mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 09:29:10 +00:00 
			
		
		
		
	 11e3416ae7
			
		
	
	
		11e3416ae7
		
			
		
	
	
	
	
		
			
			Coverity reported that the ASSERT in taskq_create() is always true and the `*offp > MAXOFFSET_T` check in zfs_file_seek() is always false. We delete them as cleanup. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #14130
		
			
				
	
	
		
			1435 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1435 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
 | |
|  *  Copyright (C) 2007 The Regents of the University of California.
 | |
|  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 | |
|  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
 | |
|  *  UCRL-CODE-235197
 | |
|  *
 | |
|  *  This file is part of the SPL, Solaris Porting Layer.
 | |
|  *
 | |
|  *  The SPL is free software; you can redistribute it and/or modify it
 | |
|  *  under the terms of the GNU General Public License as published by the
 | |
|  *  Free Software Foundation; either version 2 of the License, or (at your
 | |
|  *  option) any later version.
 | |
|  *
 | |
|  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
 | |
|  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | |
|  *  for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License along
 | |
|  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  *  Solaris Porting Layer (SPL) Task Queue Implementation.
 | |
|  */
 | |
| 
 | |
| #include <sys/timer.h>
 | |
| #include <sys/taskq.h>
 | |
| #include <sys/kmem.h>
 | |
| #include <sys/tsd.h>
 | |
| #include <sys/trace_spl.h>
 | |
| #ifdef HAVE_CPU_HOTPLUG
 | |
| #include <linux/cpuhotplug.h>
 | |
| #endif
 | |
| 
 | |
| static int spl_taskq_thread_bind = 0;
 | |
| module_param(spl_taskq_thread_bind, int, 0644);
 | |
| MODULE_PARM_DESC(spl_taskq_thread_bind, "Bind taskq thread to CPU by default");
 | |
| 
 | |
| 
 | |
| static int spl_taskq_thread_dynamic = 1;
 | |
| module_param(spl_taskq_thread_dynamic, int, 0444);
 | |
| MODULE_PARM_DESC(spl_taskq_thread_dynamic, "Allow dynamic taskq threads");
 | |
| 
 | |
| static int spl_taskq_thread_priority = 1;
 | |
| module_param(spl_taskq_thread_priority, int, 0644);
 | |
| MODULE_PARM_DESC(spl_taskq_thread_priority,
 | |
| 	"Allow non-default priority for taskq threads");
 | |
| 
 | |
| static uint_t spl_taskq_thread_sequential = 4;
 | |
| /* BEGIN CSTYLED */
 | |
| module_param(spl_taskq_thread_sequential, uint, 0644);
 | |
| /* END CSTYLED */
 | |
| MODULE_PARM_DESC(spl_taskq_thread_sequential,
 | |
| 	"Create new taskq threads after N sequential tasks");
 | |
| 
 | |
| /*
 | |
|  * Global system-wide dynamic task queue available for all consumers. This
 | |
|  * taskq is not intended for long-running tasks; instead, a dedicated taskq
 | |
|  * should be created.
 | |
|  */
 | |
| taskq_t *system_taskq;
 | |
| EXPORT_SYMBOL(system_taskq);
 | |
| /* Global dynamic task queue for long delay */
 | |
| taskq_t *system_delay_taskq;
 | |
| EXPORT_SYMBOL(system_delay_taskq);
 | |
| 
 | |
| /* Private dedicated taskq for creating new taskq threads on demand. */
 | |
| static taskq_t *dynamic_taskq;
 | |
| static taskq_thread_t *taskq_thread_create(taskq_t *);
 | |
| 
 | |
| #ifdef HAVE_CPU_HOTPLUG
 | |
| /* Multi-callback id for cpu hotplugging. */
 | |
| static int spl_taskq_cpuhp_state;
 | |
| #endif
 | |
| 
 | |
| /* List of all taskqs */
 | |
| LIST_HEAD(tq_list);
 | |
| struct rw_semaphore tq_list_sem;
 | |
| static uint_t taskq_tsd;
 | |
| 
 | |
| static int
 | |
| task_km_flags(uint_t flags)
 | |
| {
 | |
| 	if (flags & TQ_NOSLEEP)
 | |
| 		return (KM_NOSLEEP);
 | |
| 
 | |
| 	if (flags & TQ_PUSHPAGE)
 | |
| 		return (KM_PUSHPAGE);
 | |
| 
 | |
| 	return (KM_SLEEP);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * taskq_find_by_name - Find the largest instance number of a named taskq.
 | |
|  */
 | |
| static int
 | |
| taskq_find_by_name(const char *name)
 | |
| {
 | |
| 	struct list_head *tql = NULL;
 | |
| 	taskq_t *tq;
 | |
| 
 | |
| 	list_for_each_prev(tql, &tq_list) {
 | |
| 		tq = list_entry(tql, taskq_t, tq_taskqs);
 | |
| 		if (strcmp(name, tq->tq_name) == 0)
 | |
| 			return (tq->tq_instance);
 | |
| 	}
 | |
| 	return (-1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NOTE: Must be called with tq->tq_lock held, returns a list_t which
 | |
|  * is not attached to the free, work, or pending taskq lists.
 | |
|  */
 | |
| static taskq_ent_t *
 | |
| task_alloc(taskq_t *tq, uint_t flags, unsigned long *irqflags)
 | |
| {
 | |
| 	taskq_ent_t *t;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	ASSERT(tq);
 | |
| retry:
 | |
| 	/* Acquire taskq_ent_t's from free list if available */
 | |
| 	if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) {
 | |
| 		t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
 | |
| 
 | |
| 		ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
 | |
| 		ASSERT(!(t->tqent_flags & TQENT_FLAG_CANCEL));
 | |
| 		ASSERT(!timer_pending(&t->tqent_timer));
 | |
| 
 | |
| 		list_del_init(&t->tqent_list);
 | |
| 		return (t);
 | |
| 	}
 | |
| 
 | |
| 	/* Free list is empty and memory allocations are prohibited */
 | |
| 	if (flags & TQ_NOALLOC)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	/* Hit maximum taskq_ent_t pool size */
 | |
| 	if (tq->tq_nalloc >= tq->tq_maxalloc) {
 | |
| 		if (flags & TQ_NOSLEEP)
 | |
| 			return (NULL);
 | |
| 
 | |
| 		/*
 | |
| 		 * Sleep periodically polling the free list for an available
 | |
| 		 * taskq_ent_t. Dispatching with TQ_SLEEP should always succeed
 | |
| 		 * but we cannot block forever waiting for an taskq_ent_t to
 | |
| 		 * show up in the free list, otherwise a deadlock can happen.
 | |
| 		 *
 | |
| 		 * Therefore, we need to allocate a new task even if the number
 | |
| 		 * of allocated tasks is above tq->tq_maxalloc, but we still
 | |
| 		 * end up delaying the task allocation by one second, thereby
 | |
| 		 * throttling the task dispatch rate.
 | |
| 		 */
 | |
| 		spin_unlock_irqrestore(&tq->tq_lock, *irqflags);
 | |
| 		schedule_timeout(HZ / 100);
 | |
| 		spin_lock_irqsave_nested(&tq->tq_lock, *irqflags,
 | |
| 		    tq->tq_lock_class);
 | |
| 		if (count < 100) {
 | |
| 			count++;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&tq->tq_lock, *irqflags);
 | |
| 	t = kmem_alloc(sizeof (taskq_ent_t), task_km_flags(flags));
 | |
| 	spin_lock_irqsave_nested(&tq->tq_lock, *irqflags, tq->tq_lock_class);
 | |
| 
 | |
| 	if (t) {
 | |
| 		taskq_init_ent(t);
 | |
| 		tq->tq_nalloc++;
 | |
| 	}
 | |
| 
 | |
| 	return (t);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NOTE: Must be called with tq->tq_lock held, expects the taskq_ent_t
 | |
|  * to already be removed from the free, work, or pending taskq lists.
