*
 | 
						|
		 * Sync a specific filesystem.
 | 
						|
		 */
 | 
						|
		zfsvfs_t *zfsvfs = vfsp->vfs_data;
 | 
						|
		dsl_pool_t *dp;
 | 
						|
 | 
						|
		ZFS_ENTER(zfsvfs);
 | 
						|
		dp = dmu_objset_pool(zfsvfs->z_os);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the system is shutting down, then skip any
 | 
						|
		 * filesystems which may exist on a suspended pool.
 | 
						|
		 */
 | 
						|
		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
 | 
						|
			ZFS_EXIT(zfsvfs);
 | 
						|
			return (0);
 | 
						|
		}
 | 
						|
 | 
						|
		if (zfsvfs->z_log != NULL)
 | 
						|
			zil_commit(zfsvfs->z_log, 0);
 | 
						|
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Sync all ZFS filesystems.  This is what happens when you
 | 
						|
		 * run sync(1M).  Unlike other filesystems, ZFS honors the
 | 
						|
		 * request by waiting for all pools to commit all dirty data.
 | 
						|
		 */
 | 
						|
		spa_sync_allpools();
 | 
						|
	}
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zfs_create_unique_device(dev_t *dev)
 | 
						|
{
 | 
						|
	major_t new_major;
 | 
						|
 | 
						|
	do {
 | 
						|
		ASSERT3U(zfs_minor, <=, MAXMIN32);
 | 
						|
		minor_t start = zfs_minor;
 | 
						|
		do {
 | 
						|
			mutex_enter(&zfs_dev_mtx);
 | 
						|
			if (zfs_minor >= MAXMIN32) {
 | 
						|
				/*
 | 
						|
				 * If we're still using the real major
 | 
						|
				 * keep out of /dev/zfs and /dev/zvol minor
 | 
						|
				 * number space.  If we're using a getudev()'ed
 | 
						|
				 * major number, we can use all of its minors.
 | 
						|
				 */
 | 
						|
				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
 | 
						|
					zfs_minor = ZFS_MIN_MINOR;
 | 
						|
				else
 | 
						|
					zfs_minor = 0;
 | 
						|
			} else {
 | 
						|
				zfs_minor++;
 | 
						|
			}
 | 
						|
			*dev = makedevice(zfs_major, zfs_minor);
 | 
						|
			mutex_exit(&zfs_dev_mtx);
 | 
						|
		} while (vfs_devismounted(*dev) && zfs_minor != start);
 | 
						|
		if (zfs_minor == start) {
 | 
						|
			/*
 | 
						|
			 * We are using all ~262,000 minor numbers for the
 | 
						|
			 * current major number.  Create a new major number.
 | 
						|
			 */
 | 
						|
			if ((new_major = getudev()) == (major_t)-1) {
 | 
						|
				cmn_err(CE_WARN,
 | 
						|
				    "zfs_mount: Can't get unique major "
 | 
						|
				    "device number.");
 | 
						|
				return (-1);
 | 
						|
			}
 | 
						|
			mutex_enter(&zfs_dev_mtx);
 | 
						|
			zfs_major = new_major;
 | 
						|
			zfs_minor = 0;
 | 
						|
 | 
						|
			mutex_exit(&zfs_dev_mtx);
 | 
						|
		} else {
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		/* CONSTANTCONDITION */
 | 
						|
	} while (1);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
atime_changed_cb(void *arg, uint64_t newval)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = arg;
 | 
						|
 | 
						|
	if (newval == TRUE) {
 | 
						|
		zfsvfs->z_atime = TRUE;
 | 
						|
		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
 | 
						|
		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
 | 
						|
	} else {
 | 
						|
		zfsvfs->z_atime = FALSE;
 | 
						|
		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
 | 
						|
		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
xattr_changed_cb(void *arg, uint64_t newval)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = arg;
 | 
						|
 | 
						|
	if (newval == TRUE) {
 | 
						|
		/* XXX locking on vfs_flag? */
 | 
						|
		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
 | 
						|
		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
 | 
						|
		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
 | 
						|
	} else {
 | 
						|
		/* XXX locking on vfs_flag? */
 | 
						|
		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
 | 
						|
		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
 | 
						|
		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
blksz_changed_cb(void *arg, uint64_t newval)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = arg;
 | 
						|
 | 
						|
	if (newval < SPA_MINBLOCKSIZE ||
 | 
						|
	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
 | 
						|
		newval = SPA_MAXBLOCKSIZE;
 | 
						|
 | 
						|
	zfsvfs->z_max_blksz = newval;
 | 
						|
	zfsvfs->z_vfs->vfs_bsize = newval;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
readonly_changed_cb(void *arg, uint64_t newval)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = arg;
 | 
						|
 | 
						|
	if (newval) {
 | 
						|
		/* XXX locking on vfs_flag? */
 | 
						|
		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
 | 
						|
		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
 | 
						|
		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
 | 
						|
	} else {
 | 
						|
		/* XXX locking on vfs_flag? */
 | 
						|
		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
 | 
						|
		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
 | 
						|
		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
devices_changed_cb(void *arg, uint64_t newval)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = arg;
 | 
						|
 | 
						|
	if (newval == FALSE) {
 | 
						|
		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
 | 
						|
		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
 | 
						|
		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
 | 
						|
	} else {
 | 
						|
		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
 | 
						|
		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
 | 
						|
		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
setuid_changed_cb(void *arg, uint64_t newval)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = arg;
 | 
						|
 | 
						|
	if (newval == FALSE) {
 | 
						|
		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
 | 
						|
		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
 | 
						|
		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
 | 
						|
	} else {
 | 
						|
		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
 | 
						|
		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
 | 
						|
		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
exec_changed_cb(void *arg, uint64_t newval)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = arg;
 | 
						|
 | 
						|
	if (newval == FALSE) {
 | 
						|
		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
 | 
						|
		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
 | 
						|
		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
 | 
						|
	} else {
 | 
						|
		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
 | 
						|
		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
 | 
						|
		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The nbmand mount option can be changed at mount time.
 | 
						|
 * We can't allow it to be toggled on live file systems or incorrect
 | 
						|
 * behavior may be seen from cifs clients
 | 
						|
 *
 | 
						|
 * This property isn't registered via dsl_prop_register(), but this callback
 | 
						|
 * will be called when a file system is first mounted
 | 
						|
 */
 | 
						|
static void
 | 
						|
nbmand_changed_cb(void *arg, uint64_t newval)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = arg;
 | 
						|
	if (newval == FALSE) {
 | 
						|
		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
 | 
						|
		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
 | 
						|
	} else {
 | 
						|
		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
 | 
						|
		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
snapdir_changed_cb(void *arg, uint64_t newval)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = arg;
 | 
						|
 | 
						|
	zfsvfs->z_show_ctldir = newval;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
vscan_changed_cb(void *arg, uint64_t newval)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = arg;
 | 
						|
 | 
						|
	zfsvfs->z_vscan = newval;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
acl_inherit_changed_cb(void *arg, uint64_t newval)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = arg;
 | 
						|
 | 
						|
	zfsvfs->z_acl_inherit = newval;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zfs_register_callbacks(vfs_t *vfsp)
 | 
						|
{
 | 
						|
	struct dsl_dataset *ds = NULL;
 | 
						|
	objset_t *os = NULL;
 | 
						|
	zfsvfs_t *zfsvfs = NULL;
 | 
						|
	uint64_t nbmand;
 | 
						|
	int readonly, do_readonly = B_FALSE;
 | 
						|
	int setuid, do_setuid = B_FALSE;
 | 
						|
	int exec, do_exec = B_FALSE;
 | 
						|
	int devices, do_devices = B_FALSE;
 | 
						|
	int xattr, do_xattr = B_FALSE;
 | 
						|
	int atime, do_atime = B_FALSE;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	ASSERT(vfsp);
 | 
						|
	zfsvfs = vfsp->vfs_data;
 | 
						|
	ASSERT(zfsvfs);
 | 
						|
	os = zfsvfs->z_os;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The act of registering our callbacks will destroy any mount
 | 
						|
	 * options we may have.  In order to enable temporary overrides
 | 
						|
	 * of mount options, we stash away the current values and
 | 
						|
	 * restore them after we register the callbacks.
