mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 07:58:45 +00:00 
			
		
		
		
	 c85ac731a0
			
		
	
	
		c85ac731a0
		
			
		
	
	
	
	
		
			
			When resilvering the estimated time remaining is calculated using the average issue rate over the current pass. Where the current pass starts when a scan was started, or restarted, if the pool was exported/imported. For dRAID pools in particular this can result in wildly optimistic estimates since the issue rate will be very high while scanning when non-degraded regions of the pool are scanned. Once repair I/O starts being issued performance drops to a realistic number but the estimated performance is still significantly skewed. To address this we redefine a pass such that it starts after a scanning phase completes so the issue rate is more reflective of recent performance. Additionally, the zfs_scan_report_txgs module option can be set to reset the pass statistics more often. Reviewed-by: Akash B <akash-b@hpe.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #14410
		
			
				
	
	
		
			2959 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2959 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
 | |
|  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
 | |
|  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
 | |
|  * Copyright 2013 Saso Kiselkov. All rights reserved.
 | |
|  * Copyright (c) 2017 Datto Inc.
 | |
|  * Copyright (c) 2017, Intel Corporation.
 | |
|  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <sys/zfs_context.h>
 | |
| #include <sys/zfs_chksum.h>
 | |
| #include <sys/spa_impl.h>
 | |
| #include <sys/zio.h>
 | |
| #include <sys/zio_checksum.h>
 | |
| #include <sys/zio_compress.h>
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/dmu_tx.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/zil.h>
 | |
| #include <sys/vdev_impl.h>
 | |
| #include <sys/vdev_initialize.h>
 | |
| #include <sys/vdev_trim.h>
 | |
| #include <sys/vdev_file.h>
 | |
| #include <sys/vdev_raidz.h>
 | |
| #include <sys/metaslab.h>
 | |
| #include <sys/uberblock_impl.h>
 | |
| #include <sys/txg.h>
 | |
| #include <sys/avl.h>
 | |
| #include <sys/unique.h>
 | |
| #include <sys/dsl_pool.h>
 | |
| #include <sys/dsl_dir.h>
 | |
| #include <sys/dsl_prop.h>
 | |
| #include <sys/fm/util.h>
 | |
| #include <sys/dsl_scan.h>
 | |
| #include <sys/fs/zfs.h>
 | |
| #include <sys/metaslab_impl.h>
 | |
| #include <sys/arc.h>
 | |
| #include <sys/ddt.h>
 | |
| #include <sys/kstat.h>
 | |
| #include "zfs_prop.h"
 | |
| #include <sys/btree.h>
 | |
| #include <sys/zfeature.h>
 | |
| #include <sys/qat.h>
 | |
| #include <sys/zstd/zstd.h>
 | |
| 
 | |
| /*
 | |
|  * SPA locking
 | |
|  *
 | |
|  * There are three basic locks for managing spa_t structures:
 | |
|  *
 | |
|  * spa_namespace_lock (global mutex)
 | |
|  *
 | |
|  *	This lock must be acquired to do any of the following:
 | |
|  *
 | |
|  *		- Lookup a spa_t by name
 | |
|  *		- Add or remove a spa_t from the namespace
 | |
|  *		- Increase spa_refcount from non-zero
 | |
|  *		- Check if spa_refcount is zero
 | |
|  *		- Rename a spa_t
 | |
|  *		- add/remove/attach/detach devices
 | |
|  *		- Held for the duration of create/destroy/import/export
 | |
|  *
 | |
|  *	It does not need to handle recursion.  A create or destroy may
 | |
|  *	reference objects (files or zvols) in other pools, but by
 | |
|  *	definition they must have an existing reference, and will never need
 | |
|  *	to lookup a spa_t by name.
 | |
|  *
 | |
|  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
 | |
|  *
 | |
|  *	This reference count keep track of any active users of the spa_t.  The
 | |
|  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
 | |
|  *	the refcount is never really 'zero' - opening a pool implicitly keeps
 | |
|  *	some references in the DMU.  Internally we check against spa_minref, but
 | |
|  *	present the image of a zero/non-zero value to consumers.
 | |
|  *
 | |
|  * spa_config_lock[] (per-spa array of rwlocks)
 | |
|  *
 | |
|  *	This protects the spa_t from config changes, and must be held in
 | |
|  *	the following circumstances:
 | |
|  *
 | |
|  *		- RW_READER to perform I/O to the spa
 | |
|  *		- RW_WRITER to change the vdev config
 | |
|  *
 | |
|  * The locking order is fairly straightforward:
 | |
|  *
 | |
|  *		spa_namespace_lock	->	spa_refcount
 | |
|  *
 | |
|  *	The namespace lock must be acquired to increase the refcount from 0
 | |
|  *	or to check if it is zero.
 | |
|  *
 | |
|  *		spa_refcount		->	spa_config_lock[]
 | |
|  *
 | |
|  *	There must be at least one valid reference on the spa_t to acquire
 | |
|  *	the config lock.
 | |
|  *
 | |
|  *		spa_namespace_lock	->	spa_config_lock[]
 | |
|  *
 | |
|  *	The namespace lock must always be taken before the config lock.
 | |
|  *
 | |
|  *
 | |
|  * The spa_namespace_lock can be acquired directly and is globally visible.
 | |
|  *
 | |
|  * The namespace is manipulated using the following functions, all of which
 | |
|  * require the spa_namespace_lock to be held.
 | |
|  *
 | |
|  *	spa_lookup()		Lookup a spa_t by name.
 | |
|  *
 | |
|  *	spa_add()		Create a new spa_t in the namespace.
 | |
|  *
 | |
|  *	spa_remove()		Remove a spa_t from the namespace.  This also
 | |
|  *				frees up any memory associated with the spa_t.
 | |
|  *
 | |
|  *	spa_next()		Returns the next spa_t in the system, or the
 | |
|  *				first if NULL is passed.
 | |
|  *
 | |
|  *	spa_evict_all()		Shutdown and remove all spa_t structures in
 | |
|  *				the system.
 | |
|  *
 | |
|  *	spa_guid_exists()	Determine whether a pool/device guid exists.
 | |
|  *
 | |
|  * The spa_refcount is manipulated using the following functions:
 | |
|  *
 | |
|  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
 | |
|  *				called with spa_namespace_lock held if the
 | |
|  *				refcount is currently zero.
 | |
|  *
 | |
|  *	spa_close()		Remove a reference from the spa_t.  This will
 | |
|  *				not free the spa_t or remove it from the
 | |
|  *				namespace.  No locking is required.
 | |
|  *
 | |
|  *	spa_refcount_zero()	Returns true if the refcount is currently
 | |
|  *				zero.  Must be called with spa_namespace_lock
 | |
|  *				held.
 | |
|  *
 | |
|  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
 | |
|  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
 | |
|  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
 | |
|  *
 | |
|  * To read the configuration, it suffices to hold one of these locks as reader.
 | |
|  * To modify the configuration, you must hold all locks as writer.  To modify
 | |
|  * vdev state without altering the vdev tree's topology (e.g. online/offline),
 | |
|  * you must hold SCL_STATE and SCL_ZIO as writer.
 | |
|  *
 | |
|  * We use these distinct config locks to avoid recursive lock entry.
 | |
|  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
 | |
|  * block allocations (SCL_ALLOC), which may require reading space maps
 | |
|  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
 | |
|  *
 | |
|  * The spa config locks cannot be normal rwlocks because we need the
 | |
|  * ability to hand off ownership.  For example, SCL_ZIO is acquired
 | |
|  * by the issuing thread and later released by an interrupt thread.
 | |
|  * They do, however, obey the usual write-wanted semantics to prevent
 | |
|  * writer (i.e. system administrator) starvation.