 | |
|  */
 | |
| static void
 | |
| task_free(taskq_t *tq, taskq_ent_t *t)
 | |
| {
 | |
| 	ASSERT(tq);
 | |
| 	ASSERT(t);
 | |
| 	ASSERT(list_empty(&t->tqent_list));
 | |
| 	ASSERT(!timer_pending(&t->tqent_timer));
 | |
| 
 | |
| 	kmem_free(t, sizeof (taskq_ent_t));
 | |
| 	tq->tq_nalloc--;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NOTE: Must be called with tq->tq_lock held, either destroys the
 | |
|  * taskq_ent_t if too many exist or moves it to the free list for later use.
 | |
|  */
 | |
| static void
 | |
| task_done(taskq_t *tq, taskq_ent_t *t)
 | |
| {
 | |
| 	ASSERT(tq);
 | |
| 	ASSERT(t);
 | |
| 
 | |
| 	/* Wake tasks blocked in taskq_wait_id() */
 | |
| 	wake_up_all(&t->tqent_waitq);
 | |
| 
 | |
| 	list_del_init(&t->tqent_list);
 | |
| 
 | |
| 	if (tq->tq_nalloc <= tq->tq_minalloc) {
 | |
| 		t->tqent_id = TASKQID_INVALID;
 | |
| 		t->tqent_func = NULL;
 | |
| 		t->tqent_arg = NULL;
 | |
| 		t->tqent_flags = 0;
 | |
| 
 | |
| 		list_add_tail(&t->tqent_list, &tq->tq_free_list);
 | |
| 	} else {
 | |
| 		task_free(tq, t);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a delayed task timer expires remove it from the delay list and
 | |
|  * add it to the priority list in order for immediate processing.
 | |
|  */
 | |
| static void
 | |
| task_expire_impl(taskq_ent_t *t)
 | |
| {
 | |
| 	taskq_ent_t *w;
 | |
| 	taskq_t *tq = t->tqent_taskq;
 | |
| 	struct list_head *l = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
 | |
| 
 | |
| 	if (t->tqent_flags & TQENT_FLAG_CANCEL) {
 | |
| 		ASSERT(list_empty(&t->tqent_list));
 | |
| 		spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	t->tqent_birth = jiffies;
 | |
| 	DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t);
 | |
| 
 | |
| 	/*
 | |
| 	 * The priority list must be maintained in strict task id order
 | |
| 	 * from lowest to highest for lowest_id to be easily calculable.
 | |
| 	 */
 | |
| 	list_del(&t->tqent_list);
 | |
| 	list_for_each_prev(l, &tq->tq_prio_list) {
 | |
| 		w = list_entry(l, taskq_ent_t, tqent_list);
 | |
| 		if (w->tqent_id < t->tqent_id) {
 | |
| 			list_add(&t->tqent_list, l);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (l == &tq->tq_prio_list)
 | |
| 		list_add(&t->tqent_list, &tq->tq_prio_list);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 
 | |
| 	wake_up(&tq->tq_work_waitq);
 | |
| }
 | |
| 
 | |
| static void
 | |
| task_expire(spl_timer_list_t tl)
 | |
| {
 | |
| 	struct timer_list *tmr = (struct timer_list *)tl;
 | |
| 	taskq_ent_t *t = from_timer(t, tmr, tqent_timer);
 | |
| 	task_expire_impl(t);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the lowest incomplete taskqid_t.  The taskqid_t may
 | |
|  * be queued on the pending list, on the priority list, on the
 | |
|  * delay list, or on the work list currently being handled, but
 | |
|  * it is not 100% complete yet.
 | |
|  */
 | |
| static taskqid_t
 | |
| taskq_lowest_id(taskq_t *tq)
 | |
| {
 | |
| 	taskqid_t lowest_id = tq->tq_next_id;
 | |
| 	taskq_ent_t *t;
 | |
| 	taskq_thread_t *tqt;
 | |
| 
 | |
| 	if (!list_empty(&tq->tq_pend_list)) {
 | |
| 		t = list_entry(tq->tq_pend_list.next, taskq_ent_t, tqent_list);
 | |
| 		lowest_id = MIN(lowest_id, t->tqent_id);
 | |
| 	}
 | |
| 
 | |
| 	if (!list_empty(&tq->tq_prio_list)) {
 | |
| 		t = list_entry(tq->tq_prio_list.next, taskq_ent_t, tqent_list);
 | |
| 		lowest_id = MIN(lowest_id, t->tqent_id);
 | |
| 	}
 | |
| 
 | |
| 	if (!list_empty(&tq->tq_delay_list)) {
 | |
| 		t = list_entry(tq->tq_delay_list.next, taskq_ent_t, tqent_list);
 | |
| 		lowest_id = MIN(lowest_id, t->tqent_id);
 | |
| 	}
 | |
| 
 | |
| 	if (!list_empty(&tq->tq_active_list)) {
 | |
| 		tqt = list_entry(tq->tq_active_list.next, taskq_thread_t,
 | |
| 		    tqt_active_list);
 | |
| 		ASSERT(tqt->tqt_id != TASKQID_INVALID);
 | |
| 		lowest_id = MIN(lowest_id, tqt->tqt_id);
 | |
| 	}
 | |
| 
 | |
| 	return (lowest_id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert a task into a list keeping the list sorted by increasing taskqid.
 | |
|  */
 | |
| static void
 | |
| taskq_insert_in_order(taskq_t *tq, taskq_thread_t *tqt)
 | |
| {
 | |
| 	taskq_thread_t *w;
 | |
| 	struct list_head *l = NULL;
 | |
| 
 | |
| 	ASSERT(tq);
 | |
| 	ASSERT(tqt);
 | |
| 
 | |
| 	list_for_each_prev(l, &tq->tq_active_list) {
 | |
| 		w = list_entry(l, taskq_thread_t, tqt_active_list);
 | |
| 		if (w->tqt_id < tqt->tqt_id) {
 | |
| 			list_add(&tqt->tqt_active_list, l);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (l == &tq->tq_active_list)
 | |
| 		list_add(&tqt->tqt_active_list, &tq->tq_active_list);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find and return a task from the given list if it exists.  The list
 | |
|  * must be in lowest to highest task id order.
 | |
|  */
 | |
| static taskq_ent_t *
 | |
| taskq_find_list(taskq_t *tq, struct list_head *lh, taskqid_t id)
 | |
| {
 | |
| 	struct list_head *l = NULL;
 | |
| 	taskq_ent_t *t;
 | |
| 
 | |
| 	list_for_each(l, lh) {
 | |
| 		t = list_entry(l, taskq_ent_t, tqent_list);
 | |
| 
 | |
| 		if (t->tqent_id == id)
 | |
| 			return (t);
 | |
| 
 | |
| 		if (t->tqent_id > id)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return (NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find an already dispatched task given the task id regardless of what
 | |
|  * state it is in.  If a task is still pending it will be returned.
 | |
|  * If a task is executing, then -EBUSY will be returned instead.
 | |
|  * If the task has already been run then NULL is returned.
