mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 10:00:40 +00:00 
			
		
		
		
	 4ef69de384
			
		
	
	
		4ef69de384
		
	
	
	
	
		
			
			The Linux 5.16.14 kernel's coccicheck caught this. The semantic patch that caught it was: ./scripts/coccinelle/null/badzero.cocci Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #14372
		
			
				
	
	
		
			1384 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1384 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
 | |
|  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file contains the top half of the zfs directory structure
 | |
|  * implementation. The bottom half is in zap_leaf.c.
 | |
|  *
 | |
|  * The zdir is an extendable hash data structure. There is a table of
 | |
|  * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are
 | |
|  * each a constant size and hold a variable number of directory entries.
 | |
|  * The buckets (aka "leaf nodes") are implemented in zap_leaf.c.
 | |
|  *
 | |
|  * The pointer table holds a power of 2 number of pointers.
 | |
|  * (1<<zap_t->zd_data->zd_phys->zd_prefix_len).  The bucket pointed to
 | |
|  * by the pointer at index i in the table holds entries whose hash value
 | |
|  * has a zd_prefix_len - bit prefix
 | |
|  */
 | |
| 
 | |
| #include <sys/spa.h>
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/zfs_context.h>
 | |
| #include <sys/zfs_znode.h>
 | |
| #include <sys/fs/zfs.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/zap_impl.h>
 | |
| #include <sys/zap_leaf.h>
 | |
| 
 | |
| /*
 | |
|  * If zap_iterate_prefetch is set, we will prefetch the entire ZAP object
 | |
|  * (all leaf blocks) when we start iterating over it.
 | |
|  *
 | |
|  * For zap_cursor_init(), the callers all intend to iterate through all the
 | |
|  * entries.  There are a few cases where an error (typically i/o error) could
 | |
|  * cause it to bail out early.
 | |
|  *
 | |
|  * For zap_cursor_init_serialized(), there are callers that do the iteration
 | |
|  * outside of ZFS.  Typically they would iterate over everything, but we
 | |
|  * don't have control of that.  E.g. zfs_ioc_snapshot_list_next(),
 | |
|  * zcp_snapshots_iter(), and other iterators over things in the MOS - these
 | |
|  * are called by /sbin/zfs and channel programs.  The other example is
 | |
|  * zfs_readdir() which iterates over directory entries for the getdents()
 | |
|  * syscall.  /sbin/ls iterates to the end (unless it receives a signal), but
 | |
|  * userland doesn't have to.
 | |
|  *
 | |
|  * Given that the ZAP entries aren't returned in a specific order, the only
 | |
|  * legitimate use cases for partial iteration would be:
 | |
|  *
 | |
|  * 1. Pagination: e.g. you only want to display 100 entries at a time, so you
 | |
|  *    get the first 100 and then wait for the user to hit "next page", which
 | |
|  *    they may never do).
 | |
|  *
 | |
|  * 2. You want to know if there are more than X entries, without relying on
 | |
|  *    the zfs-specific implementation of the directory's st_size (which is
 | |
|  *    the number of entries).
 | |
|  */
 | |
| static int zap_iterate_prefetch = B_TRUE;
 | |
| 
 | |
| int fzap_default_block_shift = 14; /* 16k blocksize */
 | |
| 
 | |
| static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks);
 | |
| 
 | |
| void
 | |
| fzap_byteswap(void *vbuf, size_t size)
 | |
| {
 | |
| 	uint64_t block_type = *(uint64_t *)vbuf;
 | |
| 
 | |
| 	if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF))
 | |
| 		zap_leaf_byteswap(vbuf, size);
 | |
| 	else {
 | |
| 		/* it's a ptrtbl block */
 | |
| 		byteswap_uint64_array(vbuf, size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags)
 | |
| {
 | |
| 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 | |
| 	zap->zap_ismicro = FALSE;
 | |
| 
 | |
| 	zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync;
 | |
| 	zap->zap_dbu.dbu_evict_func_async = NULL;
 | |
| 
 | |
| 	mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 0);
 | |
| 	zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1;
 | |
| 
 | |
| 	zap_phys_t *zp = zap_f_phys(zap);
 | |
| 	/*
 | |
| 	 * explicitly zero it since it might be coming from an
 | |
| 	 * initialized microzap
 | |
| 	 */
 | |
| 	memset(zap->zap_dbuf->db_data, 0, zap->zap_dbuf->db_size);
 | |
| 	zp->zap_block_type = ZBT_HEADER;
 | |
| 	zp->zap_magic = ZAP_MAGIC;
 | |
| 
 | |
| 	zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap);
 | |
| 
 | |
| 	zp->zap_freeblk = 2;		/* block 1 will be the first leaf */
 | |
| 	zp->zap_num_leafs = 1;
 | |
| 	zp->zap_num_entries = 0;
 | |
| 	zp->zap_salt = zap->zap_salt;
 | |
| 	zp->zap_normflags = zap->zap_normflags;
 | |
| 	zp->zap_flags = flags;
 | |
| 
 | |
| 	/* block 1 will be the first leaf */
 | |
| 	for (int i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++)
 | |
| 		ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * set up block 1 - the first leaf
 | |
| 	 */
 | |
| 	dmu_buf_t *db;
 | |
| 	VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
 | |
| 	    1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH));
 | |
| 	dmu_buf_will_dirty(db, tx);
 | |
| 
 | |
| 	zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
 | |
| 	l->l_dbuf = db;
 | |
| 
 | |
| 	zap_leaf_init(l, zp->zap_normflags != 0);
 | |
| 
 | |
| 	kmem_free(l, sizeof (zap_leaf_t));
 | |
| 	dmu_buf_rele(db, FTAG);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx)
 | |
| {
 | |
| 	if (RW_WRITE_HELD(&zap->zap_rwlock))
 | |
| 		return (1);
 | |
| 	if (rw_tryupgrade(&zap->zap_rwlock)) {
 | |
| 		dmu_buf_will_dirty(zap->zap_dbuf, tx);
 | |
| 		return (1);
 | |
| 	}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic routines for dealing with the pointer & cookie tables.