 | |
|  *
 | |
|  * The lock acquisition rules are as follows:
 | |
|  *
 | |
|  * SCL_CONFIG
 | |
|  *	Protects changes to the vdev tree topology, such as vdev
 | |
|  *	add/remove/attach/detach.  Protects the dirty config list
 | |
|  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
 | |
|  *
 | |
|  * SCL_STATE
 | |
|  *	Protects changes to pool state and vdev state, such as vdev
 | |
|  *	online/offline/fault/degrade/clear.  Protects the dirty state list
 | |
|  *	(spa_state_dirty_list) and global pool state (spa_state).
 | |
|  *
 | |
|  * SCL_ALLOC
 | |
|  *	Protects changes to metaslab groups and classes.
 | |
|  *	Held as reader by metaslab_alloc() and metaslab_claim().
 | |
|  *
 | |
|  * SCL_ZIO
 | |
|  *	Held by bp-level zios (those which have no io_vd upon entry)
 | |
|  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
 | |
|  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
 | |
|  *
 | |
|  * SCL_FREE
 | |
|  *	Protects changes to metaslab groups and classes.
 | |
|  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
 | |
|  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
 | |
|  *	blocks in zio_done() while another i/o that holds either
 | |
|  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
 | |
|  *
 | |
|  * SCL_VDEV
 | |
|  *	Held as reader to prevent changes to the vdev tree during trivial
 | |
|  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
 | |
|  *	other locks, and lower than all of them, to ensure that it's safe
 | |
|  *	to acquire regardless of caller context.
 | |
|  *
 | |
|  * In addition, the following rules apply:
 | |
|  *
 | |
|  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
 | |
|  *	The lock ordering is SCL_CONFIG > spa_props_lock.
 | |
|  *
 | |
|  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
 | |
|  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
 | |
|  *	or zio_write_phys() -- the caller must ensure that the config cannot
 | |
|  *	cannot change in the interim, and that the vdev cannot be reopened.
 | |
|  *	SCL_STATE as reader suffices for both.
 | |
|  *
 | |
|  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
 | |
|  *
 | |
|  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
 | |
|  *				for writing.
 | |
|  *
 | |
|  *	spa_vdev_exit()		Release the config lock, wait for all I/O
 | |
|  *				to complete, sync the updated configs to the
 | |
|  *				cache, and release the namespace lock.
 | |
|  *
 | |
|  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
 | |
|  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
 | |
|  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
 | |
|  */
 | |
| 
 | |
| static avl_tree_t spa_namespace_avl;
 | |
| kmutex_t spa_namespace_lock;
 | |
| static kcondvar_t spa_namespace_cv;
 | |
| static const int spa_max_replication_override = SPA_DVAS_PER_BP;
 | |
| 
 | |
| static kmutex_t spa_spare_lock;
 | |
| static avl_tree_t spa_spare_avl;
 | |
| static kmutex_t spa_l2cache_lock;
 | |
| static avl_tree_t spa_l2cache_avl;
 | |
| 
 | |
| spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
 | |
| 
 | |
| #ifdef ZFS_DEBUG
 | |
| /*
 | |
|  * Everything except dprintf, set_error, spa, and indirect_remap is on
 | |
|  * by default in debug builds.
 | |
|  */
 | |
| int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
 | |
|     ZFS_DEBUG_INDIRECT_REMAP);
 | |
| #else
 | |
| int zfs_flags = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * zfs_recover can be set to nonzero to attempt to recover from
 | |
|  * otherwise-fatal errors, typically caused by on-disk corruption.  When
 | |
|  * set, calls to zfs_panic_recover() will turn into warning messages.
 | |
|  * This should only be used as a last resort, as it typically results
 | |
|  * in leaked space, or worse.
 | |
|  */
 | |
| int zfs_recover = B_FALSE;
 | |
| 
 | |
| /*
 | |
|  * If destroy encounters an EIO while reading metadata (e.g. indirect
 | |
|  * blocks), space referenced by the missing metadata can not be freed.
 | |
|  * Normally this causes the background destroy to become "stalled", as
 | |
|  * it is unable to make forward progress.  While in this stalled state,
 | |
|  * all remaining space to free from the error-encountering filesystem is
 | |
|  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
 | |
|  * permanently leak the space from indirect blocks that can not be read,
 | |
|  * and continue to free everything else that it can.
 | |
|  *
 | |
|  * The default, "stalling" behavior is useful if the storage partially
 | |
|  * fails (i.e. some but not all i/os fail), and then later recovers.  In
 | |
|  * this case, we will be able to continue pool operations while it is
 | |
|  * partially failed, and when it recovers, we can continue to free the
 | |
|  * space, with no leaks.  However, note that this case is actually
 | |
|  * fairly rare.
 | |
|  *
 | |
|  * Typically pools either (a) fail completely (but perhaps temporarily,
 | |
|  * e.g. a top-level vdev going offline), or (b) have localized,
 | |
|  * permanent errors (e.g. disk returns the wrong data due to bit flip or
 | |
|  * firmware bug).  In case (a), this setting does not matter because the
 | |
|  * pool will be suspended and the sync thread will not be able to make
 | |
|  * forward progress regardless.  In case (b), because the error is
 | |
|  * permanent, the best we can do is leak the minimum amount of space,
 | |
|  * which is what setting this flag will do.  Therefore, it is reasonable
 | |
|  * for this flag to normally be set, but we chose the more conservative
 | |
|  * approach of not setting it, so that there is no possibility of
 | |
|  * leaking space in the "partial temporary" failure case.
 | |
|  */
 | |
| int zfs_free_leak_on_eio = B_FALSE;
 | |
| 
 | |
| /*
 | |
|  * Expiration time in milliseconds. This value has two meanings. First it is
 | |
|  * used to determine when the spa_deadman() logic should fire. By default the
 | |
|  * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
 | |
|  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
 | |
|  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
 | |
|  * in one of three behaviors controlled by zfs_deadman_failmode.
 | |
|  */
 | |
| uint64_t zfs_deadman_synctime_ms = 600000UL;  /* 10 min. */
 | |
| 
 | |
| /*
 | |
|  * This value controls the maximum amount of time zio_wait() will block for an
 | |
|  * outstanding IO.  By default this is 300 seconds at which point the "hung"
 | |
|  * behavior will be applied as described for zfs_deadman_synctime_ms.
 | |
|  */
 | |
| uint64_t zfs_deadman_ziotime_ms = 300000UL;  /* 5 min. */
 | |
| 
 | |
| /*
 | |
|  * Check time in milliseconds. This defines the frequency at which we check
 | |
|  * for hung I/O.
 | |
|  */
 | |
| uint64_t zfs_deadman_checktime_ms = 60000UL;  /* 1 min. */
 | |
| 
 | |
| /*
 | |
|  * By default the deadman is enabled.
 | |
|  */
 | |
| int zfs_deadman_enabled = B_TRUE;
 | |
| 
 | |
| /*
 | |
|  * Controls the behavior of the deadman when it detects a "hung" I/O.
 | |
|  * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
 | |
|  *
 | |
|  * wait     - Wait for the "hung" I/O (default)
 | |
|  * continue - Attempt to recover from a "hung" I/O
 | |
|  * panic    - Panic the system
 | |
|  */
 | |
| const char *zfs_deadman_failmode = "wait";
 | |
| 
 | |
| /*
 | |
|  * The worst case is single-sector max-parity RAID-Z blocks, in which
 | |
|  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
 | |
|  * times the size; so just assume that.  Add to this the fact that
 | |
|  * we can have up to 3 DVAs per bp, and one more factor of 2 because
 | |
|  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
 | |
|  * the worst case is:
 | |
|  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
 | |
|  */
 | |
| uint_t spa_asize_inflation = 24;
 | |
| 
 | |
| /*
 | |
|  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
 | |
|  * the pool to be consumed (bounded by spa_max_slop).  This ensures that we
 | |
|  * don't run the pool completely out of space, due to unaccounted changes (e.g.