 | |
|  */
 | |
| static taskq_ent_t *
 | |
| taskq_find(taskq_t *tq, taskqid_t id)
 | |
| {
 | |
| 	taskq_thread_t *tqt;
 | |
| 	struct list_head *l = NULL;
 | |
| 	taskq_ent_t *t;
 | |
| 
 | |
| 	t = taskq_find_list(tq, &tq->tq_delay_list, id);
 | |
| 	if (t)
 | |
| 		return (t);
 | |
| 
 | |
| 	t = taskq_find_list(tq, &tq->tq_prio_list, id);
 | |
| 	if (t)
 | |
| 		return (t);
 | |
| 
 | |
| 	t = taskq_find_list(tq, &tq->tq_pend_list, id);
 | |
| 	if (t)
 | |
| 		return (t);
 | |
| 
 | |
| 	list_for_each(l, &tq->tq_active_list) {
 | |
| 		tqt = list_entry(l, taskq_thread_t, tqt_active_list);
 | |
| 		if (tqt->tqt_id == id) {
 | |
| 			/*
 | |
| 			 * Instead of returning tqt_task, we just return a non
 | |
| 			 * NULL value to prevent misuse, since tqt_task only
 | |
| 			 * has two valid fields.
 | |
| 			 */
 | |
| 			return (ERR_PTR(-EBUSY));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Theory for the taskq_wait_id(), taskq_wait_outstanding(), and
 | |
|  * taskq_wait() functions below.
 | |
|  *
 | |
|  * Taskq waiting is accomplished by tracking the lowest outstanding task
 | |
|  * id and the next available task id.  As tasks are dispatched they are
 | |
|  * added to the tail of the pending, priority, or delay lists.  As worker
 | |
|  * threads become available the tasks are removed from the heads of these
 | |
|  * lists and linked to the worker threads.  This ensures the lists are
 | |
|  * kept sorted by lowest to highest task id.
 | |
|  *
 | |
|  * Therefore the lowest outstanding task id can be quickly determined by
 | |
|  * checking the head item from all of these lists.  This value is stored
 | |
|  * with the taskq as the lowest id.  It only needs to be recalculated when
 | |
|  * either the task with the current lowest id completes or is canceled.
 | |
|  *
 | |
|  * By blocking until the lowest task id exceeds the passed task id the
 | |
|  * taskq_wait_outstanding() function can be easily implemented.  Similarly,
 | |
|  * by blocking until the lowest task id matches the next task id taskq_wait()
 | |
|  * can be implemented.
 | |
|  *
 | |
|  * Callers should be aware that when there are multiple worked threads it
 | |
|  * is possible for larger task ids to complete before smaller ones.  Also
 | |
|  * when the taskq contains delay tasks with small task ids callers may
 | |
|  * block for a considerable length of time waiting for them to expire and
 | |
|  * execute.
 | |
|  */
 | |
| static int
 | |
| taskq_wait_id_check(taskq_t *tq, taskqid_t id)
 | |
| {
 | |
| 	int rc;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
 | |
| 	rc = (taskq_find(tq, id) == NULL);
 | |
| 	spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 
 | |
| 	return (rc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The taskq_wait_id() function blocks until the passed task id completes.
 | |
|  * This does not guarantee that all lower task ids have completed.
 | |
|  */
 | |
| void
 | |
| taskq_wait_id(taskq_t *tq, taskqid_t id)
 | |
| {
 | |
| 	wait_event(tq->tq_wait_waitq, taskq_wait_id_check(tq, id));
 | |
| }
 | |
| EXPORT_SYMBOL(taskq_wait_id);
 | |
| 
 | |
| static int
 | |
| taskq_wait_outstanding_check(taskq_t *tq, taskqid_t id)
 | |
| {
 | |
| 	int rc;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
 | |
| 	rc = (id < tq->tq_lowest_id);
 | |
| 	spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 
 | |
| 	return (rc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The taskq_wait_outstanding() function will block until all tasks with a
 | |
|  * lower taskqid than the passed 'id' have been completed.  Note that all
 | |
|  * task id's are assigned monotonically at dispatch time.  Zero may be
 | |
|  * passed for the id to indicate all tasks dispatch up to this point,
 | |
|  * but not after, should be waited for.
 | |
|  */
 | |
| void
 | |
| taskq_wait_outstanding(taskq_t *tq, taskqid_t id)
 | |
| {
 | |
| 	id = id ? id : tq->tq_next_id - 1;
 | |
| 	wait_event(tq->tq_wait_waitq, taskq_wait_outstanding_check(tq, id));
 | |
| }
 | |
| EXPORT_SYMBOL(taskq_wait_outstanding);
 | |
| 
 | |
| static int
 | |
| taskq_wait_check(taskq_t *tq)
 | |
| {
 | |
| 	int rc;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
 | |
| 	rc = (tq->tq_lowest_id == tq->tq_next_id);
 | |
| 	spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 
 | |
| 	return (rc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The taskq_wait() function will block until the taskq is empty.
 | |
|  * This means that if a taskq re-dispatches work to itself taskq_wait()
 | |
|  * callers will block indefinitely.
 | |
|  */
 | |
| void
 | |
| taskq_wait(taskq_t *tq)
 | |
| {
 | |
| 	wait_event(tq->tq_wait_waitq, taskq_wait_check(tq));
 | |
| }
 | |
| EXPORT_SYMBOL(taskq_wait);
 | |
| 
 | |
| int
 | |
| taskq_member(taskq_t *tq, kthread_t *t)
 | |
| {
 | |
| 	return (tq == (taskq_t *)tsd_get_by_thread(taskq_tsd, t));
 | |
| }
 | |
| EXPORT_SYMBOL(taskq_member);
 | |
| 
 | |
| taskq_t *
 | |
| taskq_of_curthread(void)
 | |
| {
 | |
| 	return (tsd_get(taskq_tsd));
 | |
| }
 | |
| EXPORT_SYMBOL(taskq_of_curthread);
 | |
| 
 | |
| /*
 | |
|  * Cancel an already dispatched task given the task id.  Still pending tasks
 | |
|  * will be immediately canceled, and if the task is active the function will
 | |
|  * block until it completes.  Preallocated tasks which are canceled must be
 | |
|  * freed by the caller.
 | |
|  */
 | |
| int
 | |
| taskq_cancel_id(taskq_t *tq, taskqid_t id)
 | |
| {
 | |
| 	taskq_ent_t *t;
 | |
| 	int rc = ENOENT;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	ASSERT(tq);
 | |
| 
 | |
| 	spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
 | |
| 	t = taskq_find(tq, id);
 | |
| 	if (t && t != ERR_PTR(-EBUSY)) {
 | |
| 		list_del_init(&t->tqent_list);
 | |
| 		t->tqent_flags |= TQENT_FLAG_CANCEL;
 | |
| 
 | |
| 		/*
 | |
| 		 * When canceling the lowest outstanding task id we
 | |
| 		 * must recalculate the new lowest outstanding id.
 | |
| 		 */
 | |
| 		if (tq->tq_lowest_id == t->tqent_id) {
 | |
| 			tq->tq_lowest_id = taskq_lowest_id(tq);
 | |
| 			ASSERT3S(tq->tq_lowest_id, >, t->tqent_id);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The task_expire() function takes the tq->tq_lock so drop
 | |
| 		 * drop the lock before synchronously cancelling the timer.