 | |
|  */
 | |
| 
 | |
| static int
 | |
| zap_table_grow(zap_t *zap, zap_table_phys_t *tbl,
 | |
|     void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n),
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	uint64_t newblk;
 | |
| 	int bs = FZAP_BLOCK_SHIFT(zap);
 | |
| 	int hepb = 1<<(bs-4);
 | |
| 	/* hepb = half the number of entries in a block */
 | |
| 
 | |
| 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 | |
| 	ASSERT(tbl->zt_blk != 0);
 | |
| 	ASSERT(tbl->zt_numblks > 0);
 | |
| 
 | |
| 	if (tbl->zt_nextblk != 0) {
 | |
| 		newblk = tbl->zt_nextblk;
 | |
| 	} else {
 | |
| 		newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2);
 | |
| 		tbl->zt_nextblk = newblk;
 | |
| 		ASSERT0(tbl->zt_blks_copied);
 | |
| 		dmu_prefetch(zap->zap_objset, zap->zap_object, 0,
 | |
| 		    tbl->zt_blk << bs, tbl->zt_numblks << bs,
 | |
| 		    ZIO_PRIORITY_SYNC_READ);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy the ptrtbl from the old to new location.
 | |
| 	 */
 | |
| 
 | |
| 	uint64_t b = tbl->zt_blks_copied;
 | |
| 	dmu_buf_t *db_old;
 | |
| 	int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
 | |
| 	    (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 
 | |
| 	/* first half of entries in old[b] go to new[2*b+0] */
 | |
| 	dmu_buf_t *db_new;
 | |
| 	VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
 | |
| 	    (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
 | |
| 	dmu_buf_will_dirty(db_new, tx);
 | |
| 	transfer_func(db_old->db_data, db_new->db_data, hepb);
 | |
| 	dmu_buf_rele(db_new, FTAG);
 | |
| 
 | |
| 	/* second half of entries in old[b] go to new[2*b+1] */
 | |
| 	VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
 | |
| 	    (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
 | |
| 	dmu_buf_will_dirty(db_new, tx);
 | |
| 	transfer_func((uint64_t *)db_old->db_data + hepb,
 | |
| 	    db_new->db_data, hepb);
 | |
| 	dmu_buf_rele(db_new, FTAG);
 | |
| 
 | |
| 	dmu_buf_rele(db_old, FTAG);
 | |
| 
 | |
| 	tbl->zt_blks_copied++;
 | |
| 
 | |
| 	dprintf("copied block %llu of %llu\n",
 | |
| 	    (u_longlong_t)tbl->zt_blks_copied,
 | |
| 	    (u_longlong_t)tbl->zt_numblks);
 | |
| 
 | |
| 	if (tbl->zt_blks_copied == tbl->zt_numblks) {
 | |
| 		(void) dmu_free_range(zap->zap_objset, zap->zap_object,
 | |
| 		    tbl->zt_blk << bs, tbl->zt_numblks << bs, tx);
 | |
| 
 | |
| 		tbl->zt_blk = newblk;
 | |
| 		tbl->zt_numblks *= 2;
 | |
| 		tbl->zt_shift++;
 | |
| 		tbl->zt_nextblk = 0;
 | |
| 		tbl->zt_blks_copied = 0;
 | |
| 
 | |
| 		dprintf("finished; numblocks now %llu (%uk entries)\n",
 | |
| 		    (u_longlong_t)tbl->zt_numblks, 1<<(tbl->zt_shift-10));
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	int bs = FZAP_BLOCK_SHIFT(zap);
 | |
| 
 | |
| 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
 | |
| 	ASSERT(tbl->zt_blk != 0);
 | |
| 
 | |
| 	dprintf("storing %llx at index %llx\n", (u_longlong_t)val,
 | |
| 	    (u_longlong_t)idx);
 | |
| 
 | |
| 	uint64_t blk = idx >> (bs-3);
 | |
| 	uint64_t off = idx & ((1<<(bs-3))-1);
 | |
| 
 | |
| 	dmu_buf_t *db;
 | |
| 	int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
 | |
| 	    (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 	dmu_buf_will_dirty(db, tx);
 | |
| 
 | |
| 	if (tbl->zt_nextblk != 0) {
 | |
| 		uint64_t idx2 = idx * 2;
 | |
| 		uint64_t blk2 = idx2 >> (bs-3);
 | |
| 		uint64_t off2 = idx2 & ((1<<(bs-3))-1);
 | |
| 		dmu_buf_t *db2;
 | |
| 
 | |
| 		err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
 | |
| 		    (tbl->zt_nextblk + blk2) << bs, FTAG, &db2,
 | |
| 		    DMU_READ_NO_PREFETCH);
 | |
| 		if (err != 0) {
 | |
| 			dmu_buf_rele(db, FTAG);
 | |
| 			return (err);
 | |
| 		}
 | |
| 		dmu_buf_will_dirty(db2, tx);
 | |
| 		((uint64_t *)db2->db_data)[off2] = val;
 | |
| 		((uint64_t *)db2->db_data)[off2+1] = val;
 | |
| 		dmu_buf_rele(db2, FTAG);
 | |
| 	}
 | |
| 
 | |
| 	((uint64_t *)db->db_data)[off] = val;
 | |
| 	dmu_buf_rele(db, FTAG);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp)
 | |
| {
 | |
| 	int bs = FZAP_BLOCK_SHIFT(zap);
 | |
| 
 | |
| 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
 | |
| 
 | |
| 	uint64_t blk = idx >> (bs-3);
 | |
| 	uint64_t off = idx & ((1<<(bs-3))-1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: this is equivalent to dmu_buf_hold(), but we use
 | |
| 	 * _dnode_enter / _by_dnode because it's faster because we don't
 | |
| 	 * have to hold the dnode.
 | |
| 	 */
 | |
| 	dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf);
 | |
| 	dmu_buf_t *db;
 | |
| 	int err = dmu_buf_hold_by_dnode(dn,
 | |
| 	    (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
 | |
| 	dmu_buf_dnode_exit(zap->zap_dbuf);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 	*valp = ((uint64_t *)db->db_data)[off];
 | |
| 	dmu_buf_rele(db, FTAG);
 | |
| 
 | |
| 	if (tbl->zt_nextblk != 0) {
 | |
| 		/*
 | |
| 		 * read the nextblk for the sake of i/o error checking,
 | |
| 		 * so that zap_table_load() will catch errors for
 | |
| 		 * zap_table_store.