 | 
						|
	 */
 | 
						|
	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
 | 
						|
	    !spa_writeable(dmu_objset_spa(os))) {
 | 
						|
		readonly = B_TRUE;
 | 
						|
		do_readonly = B_TRUE;
 | 
						|
	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
 | 
						|
		readonly = B_FALSE;
 | 
						|
		do_readonly = B_TRUE;
 | 
						|
	}
 | 
						|
	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
 | 
						|
		devices = B_FALSE;
 | 
						|
		setuid = B_FALSE;
 | 
						|
		do_devices = B_TRUE;
 | 
						|
		do_setuid = B_TRUE;
 | 
						|
	} else {
 | 
						|
		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
 | 
						|
			devices = B_FALSE;
 | 
						|
			do_devices = B_TRUE;
 | 
						|
		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
 | 
						|
			devices = B_TRUE;
 | 
						|
			do_devices = B_TRUE;
 | 
						|
		}
 | 
						|
 | 
						|
		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
 | 
						|
			setuid = B_FALSE;
 | 
						|
			do_setuid = B_TRUE;
 | 
						|
		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
 | 
						|
			setuid = B_TRUE;
 | 
						|
			do_setuid = B_TRUE;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
 | 
						|
		exec = B_FALSE;
 | 
						|
		do_exec = B_TRUE;
 | 
						|
	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
 | 
						|
		exec = B_TRUE;
 | 
						|
		do_exec = B_TRUE;
 | 
						|
	}
 | 
						|
	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
 | 
						|
		xattr = B_FALSE;
 | 
						|
		do_xattr = B_TRUE;
 | 
						|
	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
 | 
						|
		xattr = B_TRUE;
 | 
						|
		do_xattr = B_TRUE;
 | 
						|
	}
 | 
						|
	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
 | 
						|
		atime = B_FALSE;
 | 
						|
		do_atime = B_TRUE;
 | 
						|
	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
 | 
						|
		atime = B_TRUE;
 | 
						|
		do_atime = B_TRUE;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * nbmand is a special property.  It can only be changed at
 | 
						|
	 * mount time.
 | 
						|
	 *
 | 
						|
	 * This is weird, but it is documented to only be changeable
 | 
						|
	 * at mount time.
 | 
						|
	 */
 | 
						|
	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
 | 
						|
		nbmand = B_FALSE;
 | 
						|
	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
 | 
						|
		nbmand = B_TRUE;
 | 
						|
	} else {
 | 
						|
		char osname[MAXNAMELEN];
 | 
						|
 | 
						|
		dmu_objset_name(os, osname);
 | 
						|
		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
 | 
						|
		    NULL)) {
 | 
						|
			return (error);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Register property callbacks.
 | 
						|
	 *
 | 
						|
	 * It would probably be fine to just check for i/o error from
 | 
						|
	 * the first prop_register(), but I guess I like to go
 | 
						|
	 * overboard...
 | 
						|
	 */
 | 
						|
	ds = dmu_objset_ds(os);
 | 
						|
	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
 | 
						|
	error = error ? error : dsl_prop_register(ds,
 | 
						|
	    "xattr", xattr_changed_cb, zfsvfs);
 | 
						|
	error = error ? error : dsl_prop_register(ds,
 | 
						|
	    "recordsize", blksz_changed_cb, zfsvfs);
 | 
						|
	error = error ? error : dsl_prop_register(ds,
 | 
						|
	    "readonly", readonly_changed_cb, zfsvfs);
 | 
						|
	error = error ? error : dsl_prop_register(ds,
 | 
						|
	    "devices", devices_changed_cb, zfsvfs);
 | 
						|
	error = error ? error : dsl_prop_register(ds,
 | 
						|
	    "setuid", setuid_changed_cb, zfsvfs);
 | 
						|
	error = error ? error : dsl_prop_register(ds,
 | 
						|
	    "exec", exec_changed_cb, zfsvfs);
 | 
						|
	error = error ? error : dsl_prop_register(ds,
 | 
						|
	    "snapdir", snapdir_changed_cb, zfsvfs);
 | 
						|
	error = error ? error : dsl_prop_register(ds,
 | 
						|
	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
 | 
						|
	error = error ? error : dsl_prop_register(ds,
 | 
						|
	    "vscan", vscan_changed_cb, zfsvfs);
 | 
						|
	if (error)
 | 
						|
		goto unregister;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Invoke our callbacks to restore temporary mount options.
 | 
						|
	 */
 | 
						|
	if (do_readonly)
 | 
						|
		readonly_changed_cb(zfsvfs, readonly);
 | 
						|
	if (do_setuid)
 | 
						|
		setuid_changed_cb(zfsvfs, setuid);
 | 
						|
	if (do_exec)
 | 
						|
		exec_changed_cb(zfsvfs, exec);
 | 
						|
	if (do_devices)
 | 
						|
		devices_changed_cb(zfsvfs, devices);
 | 
						|
	if (do_xattr)
 | 
						|
		xattr_changed_cb(zfsvfs, xattr);
 | 
						|
	if (do_atime)
 | 
						|
		atime_changed_cb(zfsvfs, atime);
 | 
						|
 | 
						|
	nbmand_changed_cb(zfsvfs, nbmand);
 | 
						|
 | 
						|
	return (0);
 | 
						|
 | 
						|
unregister:
 | 
						|
	/*
 | 
						|
	 * We may attempt to unregister some callbacks that are not
 | 
						|
	 * registered, but this is OK; it will simply return ENOMSG,
 | 
						|
	 * which we will ignore.
 | 
						|
	 */
 | 
						|
	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
 | 
						|
	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
 | 
						|
	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
 | 
						|
	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
 | 
						|
	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
 | 
						|
	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
 | 
						|
	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
 | 
						|
	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
 | 
						|
	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
 | 
						|
	    zfsvfs);
 | 
						|
	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
 | 
						|
	return (error);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
 | 
						|
    uint64_t *userp, uint64_t *groupp)
 | 
						|
{
 | 
						|
	znode_phys_t *znp = data;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Is it a valid type of object to track?
 | 
						|
	 */
 | 
						|
	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
 | 
						|
		return (ENOENT);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we have a NULL data pointer
 | 
						|
	 * then assume the id's aren't changing and
 | 
						|
	 * return EEXIST to the dmu to let it know to
 | 
						|
	 * use the same ids
 | 
						|
	 */
 | 
						|
	if (data == NULL)
 | 
						|
		return (EEXIST);
 | 
						|
 | 
						|
	if (bonustype == DMU_OT_ZNODE) {
 | 
						|
		*userp = znp->zp_uid;
 | 
						|
		*groupp = znp->zp_gid;
 | 
						|
	} else {
 | 
						|
		int hdrsize;
 | 
						|
 | 
						|
		ASSERT(bonustype == DMU_OT_SA);
 | 
						|
		hdrsize = sa_hdrsize(data);
 | 
						|
 | 
						|
		if (hdrsize != 0) {
 | 
						|
			*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
 | 
						|
			    SA_UID_OFFSET));
 | 
						|
			*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
 | 
						|
			    SA_GID_OFFSET));
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * This should only happen for newly created
 | 
						|
			 * files that haven't had the znode data filled
 | 
						|
			 * in yet.