 | |
| 		 */
 | |
| 		if (timer_pending(&t->tqent_timer)) {
 | |
| 			spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 			del_timer_sync(&t->tqent_timer);
 | |
| 			spin_lock_irqsave_nested(&tq->tq_lock, flags,
 | |
| 			    tq->tq_lock_class);
 | |
| 		}
 | |
| 
 | |
| 		if (!(t->tqent_flags & TQENT_FLAG_PREALLOC))
 | |
| 			task_done(tq, t);
 | |
| 
 | |
| 		rc = 0;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 
 | |
| 	if (t == ERR_PTR(-EBUSY)) {
 | |
| 		taskq_wait_id(tq, id);
 | |
| 		rc = EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	return (rc);
 | |
| }
 | |
| EXPORT_SYMBOL(taskq_cancel_id);
 | |
| 
 | |
| static int taskq_thread_spawn(taskq_t *tq);
 | |
| 
 | |
| taskqid_t
 | |
| taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
 | |
| {
 | |
| 	taskq_ent_t *t;
 | |
| 	taskqid_t rc = TASKQID_INVALID;
 | |
| 	unsigned long irqflags;
 | |
| 
 | |
| 	ASSERT(tq);
 | |
| 	ASSERT(func);
 | |
| 
 | |
| 	spin_lock_irqsave_nested(&tq->tq_lock, irqflags, tq->tq_lock_class);
 | |
| 
 | |
| 	/* Taskq being destroyed and all tasks drained */
 | |
| 	if (!(tq->tq_flags & TASKQ_ACTIVE))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Do not queue the task unless there is idle thread for it */
 | |
| 	ASSERT(tq->tq_nactive <= tq->tq_nthreads);
 | |
| 	if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads)) {
 | |
| 		/* Dynamic taskq may be able to spawn another thread */
 | |
| 		if (!(tq->tq_flags & TASKQ_DYNAMIC) ||
 | |
| 		    taskq_thread_spawn(tq) == 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if ((t = task_alloc(tq, flags, &irqflags)) == NULL)
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock(&t->tqent_lock);
 | |
| 
 | |
| 	/* Queue to the front of the list to enforce TQ_NOQUEUE semantics */
 | |
| 	if (flags & TQ_NOQUEUE)
 | |
| 		list_add(&t->tqent_list, &tq->tq_prio_list);
 | |
| 	/* Queue to the priority list instead of the pending list */
 | |
| 	else if (flags & TQ_FRONT)
 | |
| 		list_add_tail(&t->tqent_list, &tq->tq_prio_list);
 | |
| 	else
 | |
| 		list_add_tail(&t->tqent_list, &tq->tq_pend_list);
 | |
| 
 | |
| 	t->tqent_id = rc = tq->tq_next_id;
 | |
| 	tq->tq_next_id++;
 | |
| 	t->tqent_func = func;
 | |
| 	t->tqent_arg = arg;
 | |
| 	t->tqent_taskq = tq;
 | |
| 	t->tqent_timer.function = NULL;
 | |
| 	t->tqent_timer.expires = 0;
 | |
| 
 | |
| 	t->tqent_birth = jiffies;
 | |
| 	DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t);
 | |
| 
 | |
| 	ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
 | |
| 
 | |
| 	spin_unlock(&t->tqent_lock);
 | |
| 
 | |
| 	wake_up(&tq->tq_work_waitq);
 | |
| out:
 | |
| 	/* Spawn additional taskq threads if required. */
 | |
| 	if (!(flags & TQ_NOQUEUE) && tq->tq_nactive == tq->tq_nthreads)
 | |
| 		(void) taskq_thread_spawn(tq);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&tq->tq_lock, irqflags);
 | |
| 	return (rc);
 | |
| }
 | |
| EXPORT_SYMBOL(taskq_dispatch);
 | |
| 
 | |
| taskqid_t
 | |
| taskq_dispatch_delay(taskq_t *tq, task_func_t func, void *arg,
 | |
|     uint_t flags, clock_t expire_time)
 | |
| {
 | |
| 	taskqid_t rc = TASKQID_INVALID;
 | |
| 	taskq_ent_t *t;
 | |
| 	unsigned long irqflags;
 | |
| 
 | |
| 	ASSERT(tq);
 | |
| 	ASSERT(func);
 | |
| 
 | |
| 	spin_lock_irqsave_nested(&tq->tq_lock, irqflags, tq->tq_lock_class);
 | |
| 
 | |
| 	/* Taskq being destroyed and all tasks drained */
 | |
| 	if (!(tq->tq_flags & TASKQ_ACTIVE))
 | |
| 		goto out;
 | |
| 
 | |
| 	if ((t = task_alloc(tq, flags, &irqflags)) == NULL)
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock(&t->tqent_lock);
 | |
| 
 | |
| 	/* Queue to the delay list for subsequent execution */
 | |
| 	list_add_tail(&t->tqent_list, &tq->tq_delay_list);
 | |
| 
 | |
| 	t->tqent_id = rc = tq->tq_next_id;
 | |
| 	tq->tq_next_id++;
 | |
| 	t->tqent_func = func;
 | |
| 	t->tqent_arg = arg;
 | |
| 	t->tqent_taskq = tq;
 | |
| 	t->tqent_timer.function = task_expire;
 | |
| 	t->tqent_timer.expires = (unsigned long)expire_time;
 | |
| 	add_timer(&t->tqent_timer);
 | |
| 
 | |
| 	ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
 | |
| 
 | |
| 	spin_unlock(&t->tqent_lock);
 | |
| out:
 | |
| 	/* Spawn additional taskq threads if required. */
 | |
| 	if (tq->tq_nactive == tq->tq_nthreads)
 | |
| 		(void) taskq_thread_spawn(tq);
 | |
| 	spin_unlock_irqrestore(&tq->tq_lock, irqflags);
 | |
| 	return (rc);
 | |
| }
 | |
| EXPORT_SYMBOL(taskq_dispatch_delay);
 | |
| 
 | |
| void
 | |
| taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
 | |
|     taskq_ent_t *t)
 | |
| {
 | |
| 	unsigned long irqflags;
 | |
| 	ASSERT(tq);
 | |
| 	ASSERT(func);
 | |
| 
 | |
| 	spin_lock_irqsave_nested(&tq->tq_lock, irqflags,
 | |
| 	    tq->tq_lock_class);
 | |
| 
 | |
| 	/* Taskq being destroyed and all tasks drained */
 | |
| 	if (!(tq->tq_flags & TASKQ_ACTIVE)) {
 | |
| 		t->tqent_id = TASKQID_INVALID;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads)) {
 | |
| 		/* Dynamic taskq may be able to spawn another thread */
 | |
| 		if (!(tq->tq_flags & TASKQ_DYNAMIC) ||
 | |
| 		    taskq_thread_spawn(tq) == 0)
 | |
| 			goto out2;
 | |
| 		flags |= TQ_FRONT;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&t->tqent_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure the entry is not on some other taskq; it is important to
 | |
| 	 * ASSERT() under lock
 | |
| 	 */
 | |
| 	ASSERT(taskq_empty_ent(t));
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark it as a prealloc'd task.  This is important
 | |
| 	 * to ensure that we don't free it later.
 | |
| 	 */
 | |
| 	t->tqent_flags |= TQENT_FLAG_PREALLOC;
 | |
| 
 | |
| 	/* Queue to the priority list instead of the pending list */
 | |
| 	if (flags & TQ_FRONT)
 | |
| 		list_add_tail(&t->tqent_list, &tq->tq_prio_list);
 | |
| 	else
 | |
| 		list_add_tail(&t->tqent_list, &tq->tq_pend_list);
 | |
| 
 | |
| 	t->tqent_id = tq->tq_next_id;
 | |
| 	tq->tq_next_id++;
 | |
| 	t->tqent_func = func;
 | |
| 	t->tqent_arg = arg;
 | |
| 	t->tqent_taskq = tq;
 | |
| 
 | |
| 	t->tqent_birth = jiffies;
 | |
| 	DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t);
 | |
| 
 | |
| 	spin_unlock(&t->tqent_lock);
 | |
| 
 | |
| 	wake_up(&tq->tq_work_waitq);
 | |
| out:
 | |
| 	/* Spawn additional taskq threads if required. */
 | |
| 	if (tq->tq_nactive == tq->tq_nthreads)
 | |
| 		(void) taskq_thread_spawn(tq);
 | |
| out2:
 | |
| 	spin_unlock_irqrestore(&tq->tq_lock, irqflags);
 | |
| }
 | |
| EXPORT_SYMBOL(taskq_dispatch_ent);
 | |
| 
 | |
| int
 | |
| taskq_empty_ent(taskq_ent_t *t)
 | |
| {
 | |
| 	return (list_empty(&t->tqent_list));
 | |
| }
 | |
| EXPORT_SYMBOL(taskq_empty_ent);
 | |
| 
 | |
| void
 | |
| taskq_init_ent(taskq_ent_t *t)
 | |
| {
 | |
| 	spin_lock_init(&t->tqent_lock);
 | |
| 	init_waitqueue_head(&t->tqent_waitq);
 | |
| 	timer_setup(&t->tqent_timer, NULL, 0);
 | |
| 	INIT_LIST_HEAD(&t->tqent_list);
 | |
| 	t->tqent_id = 0;
 | |
| 	t->tqent_func = NULL;
 | |
| 	t->tqent_arg = NULL;
 | |
| 	t->tqent_flags = 0;
 | |
| 	t->tqent_taskq = NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(taskq_init_ent);
 | |
| 
 | |
| /*
 | |
|  * Return the next pending task, preference is given to tasks on the
 | |
|  * priority list which were dispatched with TQ_FRONT.