 | |
| 		 */
 | |
| 		blk = (idx*2) >> (bs-3);
 | |
| 
 | |
| 		dn = dmu_buf_dnode_enter(zap->zap_dbuf);
 | |
| 		err = dmu_buf_hold_by_dnode(dn,
 | |
| 		    (tbl->zt_nextblk + blk) << bs, FTAG, &db,
 | |
| 		    DMU_READ_NO_PREFETCH);
 | |
| 		dmu_buf_dnode_exit(zap->zap_dbuf);
 | |
| 		if (err == 0)
 | |
| 			dmu_buf_rele(db, FTAG);
 | |
| 	}
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Routines for growing the ptrtbl.
 | |
|  */
 | |
| 
 | |
| static void
 | |
| zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n)
 | |
| {
 | |
| 	for (int i = 0; i < n; i++) {
 | |
| 		uint64_t lb = src[i];
 | |
| 		dst[2 * i + 0] = lb;
 | |
| 		dst[2 * i + 1] = lb;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx)
 | |
| {
 | |
| 	/*
 | |
| 	 * The pointer table should never use more hash bits than we
 | |
| 	 * have (otherwise we'd be using useless zero bits to index it).
 | |
| 	 * If we are within 2 bits of running out, stop growing, since
 | |
| 	 * this is already an aberrant condition.
 | |
| 	 */
 | |
| 	if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2)
 | |
| 		return (SET_ERROR(ENOSPC));
 | |
| 
 | |
| 	if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
 | |
| 		/*
 | |
| 		 * We are outgrowing the "embedded" ptrtbl (the one
 | |
| 		 * stored in the header block).  Give it its own entire
 | |
| 		 * block, which will double the size of the ptrtbl.
 | |
| 		 */
 | |
| 		ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
 | |
| 		    ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
 | |
| 		ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk);
 | |
| 
 | |
| 		uint64_t newblk = zap_allocate_blocks(zap, 1);
 | |
| 		dmu_buf_t *db_new;
 | |
| 		int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
 | |
| 		    newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new,
 | |
| 		    DMU_READ_NO_PREFETCH);
 | |
| 		if (err != 0)
 | |
| 			return (err);
 | |
| 		dmu_buf_will_dirty(db_new, tx);
 | |
| 		zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
 | |
| 		    db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
 | |
| 		dmu_buf_rele(db_new, FTAG);
 | |
| 
 | |
| 		zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk;
 | |
| 		zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1;
 | |
| 		zap_f_phys(zap)->zap_ptrtbl.zt_shift++;
 | |
| 
 | |
| 		ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
 | |
| 		    zap_f_phys(zap)->zap_ptrtbl.zt_numblks <<
 | |
| 		    (FZAP_BLOCK_SHIFT(zap)-3));
 | |
| 
 | |
| 		return (0);
 | |
| 	} else {
 | |
| 		return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl,
 | |
| 		    zap_ptrtbl_transfer, tx));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx)
 | |
| {
 | |
| 	dmu_buf_will_dirty(zap->zap_dbuf, tx);
 | |
| 	mutex_enter(&zap->zap_f.zap_num_entries_mtx);
 | |
| 	ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta);
 | |
| 	zap_f_phys(zap)->zap_num_entries += delta;
 | |
| 	mutex_exit(&zap->zap_f.zap_num_entries_mtx);
 | |
| }
 | |
| 
 | |
| static uint64_t
 | |
| zap_allocate_blocks(zap_t *zap, int nblocks)
 | |
| {
 | |
| 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 | |
| 	uint64_t newblk = zap_f_phys(zap)->zap_freeblk;
 | |
| 	zap_f_phys(zap)->zap_freeblk += nblocks;
 | |
| 	return (newblk);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zap_leaf_evict_sync(void *dbu)
 | |
| {
 | |
| 	zap_leaf_t *l = dbu;
 | |
| 
 | |
| 	rw_destroy(&l->l_rwlock);
 | |
| 	kmem_free(l, sizeof (zap_leaf_t));
 | |
| }
 | |
| 
 | |
| static zap_leaf_t *
 | |
| zap_create_leaf(zap_t *zap, dmu_tx_t *tx)
 | |
| {
 | |
| 	zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
 | |
| 
 | |
| 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 | |
| 
 | |
| 	rw_init(&l->l_rwlock, NULL, RW_NOLOCKDEP, NULL);
 | |
| 	rw_enter(&l->l_rwlock, RW_WRITER);
 | |
| 	l->l_blkid = zap_allocate_blocks(zap, 1);
 | |
| 	l->l_dbuf = NULL;
 | |
| 
 | |
| 	VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
 | |
| 	    l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf,
 | |
| 	    DMU_READ_NO_PREFETCH));
 | |
| 	dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
 | |
| 	VERIFY3P(NULL, ==, dmu_buf_set_user(l->l_dbuf, &l->l_dbu));
 | |
| 	dmu_buf_will_dirty(l->l_dbuf, tx);
 | |
| 
 | |
| 	zap_leaf_init(l, zap->zap_normflags != 0);
 | |
| 
 | |
| 	zap_f_phys(zap)->zap_num_leafs++;
 | |
| 
 | |
| 	return (l);
 | |
| }
 | |
| 
 | |
| int
 | |
| fzap_count(zap_t *zap, uint64_t *count)
 | |
| {
 | |
| 	ASSERT(!zap->zap_ismicro);
 | |
| 	mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */
 | |
| 	*count = zap_f_phys(zap)->zap_num_entries;
 | |
| 	mutex_exit(&zap->zap_f.zap_num_entries_mtx);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Routines for obtaining zap_leaf_t's
 | |
|  */
 | |
| 
 | |
| void
 | |
| zap_put_leaf(zap_leaf_t *l)
 | |
| {
 | |
| 	rw_exit(&l->l_rwlock);
 | |
| 	dmu_buf_rele(l->l_dbuf, NULL);
 | |
| }
 | |
| 
 | |
| static zap_leaf_t *
 | |
| zap_open_leaf(uint64_t blkid, dmu_buf_t *db)
 | |
| {
 | |
| 	ASSERT(blkid != 0);
 | |
| 
 | |
| 	zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
 | |
| 	rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL);
 | |
| 	rw_enter(&l->l_rwlock, RW_WRITER);
 | |
| 	l->l_blkid = blkid;
 | |
| 	l->l_bs = highbit64(db->db_size) - 1;
 | |
| 	l->l_dbuf = db;
 | |
| 
 | |
| 	dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
 | |
| 	zap_leaf_t *winner = dmu_buf_set_user(db, &l->l_dbu);
 | |
| 
 | |
| 	rw_exit(&l->l_rwlock);
 | |
| 	if (winner != NULL) {
 | |
| 		/* someone else set it first */
 | |
| 		zap_leaf_evict_sync(&l->l_dbu);
 | |
| 		l = winner;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * lhr_pad was previously used for the next leaf in the leaf
 | |
| 	 * chain.  There should be no chained leafs (as we have removed
 | |
| 	 * support for them).