 | 
						|
			 */
 | 
						|
			*userp = 0;
 | 
						|
			*groupp = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
 | 
						|
    char *domainbuf, int buflen, uid_t *ridp)
 | 
						|
{
 | 
						|
	uint64_t fuid;
 | 
						|
	const char *domain;
 | 
						|
 | 
						|
	fuid = strtonum(fuidstr, NULL);
 | 
						|
 | 
						|
	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
 | 
						|
	if (domain)
 | 
						|
		(void) strlcpy(domainbuf, domain, buflen);
 | 
						|
	else
 | 
						|
		domainbuf[0] = '\0';
 | 
						|
	*ridp = FUID_RID(fuid);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t
 | 
						|
zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
 | 
						|
{
 | 
						|
	switch (type) {
 | 
						|
	case ZFS_PROP_USERUSED:
 | 
						|
		return (DMU_USERUSED_OBJECT);
 | 
						|
	case ZFS_PROP_GROUPUSED:
 | 
						|
		return (DMU_GROUPUSED_OBJECT);
 | 
						|
	case ZFS_PROP_USERQUOTA:
 | 
						|
		return (zfsvfs->z_userquota_obj);
 | 
						|
	case ZFS_PROP_GROUPQUOTA:
 | 
						|
		return (zfsvfs->z_groupquota_obj);
 | 
						|
	}
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
 | 
						|
    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
	zap_cursor_t zc;
 | 
						|
	zap_attribute_t za;
 | 
						|
	zfs_useracct_t *buf = vbuf;
 | 
						|
	uint64_t obj;
 | 
						|
 | 
						|
	if (!dmu_objset_userspace_present(zfsvfs->z_os))
 | 
						|
		return (ENOTSUP);
 | 
						|
 | 
						|
	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
 | 
						|
	if (obj == 0) {
 | 
						|
		*bufsizep = 0;
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
 | 
						|
	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
 | 
						|
	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
 | 
						|
	    zap_cursor_advance(&zc)) {
 | 
						|
		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
 | 
						|
		    *bufsizep)
 | 
						|
			break;
 | 
						|
 | 
						|
		fuidstr_to_sid(zfsvfs, za.za_name,
 | 
						|
		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
 | 
						|
 | 
						|
		buf->zu_space = za.za_first_integer;
 | 
						|
		buf++;
 | 
						|
	}
 | 
						|
	if (error == ENOENT)
 | 
						|
		error = 0;
 | 
						|
 | 
						|
	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
 | 
						|
	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
 | 
						|
	*cookiep = zap_cursor_serialize(&zc);
 | 
						|
	zap_cursor_fini(&zc);
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * buf must be big enough (eg, 32 bytes)
 | 
						|
 */
 | 
						|
static int
 | 
						|
id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
 | 
						|
    char *buf, boolean_t addok)
 | 
						|
{
 | 
						|
	uint64_t fuid;
 | 
						|
	int domainid = 0;
 | 
						|
 | 
						|
	if (domain && domain[0]) {
 | 
						|
		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
 | 
						|
		if (domainid == -1)
 | 
						|
			return (ENOENT);
 | 
						|
	}
 | 
						|
	fuid = FUID_ENCODE(domainid, rid);
 | 
						|
	(void) sprintf(buf, "%llx", (longlong_t)fuid);
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
 | 
						|
    const char *domain, uint64_t rid, uint64_t *valp)
 | 
						|
{
 | 
						|
	char buf[32];
 | 
						|
	int err;
 | 
						|
	uint64_t obj;
 | 
						|
 | 
						|
	*valp = 0;
 | 
						|
 | 
						|
	if (!dmu_objset_userspace_present(zfsvfs->z_os))
 | 
						|
		return (ENOTSUP);
 | 
						|
 | 
						|
	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
 | 
						|
	if (obj == 0)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
 | 
						|
	if (err)
 | 
						|
		return (err);
 | 
						|
 | 
						|
	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
 | 
						|
	if (err == ENOENT)
 | 
						|
		err = 0;
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
 | 
						|
    const char *domain, uint64_t rid, uint64_t quota)
 | 
						|
{
 | 
						|
	char buf[32];
 | 
						|
	int err;
 | 
						|
	dmu_tx_t *tx;
 | 
						|
	uint64_t *objp;
 | 
						|
	boolean_t fuid_dirtied;
 | 
						|
 | 
						|
	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
 | 
						|
		return (EINVAL);
 | 
						|
 | 
						|
	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
 | 
						|
		return (ENOTSUP);
 | 
						|
 | 
						|
	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
 | 
						|
	    &zfsvfs->z_groupquota_obj;
 | 
						|
 | 
						|
	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
 | 
						|
	if (err)
 | 
						|
		return (err);
 | 
						|
	fuid_dirtied = zfsvfs->z_fuid_dirty;
 | 
						|
 | 
						|
	tx = dmu_tx_create(zfsvfs->z_os);
 | 
						|
	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
 | 
						|
	if (*objp == 0) {
 | 
						|
		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
 | 
						|
		    zfs_userquota_prop_prefixes[type]);
 | 
						|
	}
 | 
						|
	if (fuid_dirtied)
 | 
						|
		zfs_fuid_txhold(zfsvfs, tx);
 | 
						|
	err = dmu_tx_assign(tx, TXG_WAIT);
 | 
						|
	if (err) {
 | 
						|
		dmu_tx_abort(tx);
 | 
						|
		return (err);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_enter(&zfsvfs->z_lock);
 | 
						|
	if (*objp == 0) {
 | 
						|
		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
 | 
						|
		    DMU_OT_NONE, 0, tx);
 | 
						|
		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
 | 
						|
		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
 | 
						|
	}
 | 
						|
	mutex_exit(&zfsvfs->z_lock);
 | 
						|
 | 
						|
	if (quota == 0) {
 | 
						|
		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
 | 
						|
		if (err == ENOENT)
 | 
						|
			err = 0;
 | 
						|
	} else {
 | 
						|
		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx);
 | 
						|
	}
 | 
						|
	ASSERT(err == 0);
 | 
						|
	if (fuid_dirtied)
 | 
						|
		zfs_fuid_sync(zfsvfs, tx);
 | 
						|
	dmu_tx_commit(tx);
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
 | 
						|
{
 | 
						|
	char buf[32];
 | 
						|
	uint64_t used, quota, usedobj, quotaobj;
 | 
						|
	int err;
 | 
						|
 | 
						|
	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
 | 
						|
	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
 | 
						|
 | 
						|
	if (quotaobj == 0 || zfsvfs->z_replay)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	(void) sprintf(buf, "%llx", (longlong_t)fuid);
 | 
						|
	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a);
 | 
						|
	if (err != 0)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
 | 
						|
	if (err != 0)
 | 
						|
		return (B_FALSE);
 | 
						|
	return (used >= quota);
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
 | 
						|
{
 | 
						|
	uint64_t fuid;
 | 
						|
	uint64_t quotaobj;
 | 
						|
 | 
						|
	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
 | 
						|
 | 
						|
	fuid = isgroup ? zp->z_gid : zp->z_uid;
 | 
						|
 | 
						|
	if (quotaobj == 0 || zfsvfs->z_replay)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
 | 
						|
{
 | 
						|
	objset_t *os;
 | 
						|
	zfsvfs_t *zfsvfs;
 | 
						|
	uint64_t zval;
 | 
						|
	int i, error;
 | 
						|
	uint64_t sa_obj;
 | 
						|
 | 
						|
	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We claim to always be readonly so we can open snapshots;
 | 
						|
	 * other ZPL code will prevent us from writing to snapshots.
 | 
						|
	 */
 | 
						|
	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
 | 
						|
	if (error) {
 | 
						|
		kmem_free(zfsvfs, sizeof (zfsvfs_t));
 | 
						|
		return (error);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize the zfs-specific filesystem structure.
 | 
						|
	 * Should probably make this a kmem cache, shuffle fields,
 | 
						|
	 * and just bzero up to z_hold_mtx[].
 | 
						|
	 */
 | 
						|
	zfsvfs->z_vfs = NULL;
 | 
						|
	zfsvfs->z_parent = zfsvfs;
 | 
						|
	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
 | 
						|
	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
 | 
						|
	zfsvfs->z_os = os;
 | 
						|
 | 
						|
	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
 | 
						|
	if (error) {
 | 
						|
		goto out;
 | 
						|
	} else if (zfsvfs->z_version >
 | 
						|
	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
 | 
						|
		(void) printf("Can't mount a version %lld file system "
 | 
						|
		    "on a version %lld pool\n. Pool must be upgraded to mount "
 | 
						|
		    "this file system.", (u_longlong_t)zfsvfs->z_version,
 | 
						|
		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
 | 
						|
		error = ENOTSUP;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
 | 
						|
		goto out;
 | 
						|
	zfsvfs->z_norm = (int)zval;
 | 
						|
 | 
						|
	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
 | 
						|
		goto out;
 | 
						|
	zfsvfs->z_utf8 = (zval != 0);
 | 
						|
 | 
						|
	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
 | 
						|
		goto out;
 | 
						|
	zfsvfs->z_case = (uint_t)zval;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Fold case on file systems that are always or sometimes case
 | 
						|
	 * insensitive.
 | 
						|
	 */
 | 
						|
	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
 | 
						|
	    zfsvfs->z_case == ZFS_CASE_MIXED)
 | 
						|
		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
 | 
						|
 | 
						|
	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
 | 
						|
	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
 | 
						|
 | 
						|
	if (zfsvfs->z_use_sa) {
 | 
						|
		/* should either have both of these objects or none */
 | 
						|
		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
 | 
						|
		    &sa_obj);
 | 
						|
		if (error)
 | 
						|
			return (error);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Pre SA versions file systems should never touch
 | 
						|
		 * either the attribute registration or layout objects.
 | 
						|
		 */
 | 
						|
		sa_obj = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
 | 
						|
	    &zfsvfs->z_attr_table);
 | 
						|
	if (error)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (zfsvfs->z_version >= ZPL_VERSION_SA)
 | 
						|
		sa_register_update_callback(os, zfs_sa_upgrade);
 | 
						|
 | 
						|
	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
 | 
						|
	    &zfsvfs->z_root);
 | 
						|
	if (error)
 | 
						|
		goto out;
 | 
						|
	ASSERT(zfsvfs->z_root != 0);
 | 
						|
 | 
						|
	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
 | 
						|
	    &zfsvfs->z_unlinkedobj);
 | 
						|
	if (error)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	error = zap_lookup(os, MASTER_NODE_OBJ,
 | 
						|
	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
 | 
						|
	    8, 1, &zfsvfs->z_userquota_obj);
 | 
						|
	if (error && error != ENOENT)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	error = zap_lookup(os, MASTER_NODE_OBJ,
 | 
						|
	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
 | 
						|
	    8, 1, &zfsvfs->z_groupquota_obj);
 | 
						|
	if (error && error != ENOENT)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
 | 
						|
	    &zfsvfs->z_fuid_obj);
 | 
						|
	if (error && error != ENOENT)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
 | 
						|
	    &zfsvfs->z_shares_dir);
 | 
						|
	if (error && error != ENOENT)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
 | 
						|
	    offsetof(znode_t, z_link_node));
 | 
						|
	rrw_init(&zfsvfs->z_teardown_lock);
 | 
						|
	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
 | 
						|
	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
 | 
						|
	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
 | 
						|
		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
 | 
						|
 | 
						|
	*zfvp = zfsvfs;
 | 
						|
	return (0);
 | 
						|
 | 
						|
out:
 | 
						|
	dmu_objset_disown(os, zfsvfs);
 | 
						|
	*zfvp = NULL;
 | 
						|
	kmem_free(zfsvfs, sizeof (zfsvfs_t));
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
 | 
						|
	error = zfs_register_callbacks(zfsvfs->z_vfs);
 | 
						|
	if (error)
 | 
						|
		return (error);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set the objset user_ptr to track its zfsvfs.