 | |
|  */
 | |
| static taskq_ent_t *
 | |
| taskq_next_ent(taskq_t *tq)
 | |
| {
 | |
| 	struct list_head *list;
 | |
| 
 | |
| 	if (!list_empty(&tq->tq_prio_list))
 | |
| 		list = &tq->tq_prio_list;
 | |
| 	else if (!list_empty(&tq->tq_pend_list))
 | |
| 		list = &tq->tq_pend_list;
 | |
| 	else
 | |
| 		return (NULL);
 | |
| 
 | |
| 	return (list_entry(list->next, taskq_ent_t, tqent_list));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Spawns a new thread for the specified taskq.
 | |
|  */
 | |
| static void
 | |
| taskq_thread_spawn_task(void *arg)
 | |
| {
 | |
| 	taskq_t *tq = (taskq_t *)arg;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (taskq_thread_create(tq) == NULL) {
 | |
| 		/* restore spawning count if failed */
 | |
| 		spin_lock_irqsave_nested(&tq->tq_lock, flags,
 | |
| 		    tq->tq_lock_class);
 | |
| 		tq->tq_nspawn--;
 | |
| 		spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Spawn addition threads for dynamic taskqs (TASKQ_DYNAMIC) the current
 | |
|  * number of threads is insufficient to handle the pending tasks.  These
 | |
|  * new threads must be created by the dedicated dynamic_taskq to avoid
 | |
|  * deadlocks between thread creation and memory reclaim.  The system_taskq
 | |
|  * which is also a dynamic taskq cannot be safely used for this.
 | |
|  */
 | |
| static int
 | |
| taskq_thread_spawn(taskq_t *tq)
 | |
| {
 | |
| 	int spawning = 0;
 | |
| 
 | |
| 	if (!(tq->tq_flags & TASKQ_DYNAMIC))
 | |
| 		return (0);
 | |
| 
 | |
| 	if ((tq->tq_nthreads + tq->tq_nspawn < tq->tq_maxthreads) &&
 | |
| 	    (tq->tq_flags & TASKQ_ACTIVE)) {
 | |
| 		spawning = (++tq->tq_nspawn);
 | |
| 		taskq_dispatch(dynamic_taskq, taskq_thread_spawn_task,
 | |
| 		    tq, TQ_NOSLEEP);
 | |
| 	}
 | |
| 
 | |
| 	return (spawning);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Threads in a dynamic taskq should only exit once it has been completely
 | |
|  * drained and no other threads are actively servicing tasks.  This prevents
 | |
|  * threads from being created and destroyed more than is required.
 | |
|  *
 | |
|  * The first thread is the thread list is treated as the primary thread.
 | |
|  * There is nothing special about the primary thread but in order to avoid
 | |
|  * all the taskq pids from changing we opt to make it long running.
 | |
|  */
 | |
| static int
 | |
| taskq_thread_should_stop(taskq_t *tq, taskq_thread_t *tqt)
 | |
| {
 | |
| 	if (!(tq->tq_flags & TASKQ_DYNAMIC))
 | |
| 		return (0);
 | |
| 
 | |
| 	if (list_first_entry(&(tq->tq_thread_list), taskq_thread_t,
 | |
| 	    tqt_thread_list) == tqt)
 | |
| 		return (0);
 | |
| 
 | |
| 	return
 | |
| 	    ((tq->tq_nspawn == 0) &&	/* No threads are being spawned */
 | |
| 	    (tq->tq_nactive == 0) &&	/* No threads are handling tasks */
 | |
| 	    (tq->tq_nthreads > 1) &&	/* More than 1 thread is running */
 | |
| 	    (!taskq_next_ent(tq)) &&	/* There are no pending tasks */
 | |
| 	    (spl_taskq_thread_dynamic)); /* Dynamic taskqs are allowed */
 | |
| }
 | |
| 
 | |
| static int
 | |
| taskq_thread(void *args)
 | |
| {
 | |
| 	DECLARE_WAITQUEUE(wait, current);
 | |
| 	sigset_t blocked;
 | |
| 	taskq_thread_t *tqt = args;
 | |
| 	taskq_t *tq;
 | |
| 	taskq_ent_t *t;
 | |
| 	int seq_tasks = 0;
 | |
| 	unsigned long flags;
 | |
| 	taskq_ent_t dup_task = {};
 | |
| 
 | |
| 	ASSERT(tqt);
 | |
| 	ASSERT(tqt->tqt_tq);
 | |
| 	tq = tqt->tqt_tq;
 | |
| 	current->flags |= PF_NOFREEZE;
 | |
| 
 | |
| 	(void) spl_fstrans_mark();
 | |
| 
 | |
| 	sigfillset(&blocked);
 | |
| 	sigprocmask(SIG_BLOCK, &blocked, NULL);
 | |
| 	flush_signals(current);
 | |
| 
 | |
| 	tsd_set(taskq_tsd, tq);
 | |
| 	spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
 | |
| 	/*
 | |
| 	 * If we are dynamically spawned, decrease spawning count. Note that
 | |
| 	 * we could be created during taskq_create, in which case we shouldn't
 | |
| 	 * do the decrement. But it's fine because taskq_create will reset
 | |
| 	 * tq_nspawn later.
 | |
| 	 */
 | |
| 	if (tq->tq_flags & TASKQ_DYNAMIC)
 | |
| 		tq->tq_nspawn--;
 | |
| 
 | |
| 	/* Immediately exit if more threads than allowed were created. */
 | |
| 	if (tq->tq_nthreads >= tq->tq_maxthreads)
 | |
| 		goto error;
 | |
| 
 | |
| 	tq->tq_nthreads++;
 | |
| 	list_add_tail(&tqt->tqt_thread_list, &tq->tq_thread_list);
 | |
| 	wake_up(&tq->tq_wait_waitq);
 | |
| 	set_current_state(TASK_INTERRUPTIBLE);
 | |
| 
 | |
| 	while (!kthread_should_stop()) {
 | |
| 
 | |
| 		if (list_empty(&tq->tq_pend_list) &&
 | |
| 		    list_empty(&tq->tq_prio_list)) {
 | |
| 
 | |
| 			if (taskq_thread_should_stop(tq, tqt)) {
 | |
| 				wake_up_all(&tq->tq_wait_waitq);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			add_wait_queue_exclusive(&tq->tq_work_waitq, &wait);
 | |
| 			spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 
 | |
| 			schedule();
 | |
| 			seq_tasks = 0;
 | |
| 
 | |
| 			spin_lock_irqsave_nested(&tq->tq_lock, flags,
 | |
| 			    tq->tq_lock_class);
 | |
| 			remove_wait_queue(&tq->tq_work_waitq, &wait);
 | |
| 		} else {
 | |
| 			__set_current_state(TASK_RUNNING);
 | |
| 		}
 | |
| 
 | |
| 		if ((t = taskq_next_ent(tq)) != NULL) {
 | |
| 			list_del_init(&t->tqent_list);
 | |
| 
 | |
| 			/*
 | |
| 			 * A TQENT_FLAG_PREALLOC task may be reused or freed
 | |
| 			 * during the task function call. Store tqent_id and
 | |
| 			 * tqent_flags here.