 | |
|  * to the MOS).  It also limits the worst-case time to allocate space.  If we
 | |
|  * have less than this amount of free space, most ZPL operations (e.g.  write,
 | |
|  * create) will return ENOSPC.  The ZIL metaslabs (spa_embedded_log_class) are
 | |
|  * also part of this 3.2% of space which can't be consumed by normal writes;
 | |
|  * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
 | |
|  * log space.
 | |
|  *
 | |
|  * Certain operations (e.g. file removal, most administrative actions) can
 | |
|  * use half the slop space.  They will only return ENOSPC if less than half
 | |
|  * the slop space is free.  Typically, once the pool has less than the slop
 | |
|  * space free, the user will use these operations to free up space in the pool.
 | |
|  * These are the operations that call dsl_pool_adjustedsize() with the netfree
 | |
|  * argument set to TRUE.
 | |
|  *
 | |
|  * Operations that are almost guaranteed to free up space in the absence of
 | |
|  * a pool checkpoint can use up to three quarters of the slop space
 | |
|  * (e.g zfs destroy).
 | |
|  *
 | |
|  * A very restricted set of operations are always permitted, regardless of
 | |
|  * the amount of free space.  These are the operations that call
 | |
|  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
 | |
|  * increase in the amount of space used, it is possible to run the pool
 | |
|  * completely out of space, causing it to be permanently read-only.
 | |
|  *
 | |
|  * Note that on very small pools, the slop space will be larger than
 | |
|  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
 | |
|  * but we never allow it to be more than half the pool size.
 | |
|  *
 | |
|  * Further, on very large pools, the slop space will be smaller than
 | |
|  * 3.2%, to avoid reserving much more space than we actually need; bounded
 | |
|  * by spa_max_slop (128GB).
 | |
|  *
 | |
|  * See also the comments in zfs_space_check_t.
 | |
|  */
 | |
| uint_t spa_slop_shift = 5;
 | |
| static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
 | |
| static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
 | |
| static const int spa_allocators = 4;
 | |
| 
 | |
| 
 | |
| void
 | |
| spa_load_failed(spa_t *spa, const char *fmt, ...)
 | |
| {
 | |
| 	va_list adx;
 | |
| 	char buf[256];
 | |
| 
 | |
| 	va_start(adx, fmt);
 | |
| 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
 | |
| 	va_end(adx);
 | |
| 
 | |
| 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
 | |
| 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_load_note(spa_t *spa, const char *fmt, ...)
 | |
| {
 | |
| 	va_list adx;
 | |
| 	char buf[256];
 | |
| 
 | |
| 	va_start(adx, fmt);
 | |
| 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
 | |
| 	va_end(adx);
 | |
| 
 | |
| 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
 | |
| 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * By default dedup and user data indirects land in the special class
 | |
|  */
 | |
| static int zfs_ddt_data_is_special = B_TRUE;
 | |
| static int zfs_user_indirect_is_special = B_TRUE;
 | |
| 
 | |
| /*
 | |
|  * The percentage of special class final space reserved for metadata only.
 | |
|  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
 | |
|  * let metadata into the class.
 | |
|  */
 | |
| static uint_t zfs_special_class_metadata_reserve_pct = 25;
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * SPA config locking
 | |
|  * ==========================================================================
 | |
|  */
 | |
| static void
 | |
| spa_config_lock_init(spa_t *spa)
 | |
| {
 | |
| 	for (int i = 0; i < SCL_LOCKS; i++) {
 | |
| 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
 | |
| 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
 | |
| 		scl->scl_writer = NULL;
 | |
| 		scl->scl_write_wanted = 0;
 | |
| 		scl->scl_count = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| spa_config_lock_destroy(spa_t *spa)
 | |
| {
 | |
| 	for (int i = 0; i < SCL_LOCKS; i++) {
 | |
| 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
 | |
| 		mutex_destroy(&scl->scl_lock);
 | |
| 		cv_destroy(&scl->scl_cv);
 | |
| 		ASSERT(scl->scl_writer == NULL);
 | |
| 		ASSERT(scl->scl_write_wanted == 0);
 | |
| 		ASSERT(scl->scl_count == 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
 | |
| {
 | |
| 	for (int i = 0; i < SCL_LOCKS; i++) {
 | |
| 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
 | |
| 		if (!(locks & (1 << i)))
 | |
| 			continue;
 | |
| 		mutex_enter(&scl->scl_lock);
 | |
| 		if (rw == RW_READER) {
 | |
| 			if (scl->scl_writer || scl->scl_write_wanted) {
 | |
| 				mutex_exit(&scl->scl_lock);
 | |
| 				spa_config_exit(spa, locks & ((1 << i) - 1),
 | |
| 				    tag);
 | |
| 				return (0);
 | |
| 			}
 | |
| 		} else {
 | |
| 			ASSERT(scl->scl_writer != curthread);
 | |
| 			if (scl->scl_count != 0) {
 | |
| 				mutex_exit(&scl->scl_lock);
 | |
| 				spa_config_exit(spa, locks & ((1 << i) - 1),
 | |
| 				    tag);
 | |
| 				return (0);
 | |
| 			}
 | |
| 			scl->scl_writer = curthread;
 | |
| 		}
 | |
| 		scl->scl_count++;
 | |
| 		mutex_exit(&scl->scl_lock);
 | |
| 	}
 | |
| 	return (1);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
 | |
| {
 | |
| 	(void) tag;
 | |
| 	int wlocks_held = 0;
 | |
| 
 | |
| 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
 | |
| 
 | |
| 	for (int i = 0; i < SCL_LOCKS; i++) {
 | |
| 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
 | |
| 		if (scl->scl_writer == curthread)
 | |
| 			wlocks_held |= (1 << i);
 | |
| 		if (!(locks & (1 << i)))
 | |
| 			continue;
 | |
| 		mutex_enter(&scl->scl_lock);
 | |
| 		if (rw == RW_READER) {
 | |
| 			while (scl->scl_writer || scl->scl_write_wanted) {
 | |
| 				cv_wait(&scl->scl_cv, &scl->scl_lock);
 | |
| 			}
 | |
| 		} else {
 | |
| 			ASSERT(scl->scl_writer != curthread);
 | |
| 			while (scl->scl_count != 0) {
 | |
| 				scl->scl_write_wanted++;
 | |
| 				cv_wait(&scl->scl_cv, &scl->scl_lock);
 | |
| 				scl->scl_write_wanted--;
 | |
| 			}
 | |
| 			scl->scl_writer = curthread;
 | |
| 		}
 | |
| 		scl->scl_count++;
 | |
| 		mutex_exit(&scl->scl_lock);
 | |
| 	}
 | |
| 	ASSERT3U(wlocks_held, <=, locks);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_config_exit(spa_t *spa, int locks, const void *tag)
 | |
| {
 | |
| 	(void) tag;
 | |
| 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
 | |
| 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
 | |
| 		if (!(locks & (1 << i)))
 | |
| 			continue;
 | |
| 		mutex_enter(&scl->scl_lock);
 | |
| 		ASSERT(scl->scl_count > 0);
 | |
| 		if (--scl->scl_count == 0) {
 | |
| 			ASSERT(scl->scl_writer == NULL ||
 | |
| 			    scl->scl_writer == curthread);
 | |
| 			scl->scl_writer = NULL;	/* OK in either case */
 | |
| 			cv_broadcast(&scl->scl_cv);
 | |
| 		}
 | |
| 		mutex_exit(&scl->scl_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| spa_config_held(spa_t *spa, int locks, krw_t rw)
 | |
| {
 | |
| 	int locks_held = 0;
 | |
| 
 | |
| 	for (int i = 0; i < SCL_LOCKS; i++) {
 | |
| 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
 | |
| 		if (!(locks & (1 << i)))
 | |
| 			continue;
 | |
| 		if ((rw == RW_READER && scl->scl_count != 0) ||
 | |
| 		    (rw == RW_WRITER && scl->scl_writer == curthread))
 | |
| 			locks_held |= 1 << i;
 | |
| 	}
 | |
| 
 | |
| 	return (locks_held);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * SPA namespace functions
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
 | |
|  * Returns NULL if no matching spa_t is found.