 | 
						|
	 */
 | 
						|
	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
 | 
						|
	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
 | 
						|
	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
 | 
						|
 | 
						|
	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are not mounting (ie: online recv), then we don't
 | 
						|
	 * have to worry about replaying the log as we blocked all
 | 
						|
	 * operations out since we closed the ZIL.
 | 
						|
	 */
 | 
						|
	if (mounting) {
 | 
						|
		boolean_t readonly;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * During replay we remove the read only flag to
 | 
						|
		 * allow replays to succeed.
 | 
						|
		 */
 | 
						|
		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
 | 
						|
		if (readonly != 0)
 | 
						|
			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
 | 
						|
		else
 | 
						|
			zfs_unlinked_drain(zfsvfs);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Parse and replay the intent log.
 | 
						|
		 *
 | 
						|
		 * Because of ziltest, this must be done after
 | 
						|
		 * zfs_unlinked_drain().  (Further note: ziltest
 | 
						|
		 * doesn't use readonly mounts, where
 | 
						|
		 * zfs_unlinked_drain() isn't called.)  This is because
 | 
						|
		 * ziltest causes spa_sync() to think it's committed,
 | 
						|
		 * but actually it is not, so the intent log contains
 | 
						|
		 * many txg's worth of changes.
 | 
						|
		 *
 | 
						|
		 * In particular, if object N is in the unlinked set in
 | 
						|
		 * the last txg to actually sync, then it could be
 | 
						|
		 * actually freed in a later txg and then reallocated
 | 
						|
		 * in a yet later txg.  This would write a "create
 | 
						|
		 * object N" record to the intent log.  Normally, this
 | 
						|
		 * would be fine because the spa_sync() would have
 | 
						|
		 * written out the fact that object N is free, before
 | 
						|
		 * we could write the "create object N" intent log
 | 
						|
		 * record.
 | 
						|
		 *
 | 
						|
		 * But when we are in ziltest mode, we advance the "open
 | 
						|
		 * txg" without actually spa_sync()-ing the changes to
 | 
						|
		 * disk.  So we would see that object N is still
 | 
						|
		 * allocated and in the unlinked set, and there is an
 | 
						|
		 * intent log record saying to allocate it.
 | 
						|
		 */
 | 
						|
		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
 | 
						|
			if (zil_replay_disable) {
 | 
						|
				zil_destroy(zfsvfs->z_log, B_FALSE);
 | 
						|
			} else {
 | 
						|
				zfsvfs->z_replay = B_TRUE;
 | 
						|
				zil_replay(zfsvfs->z_os, zfsvfs,
 | 
						|
				    zfs_replay_vector);
 | 
						|
				zfsvfs->z_replay = B_FALSE;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
 | 
						|
	}
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
zfsvfs_free(zfsvfs_t *zfsvfs)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is a barrier to prevent the filesystem from going away in
 | 
						|
	 * zfs_znode_move() until we can safely ensure that the filesystem is
 | 
						|
	 * not unmounted. We consider the filesystem valid before the barrier
 | 
						|
	 * and invalid after the barrier.
 | 
						|
	 */
 | 
						|
	rw_enter(&zfsvfs_lock, RW_READER);
 | 
						|
	rw_exit(&zfsvfs_lock);
 | 
						|
 | 
						|
	zfs_fuid_destroy(zfsvfs);
 | 
						|
 | 
						|
	mutex_destroy(&zfsvfs->z_znodes_lock);
 | 
						|
	mutex_destroy(&zfsvfs->z_lock);
 | 
						|
	list_destroy(&zfsvfs->z_all_znodes);
 | 
						|
	rrw_destroy(&zfsvfs->z_teardown_lock);
 | 
						|
	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
 | 
						|
	rw_destroy(&zfsvfs->z_fuid_lock);
 | 
						|
	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
 | 
						|
		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
 | 
						|
	kmem_free(zfsvfs, sizeof (zfsvfs_t));
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
 | 
						|
{
 | 
						|
	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
 | 
						|
	if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
 | 
						|
		vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
 | 
						|
		vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
 | 
						|
		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
 | 
						|
		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
 | 
						|
		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
 | 
						|
		vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
 | 
						|
	}
 | 
						|
	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zfs_domount(vfs_t *vfsp, char *osname)
 | 
						|
{
 | 
						|
	dev_t mount_dev;
 | 
						|
	uint64_t recordsize, fsid_guid;
 | 
						|
	int error = 0;
 | 
						|
	zfsvfs_t *zfsvfs;
 | 
						|
 | 
						|
	ASSERT(vfsp);
 | 
						|
	ASSERT(osname);
 | 
						|
 | 
						|
	error = zfsvfs_create(osname, &zfsvfs);
 | 
						|
	if (error)
 | 
						|
		return (error);
 | 
						|
	zfsvfs->z_vfs = vfsp;
 | 
						|
 | 
						|
	/* Initialize the generic filesystem structure. */
 | 
						|
	vfsp->vfs_bcount = 0;
 | 
						|
	vfsp->vfs_data = NULL;
 | 
						|
 | 
						|
	if (zfs_create_unique_device(&mount_dev) == -1) {
 | 
						|
		error = ENODEV;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	ASSERT(vfs_devismounted(mount_dev) == 0);
 | 
						|
 | 
						|
	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
 | 
						|
	    NULL))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	vfsp->vfs_dev = mount_dev;
 | 
						|
	vfsp->vfs_fstype = zfsfstype;
 | 
						|
	vfsp->vfs_bsize = recordsize;
 | 
						|
	vfsp->vfs_flag |= VFS_NOTRUNC;
 | 
						|
	vfsp->vfs_data = zfsvfs;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The fsid is 64 bits, composed of an 8-bit fs type, which
 | 
						|
	 * separates our fsid from any other filesystem types, and a
 | 
						|
	 * 56-bit objset unique ID.  The objset unique ID is unique to
 | 
						|
	 * all objsets open on this system, provided by unique_create().
 | 
						|
	 * The 8-bit fs type must be put in the low bits of fsid[1]
 | 
						|
	 * because that's where other Solaris filesystems put it.
 | 
						|
	 */
 | 
						|
	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
 | 
						|
	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
 | 
						|
	vfsp->vfs_fsid.val[0] = fsid_guid;
 | 
						|
	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
 | 
						|
	    zfsfstype & 0xFF;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set features for file system.
 | 
						|
	 */
 | 
						|
	zfs_set_fuid_feature(zfsvfs);
 | 
						|
	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
 | 
						|
		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
 | 
						|
		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
 | 
						|
		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
 | 
						|
	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
 | 
						|
		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
 | 
						|
		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
 | 
						|
	}
 | 
						|
	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
 | 
						|
 | 
						|
	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
 | 
						|
		uint64_t pval;
 | 
						|
 | 
						|
		atime_changed_cb(zfsvfs, B_FALSE);
 | 
						|
		readonly_changed_cb(zfsvfs, B_TRUE);
 | 
						|
		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
 | 
						|
			goto out;
 | 
						|
		xattr_changed_cb(zfsvfs, pval);
 | 
						|
		zfsvfs->z_issnap = B_TRUE;
 | 
						|
		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
 | 
						|
 | 
						|
		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
 | 
						|
		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
 | 
						|
		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
 | 
						|
	} else {
 | 
						|
		error = zfsvfs_setup(zfsvfs, B_TRUE);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!zfsvfs->z_issnap)
 | 
						|
		zfsctl_create(zfsvfs);
 | 
						|
out:
 | 
						|
	if (error) {
 | 
						|
		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
 | 
						|
		zfsvfs_free(zfsvfs);
 | 
						|
	} else {
 | 
						|
		atomic_add_32(&zfs_active_fs_count, 1);
 | 
						|
	}
 | 
						|
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
 | 
						|
{
 | 
						|
	objset_t *os = zfsvfs->z_os;
 | 
						|
	struct dsl_dataset *ds;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Unregister properties.
 | 
						|
	 */
 | 
						|
	if (!dmu_objset_is_snapshot(os)) {
 | 
						|
		ds = dmu_objset_ds(os);
 | 
						|
		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
 | 
						|
		    zfsvfs) == 0);
 | 
						|
 | 
						|
		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
 | 
						|
		    zfsvfs) == 0);
 | 
						|
 | 
						|
		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
 | 
						|
		    zfsvfs) == 0);
 | 
						|
 | 
						|
		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
 | 
						|
		    zfsvfs) == 0);
 | 
						|
 | 
						|
		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
 | 
						|
		    zfsvfs) == 0);
 | 
						|
 | 
						|
		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
 | 
						|
		    zfsvfs) == 0);
 | 
						|
 | 
						|
		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
 | 
						|
		    zfsvfs) == 0);
 | 
						|
 | 
						|
		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
 | 
						|
		    zfsvfs) == 0);
 | 
						|
 | 
						|
		VERIFY(dsl_prop_unregister(ds, "aclinherit",
 | 
						|
		    acl_inherit_changed_cb, zfsvfs) == 0);
 | 
						|
 | 
						|
		VERIFY(dsl_prop_unregister(ds, "vscan",
 | 
						|
		    vscan_changed_cb, zfsvfs) == 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert a decimal digit string to a uint64_t integer.