 | |
| 	 */
 | |
| 	ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1);
 | |
| 
 | |
| 	/*
 | |
| 	 * There should be more hash entries than there can be
 | |
| 	 * chunks to put in the hash table
 | |
| 	 */
 | |
| 	ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3);
 | |
| 
 | |
| 	/* The chunks should begin at the end of the hash table */
 | |
| 	ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *)
 | |
| 	    &zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]);
 | |
| 
 | |
| 	/* The chunks should end at the end of the block */
 | |
| 	ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) -
 | |
| 	    (uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size);
 | |
| 
 | |
| 	return (l);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt,
 | |
|     zap_leaf_t **lp)
 | |
| {
 | |
| 	dmu_buf_t *db;
 | |
| 
 | |
| 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
 | |
| 
 | |
| 	/*
 | |
| 	 * If system crashed just after dmu_free_long_range in zfs_rmnode, we
 | |
| 	 * would be left with an empty xattr dir in delete queue. blkid=0
 | |
| 	 * would be passed in when doing zfs_purgedir. If that's the case we
 | |
| 	 * should just return immediately. The underlying objects should
 | |
| 	 * already be freed, so this should be perfectly fine.
 | |
| 	 */
 | |
| 	if (blkid == 0)
 | |
| 		return (SET_ERROR(ENOENT));
 | |
| 
 | |
| 	int bs = FZAP_BLOCK_SHIFT(zap);
 | |
| 	dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf);
 | |
| 	int err = dmu_buf_hold_by_dnode(dn,
 | |
| 	    blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH);
 | |
| 	dmu_buf_dnode_exit(zap->zap_dbuf);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 
 | |
| 	ASSERT3U(db->db_object, ==, zap->zap_object);
 | |
| 	ASSERT3U(db->db_offset, ==, blkid << bs);
 | |
| 	ASSERT3U(db->db_size, ==, 1 << bs);
 | |
| 	ASSERT(blkid != 0);
 | |
| 
 | |
| 	zap_leaf_t *l = dmu_buf_get_user(db);
 | |
| 
 | |
| 	if (l == NULL)
 | |
| 		l = zap_open_leaf(blkid, db);
 | |
| 
 | |
| 	rw_enter(&l->l_rwlock, lt);
 | |
| 	/*
 | |
| 	 * Must lock before dirtying, otherwise zap_leaf_phys(l) could change,
 | |
| 	 * causing ASSERT below to fail.
 | |
| 	 */
 | |
| 	if (lt == RW_WRITER)
 | |
| 		dmu_buf_will_dirty(db, tx);
 | |
| 	ASSERT3U(l->l_blkid, ==, blkid);
 | |
| 	ASSERT3P(l->l_dbuf, ==, db);
 | |
| 	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF);
 | |
| 	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
 | |
| 
 | |
| 	*lp = l;
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp)
 | |
| {
 | |
| 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
 | |
| 
 | |
| 	if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
 | |
| 		ASSERT3U(idx, <,
 | |
| 		    (1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift));
 | |
| 		*valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
 | |
| 		return (0);
 | |
| 	} else {
 | |
| 		return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl,
 | |
| 		    idx, valp));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx)
 | |
| {
 | |
| 	ASSERT(tx != NULL);
 | |
| 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 | |
| 
 | |
| 	if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) {
 | |
| 		ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk;
 | |
| 		return (0);
 | |
| 	} else {
 | |
| 		return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl,
 | |
| 		    idx, blk, tx));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp)
 | |
| {
 | |
| 	uint64_t blk;
 | |
| 
 | |
| 	ASSERT(zap->zap_dbuf == NULL ||
 | |
| 	    zap_f_phys(zap) == zap->zap_dbuf->db_data);
 | |
| 
 | |
| 	/* Reality check for corrupt zap objects (leaf or header). */
 | |
| 	if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF &&
 | |
| 	    zap_f_phys(zap)->zap_block_type != ZBT_HEADER) ||
 | |
| 	    zap_f_phys(zap)->zap_magic != ZAP_MAGIC) {
 | |
| 		return (SET_ERROR(EIO));
 | |
| 	}
 | |
| 
 | |
| 	uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
 | |
| 	int err = zap_idx_to_blk(zap, idx, &blk);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 	err = zap_get_leaf_byblk(zap, blk, tx, lt, lp);
 | |
| 
 | |
| 	ASSERT(err ||
 | |
| 	    ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) ==
 | |
| 	    zap_leaf_phys(*lp)->l_hdr.lh_prefix);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l,
 | |
|     const void *tag, dmu_tx_t *tx, zap_leaf_t **lp)
 | |
| {
 | |
| 	zap_t *zap = zn->zn_zap;
 | |
| 	uint64_t hash = zn->zn_hash;
 | |
| 	int err;
 | |
| 	int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
 | |
| 
 | |
| 	ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
 | |
| 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