 | |
| 			 *
 | |
| 			 * Also use an on stack taskq_ent_t for tqt_task
 | |
| 			 * assignment in this case; we want to make sure
 | |
| 			 * to duplicate all fields, so the values are
 | |
| 			 * correct when it's accessed via DTRACE_PROBE*.
 | |
| 			 */
 | |
| 			tqt->tqt_id = t->tqent_id;
 | |
| 			tqt->tqt_flags = t->tqent_flags;
 | |
| 
 | |
| 			if (t->tqent_flags & TQENT_FLAG_PREALLOC) {
 | |
| 				dup_task = *t;
 | |
| 				t = &dup_task;
 | |
| 			}
 | |
| 			tqt->tqt_task = t;
 | |
| 
 | |
| 			taskq_insert_in_order(tq, tqt);
 | |
| 			tq->tq_nactive++;
 | |
| 			spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 
 | |
| 			DTRACE_PROBE1(taskq_ent__start, taskq_ent_t *, t);
 | |
| 
 | |
| 			/* Perform the requested task */
 | |
| 			t->tqent_func(t->tqent_arg);
 | |
| 
 | |
| 			DTRACE_PROBE1(taskq_ent__finish, taskq_ent_t *, t);
 | |
| 
 | |
| 			spin_lock_irqsave_nested(&tq->tq_lock, flags,
 | |
| 			    tq->tq_lock_class);
 | |
| 			tq->tq_nactive--;
 | |
| 			list_del_init(&tqt->tqt_active_list);
 | |
| 			tqt->tqt_task = NULL;
 | |
| 
 | |
| 			/* For prealloc'd tasks, we don't free anything. */
 | |
| 			if (!(tqt->tqt_flags & TQENT_FLAG_PREALLOC))
 | |
| 				task_done(tq, t);
 | |
| 
 | |
| 			/*
 | |
| 			 * When the current lowest outstanding taskqid is
 | |
| 			 * done calculate the new lowest outstanding id
 | |
| 			 */
 | |
| 			if (tq->tq_lowest_id == tqt->tqt_id) {
 | |
| 				tq->tq_lowest_id = taskq_lowest_id(tq);
 | |
| 				ASSERT3S(tq->tq_lowest_id, >, tqt->tqt_id);
 | |
| 			}
 | |
| 
 | |
| 			/* Spawn additional taskq threads if required. */
 | |
| 			if ((++seq_tasks) > spl_taskq_thread_sequential &&
 | |
| 			    taskq_thread_spawn(tq))
 | |
| 				seq_tasks = 0;
 | |
| 
 | |
| 			tqt->tqt_id = TASKQID_INVALID;
 | |
| 			tqt->tqt_flags = 0;
 | |
| 			wake_up_all(&tq->tq_wait_waitq);
 | |
| 		} else {
 | |
| 			if (taskq_thread_should_stop(tq, tqt))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	tq->tq_nthreads--;
 | |
| 	list_del_init(&tqt->tqt_thread_list);
 | |
| error:
 | |
| 	kmem_free(tqt, sizeof (taskq_thread_t));
 | |
| 	spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 
 | |
| 	tsd_set(taskq_tsd, NULL);
 | |
| 	thread_exit();
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static taskq_thread_t *
 | |
| taskq_thread_create(taskq_t *tq)
 | |
| {
 | |
| 	static int last_used_cpu = 0;
 | |
| 	taskq_thread_t *tqt;
 | |
| 
 | |
| 	tqt = kmem_alloc(sizeof (*tqt), KM_PUSHPAGE);
 | |
| 	INIT_LIST_HEAD(&tqt->tqt_thread_list);
 | |
| 	INIT_LIST_HEAD(&tqt->tqt_active_list);
 | |
| 	tqt->tqt_tq = tq;
 | |
| 	tqt->tqt_id = TASKQID_INVALID;
 | |
| 
 | |
| 	tqt->tqt_thread = spl_kthread_create(taskq_thread, tqt,
 | |
| 	    "%s", tq->tq_name);
 | |
| 	if (tqt->tqt_thread == NULL) {
 | |
| 		kmem_free(tqt, sizeof (taskq_thread_t));
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	if (spl_taskq_thread_bind) {
 | |
| 		last_used_cpu = (last_used_cpu + 1) % num_online_cpus();
 | |
| 		kthread_bind(tqt->tqt_thread, last_used_cpu);
 | |
| 	}
 | |
| 
 | |
| 	if (spl_taskq_thread_priority)
 | |
| 		set_user_nice(tqt->tqt_thread, PRIO_TO_NICE(tq->tq_pri));
 | |
| 
 | |
| 	wake_up_process(tqt->tqt_thread);
 | |
| 
 | |
| 	return (tqt);
 | |
| }
 | |
| 
 | |
| taskq_t *
 | |
| taskq_create(const char *name, int threads_arg, pri_t pri,
 | |
|     int minalloc, int maxalloc, uint_t flags)
 | |
| {
 | |
| 	taskq_t *tq;
 | |
| 	taskq_thread_t *tqt;
 | |
| 	int count = 0, rc = 0, i;
 | |
| 	unsigned long irqflags;
 | |
| 	int nthreads = threads_arg;
 | |
| 
 | |
| 	ASSERT(name != NULL);
 | |
| 	ASSERT(minalloc >= 0);
 | |
| 	ASSERT(!(flags & (TASKQ_CPR_SAFE))); /* Unsupported */
 | |
| 
 | |
| 	/* Scale the number of threads using nthreads as a percentage */
 | |
| 	if (flags & TASKQ_THREADS_CPU_PCT) {
 | |
| 		ASSERT(nthreads <= 100);
 | |
| 		ASSERT(nthreads >= 0);
 | |
| 		nthreads = MIN(threads_arg, 100);
 | |
| 		nthreads = MAX(nthreads, 0);
 | |
| 		nthreads = MAX((num_online_cpus() * nthreads) /100, 1);
 | |
| 	}
 | |
| 
 | |
| 	tq = kmem_alloc(sizeof (*tq), KM_PUSHPAGE);
 | |
| 	if (tq == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	tq->tq_hp_support = B_FALSE;
 | |
| #ifdef HAVE_CPU_HOTPLUG
 | |
| 	if (flags & TASKQ_THREADS_CPU_PCT) {
 | |
| 		tq->tq_hp_support = B_TRUE;
 | |
| 		if (cpuhp_state_add_instance_nocalls(spl_taskq_cpuhp_state,
 | |
| 		    &tq->tq_hp_cb_node) != 0) {
 | |
| 			kmem_free(tq, sizeof (*tq));
 | |
| 			return (NULL);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	spin_lock_init(&tq->tq_lock);
 | |
| 	INIT_LIST_HEAD(&tq->tq_thread_list);
 | |
| 	INIT_LIST_HEAD(&tq->tq_active_list);
 | |
| 	tq->tq_name = kmem_strdup(name);
 | |
| 	tq->tq_nactive = 0;
 | |
| 	tq->tq_nthreads = 0;
 | |
| 	tq->tq_nspawn = 0;
 | |
| 	tq->tq_maxthreads = nthreads;
 | |
| 	tq->tq_cpu_pct = threads_arg;
 | |
| 	tq->tq_pri = pri;
 | |
| 	tq->tq_minalloc = minalloc;
 | |
| 	tq->tq_maxalloc = maxalloc;
 | |
| 	tq->tq_nalloc = 0;
 | |
| 	tq->tq_flags = (flags | TASKQ_ACTIVE);
 | |
| 	tq->tq_next_id = TASKQID_INITIAL;
 | |