 | 
						|
 */
 | 
						|
static int
 | 
						|
str_to_uint64(char *str, uint64_t *objnum)
 | 
						|
{
 | 
						|
	uint64_t num = 0;
 | 
						|
 | 
						|
	while (*str) {
 | 
						|
		if (*str < '0' || *str > '9')
 | 
						|
			return (EINVAL);
 | 
						|
 | 
						|
		num = num*10 + *str++ - '0';
 | 
						|
	}
 | 
						|
 | 
						|
	*objnum = num;
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The boot path passed from the boot loader is in the form of
 | 
						|
 * "rootpool-name/root-filesystem-object-number'. Convert this
 | 
						|
 * string to a dataset name: "rootpool-name/root-filesystem-name".
 | 
						|
 */
 | 
						|
static int
 | 
						|
zfs_parse_bootfs(char *bpath, char *outpath)
 | 
						|
{
 | 
						|
	char *slashp;
 | 
						|
	uint64_t objnum;
 | 
						|
	int error;
 | 
						|
 | 
						|
	if (*bpath == 0 || *bpath == '/')
 | 
						|
		return (EINVAL);
 | 
						|
 | 
						|
	(void) strcpy(outpath, bpath);
 | 
						|
 | 
						|
	slashp = strchr(bpath, '/');
 | 
						|
 | 
						|
	/* if no '/', just return the pool name */
 | 
						|
	if (slashp == NULL) {
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
 | 
						|
	/* if not a number, just return the root dataset name */
 | 
						|
	if (str_to_uint64(slashp+1, &objnum)) {
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
 | 
						|
	*slashp = '\0';
 | 
						|
	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
 | 
						|
	*slashp = '/';
 | 
						|
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * zfs_check_global_label:
 | 
						|
 *	Check that the hex label string is appropriate for the dataset
 | 
						|
 *	being mounted into the global_zone proper.
 | 
						|
 *
 | 
						|
 *	Return an error if the hex label string is not default or
 | 
						|
 *	admin_low/admin_high.  For admin_low labels, the corresponding
 | 
						|
 *	dataset must be readonly.
 | 
						|
 */
 | 
						|
int
 | 
						|
zfs_check_global_label(const char *dsname, const char *hexsl)
 | 
						|
{
 | 
						|
	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
 | 
						|
		return (0);
 | 
						|
	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
 | 
						|
		return (0);
 | 
						|
	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
 | 
						|
		/* must be readonly */
 | 
						|
		uint64_t rdonly;
 | 
						|
 | 
						|
		if (dsl_prop_get_integer(dsname,
 | 
						|
		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
 | 
						|
			return (EACCES);
 | 
						|
		return (rdonly ? 0 : EACCES);
 | 
						|
	}
 | 
						|
	return (EACCES);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * zfs_mount_label_policy:
 | 
						|
 *	Determine whether the mount is allowed according to MAC check.
 | 
						|
 *	by comparing (where appropriate) label of the dataset against
 | 
						|
 *	the label of the zone being mounted into.  If the dataset has
 | 
						|
 *	no label, create one.
 | 
						|
 *
 | 
						|
 *	Returns:
 | 
						|
 *		 0 :	access allowed
 | 
						|
 *		>0 :	error code, such as EACCES
 | 
						|
 */
 | 
						|
static int
 | 
						|
zfs_mount_label_policy(vfs_t *vfsp, char *osname)
 | 
						|
{
 | 
						|
	int		error, retv;
 | 
						|
	zone_t		*mntzone = NULL;
 | 
						|
	ts_label_t	*mnt_tsl;
 | 
						|
	bslabel_t	*mnt_sl;
 | 
						|
	bslabel_t	ds_sl;
 | 
						|
	char		ds_hexsl[MAXNAMELEN];
 | 
						|
 | 
						|
	retv = EACCES;				/* assume the worst */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Start by getting the dataset label if it exists.
 | 
						|
	 */
 | 
						|
	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
 | 
						|
	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
 | 
						|
	if (error)
 | 
						|
		return (EACCES);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If labeling is NOT enabled, then disallow the mount of datasets
 | 
						|
	 * which have a non-default label already.  No other label checks
 | 
						|
	 * are needed.
 | 
						|
	 */
 | 
						|
	if (!is_system_labeled()) {
 | 
						|
		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
 | 
						|
			return (0);
 | 
						|
		return (EACCES);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get the label of the mountpoint.  If mounting into the global
 | 
						|
	 * zone (i.e. mountpoint is not within an active zone and the
 | 
						|
	 * zoned property is off), the label must be default or
 | 
						|
	 * admin_low/admin_high only; no other checks are needed.
 | 
						|
	 */
 | 
						|
	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
 | 
						|
	if (mntzone->zone_id == GLOBAL_ZONEID) {
 | 
						|
		uint64_t zoned;
 | 
						|
 | 
						|
		zone_rele(mntzone);
 | 
						|
 | 
						|
		if (dsl_prop_get_integer(osname,
 | 
						|
		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
 | 
						|
			return (EACCES);
 | 
						|
		if (!zoned)
 | 
						|
			return (zfs_check_global_label(osname, ds_hexsl));
 | 
						|
		else
 | 
						|
			/*
 | 
						|
			 * This is the case of a zone dataset being mounted
 | 
						|
			 * initially, before the zone has been fully created;
 | 
						|
			 * allow this mount into global zone.
 | 
						|
			 */
 | 
						|
			return (0);
 | 
						|
	}
 | 
						|
 | 
						|
	mnt_tsl = mntzone->zone_slabel;
 | 
						|
	ASSERT(mnt_tsl != NULL);
 | 
						|
	label_hold(mnt_tsl);
 | 
						|
	mnt_sl = label2bslabel(mnt_tsl);
 | 
						|
 | 
						|
	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
 | 
						|
		/*
 | 
						|
		 * The dataset doesn't have a real label, so fabricate one.
 | 
						|
		 */
 | 
						|
		char *str = NULL;
 | 
						|
 | 
						|
		if (l_to_str_internal(mnt_sl, &str) == 0 &&
 | 
						|
		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
 | 
						|
		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
 | 
						|
			retv = 0;
 | 
						|
		if (str != NULL)
 | 
						|
			kmem_free(str, strlen(str) + 1);
 | 
						|
	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
 | 
						|
		/*
 | 
						|
		 * Now compare labels to complete the MAC check.  If the
 | 
						|
		 * labels are equal then allow access.  If the mountpoint
 | 
						|
		 * label dominates the dataset label, allow readonly access.
 | 
						|
		 * Otherwise, access is denied.
 | 
						|
		 */
 | 
						|
		if (blequal(mnt_sl, &ds_sl))
 | 
						|
			retv = 0;
 | 
						|
		else if (bldominates(mnt_sl, &ds_sl)) {
 | 
						|
			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
 | 
						|
			retv = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	label_rele(mnt_tsl);
 | 
						|
	zone_rele(mntzone);
 | 
						|
	return (retv);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
 | 
						|
{
 | 
						|
	int error = 0;
 | 
						|
	static int zfsrootdone = 0;
 | 
						|
	zfsvfs_t *zfsvfs = NULL;
 | 
						|
	znode_t *zp = NULL;
 | 
						|
	vnode_t *vp = NULL;
 | 
						|
	char *zfs_bootfs;
 | 
						|
	char *zfs_devid;
 | 
						|
 | 
						|
	ASSERT(vfsp);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The filesystem that we mount as root is defined in the
 | 
						|
	 * boot property "zfs-bootfs" with a format of
 | 
						|
	 * "poolname/root-dataset-objnum".
 | 
						|
	 */
 | 
						|
	if (why == ROOT_INIT) {
 | 
						|
		if (zfsrootdone++)
 | 
						|
			return (EBUSY);
 | 
						|
		/*
 | 
						|
		 * the process of doing a spa_load will require the
 | 
						|
		 * clock to be set before we could (for example) do
 | 
						|
		 * something better by looking at the timestamp on
 | 
						|
		 * an uberblock, so just set it to -1.