 | |
|  */
 | |
| spa_t *
 | |
| spa_lookup(const char *name)
 | |
| {
 | |
| 	static spa_t search;	/* spa_t is large; don't allocate on stack */
 | |
| 	spa_t *spa;
 | |
| 	avl_index_t where;
 | |
| 	char *cp;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | |
| 
 | |
| 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
 | |
| 
 | |
| 	/*
 | |
| 	 * If it's a full dataset name, figure out the pool name and
 | |
| 	 * just use that.
 | |
| 	 */
 | |
| 	cp = strpbrk(search.spa_name, "/@#");
 | |
| 	if (cp != NULL)
 | |
| 		*cp = '\0';
 | |
| 
 | |
| 	spa = avl_find(&spa_namespace_avl, &search, &where);
 | |
| 
 | |
| 	return (spa);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
 | |
|  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
 | |
|  * looking for potentially hung I/Os.
 | |
|  */
 | |
| void
 | |
| spa_deadman(void *arg)
 | |
| {
 | |
| 	spa_t *spa = arg;
 | |
| 
 | |
| 	/* Disable the deadman if the pool is suspended. */
 | |
| 	if (spa_suspended(spa))
 | |
| 		return;
 | |
| 
 | |
| 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
 | |
| 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
 | |
| 	    (u_longlong_t)++spa->spa_deadman_calls);
 | |
| 	if (zfs_deadman_enabled)
 | |
| 		vdev_deadman(spa->spa_root_vdev, FTAG);
 | |
| 
 | |
| 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
 | |
| 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
 | |
| 	    MSEC_TO_TICK(zfs_deadman_checktime_ms));
 | |
| }
 | |
| 
 | |
| static int
 | |
| spa_log_sm_sort_by_txg(const void *va, const void *vb)
 | |
| {
 | |
| 	const spa_log_sm_t *a = va;
 | |
| 	const spa_log_sm_t *b = vb;
 | |
| 
 | |
| 	return (TREE_CMP(a->sls_txg, b->sls_txg));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create an uninitialized spa_t with the given name.  Requires
 | |
|  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
 | |
|  * exist by calling spa_lookup() first.
 | |
|  */
 | |
| spa_t *
 | |
| spa_add(const char *name, nvlist_t *config, const char *altroot)
 | |
| {
 | |
| 	spa_t *spa;
 | |
| 	spa_config_dirent_t *dp;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | |
| 
 | |
| 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
 | |
| 
 | |
| 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 
 | |
| 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
 | |
| 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
 | |
| 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
 | |
| 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
 | |
| 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
 | |
| 	cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
 | |
| 	cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
 | |
| 
 | |
| 	for (int t = 0; t < TXG_SIZE; t++)
 | |
| 		bplist_create(&spa->spa_free_bplist[t]);
 | |
| 
 | |
| 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
 | |
| 	spa->spa_state = POOL_STATE_UNINITIALIZED;
 | |
| 	spa->spa_freeze_txg = UINT64_MAX;
 | |
| 	spa->spa_final_txg = UINT64_MAX;
 | |
| 	spa->spa_load_max_txg = UINT64_MAX;
 | |
| 	spa->spa_proc = &p0;
 | |
| 	spa->spa_proc_state = SPA_PROC_NONE;
 | |
| 	spa->spa_trust_config = B_TRUE;
 | |
| 	spa->spa_hostid = zone_get_hostid(NULL);
 | |
| 
 | |
| 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
 | |
| 	spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
 | |
| 	spa_set_deadman_failmode(spa, zfs_deadman_failmode);
 | |
| 
 | |
| 	zfs_refcount_create(&spa->spa_refcount);
 | |
| 	spa_config_lock_init(spa);
 | |
| 	spa_stats_init(spa);
 | |
| 
 | |
| 	avl_add(&spa_namespace_avl, spa);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the alternate root, if there is one.
 | |
| 	 */
 | |
| 	if (altroot)
 | |
| 		spa->spa_root = spa_strdup(altroot);
 | |
| 
 | |
| 	spa->spa_alloc_count = spa_allocators;
 | |
| 	spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
 | |
| 	    sizeof (spa_alloc_t), KM_SLEEP);
 | |
| 	for (int i = 0; i < spa->spa_alloc_count; i++) {
 | |
| 		mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
 | |
| 		    NULL);
 | |
| 		avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
 | |
| 		    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
 | |
| 	}
 | |
| 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
 | |
| 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
 | |
| 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
 | |
| 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
 | |
| 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
 | |
| 	    offsetof(log_summary_entry_t, lse_node));
 | |
| 
 | |
| 	/*
 | |
| 	 * Every pool starts with the default cachefile
 | |
| 	 */
 | |
| 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
 | |
| 	    offsetof(spa_config_dirent_t, scd_link));
 | |
| 
 | |
| 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
 | |
| 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
 | |
| 	list_insert_head(&spa->spa_config_list, dp);
 | |
| 
 | |
| 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
 | |
| 	    KM_SLEEP) == 0);
 | |
| 
 | |
| 	if (config != NULL) {
 | |
| 		nvlist_t *features;
 | |
| 
 | |
| 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
 | |
| 		    &features) == 0) {
 | |
| 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
 | |
| 			    0) == 0);
 | |
| 		}
 | |
| 
 | |
| 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
 | |
| 	}
 | |
| 
 | |
| 	if (spa->spa_label_features == NULL) {
 | |
| 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
 | |
| 		    KM_SLEEP) == 0);
 | |
| 	}
 | |
| 
 | |
| 	spa->spa_min_ashift = INT_MAX;
 | |
| 	spa->spa_max_ashift = 0;
 | |
| 	spa->spa_min_alloc = INT_MAX;
 | |
| 
 | |
| 	/* Reset cached value */
 | |
| 	spa->spa_dedup_dspace = ~0ULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * As a pool is being created, treat all features as disabled by
 | |
| 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
 | |
| 	 * refcount cache.
 | |
| 	 */
 | |
| 	for (int i = 0; i < SPA_FEATURES; i++) {
 | |
| 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
 | |
| 	}
 | |
| 
 | |
| 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
 | |
| 	    offsetof(vdev_t, vdev_leaf_node));
 | |
| 
 | |
| 	return (spa);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
 | |
|  * spa_namespace_lock.  This is called only after the spa_t has been closed and
 | |
|  * deactivated.