| 	tq->tq_lowest_id = TASKQID_INITIAL;
 | |
| 	INIT_LIST_HEAD(&tq->tq_free_list);
 | |
| 	INIT_LIST_HEAD(&tq->tq_pend_list);
 | |
| 	INIT_LIST_HEAD(&tq->tq_prio_list);
 | |
| 	INIT_LIST_HEAD(&tq->tq_delay_list);
 | |
| 	init_waitqueue_head(&tq->tq_work_waitq);
 | |
| 	init_waitqueue_head(&tq->tq_wait_waitq);
 | |
| 	tq->tq_lock_class = TQ_LOCK_GENERAL;
 | |
| 	INIT_LIST_HEAD(&tq->tq_taskqs);
 | |
| 
 | |
| 	if (flags & TASKQ_PREPOPULATE) {
 | |
| 		spin_lock_irqsave_nested(&tq->tq_lock, irqflags,
 | |
| 		    tq->tq_lock_class);
 | |
| 
 | |
| 		for (i = 0; i < minalloc; i++)
 | |
| 			task_done(tq, task_alloc(tq, TQ_PUSHPAGE | TQ_NEW,
 | |
| 			    &irqflags));
 | |
| 
 | |
| 		spin_unlock_irqrestore(&tq->tq_lock, irqflags);
 | |
| 	}
 | |
| 
 | |
| 	if ((flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic)
 | |
| 		nthreads = 1;
 | |
| 
 | |
| 	for (i = 0; i < nthreads; i++) {
 | |
| 		tqt = taskq_thread_create(tq);
 | |
| 		if (tqt == NULL)
 | |
| 			rc = 1;
 | |
| 		else
 | |
| 			count++;
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for all threads to be started before potential destroy */
 | |
| 	wait_event(tq->tq_wait_waitq, tq->tq_nthreads == count);
 | |
| 	/*
 | |
| 	 * taskq_thread might have touched nspawn, but we don't want them to
 | |
| 	 * because they're not dynamically spawned. So we reset it to 0
 | |
| 	 */
 | |
| 	tq->tq_nspawn = 0;
 | |
| 
 | |
| 	if (rc) {
 | |
| 		taskq_destroy(tq);
 | |
| 		tq = NULL;
 | |
| 	} else {
 | |
| 		down_write(&tq_list_sem);
 | |
| 		tq->tq_instance = taskq_find_by_name(name) + 1;
 | |
| 		list_add_tail(&tq->tq_taskqs, &tq_list);
 | |
| 		up_write(&tq_list_sem);
 | |
| 	}
 | |
| 
 | |
| 	return (tq);
 | |
| }
 | |
| EXPORT_SYMBOL(taskq_create);
 | |
| 
 | |
| void
 | |
| taskq_destroy(taskq_t *tq)
 | |
| {
 | |
| 	struct task_struct *thread;
 | |
| 	taskq_thread_t *tqt;
 | |
| 	taskq_ent_t *t;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	ASSERT(tq);
 | |
| 	spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
 | |
| 	tq->tq_flags &= ~TASKQ_ACTIVE;
 | |
| 	spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 
 | |
| #ifdef HAVE_CPU_HOTPLUG
 | |
| 	if (tq->tq_hp_support) {
 | |
| 		VERIFY0(cpuhp_state_remove_instance_nocalls(
 | |
| 		    spl_taskq_cpuhp_state, &tq->tq_hp_cb_node));
 | |
| 	}
 | |
| #endif
 | |
| 	/*
 | |
| 	 * When TASKQ_ACTIVE is clear new tasks may not be added nor may
 | |
| 	 * new worker threads be spawned for dynamic taskq.
 | |
| 	 */
 | |
| 	if (dynamic_taskq != NULL)
 | |
| 		taskq_wait_outstanding(dynamic_taskq, 0);
 | |
| 
 | |
| 	taskq_wait(tq);
 | |
| 
 | |
| 	/* remove taskq from global list used by the kstats */
 | |
| 	down_write(&tq_list_sem);
 | |
| 	list_del(&tq->tq_taskqs);
 | |
| 	up_write(&tq_list_sem);
 | |
| 
 | |
| 	spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
 | |
| 	/* wait for spawning threads to insert themselves to the list */
 | |
| 	while (tq->tq_nspawn) {
 | |
| 		spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 		schedule_timeout_interruptible(1);
 | |
| 		spin_lock_irqsave_nested(&tq->tq_lock, flags,
 | |
| 		    tq->tq_lock_class);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Signal each thread to exit and block until it does.  Each thread
 | |
| 	 * is responsible for removing itself from the list and freeing its
 | |
| 	 * taskq_thread_t.  This allows for idle threads to opt to remove
 | |
| 	 * themselves from the taskq.  They can be recreated as needed.
 | |
| 	 */
 | |
| 	while (!list_empty(&tq->tq_thread_list)) {
 | |
| 		tqt = list_entry(tq->tq_thread_list.next,
 | |
| 		    taskq_thread_t, tqt_thread_list);
 | |
| 		thread = tqt->tqt_thread;
 | |
| 		spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 
 | |
| 		kthread_stop(thread);
 | |
| 
 | |
| 		spin_lock_irqsave_nested(&tq->tq_lock, flags,
 | |
| 		    tq->tq_lock_class);
 | |
| 	}
 | |
| 
 | |
| 	while (!list_empty(&tq->tq_free_list)) {
 | |
| 		t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
 | |
| 
 | |
| 		ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
 | |
| 
 | |
| 		list_del_init(&t->tqent_list);
 | |
| 		task_free(tq, t);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT0(tq->tq_nthreads);
 | |
| 	ASSERT0(tq->tq_nalloc);
 | |
| 	ASSERT0(tq->tq_nspawn);
 | |
| 	ASSERT(list_empty(&tq->tq_thread_list));
 | |
| 	ASSERT(list_empty(&tq->tq_active_list));
 | |
| 	ASSERT(list_empty(&tq->tq_free_list));
 | |
| 	ASSERT(list_empty(&tq->tq_pend_list));
 | |
| 	ASSERT(list_empty(&tq->tq_prio_list));
 | |
| 	ASSERT(list_empty(&tq->tq_delay_list));
 | |
| 
 | |
| 	spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 
 | |
| 	kmem_strfree(tq->tq_name);
 | |
| 	kmem_free(tq, sizeof (taskq_t));
 | |
| }
 | |
| EXPORT_SYMBOL(taskq_destroy);
 | |
| 
 | |
| static unsigned int spl_taskq_kick = 0;
 | |
| 
 | |
| /*
 | |
|  * 2.6.36 API Change
 | |
|  * module_param_cb is introduced to take kernel_param_ops and
 | |
|  * module_param_call is marked as obsolete. Also set and get operations
 | |
|  * were changed to take a 'const struct kernel_param *'.