 | 
						|
		 */
 | 
						|
		clkset(-1);
 | 
						|
 | 
						|
		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
 | 
						|
			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
 | 
						|
			    "bootfs name");
 | 
						|
			return (EINVAL);
 | 
						|
		}
 | 
						|
		zfs_devid = spa_get_bootprop("diskdevid");
 | 
						|
		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
 | 
						|
		if (zfs_devid)
 | 
						|
			spa_free_bootprop(zfs_devid);
 | 
						|
		if (error) {
 | 
						|
			spa_free_bootprop(zfs_bootfs);
 | 
						|
			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
 | 
						|
			    error);
 | 
						|
			return (error);
 | 
						|
		}
 | 
						|
		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
 | 
						|
			spa_free_bootprop(zfs_bootfs);
 | 
						|
			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
 | 
						|
			    error);
 | 
						|
			return (error);
 | 
						|
		}
 | 
						|
 | 
						|
		spa_free_bootprop(zfs_bootfs);
 | 
						|
 | 
						|
		if (error = vfs_lock(vfsp))
 | 
						|
			return (error);
 | 
						|
 | 
						|
		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
 | 
						|
			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
 | 
						|
		ASSERT(zfsvfs);
 | 
						|
		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
 | 
						|
			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		vp = ZTOV(zp);
 | 
						|
		mutex_enter(&vp->v_lock);
 | 
						|
		vp->v_flag |= VROOT;
 | 
						|
		mutex_exit(&vp->v_lock);
 | 
						|
		rootvp = vp;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Leave rootvp held.  The root file system is never unmounted.
 | 
						|
		 */
 | 
						|
 | 
						|
		vfs_add((struct vnode *)0, vfsp,
 | 
						|
		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
 | 
						|
out:
 | 
						|
		vfs_unlock(vfsp);
 | 
						|
		return (error);
 | 
						|
	} else if (why == ROOT_REMOUNT) {
 | 
						|
		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
 | 
						|
		vfsp->vfs_flag |= VFS_REMOUNT;
 | 
						|
 | 
						|
		/* refresh mount options */
 | 
						|
		zfs_unregister_callbacks(vfsp->vfs_data);
 | 
						|
		return (zfs_register_callbacks(vfsp));
 | 
						|
 | 
						|
	} else if (why == ROOT_UNMOUNT) {
 | 
						|
		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
 | 
						|
		(void) zfs_sync(vfsp, 0, 0);
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * if "why" is equal to anything else other than ROOT_INIT,
 | 
						|
	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
 | 
						|
	 */
 | 
						|
	return (ENOTSUP);
 | 
						|
}
 | 
						|
 | 
						|
/*ARGSUSED*/
 | 
						|
static int
 | 
						|
zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
 | 
						|
{
 | 
						|
	char		*osname;
 | 
						|
	pathname_t	spn;
 | 
						|
	int		error = 0;
 | 
						|
	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
 | 
						|
	    UIO_SYSSPACE : UIO_USERSPACE;
 | 
						|
	int		canwrite;
 | 
						|
 | 
						|
	if (mvp->v_type != VDIR)
 | 
						|
		return (ENOTDIR);
 | 
						|
 | 
						|
	mutex_enter(&mvp->v_lock);
 | 
						|
	if ((uap->flags & MS_REMOUNT) == 0 &&
 | 
						|
	    (uap->flags & MS_OVERLAY) == 0 &&
 | 
						|
	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
 | 
						|
		mutex_exit(&mvp->v_lock);
 | 
						|
		return (EBUSY);
 | 
						|
	}
 | 
						|
	mutex_exit(&mvp->v_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * ZFS does not support passing unparsed data in via MS_DATA.
 | 
						|
	 * Users should use the MS_OPTIONSTR interface; this means
 | 
						|
	 * that all option parsing is already done and the options struct
 | 
						|
	 * can be interrogated.
 | 
						|
	 */
 | 
						|
	if ((uap->flags & MS_DATA) && uap->datalen > 0)
 | 
						|
		return (EINVAL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get the objset name (the "special" mount argument).
 | 
						|
	 */
 | 
						|
	if (error = pn_get(uap->spec, fromspace, &spn))
 | 
						|
		return (error);
 | 
						|
 | 
						|
	osname = spn.pn_path;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for mount privilege?
 | 
						|
	 *
 | 
						|
	 * If we don't have privilege then see if
 | 
						|
	 * we have local permission to allow it
 | 
						|
	 */
 | 
						|
	error = secpolicy_fs_mount(cr, mvp, vfsp);
 | 
						|
	if (error) {
 | 
						|
		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
 | 
						|
			vattr_t		vattr;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Make sure user is the owner of the mount point
 | 
						|
			 * or has sufficient privileges.
 | 
						|
			 */
 | 
						|
 | 
						|
			vattr.va_mask = AT_UID;
 | 
						|
 | 
						|
			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
 | 
						|
			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
 | 
						|
			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			secpolicy_fs_mount_clearopts(cr, vfsp);
 | 
						|
		} else {
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Refuse to mount a filesystem if we are in a local zone and the
 | 
						|
	 * dataset is not visible.
 | 
						|
	 */
 | 
						|
	if (!INGLOBALZONE(curproc) &&
 | 
						|
	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
 | 
						|
		error = EPERM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	error = zfs_mount_label_policy(vfsp, osname);
 | 
						|
	if (error)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When doing a remount, we simply refresh our temporary properties
 | 
						|
	 * according to those options set in the current VFS options.
 | 
						|
	 */
 | 
						|
	if (uap->flags & MS_REMOUNT) {
 | 
						|
		/* refresh mount options */
 | 
						|
		zfs_unregister_callbacks(vfsp->vfs_data);
 | 
						|
		error = zfs_register_callbacks(vfsp);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	error = zfs_domount(vfsp, osname);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Add an extra VFS_HOLD on our parent vfs so that it can't
 | 
						|
	 * disappear due to a forced unmount.
 | 
						|
	 */
 | 
						|
	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
 | 
						|
		VFS_HOLD(mvp->v_vfsp);
 | 
						|
 | 
						|
out:
 | 
						|
	pn_free(&spn);
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = vfsp->vfs_data;
 | 
						|
	dev32_t d32;
 | 
						|
	uint64_t refdbytes, availbytes, usedobjs, availobjs;
 | 
						|
 | 
						|
	ZFS_ENTER(zfsvfs);
 | 
						|
 | 
						|
	dmu_objset_space(zfsvfs->z_os,
 | 
						|
	    &refdbytes, &availbytes, &usedobjs, &availobjs);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The underlying storage pool actually uses multiple block sizes.
 | 
						|
	 * We report the fragsize as the smallest block size we support,
 | 
						|
	 * and we report our blocksize as the filesystem's maximum blocksize.
 | 
						|
	 */
 | 
						|
	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
 | 
						|
	statp->f_bsize = zfsvfs->z_max_blksz;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The following report "total" blocks of various kinds in the
 | 
						|
	 * file system, but reported in terms of f_frsize - the
 | 
						|
	 * "fragment" size.
 | 
						|
	 */
 | 
						|
 | 
						|
	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
 | 
						|
	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
 | 
						|
	statp->f_bavail = statp->f_bfree; /* no root reservation */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * statvfs() should really be called statufs(), because it assumes
 | 
						|
	 * static metadata.  ZFS doesn't preallocate files, so the best
 | 
						|
	 * we can do is report the max that could possibly fit in f_files,
 | 
						|
	 * and that minus the number actually used in f_ffree.
 | 
						|
	 * For f_ffree, report the smaller of the number of object available
 | 
						|
	 * and the number of blocks (each object will take at least a block).
 | 
						|
	 */
 | 
						|
	statp->f_ffree = MIN(availobjs, statp->f_bfree);
 | 
						|
	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
 | 
						|
	statp->f_files = statp->f_ffree + usedobjs;
 | 
						|
 | 
						|
	(void) cmpldev(&d32, vfsp->vfs_dev);
 | 
						|
	statp->f_fsid = d32;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're a zfs filesystem.
 | 
						|
	 */
 | 
						|
	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
 | 
						|
 | 
						|
	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
 | 
						|
 | 
						|
	statp->f_namemax = ZFS_MAXNAMELEN;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have all of 32 characters to stuff a string here.
 | 
						|
	 * Is there anything useful we could/should provide?
 | 
						|
	 */
 | 
						|
	bzero(statp->f_fstr, sizeof (statp->f_fstr));
 | 
						|
 | 
						|
	ZFS_EXIT(zfsvfs);
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zfs_root(vfs_t *vfsp, vnode_t **vpp)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = vfsp->vfs_data;
 | 
						|
	znode_t *rootzp;
 | 
						|
	int error;
 | 
						|
 | 
						|
	ZFS_ENTER(zfsvfs);
 | 
						|
 | 
						|
	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
 | 
						|
	if (error == 0)
 | 
						|
		*vpp = ZTOV(rootzp);
 | 
						|
 | 
						|
	ZFS_EXIT(zfsvfs);
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Teardown the zfsvfs::z_os.
 | 
						|
 *
 | 
						|
 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
 | 
						|
 * and 'z_teardown_inactive_lock' held.
 | 
						|
 */
 | 
						|
static int
 | 
						|
zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
 | 
						|
{
 | 
						|
	znode_t	*zp;
 | 
						|
 | 
						|
	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
 | 
						|
 | 
						|
	if (!unmounting) {
 | 
						|
		/*
 | 
						|
		 * We purge the parent filesystem's vfsp as the parent
 | 
						|
		 * filesystem and all of its snapshots have their vnode's
 | 
						|
		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
 | 
						|
		 * 'z_parent' is self referential for non-snapshots.