 | |
| 
 | |
| 	ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
 | |
| 	    zap_leaf_phys(l)->l_hdr.lh_prefix);
 | |
| 
 | |
| 	if (zap_tryupgradedir(zap, tx) == 0 ||
 | |
| 	    old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
 | |
| 		/* We failed to upgrade, or need to grow the pointer table */
 | |
| 		objset_t *os = zap->zap_objset;
 | |
| 		uint64_t object = zap->zap_object;
 | |
| 
 | |
| 		zap_put_leaf(l);
 | |
| 		zap_unlockdir(zap, tag);
 | |
| 		err = zap_lockdir(os, object, tx, RW_WRITER,
 | |
| 		    FALSE, FALSE, tag, &zn->zn_zap);
 | |
| 		zap = zn->zn_zap;
 | |
| 		if (err != 0)
 | |
| 			return (err);
 | |
| 		ASSERT(!zap->zap_ismicro);
 | |
| 
 | |
| 		while (old_prefix_len ==
 | |
| 		    zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
 | |
| 			err = zap_grow_ptrtbl(zap, tx);
 | |
| 			if (err != 0)
 | |
| 				return (err);
 | |
| 		}
 | |
| 
 | |
| 		err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l);
 | |
| 		if (err != 0)
 | |
| 			return (err);
 | |
| 
 | |
| 		if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) {
 | |
| 			/* it split while our locks were down */
 | |
| 			*lp = l;
 | |
| 			return (0);
 | |
| 		}
 | |
| 	}
 | |
| 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
 | |
| 	ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
 | |
| 	ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
 | |
| 	    zap_leaf_phys(l)->l_hdr.lh_prefix);
 | |
| 
 | |
| 	int prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
 | |
| 	    (old_prefix_len + 1);
 | |
| 	uint64_t sibling =
 | |
| 	    (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff;
 | |
| 
 | |
| 	/* check for i/o errors before doing zap_leaf_split */
 | |
| 	for (int i = 0; i < (1ULL << prefix_diff); i++) {
 | |
| 		uint64_t blk;
 | |
| 		err = zap_idx_to_blk(zap, sibling + i, &blk);
 | |
| 		if (err != 0)
 | |
| 			return (err);
 | |
| 		ASSERT3U(blk, ==, l->l_blkid);
 | |
| 	}
 | |
| 
 | |
| 	zap_leaf_t *nl = zap_create_leaf(zap, tx);
 | |
| 	zap_leaf_split(l, nl, zap->zap_normflags != 0);
 | |
| 
 | |
| 	/* set sibling pointers */
 | |
| 	for (int i = 0; i < (1ULL << prefix_diff); i++) {
 | |
| 		err = zap_set_idx_to_blk(zap, sibling + i, nl->l_blkid, tx);
 | |
| 		ASSERT0(err); /* we checked for i/o errors above */
 | |
| 	}
 | |
| 
 | |
| 	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_prefix_len, >, 0);
 | |
| 
 | |
| 	if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) {
 | |
| 		/* we want the sibling */
 | |
| 		zap_put_leaf(l);
 | |
| 		*lp = nl;
 | |
| 	} else {
 | |
| 		zap_put_leaf(nl);
 | |
| 		*lp = l;
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l,
 | |
|     const void *tag, dmu_tx_t *tx)
 | |
| {
 | |
| 	zap_t *zap = zn->zn_zap;
 | |
| 	int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
 | |
| 	int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift &&
 | |
| 	    zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER);
 | |
| 
 | |
| 	zap_put_leaf(l);
 | |
| 
 | |
| 	if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) {
 | |
| 		/*
 | |
| 		 * We are in the middle of growing the pointer table, or
 | |
| 		 * this leaf will soon make us grow it.
 | |
| 		 */
 | |
| 		if (zap_tryupgradedir(zap, tx) == 0) {
 | |
| 			objset_t *os = zap->zap_objset;
 | |
| 			uint64_t zapobj = zap->zap_object;
 | |
| 
 | |
| 			zap_unlockdir(zap, tag);
 | |
| 			int err = zap_lockdir(os, zapobj, tx,
 | |
| 			    RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap);
 | |
| 			zap = zn->zn_zap;
 | |
| 			if (err != 0)
 | |
| 				return;
 | |
| 		}
 | |
| 
 | |
| 		/* could have finished growing while our locks were down */
 | |
| 		if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift)
 | |
| 			(void) zap_grow_ptrtbl(zap, tx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| fzap_checkname(zap_name_t *zn)
 | |
| {
 | |
| 	if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN)
 | |
| 		return (SET_ERROR(ENAMETOOLONG));
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| fzap_checksize(uint64_t integer_size, uint64_t num_integers)
 | |
| {
 | |
| 	/* Only integer sizes supported by C */
 | |
| 	switch (integer_size) {
 | |
| 	case 1:
 | |
| 	case 2:
 | |
| 	case 4:
 | |
| 	case 8:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	if (integer_size * num_integers > ZAP_MAXVALUELEN)
 | |
| 		return (SET_ERROR(E2BIG));
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers)
 | |
| {
 | |
| 	int err = fzap_checkname(zn);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 	return (fzap_checksize(integer_size, num_integers));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Routines for manipulating attributes.