 | |
|  */
 | |
| static int
 | |
| #ifdef module_param_cb
 | |
| param_set_taskq_kick(const char *val, const struct kernel_param *kp)
 | |
| #else
 | |
| param_set_taskq_kick(const char *val, struct kernel_param *kp)
 | |
| #endif
 | |
| {
 | |
| 	int ret;
 | |
| 	taskq_t *tq = NULL;
 | |
| 	taskq_ent_t *t;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	ret = param_set_uint(val, kp);
 | |
| 	if (ret < 0 || !spl_taskq_kick)
 | |
| 		return (ret);
 | |
| 	/* reset value */
 | |
| 	spl_taskq_kick = 0;
 | |
| 
 | |
| 	down_read(&tq_list_sem);
 | |
| 	list_for_each_entry(tq, &tq_list, tq_taskqs) {
 | |
| 		spin_lock_irqsave_nested(&tq->tq_lock, flags,
 | |
| 		    tq->tq_lock_class);
 | |
| 		/* Check if the first pending is older than 5 seconds */
 | |
| 		t = taskq_next_ent(tq);
 | |
| 		if (t && time_after(jiffies, t->tqent_birth + 5*HZ)) {
 | |
| 			(void) taskq_thread_spawn(tq);
 | |
| 			printk(KERN_INFO "spl: Kicked taskq %s/%d\n",
 | |
| 			    tq->tq_name, tq->tq_instance);
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 	}
 | |
| 	up_read(&tq_list_sem);
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| #ifdef module_param_cb
 | |
| static const struct kernel_param_ops param_ops_taskq_kick = {
 | |
| 	.set = param_set_taskq_kick,
 | |
| 	.get = param_get_uint,
 | |
| };
 | |
| module_param_cb(spl_taskq_kick, ¶m_ops_taskq_kick, &spl_taskq_kick, 0644);
 | |
| #else
 | |
| module_param_call(spl_taskq_kick, param_set_taskq_kick, param_get_uint,
 | |
| 	&spl_taskq_kick, 0644);
 | |
| #endif
 | |
| MODULE_PARM_DESC(spl_taskq_kick,
 | |
| 	"Write nonzero to kick stuck taskqs to spawn more threads");
 | |
| 
 | |
| #ifdef HAVE_CPU_HOTPLUG
 | |
| /*
 | |
|  * This callback will be called exactly once for each core that comes online,
 | |
|  * for each dynamic taskq. We attempt to expand taskqs that have
 | |
|  * TASKQ_THREADS_CPU_PCT set. We need to redo the percentage calculation every
 | |
|  * time, to correctly determine whether or not to add a thread.
 | |
|  */
 | |
| static int
 | |
| spl_taskq_expand(unsigned int cpu, struct hlist_node *node)
 | |
| {
 | |
| 	taskq_t *tq = list_entry(node, taskq_t, tq_hp_cb_node);
 | |
| 	unsigned long flags;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	ASSERT(tq);
 | |
| 	spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
 | |
| 
 | |
| 	if (!(tq->tq_flags & TASKQ_ACTIVE)) {
 | |
| 		spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 		return (err);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
 | |
| 	int nthreads = MIN(tq->tq_cpu_pct, 100);
 | |
| 	nthreads = MAX(((num_online_cpus() + 1) * nthreads) / 100, 1);
 | |
| 	tq->tq_maxthreads = nthreads;
 | |
| 
 | |
| 	if (!((tq->tq_flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic) &&
 | |
| 	    tq->tq_maxthreads > tq->tq_nthreads) {
 | |
| 		spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 		taskq_thread_t *tqt = taskq_thread_create(tq);
 | |
| 		if (tqt == NULL)
 | |
| 			err = -1;
 | |
| 		return (err);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * While we don't support offlining CPUs, it is possible that CPUs will fail
 | |
|  * to online successfully. We do need to be able to handle this case
 | |
|  * gracefully.
 | |
|  */
 | |
| static int
 | |
| spl_taskq_prepare_down(unsigned int cpu, struct hlist_node *node)
 | |
| {
 | |
| 	taskq_t *tq = list_entry(node, taskq_t, tq_hp_cb_node);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	ASSERT(tq);
 | |
| 	spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
 | |
| 
 | |
| 	if (!(tq->tq_flags & TASKQ_ACTIVE))
 | |
| 		goto out;
 | |
| 
 | |
| 	ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
 | |
| 	int nthreads = MIN(tq->tq_cpu_pct, 100);
 | |
| 	nthreads = MAX(((num_online_cpus()) * nthreads) / 100, 1);
 | |
| 	tq->tq_maxthreads = nthreads;
 | |
| 
 | |
| 	if (!((tq->tq_flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic) &&
 | |
| 	    tq->tq_maxthreads < tq->tq_nthreads) {
 | |
| 		ASSERT3U(tq->tq_maxthreads, ==, tq->tq_nthreads - 1);
 | |
| 		taskq_thread_t *tqt = list_entry(tq->tq_thread_list.next,
 | |
| 		    taskq_thread_t, tqt_thread_list);
 | |
| 		struct task_struct *thread = tqt->tqt_thread;
 | |
| 		spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 
 | |
| 		kthread_stop(thread);
 | |
| 
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&tq->tq_lock, flags);
 | |
| 	return (0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int
 | |
| spl_taskq_init(void)
 | |
| {
 | |
| 	init_rwsem(&tq_list_sem);
 | |
| 	tsd_create(&taskq_tsd, NULL);
 | |
| 
 | |
| #ifdef HAVE_CPU_HOTPLUG
 | |
| 	spl_taskq_cpuhp_state = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
 | |
| 	    "fs/spl_taskq:online", spl_taskq_expand, spl_taskq_prepare_down);
 | |
| #endif
 | |
| 
 | |
| 	system_taskq = taskq_create("spl_system_taskq", MAX(boot_ncpus, 64),
 | |
| 	    maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE|TASKQ_DYNAMIC);
 | |
| 	if (system_taskq == NULL)
 | |
| 		return (-ENOMEM);
 | |
| 
 | |
| 	system_delay_taskq = taskq_create("spl_delay_taskq", MAX(boot_ncpus, 4),
 | |
| 	    maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE|TASKQ_DYNAMIC);
 | |
| 	if (system_delay_taskq == NULL) {
 | |
| #ifdef HAVE_CPU_HOTPLUG
 | |
| 		cpuhp_remove_multi_state(spl_taskq_cpuhp_state);
 | |
| #endif
 | |
| 		taskq_destroy(system_taskq);
 | |
| 		return (-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	dynamic_taskq = taskq_create("spl_dynamic_taskq", 1,
 | |
| 	    maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE);
 | |
| 	if (dynamic_taskq == NULL) {
 | |
| #ifdef HAVE_CPU_HOTPLUG
 | |
| 		cpuhp_remove_multi_state(spl_taskq_cpuhp_state);
 | |
| #endif
 | |
| 		taskq_destroy(system_taskq);
 | |
| 		taskq_destroy(system_delay_taskq);
 | |
| 		return (-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This is used to annotate tq_lock, so
 | |
| 	 *   taskq_dispatch -> taskq_thread_spawn -> taskq_dispatch
 | |
| 	 * does not trigger a lockdep warning re: possible recursive locking
 | |
| 	 */
 | |
| 	dynamic_taskq->tq_lock_class = TQ_LOCK_DYNAMIC;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| void
 | |
| spl_taskq_fini(void)
 | |
| {
 | |
| 	taskq_destroy(dynamic_taskq);
 | |
| 	dynamic_taskq = NULL;
 | |
| 
 | |
| 	taskq_destroy(system_delay_taskq);
 | |
| 	system_delay_taskq = NULL;
 | |
| 
 | |
| 	taskq_destroy(system_taskq);
 | |
| 	system_taskq = NULL;
 | |
| 
 | |
| 	tsd_destroy(&taskq_tsd);
 | |
| 
 | |
| #ifdef HAVE_CPU_HOTPLUG
 | |
| 	cpuhp_remove_multi_state(spl_taskq_cpuhp_state);
 | |
| 	spl_taskq_cpuhp_state = 0;
 | |
| #endif
 | |
| }
 |