 | |
|  */
 | |
| void
 | |
| spa_remove(spa_t *spa)
 | |
| {
 | |
| 	spa_config_dirent_t *dp;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | |
| 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
 | |
| 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
 | |
| 	ASSERT0(spa->spa_waiters);
 | |
| 
 | |
| 	nvlist_free(spa->spa_config_splitting);
 | |
| 
 | |
| 	avl_remove(&spa_namespace_avl, spa);
 | |
| 	cv_broadcast(&spa_namespace_cv);
 | |
| 
 | |
| 	if (spa->spa_root)
 | |
| 		spa_strfree(spa->spa_root);
 | |
| 
 | |
| 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
 | |
| 		list_remove(&spa->spa_config_list, dp);
 | |
| 		if (dp->scd_path != NULL)
 | |
| 			spa_strfree(dp->scd_path);
 | |
| 		kmem_free(dp, sizeof (spa_config_dirent_t));
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < spa->spa_alloc_count; i++) {
 | |
| 		avl_destroy(&spa->spa_allocs[i].spaa_tree);
 | |
| 		mutex_destroy(&spa->spa_allocs[i].spaa_lock);
 | |
| 	}
 | |
| 	kmem_free(spa->spa_allocs, spa->spa_alloc_count *
 | |
| 	    sizeof (spa_alloc_t));
 | |
| 
 | |
| 	avl_destroy(&spa->spa_metaslabs_by_flushed);
 | |
| 	avl_destroy(&spa->spa_sm_logs_by_txg);
 | |
| 	list_destroy(&spa->spa_log_summary);
 | |
| 	list_destroy(&spa->spa_config_list);
 | |
| 	list_destroy(&spa->spa_leaf_list);
 | |
| 
 | |
| 	nvlist_free(spa->spa_label_features);
 | |
| 	nvlist_free(spa->spa_load_info);
 | |
| 	nvlist_free(spa->spa_feat_stats);
 | |
| 	spa_config_set(spa, NULL);
 | |
| 
 | |
| 	zfs_refcount_destroy(&spa->spa_refcount);
 | |
| 
 | |
| 	spa_stats_destroy(spa);
 | |
| 	spa_config_lock_destroy(spa);
 | |
| 
 | |
| 	for (int t = 0; t < TXG_SIZE; t++)
 | |
| 		bplist_destroy(&spa->spa_free_bplist[t]);
 | |
| 
 | |
| 	zio_checksum_templates_free(spa);
 | |
| 
 | |
| 	cv_destroy(&spa->spa_async_cv);
 | |
| 	cv_destroy(&spa->spa_evicting_os_cv);
 | |
| 	cv_destroy(&spa->spa_proc_cv);
 | |
| 	cv_destroy(&spa->spa_scrub_io_cv);
 | |
| 	cv_destroy(&spa->spa_suspend_cv);
 | |
| 	cv_destroy(&spa->spa_activities_cv);
 | |
| 	cv_destroy(&spa->spa_waiters_cv);
 | |
| 
 | |
| 	mutex_destroy(&spa->spa_flushed_ms_lock);
 | |
| 	mutex_destroy(&spa->spa_async_lock);
 | |
| 	mutex_destroy(&spa->spa_errlist_lock);
 | |
| 	mutex_destroy(&spa->spa_errlog_lock);
 | |
| 	mutex_destroy(&spa->spa_evicting_os_lock);
 | |
| 	mutex_destroy(&spa->spa_history_lock);
 | |
| 	mutex_destroy(&spa->spa_proc_lock);
 | |
| 	mutex_destroy(&spa->spa_props_lock);
 | |
| 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
 | |
| 	mutex_destroy(&spa->spa_scrub_lock);
 | |
| 	mutex_destroy(&spa->spa_suspend_lock);
 | |
| 	mutex_destroy(&spa->spa_vdev_top_lock);
 | |
| 	mutex_destroy(&spa->spa_feat_stats_lock);
 | |
| 	mutex_destroy(&spa->spa_activities_lock);
 | |
| 
 | |
| 	kmem_free(spa, sizeof (spa_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a pool, return the next pool in the namespace, or NULL if there is
 | |
|  * none.  If 'prev' is NULL, return the first pool.
 | |
|  */
 | |
| spa_t *
 | |
| spa_next(spa_t *prev)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | |
| 
 | |
| 	if (prev)
 | |
| 		return (AVL_NEXT(&spa_namespace_avl, prev));
 | |
| 	else
 | |
| 		return (avl_first(&spa_namespace_avl));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * SPA refcount functions
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Add a reference to the given spa_t.  Must have at least one reference, or
 | |
|  * have the namespace lock held.
 | |
|  */
 | |
| void
 | |
| spa_open_ref(spa_t *spa, const void *tag)
 | |
| {
 | |
| 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
 | |
| 	    MUTEX_HELD(&spa_namespace_lock));
 | |
| 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a reference to the given spa_t.  Must have at least one reference, or
 | |
|  * have the namespace lock held.
 | |
|  */
 | |
| void
 | |
| spa_close(spa_t *spa, const void *tag)
 | |
| {
 | |
| 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
 | |
| 	    MUTEX_HELD(&spa_namespace_lock));
 | |
| 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a reference to the given spa_t held by a dsl dir that is
 | |
|  * being asynchronously released.  Async releases occur from a taskq
 | |
|  * performing eviction of dsl datasets and dirs.  The namespace lock
 | |
|  * isn't held and the hold by the object being evicted may contribute to
 | |
|  * spa_minref (e.g. dataset or directory released during pool export),
 | |
|  * so the asserts in spa_close() do not apply.
 | |
|  */
 | |
| void
 | |
| spa_async_close(spa_t *spa, const void *tag)
 | |
| {
 | |
| 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if the spa refcount is zero.  Must be called with
 | |
|  * spa_namespace_lock held.  We really compare against spa_minref, which is the
 | |
|  * number of references acquired when opening a pool
 | |
|  */
 | |
| boolean_t
 | |
| spa_refcount_zero(spa_t *spa)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | |
| 
 | |
| 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * SPA spare and l2cache tracking
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Hot spares and cache devices are tracked using the same code below,
 | |
|  * for 'auxiliary' devices.
 | |
|  */
 | |
| 
 | |
| typedef struct spa_aux {
 | |
| 	uint64_t	aux_guid;
 | |
| 	uint64_t	aux_pool;
 | |
| 	avl_node_t	aux_avl;
 | |
| 	int		aux_count;
 | |
| } spa_aux_t;
 | |
| 
 | |
| static inline int
 | |
| spa_aux_compare(const void *a, const void *b)
 | |
| {
 | |
| 	const spa_aux_t *sa = (const spa_aux_t *)a;
 | |
| 	const spa_aux_t *sb = (const spa_aux_t *)b;
 | |
| 
 | |
| 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
 | |
| }
 | |
| 
 | |
| static void
 | |
| spa_aux_add(vdev_t *vd, avl_tree_t *avl)
 | |
| {
 | |
| 	avl_index_t where;
 | |
| 	spa_aux_t search;
 | |
| 	spa_aux_t *aux;
 | |
| 
 | |
| 	search.aux_guid = vd->vdev_guid;
 | |
| 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
 | |
| 		aux->aux_count++;
 | |
| 	} else {
 | |
| 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
 | |
| 		aux->aux_guid = vd->vdev_guid;
 | |
| 		aux->aux_count = 1;
 | |
| 		avl_insert(avl, aux, where);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
 | |
| {
 | |
| 	spa_aux_t search;
 | |
| 	spa_aux_t *aux;
 | |
| 	avl_index_t where;
 | |
| 
 | |
| 	search.aux_guid = vd->vdev_guid;
 | |
| 	aux = avl_find(avl, &search, &where);
 | |
| 
 | |
| 	ASSERT(aux != NULL);
 | |
| 
 | |
| 	if (--aux->aux_count == 0) {
 | |
| 		avl_remove(avl, aux);
 | |
| 		kmem_free(aux, sizeof (spa_aux_t));
 | |
| 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
 | |
| 		aux->aux_pool = 0ULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static boolean_t
 | |
| spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
 | |
| {
 | |
| 	spa_aux_t search, *found;
 | |
| 
 | |
| 	search.aux_guid = guid;
 | |
| 	found = avl_find(avl, &search, NULL);
 | |
| 
 | |
| 	if (pool) {
 | |
| 		if (found)
 | |
| 			*pool = found->aux_pool;
 | |
| 		else
 | |
| 			*pool = 0ULL;
 | |
| 	}
 | |
| 
 | |
| 	if (refcnt) {
 | |
| 		if (found)
 | |
| 			*refcnt = found->aux_count;
 | |
| 		else
 | |
| 			*refcnt = 0;
 | |
| 	}
 | |
| 
 | |
| 	return (found != NULL);
 | |
| }
 | |
| 
 | |
| static void
 | |
| spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
 | |
| {
 | |
| 	spa_aux_t search, *found;
 | |
| 	avl_index_t where;
 | |
| 
 | |
| 	search.aux_guid = vd->vdev_guid;
 | |
| 	found = avl_find(avl, &search, &where);
 | |
| 	ASSERT(found != NULL);
 | |
| 	ASSERT(found->aux_pool == 0ULL);
 | |
| 
 | |
| 	found->aux_pool = spa_guid(vd->vdev_spa);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Spares are tracked globally due to the following constraints:
 | |
|  *
 | |
|  *	- A spare may be part of multiple pools.