 | |
|  */
 | |
| int
 | |
| fzap_lookup(zap_name_t *zn,
 | |
|     uint64_t integer_size, uint64_t num_integers, void *buf,
 | |
|     char *realname, int rn_len, boolean_t *ncp)
 | |
| {
 | |
| 	zap_leaf_t *l;
 | |
| 	zap_entry_handle_t zeh;
 | |
| 
 | |
| 	int err = fzap_checkname(zn);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 
 | |
| 	err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 	err = zap_leaf_lookup(l, zn, &zeh);
 | |
| 	if (err == 0) {
 | |
| 		if ((err = fzap_checksize(integer_size, num_integers)) != 0) {
 | |
| 			zap_put_leaf(l);
 | |
| 			return (err);
 | |
| 		}
 | |
| 
 | |
| 		err = zap_entry_read(&zeh, integer_size, num_integers, buf);
 | |
| 		(void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname);
 | |
| 		if (ncp) {
 | |
| 			*ncp = zap_entry_normalization_conflict(&zeh,
 | |
| 			    zn, NULL, zn->zn_zap);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	zap_put_leaf(l);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| int
 | |
| fzap_add_cd(zap_name_t *zn,
 | |
|     uint64_t integer_size, uint64_t num_integers,
 | |
|     const void *val, uint32_t cd, const void *tag, dmu_tx_t *tx)
 | |
| {
 | |
| 	zap_leaf_t *l;
 | |
| 	int err;
 | |
| 	zap_entry_handle_t zeh;
 | |
| 	zap_t *zap = zn->zn_zap;
 | |
| 
 | |
| 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
 | |
| 	ASSERT(!zap->zap_ismicro);
 | |
| 	ASSERT(fzap_check(zn, integer_size, num_integers) == 0);
 | |
| 
 | |
| 	err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| retry:
 | |
| 	err = zap_leaf_lookup(l, zn, &zeh);
 | |
| 	if (err == 0) {
 | |
| 		err = SET_ERROR(EEXIST);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (err != ENOENT)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = zap_entry_create(l, zn, cd,
 | |
| 	    integer_size, num_integers, val, &zeh);
 | |
| 
 | |
| 	if (err == 0) {
 | |
| 		zap_increment_num_entries(zap, 1, tx);
 | |
| 	} else if (err == EAGAIN) {
 | |
| 		err = zap_expand_leaf(zn, l, tag, tx, &l);
 | |
| 		zap = zn->zn_zap;	/* zap_expand_leaf() may change zap */
 | |
| 		if (err == 0) {
 | |
| 			goto retry;
 | |
| 		} else if (err == ENOSPC) {
 | |
| 			/*
 | |
| 			 * If we failed to expand the leaf, then bailout
 | |
| 			 * as there is no point trying
 | |
| 			 * zap_put_leaf_maybe_grow_ptrtbl().
 | |
| 			 */
 | |
| 			return (err);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (zap != NULL)
 | |
| 		zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| int
 | |
| fzap_add(zap_name_t *zn,
 | |
|     uint64_t integer_size, uint64_t num_integers,
 | |
|     const void *val, const void *tag, dmu_tx_t *tx)
 | |
| {
 | |
| 	int err = fzap_check(zn, integer_size, num_integers);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 
 | |
| 	return (fzap_add_cd(zn, integer_size, num_integers,
 | |
| 	    val, ZAP_NEED_CD, tag, tx));
 | |
| }
 | |
| 
 | |
| int
 | |
| fzap_update(zap_name_t *zn,
 | |
|     int integer_size, uint64_t num_integers, const void *val,
 | |
|     const void *tag, dmu_tx_t *tx)
 | |
| {
 | |
| 	zap_leaf_t *l;
 | |
| 	int err;
 | |
| 	boolean_t create;
 | |
| 	zap_entry_handle_t zeh;
 | |
| 	zap_t *zap = zn->zn_zap;
 | |
| 
 | |
| 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
 | |
| 	err = fzap_check(zn, integer_size, num_integers);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 
 | |
| 	err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| retry:
 | |
| 	err = zap_leaf_lookup(l, zn, &zeh);
 | |
| 	create = (err == ENOENT);
 | |
| 	ASSERT(err == 0 || err == ENOENT);
 | |
| 
 | |
| 	if (create) {
 | |
| 		err = zap_entry_create(l, zn, ZAP_NEED_CD,
 | |
| 		    integer_size, num_integers, val, &zeh);
 | |
| 		if (err == 0)
 | |
| 			zap_increment_num_entries(zap, 1, tx);
 | |
| 	} else {
 | |
| 		err = zap_entry_update(&zeh, integer_size, num_integers, val);
 | |
| 	}
 | |
| 
 | |
| 	if (err == EAGAIN) {
 | |
| 		err = zap_expand_leaf(zn, l, tag, tx, &l);
 | |
| 		zap = zn->zn_zap;	/* zap_expand_leaf() may change zap */
 | |
| 		if (err == 0)
 | |
| 			goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (zap != NULL)
 | |
| 		zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| int
 | |
| fzap_length(zap_name_t *zn,
 | |
|     uint64_t *integer_size, uint64_t *num_integers)
 | |
| {
 | |
| 	zap_leaf_t *l;
 | |
| 	int err;
 | |
| 	zap_entry_handle_t zeh;
 | |
| 
 | |
| 	err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 	err = zap_leaf_lookup(l, zn, &zeh);
 | |
| 	if (err != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (integer_size != NULL)
 | |
| 		*integer_size = zeh.zeh_integer_size;
 | |
| 	if (num_integers != NULL)
 | |
| 		*num_integers = zeh.zeh_num_integers;
 | |
| out:
 | |
| 	zap_put_leaf(l);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| int
 | |
| fzap_remove(zap_name_t *zn, dmu_tx_t *tx)
 | |
| {
 | |
| 	zap_leaf_t *l;
 | |
| 	int err;
 | |
| 	zap_entry_handle_t zeh;
 | |
| 
 | |
| 	err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 	err = zap_leaf_lookup(l, zn, &zeh);
 | |
| 	if (err == 0) {
 | |
| 		zap_entry_remove(&zeh);
 | |
| 		zap_increment_num_entries(zn->zn_zap, -1, tx);
 | |
| 	}
 | |
| 	zap_put_leaf(l);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| void
 | |
| fzap_prefetch(zap_name_t *zn)
 | |
| {
 | |
| 	uint64_t blk;
 | |
| 	zap_t *zap = zn->zn_zap;
 | |
| 
 | |
| 	uint64_t idx = ZAP_HASH_IDX(zn->zn_hash,
 | |
| 	    zap_f_phys(zap)->zap_ptrtbl.zt_shift);
 | |
| 	if (zap_idx_to_blk(zap, idx, &blk) != 0)
 | |
| 		return;
 | |
| 	int bs = FZAP_BLOCK_SHIFT(zap);
 | |
| 	dmu_prefetch(zap->zap_objset, zap->zap_object, 0, blk << bs, 1 << bs,
 | |
| 	    ZIO_PRIORITY_SYNC_READ);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper functions for consumers.