 | 
						|
		 */
 | 
						|
		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Close the zil. NB: Can't close the zil while zfs_inactive
 | 
						|
	 * threads are blocked as zil_close can call zfs_inactive.
 | 
						|
	 */
 | 
						|
	if (zfsvfs->z_log) {
 | 
						|
		zil_close(zfsvfs->z_log);
 | 
						|
		zfsvfs->z_log = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are not unmounting (ie: online recv) and someone already
 | 
						|
	 * unmounted this file system while we were doing the switcheroo,
 | 
						|
	 * or a reopen of z_os failed then just bail out now.
 | 
						|
	 */
 | 
						|
	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
 | 
						|
		rw_exit(&zfsvfs->z_teardown_inactive_lock);
 | 
						|
		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
 | 
						|
		return (EIO);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At this point there are no vops active, and any new vops will
 | 
						|
	 * fail with EIO since we have z_teardown_lock for writer (only
 | 
						|
	 * relavent for forced unmount).
 | 
						|
	 *
 | 
						|
	 * Release all holds on dbufs.
 | 
						|
	 */
 | 
						|
	mutex_enter(&zfsvfs->z_znodes_lock);
 | 
						|
	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
 | 
						|
	    zp = list_next(&zfsvfs->z_all_znodes, zp))
 | 
						|
		if (zp->z_sa_hdl) {
 | 
						|
			ASSERT(ZTOV(zp)->v_count > 0);
 | 
						|
			zfs_znode_dmu_fini(zp);
 | 
						|
		}
 | 
						|
	mutex_exit(&zfsvfs->z_znodes_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are unmounting, set the unmounted flag and let new vops
 | 
						|
	 * unblock.  zfs_inactive will have the unmounted behavior, and all
 | 
						|
	 * other vops will fail with EIO.
 | 
						|
	 */
 | 
						|
	if (unmounting) {
 | 
						|
		zfsvfs->z_unmounted = B_TRUE;
 | 
						|
		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
 | 
						|
		rw_exit(&zfsvfs->z_teardown_inactive_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * z_os will be NULL if there was an error in attempting to reopen
 | 
						|
	 * zfsvfs, so just return as the properties had already been
 | 
						|
	 * unregistered and cached data had been evicted before.
 | 
						|
	 */
 | 
						|
	if (zfsvfs->z_os == NULL)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Unregister properties.
 | 
						|
	 */
 | 
						|
	zfs_unregister_callbacks(zfsvfs);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Evict cached data
 | 
						|
	 */
 | 
						|
	if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os))
 | 
						|
		if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
 | 
						|
			txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
 | 
						|
	(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*ARGSUSED*/
 | 
						|
static int
 | 
						|
zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = vfsp->vfs_data;
 | 
						|
	objset_t *os;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = secpolicy_fs_unmount(cr, vfsp);
 | 
						|
	if (ret) {
 | 
						|
		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
 | 
						|
		    ZFS_DELEG_PERM_MOUNT, cr))
 | 
						|
			return (ret);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We purge the parent filesystem's vfsp as the parent filesystem
 | 
						|
	 * and all of its snapshots have their vnode's v_vfsp set to the
 | 
						|
	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
 | 
						|
	 * referential for non-snapshots.
 | 
						|
	 */
 | 
						|
	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Unmount any snapshots mounted under .zfs before unmounting the
 | 
						|
	 * dataset itself.
 | 
						|
	 */
 | 
						|
	if (zfsvfs->z_ctldir != NULL &&
 | 
						|
	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
 | 
						|
		return (ret);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!(fflag & MS_FORCE)) {
 | 
						|
		/*
 | 
						|
		 * Check the number of active vnodes in the file system.
 | 
						|
		 * Our count is maintained in the vfs structure, but the
 | 
						|
		 * number is off by 1 to indicate a hold on the vfs
 | 
						|
		 * structure itself.
 | 
						|
		 *
 | 
						|
		 * The '.zfs' directory maintains a reference of its
 | 
						|
		 * own, and any active references underneath are
 | 
						|
		 * reflected in the vnode count.
 | 
						|
		 */
 | 
						|
		if (zfsvfs->z_ctldir == NULL) {
 | 
						|
			if (vfsp->vfs_count > 1)
 | 
						|
				return (EBUSY);
 | 
						|
		} else {
 | 
						|
			if (vfsp->vfs_count > 2 ||
 | 
						|
			    zfsvfs->z_ctldir->v_count > 1)
 | 
						|
				return (EBUSY);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	vfsp->vfs_flag |= VFS_UNMOUNTED;
 | 
						|
 | 
						|
	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
 | 
						|
	os = zfsvfs->z_os;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * z_os will be NULL if there was an error in
 | 
						|
	 * attempting to reopen zfsvfs.
 | 
						|
	 */
 | 
						|
	if (os != NULL) {
 | 
						|
		/*
 | 
						|
		 * Unset the objset user_ptr.
 | 
						|
		 */
 | 
						|
		mutex_enter(&os->os_user_ptr_lock);
 | 
						|
		dmu_objset_set_user(os, NULL);
 | 
						|
		mutex_exit(&os->os_user_ptr_lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Finally release the objset
 | 
						|
		 */
 | 
						|
		dmu_objset_disown(os, zfsvfs);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can now safely destroy the '.zfs' directory node.
 | 
						|
	 */
 | 
						|
	if (zfsvfs->z_ctldir != NULL)
 | 
						|
		zfsctl_destroy(zfsvfs);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
 | 
						|
{
 | 
						|
	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
 | 
						|
	znode_t		*zp;
 | 
						|
	uint64_t	object = 0;
 | 
						|
	uint64_t	fid_gen = 0;
 | 
						|
	uint64_t	gen_mask;
 | 
						|
	uint64_t	zp_gen;
 | 
						|
	int 		i, err;
 | 
						|
 | 
						|
	*vpp = NULL;
 | 
						|
 | 
						|
	ZFS_ENTER(zfsvfs);
 | 
						|
 | 
						|
	if (fidp->fid_len == LONG_FID_LEN) {
 | 
						|
		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
 | 
						|
		uint64_t	objsetid = 0;
 | 
						|
		uint64_t	setgen = 0;
 | 
						|
 | 
						|
		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
 | 
						|
			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
 | 
						|
 | 
						|
		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
 | 
						|
			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
 | 
						|
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
 | 
						|
		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
 | 
						|
		if (err)
 | 
						|
			return (EINVAL);
 | 
						|
		ZFS_ENTER(zfsvfs);
 | 
						|
	}
 | 
						|
 | 
						|
	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
 | 
						|
		zfid_short_t	*zfid = (zfid_short_t *)fidp;
 | 
						|
 | 
						|
		for (i = 0; i < sizeof (zfid->zf_object); i++)
 | 
						|
			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
 | 
						|
 | 
						|
		for (i = 0; i < sizeof (zfid->zf_gen); i++)
 | 
						|
			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
 | 
						|
	} else {
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (EINVAL);
 | 
						|
	}
 | 
						|
 | 
						|
	/* A zero fid_gen means we are in the .zfs control directories */
 | 
						|
	if (fid_gen == 0 &&
 | 
						|
	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
 | 
						|
		*vpp = zfsvfs->z_ctldir;
 | 
						|
		ASSERT(*vpp != NULL);
 | 
						|
		if (object == ZFSCTL_INO_SNAPDIR) {
 | 
						|
			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
 | 
						|
			    0, NULL, NULL, NULL, NULL, NULL) == 0);
 | 
						|
		} else {
 | 
						|
			VN_HOLD(*vpp);
 | 
						|
		}
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
 | 
						|
	gen_mask = -1ULL >> (64 - 8 * i);
 | 
						|
 | 
						|
	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
 | 
						|
	if (err = zfs_zget(zfsvfs, object, &zp)) {
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (err);
 | 
						|
	}
 | 
						|
	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
 | 
						|
	    sizeof (uint64_t));
 | 
						|
	zp_gen = zp_gen & gen_mask;
 | 
						|
	if (zp_gen == 0)
 | 
						|
		zp_gen = 1;
 | 
						|
	if (zp->z_unlinked || zp_gen != fid_gen) {
 | 
						|
		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
 | 
						|
		VN_RELE(ZTOV(zp));
 | 
						|
		ZFS_EXIT(zfsvfs);
 | 
						|
		return (EINVAL);
 | 
						|
	}
 | 
						|
 | 
						|
	*vpp = ZTOV(zp);
 | 
						|
	ZFS_EXIT(zfsvfs);
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Block out VOPs and close zfsvfs_t::z_os
 | 
						|
 *
 | 
						|
 * Note, if successful, then we return with the 'z_teardown_lock' and
 | 
						|
 * 'z_teardown_inactive_lock' write held.
 | 
						|
 */
 | 
						|
int
 | 
						|
zfs_suspend_fs(zfsvfs_t *zfsvfs)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
 | 
						|
	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
 | 
						|
		return (error);
 | 
						|
	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reopen zfsvfs_t::z_os and release VOPs.