 | |
|  *	- A spare may be added to a pool even if it's actively in use within
 | |
|  *	  another pool.
 | |
|  *	- A spare in use in any pool can only be the source of a replacement if
 | |
|  *	  the target is a spare in the same pool.
 | |
|  *
 | |
|  * We keep track of all spares on the system through the use of a reference
 | |
|  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
 | |
|  * spare, then we bump the reference count in the AVL tree.  In addition, we set
 | |
|  * the 'vdev_isspare' member to indicate that the device is a spare (active or
 | |
|  * inactive).  When a spare is made active (used to replace a device in the
 | |
|  * pool), we also keep track of which pool its been made a part of.
 | |
|  *
 | |
|  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
 | |
|  * called under the spa_namespace lock as part of vdev reconfiguration.  The
 | |
|  * separate spare lock exists for the status query path, which does not need to
 | |
|  * be completely consistent with respect to other vdev configuration changes.
 | |
|  */
 | |
| 
 | |
| static int
 | |
| spa_spare_compare(const void *a, const void *b)
 | |
| {
 | |
| 	return (spa_aux_compare(a, b));
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_spare_add(vdev_t *vd)
 | |
| {
 | |
| 	mutex_enter(&spa_spare_lock);
 | |
| 	ASSERT(!vd->vdev_isspare);
 | |
| 	spa_aux_add(vd, &spa_spare_avl);
 | |
| 	vd->vdev_isspare = B_TRUE;
 | |
| 	mutex_exit(&spa_spare_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_spare_remove(vdev_t *vd)
 | |
| {
 | |
| 	mutex_enter(&spa_spare_lock);
 | |
| 	ASSERT(vd->vdev_isspare);
 | |
| 	spa_aux_remove(vd, &spa_spare_avl);
 | |
| 	vd->vdev_isspare = B_FALSE;
 | |
| 	mutex_exit(&spa_spare_lock);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
 | |
| {
 | |
| 	boolean_t found;
 | |
| 
 | |
| 	mutex_enter(&spa_spare_lock);
 | |
| 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
 | |
| 	mutex_exit(&spa_spare_lock);
 | |
| 
 | |
| 	return (found);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_spare_activate(vdev_t *vd)
 | |
| {
 | |
| 	mutex_enter(&spa_spare_lock);
 | |
| 	ASSERT(vd->vdev_isspare);
 | |
| 	spa_aux_activate(vd, &spa_spare_avl);
 | |
| 	mutex_exit(&spa_spare_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Level 2 ARC devices are tracked globally for the same reasons as spares.
 | |
|  * Cache devices currently only support one pool per cache device, and so
 | |
|  * for these devices the aux reference count is currently unused beyond 1.
 | |
|  */
 | |
| 
 | |
| static int
 | |
| spa_l2cache_compare(const void *a, const void *b)
 | |
| {
 | |
| 	return (spa_aux_compare(a, b));
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_l2cache_add(vdev_t *vd)
 | |
| {
 | |
| 	mutex_enter(&spa_l2cache_lock);
 | |
| 	ASSERT(!vd->vdev_isl2cache);
 | |
| 	spa_aux_add(vd, &spa_l2cache_avl);
 | |
| 	vd->vdev_isl2cache = B_TRUE;
 | |
| 	mutex_exit(&spa_l2cache_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_l2cache_remove(vdev_t *vd)
 | |
| {
 | |
| 	mutex_enter(&spa_l2cache_lock);
 | |
| 	ASSERT(vd->vdev_isl2cache);
 | |
| 	spa_aux_remove(vd, &spa_l2cache_avl);
 | |
| 	vd->vdev_isl2cache = B_FALSE;
 | |
| 	mutex_exit(&spa_l2cache_lock);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| spa_l2cache_exists(uint64_t guid, uint64_t *pool)
 | |
| {
 | |
| 	boolean_t found;
 | |
| 
 | |
| 	mutex_enter(&spa_l2cache_lock);
 | |
| 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
 | |
| 	mutex_exit(&spa_l2cache_lock);
 | |
| 
 | |
| 	return (found);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_l2cache_activate(vdev_t *vd)
 | |
| {
 | |
| 	mutex_enter(&spa_l2cache_lock);
 | |
| 	ASSERT(vd->vdev_isl2cache);
 | |
| 	spa_aux_activate(vd, &spa_l2cache_avl);
 | |
| 	mutex_exit(&spa_l2cache_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * SPA vdev locking
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Lock the given spa_t for the purpose of adding or removing a vdev.
 | |
|  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
 | |
|  * It returns the next transaction group for the spa_t.
 | |
|  */
 | |
| uint64_t
 | |
| spa_vdev_enter(spa_t *spa)
 | |
| {
 | |
| 	mutex_enter(&spa->spa_vdev_top_lock);
 | |
| 	mutex_enter(&spa_namespace_lock);
 | |
| 
 | |
| 	vdev_autotrim_stop_all(spa);
 | |
| 
 | |
| 	return (spa_vdev_config_enter(spa));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The same as spa_vdev_enter() above but additionally takes the guid of
 | |
|  * the vdev being detached.  When there is a rebuild in process it will be
 | |
|  * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
 | |
|  * The rebuild is canceled if only a single child remains after the detach.
 | |
|  */
 | |
| uint64_t
 | |
| spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
 | |
| {
 | |
| 	mutex_enter(&spa->spa_vdev_top_lock);
 | |
| 	mutex_enter(&spa_namespace_lock);
 | |
| 
 | |
| 	vdev_autotrim_stop_all(spa);
 | |
| 
 | |
| 	if (guid != 0) {
 | |
| 		vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
 | |
| 		if (vd) {
 | |
| 			vdev_rebuild_stop_wait(vd->vdev_top);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (spa_vdev_config_enter(spa));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Internal implementation for spa_vdev_enter().  Used when a vdev
 | |
|  * operation requires multiple syncs (i.e. removing a device) while
 | |
|  * keeping the spa_namespace_lock held.
 | |
|  */
 | |
| uint64_t
 | |
| spa_vdev_config_enter(spa_t *spa)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | |
| 
 | |
| 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
 | |
| 
 | |
| 	return (spa_last_synced_txg(spa) + 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used in combination with spa_vdev_config_enter() to allow the syncing
 | |
|  * of multiple transactions without releasing the spa_namespace_lock.
 | |
|  */
 | |
| void
 | |
| spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error,
 | |
|     const char *tag)
 | |
| {
 | |
| 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | |
| 
 | |
| 	int config_changed = B_FALSE;
 | |
| 
 | |
| 	ASSERT(txg > spa_last_synced_txg(spa));
 | |
| 
 | |
| 	spa->spa_pending_vdev = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reassess the DTLs.