 | |
|  */
 | |
| 
 | |
| uint64_t
 | |
| zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
 | |
|     const char *name, dmu_tx_t *tx)
 | |
| {
 | |
| 	return (zap_create_link_dnsize(os, ot, parent_obj, name, 0, tx));
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
 | |
|     const char *name, int dnodesize, dmu_tx_t *tx)
 | |
| {
 | |
| 	uint64_t new_obj;
 | |
| 
 | |
| 	new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0, dnodesize, tx);
 | |
| 	VERIFY(new_obj != 0);
 | |
| 	VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj,
 | |
| 	    tx));
 | |
| 
 | |
| 	return (new_obj);
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask,
 | |
|     char *name)
 | |
| {
 | |
| 	zap_cursor_t zc;
 | |
| 	int err;
 | |
| 
 | |
| 	if (mask == 0)
 | |
| 		mask = -1ULL;
 | |
| 
 | |
| 	zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
 | |
| 	for (zap_cursor_init(&zc, os, zapobj);
 | |
| 	    (err = zap_cursor_retrieve(&zc, za)) == 0;
 | |
| 	    zap_cursor_advance(&zc)) {
 | |
| 		if ((za->za_first_integer & mask) == (value & mask)) {
 | |
| 			(void) strlcpy(name, za->za_name, MAXNAMELEN);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	zap_cursor_fini(&zc);
 | |
| 	kmem_free(za, sizeof (*za));
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx)
 | |
| {
 | |
| 	zap_cursor_t zc;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
 | |
| 	for (zap_cursor_init(&zc, os, fromobj);
 | |
| 	    zap_cursor_retrieve(&zc, za) == 0;
 | |
| 	    (void) zap_cursor_advance(&zc)) {
 | |
| 		if (za->za_integer_length != 8 || za->za_num_integers != 1) {
 | |
| 			err = SET_ERROR(EINVAL);
 | |
| 			break;
 | |
| 		}
 | |
| 		err = zap_add(os, intoobj, za->za_name,
 | |
| 		    8, 1, &za->za_first_integer, tx);
 | |
| 		if (err != 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	zap_cursor_fini(&zc);
 | |
| 	kmem_free(za, sizeof (*za));
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
 | |
|     uint64_t value, dmu_tx_t *tx)
 | |
| {
 | |
| 	zap_cursor_t zc;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
 | |
| 	for (zap_cursor_init(&zc, os, fromobj);
 | |
| 	    zap_cursor_retrieve(&zc, za) == 0;
 | |
| 	    (void) zap_cursor_advance(&zc)) {
 | |
| 		if (za->za_integer_length != 8 || za->za_num_integers != 1) {
 | |
| 			err = SET_ERROR(EINVAL);
 | |
| 			break;
 | |
| 		}
 | |
| 		err = zap_add(os, intoobj, za->za_name,
 | |
| 		    8, 1, &value, tx);
 | |
| 		if (err != 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	zap_cursor_fini(&zc);
 | |
| 	kmem_free(za, sizeof (*za));
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	zap_cursor_t zc;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
 | |
| 	for (zap_cursor_init(&zc, os, fromobj);
 | |
| 	    zap_cursor_retrieve(&zc, za) == 0;
 | |
| 	    (void) zap_cursor_advance(&zc)) {
 | |
| 		uint64_t delta = 0;
 | |
| 
 | |
| 		if (za->za_integer_length != 8 || za->za_num_integers != 1) {
 | |
| 			err = SET_ERROR(EINVAL);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		err = zap_lookup(os, intoobj, za->za_name, 8, 1, &delta);
 | |
| 		if (err != 0 && err != ENOENT)
 | |
| 			break;
 | |
| 		delta += za->za_first_integer;
 | |
| 		err = zap_update(os, intoobj, za->za_name, 8, 1, &delta, tx);
 | |
| 		if (err != 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	zap_cursor_fini(&zc);
 | |
| 	kmem_free(za, sizeof (*za));
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
 | |
| {
 | |
| 	char name[20];
 | |
| 
 | |
| 	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
 | |
| 	return (zap_add(os, obj, name, 8, 1, &value, tx));
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
 | |
| {
 | |
| 	char name[20];
 | |
| 
 | |
| 	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
 | |
| 	return (zap_remove(os, obj, name, tx));
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value)
 | |
| {
 | |
| 	char name[20];
 | |
| 
 | |
| 	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
 | |
| 	return (zap_lookup(os, obj, name, 8, 1, &value));
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_add_int_key(objset_t *os, uint64_t obj,
 | |
|     uint64_t key, uint64_t value, dmu_tx_t *tx)
 | |
| {
 | |
| 	char name[20];
 | |
| 
 | |
| 	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
 | |
| 	return (zap_add(os, obj, name, 8, 1, &value, tx));
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_update_int_key(objset_t *os, uint64_t obj,
 | |
|     uint64_t key, uint64_t value, dmu_tx_t *tx)
 | |
| {
 | |
| 	char name[20];
 | |
| 
 | |
| 	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
 | |
| 	return (zap_update(os, obj, name, 8, 1, &value, tx));
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep)
 | |
| {
 | |
| 	char name[20];
 | |
| 
 | |
| 	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
 | |
| 	return (zap_lookup(os, obj, name, 8, 1, valuep));
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	uint64_t value = 0;
 | |
| 
 | |
| 	if (delta == 0)
 | |
| 		return (0);
 | |
| 
 | |
| 	int err = zap_lookup(os, obj, name, 8, 1, &value);
 | |
| 	if (err != 0 && err != ENOENT)
 | |
| 		return (err);
 | |
| 	value += delta;
 | |
| 	if (value == 0)
 | |
| 		err = zap_remove(os, obj, name, tx);
 | |
| 	else
 | |
| 		err = zap_update(os, obj, name, 8, 1, &value, tx);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| int
 | |
| zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	char name[20];
 | |
| 
 | |
| 	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
 | |
| 	return (zap_increment(os, obj, name, delta, tx));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Routines for iterating over the attributes.
 | |
|  */
 | |
| 
 | |
| int
 | |
| fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za)
 | |
| {
 | |
| 	int err = ENOENT;
 | |
| 	zap_entry_handle_t zeh;
 | |
| 	zap_leaf_t *l;
 | |
| 
 | |
| 	/* retrieve the next entry at or after zc_hash/zc_cd */
 | |
| 	/* if no entry, return ENOENT */
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are reading from the beginning, we're almost certain to
 | |
| 	 * iterate over the entire ZAP object.  If there are multiple leaf
 | |
| 	 * blocks (freeblk > 2), prefetch the whole object (up to
 | |
| 	 * dmu_prefetch_max bytes), so that we read the leaf blocks
 | |
| 	 * concurrently. (Unless noprefetch was requested via
 | |
| 	 * zap_cursor_init_noprefetch()).