 | 
						|
 */
 | 
						|
int
 | 
						|
zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
 | 
						|
{
 | 
						|
	int err, err2;
 | 
						|
 | 
						|
	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
 | 
						|
	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
 | 
						|
 | 
						|
	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
 | 
						|
	    &zfsvfs->z_os);
 | 
						|
	if (err) {
 | 
						|
		zfsvfs->z_os = NULL;
 | 
						|
	} else {
 | 
						|
		znode_t *zp;
 | 
						|
		uint64_t sa_obj = 0;
 | 
						|
 | 
						|
		err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
 | 
						|
		    ZFS_SA_ATTRS, 8, 1, &sa_obj);
 | 
						|
 | 
						|
		if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA)
 | 
						|
			goto bail;
 | 
						|
 | 
						|
 | 
						|
		if ((err = sa_setup(zfsvfs->z_os, sa_obj,
 | 
						|
		    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
 | 
						|
			goto bail;
 | 
						|
 | 
						|
		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Attempt to re-establish all the active znodes with
 | 
						|
		 * their dbufs.  If a zfs_rezget() fails, then we'll let
 | 
						|
		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
 | 
						|
		 * when they try to use their znode.
 | 
						|
		 */
 | 
						|
		mutex_enter(&zfsvfs->z_znodes_lock);
 | 
						|
		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
 | 
						|
		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
 | 
						|
			(void) zfs_rezget(zp);
 | 
						|
		}
 | 
						|
		mutex_exit(&zfsvfs->z_znodes_lock);
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
bail:
 | 
						|
	/* release the VOPs */
 | 
						|
	rw_exit(&zfsvfs->z_teardown_inactive_lock);
 | 
						|
	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
 | 
						|
 | 
						|
	if (err) {
 | 
						|
		/*
 | 
						|
		 * Since we couldn't reopen zfsvfs::z_os, force
 | 
						|
		 * unmount this file system.
 | 
						|
		 */
 | 
						|
		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
 | 
						|
			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
 | 
						|
	}
 | 
						|
	return (err);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
zfs_freevfs(vfs_t *vfsp)
 | 
						|
{
 | 
						|
	zfsvfs_t *zfsvfs = vfsp->vfs_data;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
 | 
						|
	 * from zfs_mount().  Release it here.  If we came through
 | 
						|
	 * zfs_mountroot() instead, we didn't grab an extra hold, so
 | 
						|
	 * skip the VFS_RELE for rootvfs.
 | 
						|
	 */
 | 
						|
	if (zfsvfs->z_issnap && (vfsp != rootvfs))
 | 
						|
		VFS_RELE(zfsvfs->z_parent->z_vfs);
 | 
						|
 | 
						|
	zfsvfs_free(zfsvfs);
 | 
						|
 | 
						|
	atomic_add_32(&zfs_active_fs_count, -1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
 | 
						|
 * so we can't safely do any non-idempotent initialization here.
 | 
						|
 * Leave that to zfs_init() and zfs_fini(), which are called
 | 
						|
 * from the module's _init() and _fini() entry points.
 | 
						|
 */
 | 
						|
/*ARGSUSED*/
 | 
						|
static int
 | 
						|
zfs_vfsinit(int fstype, char *name)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
 | 
						|
	zfsfstype = fstype;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Setup vfsops and vnodeops tables.
 | 
						|
	 */
 | 
						|
	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
 | 
						|
	if (error != 0) {
 | 
						|
		cmn_err(CE_WARN, "zfs: bad vfs ops template");
 | 
						|
	}
 | 
						|
 | 
						|
	error = zfs_create_op_tables();
 | 
						|
	if (error) {
 | 
						|
		zfs_remove_op_tables();
 | 
						|
		cmn_err(CE_WARN, "zfs: bad vnode ops template");
 | 
						|
		(void) vfs_freevfsops_by_type(zfsfstype);
 | 
						|
		return (error);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Unique major number for all zfs mounts.
 | 
						|
	 * If we run out of 32-bit minors, we'll getudev() another major.
 | 
						|
	 */
 | 
						|
	zfs_major = ddi_name_to_major(ZFS_DRIVER);
 | 
						|
	zfs_minor = ZFS_MIN_MINOR;
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
zfs_init(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Initialize .zfs directory structures
 | 
						|
	 */
 | 
						|
	zfsctl_init();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize znode cache, vnode ops, etc...
 | 
						|
	 */
 | 
						|
	zfs_znode_init();
 | 
						|
 | 
						|
	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
zfs_fini(void)
 | 
						|
{
 | 
						|
	zfsctl_fini();
 | 
						|
	zfs_znode_fini();
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_busy(void)
 | 
						|
{
 | 
						|
	return (zfs_active_fs_count != 0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
	objset_t *os = zfsvfs->z_os;
 | 
						|
	dmu_tx_t *tx;
 | 
						|
 | 
						|
	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
 | 
						|
		return (EINVAL);
 | 
						|
 | 
						|
	if (newvers < zfsvfs->z_version)
 | 
						|
		return (EINVAL);
 | 
						|
 | 
						|
	if (zfs_spa_version_map(newvers) >
 | 
						|
	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
 | 
						|
		return (ENOTSUP);
 | 
						|
 | 
						|
	tx = dmu_tx_create(os);
 | 
						|
	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
 | 
						|
	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
 | 
						|
		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
 | 
						|
		    ZFS_SA_ATTRS);
 | 
						|
		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
 | 
						|
	}
 | 
						|
	error = dmu_tx_assign(tx, TXG_WAIT);
 | 
						|
	if (error) {
 | 
						|
		dmu_tx_abort(tx);
 | 
						|
		return (error);
 | 
						|
	}
 | 
						|
 | 
						|
	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
 | 
						|
	    8, 1, &newvers, tx);
 | 
						|
 | 
						|
	if (error) {
 | 
						|
		dmu_tx_commit(tx);
 | 
						|
		return (error);
 | 
						|
	}
 | 
						|
 | 
						|
	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
 | 
						|
		uint64_t sa_obj;
 | 
						|
 | 
						|
		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
 | 
						|
		    SPA_VERSION_SA);
 | 
						|
		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
 | 
						|
		    DMU_OT_NONE, 0, tx);
 | 
						|
 | 
						|
		error = zap_add(os, MASTER_NODE_OBJ,
 | 
						|
		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
 | 
						|
		ASSERT3U(error, ==, 0);
 | 
						|
 | 
						|
		VERIFY(0 == sa_set_sa_object(os, sa_obj));
 | 
						|
		sa_register_update_callback(os, zfs_sa_upgrade);
 | 
						|
	}
 | 
						|
 | 
						|
	spa_history_log_internal(LOG_DS_UPGRADE,
 | 
						|
	    dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
 | 
						|
	    zfsvfs->z_version, newvers, dmu_objset_id(os));
 | 
						|
 | 
						|
	dmu_tx_commit(tx);
 | 
						|
 | 
						|
	zfsvfs->z_version = newvers;
 | 
						|
 | 
						|
	if (zfsvfs->z_version >= ZPL_VERSION_FUID)
 | 
						|
		zfs_set_fuid_feature(zfsvfs);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read a property stored within the master node.
 | 
						|
 */
 | 
						|
int
 | 
						|
zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
 | 
						|
{
 | 
						|
	const char *pname;
 | 
						|
	int error = ENOENT;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Look up the file system's value for the property.  For the
 | 
						|
	 * version property, we look up a slightly different string.
 | 
						|
	 */
 | 
						|
	if (prop == ZFS_PROP_VERSION)
 | 
						|
		pname = ZPL_VERSION_STR;
 | 
						|
	else
 | 
						|
		pname = zfs_prop_to_name(prop);
 | 
						|
 | 
						|
	if (os != NULL)
 | 
						|
		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
 | 
						|
 | 
						|
	if (error == ENOENT) {
 | 
						|
		/* No value set, use the default value */
 | 
						|
		switch (prop) {
 | 
						|
		case ZFS_PROP_VERSION:
 | 
						|
			*value = ZPL_VERSION;
 | 
						|
			break;
 | 
						|
		case ZFS_PROP_NORMALIZE:
 | 
						|
		case ZFS_PROP_UTF8ONLY:
 | 
						|
			*value = 0;
 | 
						|
			break;
 | 
						|
		case ZFS_PROP_CASE:
 | 
						|
			*value = ZFS_CASE_SENSITIVE;
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			return (error);
 | 
						|
		}
 | 
						|
		error = 0;
 | 
						|
	}
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
static vfsdef_t vfw = {
 | 
						|
	VFSDEF_VERSION,
 | 
						|
	MNTTYPE_ZFS,
 | 
						|
	zfs_vfsinit,
 | 
						|
	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
 | 
						|
	    VSW_XID|VSW_ZMOUNT,
 | 
						|
	&zfs_mntopts
 | 
						|
};
 | 
						|
 | 
						|
struct modlfs zfs_modlfs = {
 | 
						|
	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
 | 
						|
};
 |