 | |
| 	 */
 | |
| 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
 | |
| 
 | |
| 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
 | |
| 		config_changed = B_TRUE;
 | |
| 		spa->spa_config_generation++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify the metaslab classes.
 | |
| 	 */
 | |
| 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
 | |
| 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
 | |
| 	ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
 | |
| 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
 | |
| 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
 | |
| 
 | |
| 	spa_config_exit(spa, SCL_ALL, spa);
 | |
| 
 | |
| 	/*
 | |
| 	 * Panic the system if the specified tag requires it.  This
 | |
| 	 * is useful for ensuring that configurations are updated
 | |
| 	 * transactionally.
 | |
| 	 */
 | |
| 	if (zio_injection_enabled)
 | |
| 		zio_handle_panic_injection(spa, tag, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: this txg_wait_synced() is important because it ensures
 | |
| 	 * that there won't be more than one config change per txg.
 | |
| 	 * This allows us to use the txg as the generation number.
 | |
| 	 */
 | |
| 	if (error == 0)
 | |
| 		txg_wait_synced(spa->spa_dsl_pool, txg);
 | |
| 
 | |
| 	if (vd != NULL) {
 | |
| 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
 | |
| 		if (vd->vdev_ops->vdev_op_leaf) {
 | |
| 			mutex_enter(&vd->vdev_initialize_lock);
 | |
| 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
 | |
| 			    NULL);
 | |
| 			mutex_exit(&vd->vdev_initialize_lock);
 | |
| 
 | |
| 			mutex_enter(&vd->vdev_trim_lock);
 | |
| 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
 | |
| 			mutex_exit(&vd->vdev_trim_lock);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The vdev may be both a leaf and top-level device.
 | |
| 		 */
 | |
| 		vdev_autotrim_stop_wait(vd);
 | |
| 
 | |
| 		spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
 | |
| 		vdev_free(vd);
 | |
| 		spa_config_exit(spa, SCL_STATE_ALL, spa);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the config changed, update the config cache.
 | |
| 	 */
 | |
| 	if (config_changed)
 | |
| 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
 | |
|  * locking of spa_vdev_enter(), we also want make sure the transactions have
 | |
|  * synced to disk, and then update the global configuration cache with the new
 | |
|  * information.
 | |
|  */
 | |
| int
 | |
| spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
 | |
| {
 | |
| 	vdev_autotrim_restart(spa);
 | |
| 	vdev_rebuild_restart(spa);
 | |
| 
 | |
| 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
 | |
| 	mutex_exit(&spa_namespace_lock);
 | |
| 	mutex_exit(&spa->spa_vdev_top_lock);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock the given spa_t for the purpose of changing vdev state.
 | |
|  */
 | |
| void
 | |
| spa_vdev_state_enter(spa_t *spa, int oplocks)
 | |
| {
 | |
| 	int locks = SCL_STATE_ALL | oplocks;
 | |
| 
 | |
| 	/*
 | |
| 	 * Root pools may need to read of the underlying devfs filesystem
 | |
| 	 * when opening up a vdev.  Unfortunately if we're holding the
 | |
| 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
 | |
| 	 * the read from the root filesystem.  Instead we "prefetch"
 | |
| 	 * the associated vnodes that we need prior to opening the
 | |
| 	 * underlying devices and cache them so that we can prevent
 | |
| 	 * any I/O when we are doing the actual open.
 | |
| 	 */
 | |
| 	if (spa_is_root(spa)) {
 | |
| 		int low = locks & ~(SCL_ZIO - 1);
 | |
| 		int high = locks & ~low;
 | |
| 
 | |
| 		spa_config_enter(spa, high, spa, RW_WRITER);
 | |
| 		vdev_hold(spa->spa_root_vdev);
 | |
| 		spa_config_enter(spa, low, spa, RW_WRITER);
 | |
| 	} else {
 | |
| 		spa_config_enter(spa, locks, spa, RW_WRITER);
 | |
| 	}
 | |
| 	spa->spa_vdev_locks = locks;
 | |
| }
 | |
| 
 | |
| int
 | |
| spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
 | |
| {
 | |
| 	boolean_t config_changed = B_FALSE;
 | |
| 	vdev_t *vdev_top;
 | |
| 
 | |
| 	if (vd == NULL || vd == spa->spa_root_vdev) {
 | |
| 		vdev_top = spa->spa_root_vdev;
 | |
| 	} else {
 | |
| 		vdev_top = vd->vdev_top;
 | |
| 	}
 | |
| 
 | |
| 	if (vd != NULL || error == 0)
 | |
| 		vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
 | |
| 
 | |
| 	if (vd != NULL) {
 | |
| 		if (vd != spa->spa_root_vdev)
 | |
| 			vdev_state_dirty(vdev_top);
 | |
| 
 | |
| 		config_changed = B_TRUE;
 | |
| 		spa->spa_config_generation++;
 | |
| 	}
 | |
| 
 | |
| 	if (spa_is_root(spa))
 | |
| 		vdev_rele(spa->spa_root_vdev);
 | |
| 
 | |
| 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
 | |
| 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
 | |
| 
 | |
| 	/*
 | |
| 	 * If anything changed, wait for it to sync.  This ensures that,
 | |
| 	 * from the system administrator's perspective, zpool(8) commands
 | |
| 	 * are synchronous.  This is important for things like zpool offline:
 | |
| 	 * when the command completes, you expect no further I/O from ZFS.
 | |
| 	 */
 | |
| 	if (vd != NULL)
 | |
| 		txg_wait_synced(spa->spa_dsl_pool, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the config changed, update the config cache.
 | |
| 	 */
 | |
| 	if (config_changed) {
 | |
| 		mutex_enter(&spa_namespace_lock);
 | |
| 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
 | |
| 		mutex_exit(&spa_namespace_lock);
 | |
| 	}
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * Miscellaneous functions
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| void
 | |
| spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
 | |
| {
 | |
| 	if (!nvlist_exists(spa->spa_label_features, feature)) {
 | |
| 		fnvlist_add_boolean(spa->spa_label_features, feature);
 | |
| 		/*
 | |
| 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
 | |
| 		 * dirty the vdev config because lock SCL_CONFIG is not held.
 | |
| 		 * Thankfully, in this case we don't need to dirty the config
 | |
| 		 * because it will be written out anyway when we finish
 | |
| 		 * creating the pool.
 | |
| 		 */
 | |
| 		if (tx->tx_txg != TXG_INITIAL)
 | |
| 			vdev_config_dirty(spa->spa_root_vdev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_deactivate_mos_feature(spa_t *spa, const char *feature)
 | |
| {
 | |
| 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
 | |
| 		vdev_config_dirty(spa->spa_root_vdev);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the spa_t associated with given pool_guid, if it exists.  If
 | |
|  * device_guid is non-zero, determine whether the pool exists *and* contains
 | |
|  * a device with the specified device_guid.
 | |
|  */
 | |
| spa_t *
 | |
| spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
 | |
| {
 | |
| 	spa_t *spa;
 | |
| 	avl_tree_t *t = &spa_namespace_avl;
 | |
| 
 | |
| 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | |
| 
 | |
| 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
 | |
| 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
 | |
| 			continue;
 | |
| 		if (spa->spa_root_vdev == NULL)
 | |
| 			continue;
 | |
| 		if (spa_guid(spa) == pool_guid) {
 | |
| 			if (device_guid == 0)
 | |
| 				break;
 | |
| 
 | |
| 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
 | |
| 			    device_guid) != NULL)
 | |
| 				break;
 | |
| 
 | |
| 			/*
 | |
| 			 * Check any devices we may be in the process of adding.
 | |
| 			 */
 | |
| 			if (spa->spa_pending_vdev) {
 | |
| 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
 | |
| 				    device_guid) != NULL)
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (spa);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine whether a pool with the given pool_guid exists.