 | |
| 	 */
 | |
| 	if (zc->zc_hash == 0 && zap_iterate_prefetch &&
 | |
| 	    zc->zc_prefetch && zap_f_phys(zap)->zap_freeblk > 2) {
 | |
| 		dmu_prefetch(zc->zc_objset, zc->zc_zapobj, 0, 0,
 | |
| 		    zap_f_phys(zap)->zap_freeblk << FZAP_BLOCK_SHIFT(zap),
 | |
| 		    ZIO_PRIORITY_ASYNC_READ);
 | |
| 	}
 | |
| 
 | |
| 	if (zc->zc_leaf &&
 | |
| 	    (ZAP_HASH_IDX(zc->zc_hash,
 | |
| 	    zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) !=
 | |
| 	    zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) {
 | |
| 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
 | |
| 		zap_put_leaf(zc->zc_leaf);
 | |
| 		zc->zc_leaf = NULL;
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	if (zc->zc_leaf == NULL) {
 | |
| 		err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER,
 | |
| 		    &zc->zc_leaf);
 | |
| 		if (err != 0)
 | |
| 			return (err);
 | |
| 	} else {
 | |
| 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
 | |
| 	}
 | |
| 	l = zc->zc_leaf;
 | |
| 
 | |
| 	err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh);
 | |
| 
 | |
| 	if (err == ENOENT) {
 | |
| 		if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0) {
 | |
| 			zc->zc_hash = -1ULL;
 | |
| 			zc->zc_cd = 0;
 | |
| 		} else {
 | |
| 			uint64_t nocare = (1ULL <<
 | |
| 			    (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1;
 | |
| 
 | |
| 			zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1;
 | |
| 			zc->zc_cd = 0;
 | |
| 
 | |
| 			if (zc->zc_hash == 0) {
 | |
| 				zc->zc_hash = -1ULL;
 | |
| 			} else {
 | |
| 				zap_put_leaf(zc->zc_leaf);
 | |
| 				zc->zc_leaf = NULL;
 | |
| 				goto again;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (err == 0) {
 | |
| 		zc->zc_hash = zeh.zeh_hash;
 | |
| 		zc->zc_cd = zeh.zeh_cd;
 | |
| 		za->za_integer_length = zeh.zeh_integer_size;
 | |
| 		za->za_num_integers = zeh.zeh_num_integers;
 | |
| 		if (zeh.zeh_num_integers == 0) {
 | |
| 			za->za_first_integer = 0;
 | |
| 		} else {
 | |
| 			err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer);
 | |
| 			ASSERT(err == 0 || err == EOVERFLOW);
 | |
| 		}
 | |
| 		err = zap_entry_read_name(zap, &zeh,
 | |
| 		    sizeof (za->za_name), za->za_name);
 | |
| 		ASSERT(err == 0);
 | |
| 
 | |
| 		za->za_normalization_conflict =
 | |
| 		    zap_entry_normalization_conflict(&zeh,
 | |
| 		    NULL, za->za_name, zap);
 | |
| 	}
 | |
| 	rw_exit(&zc->zc_leaf->l_rwlock);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs)
 | |
| {
 | |
| 	uint64_t lastblk = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * NB: if a leaf has more pointers than an entire ptrtbl block
 | |
| 	 * can hold, then it'll be accounted for more than once, since
 | |
| 	 * we won't have lastblk.
 | |
| 	 */
 | |
| 	for (int i = 0; i < len; i++) {
 | |
| 		zap_leaf_t *l;
 | |
| 
 | |
| 		if (tbl[i] == lastblk)
 | |
| 			continue;
 | |
| 		lastblk = tbl[i];
 | |
| 
 | |
| 		int err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l);
 | |
| 		if (err == 0) {
 | |
| 			zap_leaf_stats(zap, l, zs);
 | |
| 			zap_put_leaf(l);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| fzap_get_stats(zap_t *zap, zap_stats_t *zs)
 | |
| {
 | |
| 	int bs = FZAP_BLOCK_SHIFT(zap);
 | |
| 	zs->zs_blocksize = 1ULL << bs;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set zap_phys_t fields
 | |
| 	 */
 | |
| 	zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs;
 | |
| 	zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries;
 | |
| 	zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk;
 | |
| 	zs->zs_block_type = zap_f_phys(zap)->zap_block_type;
 | |
| 	zs->zs_magic = zap_f_phys(zap)->zap_magic;
 | |
| 	zs->zs_salt = zap_f_phys(zap)->zap_salt;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set zap_ptrtbl fields
 | |
| 	 */
 | |
| 	zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift;
 | |
| 	zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk;
 | |
| 	zs->zs_ptrtbl_blks_copied =
 | |
| 	    zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied;
 | |
| 	zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk;
 | |
| 	zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
 | |
| 	zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
 | |
| 
 | |
| 	if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
 | |
| 		/* the ptrtbl is entirely in the header block. */
 | |
| 		zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
 | |
| 		    1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs);
 | |
| 	} else {
 | |
| 		dmu_prefetch(zap->zap_objset, zap->zap_object, 0,
 | |
| 		    zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs,
 | |
| 		    zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs,
 | |
| 		    ZIO_PRIORITY_SYNC_READ);
 | |
| 
 | |
| 		for (int b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
 | |
| 		    b++) {
 | |
| 			dmu_buf_t *db;
 | |
| 			int err;
 | |
| 
 | |
| 			err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
 | |
| 			    (zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs,
 | |
| 			    FTAG, &db, DMU_READ_NO_PREFETCH);
 | |
| 			if (err == 0) {
 | |
| 				zap_stats_ptrtbl(zap, db->db_data,
 | |
| 				    1<<(bs-3), zs);
 | |
| 				dmu_buf_rele(db, FTAG);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* CSTYLED */
 | |
| ZFS_MODULE_PARAM(zfs, , zap_iterate_prefetch, INT, ZMOD_RW,
 | |
| 	"When iterating ZAP object, prefetch it");
 |