 | |
|  */
 | |
| boolean_t
 | |
| spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
 | |
| {
 | |
| 	return (spa_by_guid(pool_guid, device_guid) != NULL);
 | |
| }
 | |
| 
 | |
| char *
 | |
| spa_strdup(const char *s)
 | |
| {
 | |
| 	size_t len;
 | |
| 	char *new;
 | |
| 
 | |
| 	len = strlen(s);
 | |
| 	new = kmem_alloc(len + 1, KM_SLEEP);
 | |
| 	memcpy(new, s, len + 1);
 | |
| 
 | |
| 	return (new);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_strfree(char *s)
 | |
| {
 | |
| 	kmem_free(s, strlen(s) + 1);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_generate_guid(spa_t *spa)
 | |
| {
 | |
| 	uint64_t guid;
 | |
| 
 | |
| 	if (spa != NULL) {
 | |
| 		do {
 | |
| 			(void) random_get_pseudo_bytes((void *)&guid,
 | |
| 			    sizeof (guid));
 | |
| 		} while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
 | |
| 	} else {
 | |
| 		do {
 | |
| 			(void) random_get_pseudo_bytes((void *)&guid,
 | |
| 			    sizeof (guid));
 | |
| 		} while (guid == 0 || spa_guid_exists(guid, 0));
 | |
| 	}
 | |
| 
 | |
| 	return (guid);
 | |
| }
 | |
| 
 | |
| void
 | |
| snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
 | |
| {
 | |
| 	char type[256];
 | |
| 	const char *checksum = NULL;
 | |
| 	const char *compress = NULL;
 | |
| 
 | |
| 	if (bp != NULL) {
 | |
| 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
 | |
| 			dmu_object_byteswap_t bswap =
 | |
| 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
 | |
| 			(void) snprintf(type, sizeof (type), "bswap %s %s",
 | |
| 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
 | |
| 			    "metadata" : "data",
 | |
| 			    dmu_ot_byteswap[bswap].ob_name);
 | |
| 		} else {
 | |
| 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
 | |
| 			    sizeof (type));
 | |
| 		}
 | |
| 		if (!BP_IS_EMBEDDED(bp)) {
 | |
| 			checksum =
 | |
| 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
 | |
| 		}
 | |
| 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
 | |
| 	}
 | |
| 
 | |
| 	SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum,
 | |
| 	    compress);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_freeze(spa_t *spa)
 | |
| {
 | |
| 	uint64_t freeze_txg = 0;
 | |
| 
 | |
| 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 | |
| 	if (spa->spa_freeze_txg == UINT64_MAX) {
 | |
| 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
 | |
| 		spa->spa_freeze_txg = freeze_txg;
 | |
| 	}
 | |
| 	spa_config_exit(spa, SCL_ALL, FTAG);
 | |
| 	if (freeze_txg != 0)
 | |
| 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_panic_recover(const char *fmt, ...)
 | |
| {
 | |
| 	va_list adx;
 | |
| 
 | |
| 	va_start(adx, fmt);
 | |
| 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
 | |
| 	va_end(adx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a stripped-down version of strtoull, suitable only for converting
 | |
|  * lowercase hexadecimal numbers that don't overflow.
 | |
|  */
 | |
| uint64_t
 | |
| zfs_strtonum(const char *str, char **nptr)
 | |
| {
 | |
| 	uint64_t val = 0;
 | |
| 	char c;
 | |
| 	int digit;
 | |
| 
 | |
| 	while ((c = *str) != '\0') {
 | |
| 		if (c >= '0' && c <= '9')
 | |
| 			digit = c - '0';
 | |
| 		else if (c >= 'a' && c <= 'f')
 | |
| 			digit = 10 + c - 'a';
 | |
| 		else
 | |
| 			break;
 | |
| 
 | |
| 		val *= 16;
 | |
| 		val += digit;
 | |
| 
 | |
| 		str++;
 | |
| 	}
 | |
| 
 | |
| 	if (nptr)
 | |
| 		*nptr = (char *)str;
 | |
| 
 | |
| 	return (val);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
 | |
| {
 | |
| 	/*
 | |
| 	 * We bump the feature refcount for each special vdev added to the pool
 | |
| 	 */
 | |
| 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
 | |
| 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * Accessor functions
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| boolean_t
 | |
| spa_shutting_down(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_async_suspended);
 | |
| }
 | |
| 
 | |
| dsl_pool_t *
 | |
| spa_get_dsl(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_dsl_pool);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| spa_is_initializing(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_is_initializing);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| spa_indirect_vdevs_loaded(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_indirect_vdevs_loaded);
 | |
| }
 | |
| 
 | |
| blkptr_t *
 | |
| spa_get_rootblkptr(spa_t *spa)
 | |
| {
 | |
| 	return (&spa->spa_ubsync.ub_rootbp);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
 | |
| {
 | |
| 	spa->spa_uberblock.ub_rootbp = *bp;
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_altroot(spa_t *spa, char *buf, size_t buflen)
 | |
| {
 | |
| 	if (spa->spa_root == NULL)
 | |
| 		buf[0] = '\0';
 | |
| 	else
 | |
| 		(void) strlcpy(buf, spa->spa_root, buflen);
 | |
| }
 | |
| 
 | |
| uint32_t
 | |
| spa_sync_pass(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_sync_pass);
 | |
| }
 | |
| 
 | |
| char *
 | |
| spa_name(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_name);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_guid(spa_t *spa)
 | |
| {
 | |
| 	dsl_pool_t *dp = spa_get_dsl(spa);
 | |
| 	uint64_t guid;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we fail to parse the config during spa_load(), we can go through
 | |
| 	 * the error path (which posts an ereport) and end up here with no root
 | |
| 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
 | |
| 	 * this case.
 | |
| 	 */
 | |
| 	if (spa->spa_root_vdev == NULL)
 | |
| 		return (spa->spa_config_guid);
 | |
| 
 | |
| 	guid = spa->spa_last_synced_guid != 0 ?
 | |
| 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
 | |
| 
 | |
| 	/*
 | |
| 	 * Return the most recently synced out guid unless we're
 | |
| 	 * in syncing context.
 | |
| 	 */
 | |
| 	if (dp && dsl_pool_sync_context(dp))
 | |
| 		return (spa->spa_root_vdev->vdev_guid);
 | |
| 	else
 | |
| 		return (guid);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_load_guid(spa_t *spa)
 | |
| {
 | |
| 	/*
 | |
| 	 * This is a GUID that exists solely as a reference for the
 | |
| 	 * purposes of the arc.  It is generated at load time, and
 | |
| 	 * is never written to persistent storage.
 | |
| 	 */
 | |
| 	return (spa->spa_load_guid);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_last_synced_txg(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_ubsync.ub_txg);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_first_txg(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_first_txg);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_syncing_txg(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_syncing_txg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the last txg where data can be dirtied. The final txgs
 | |
|  * will be used to just clear out any deferred frees that remain.
 | |
|  */
 | |
| uint64_t
 | |
| spa_final_dirty_txg(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
 | |
| }
 | |
| 
 | |
| pool_state_t
 | |
| spa_state(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_state);
 | |
| }
 | |
| 
 | |
| spa_load_state_t
 | |
| spa_load_state(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_load_state);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_freeze_txg(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_freeze_txg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the inflated asize for a logical write in bytes. This is used by the
 | |
|  * DMU to calculate the space a logical write will require on disk.
 | |
|  * If lsize is smaller than the largest physical block size allocatable on this
 | |
|  * pool we use its value instead, since the write will end up using the whole
 | |
|  * block anyway.
 | |
|  */
 | |
| uint64_t
 | |
| spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
 | |
| {
 | |
| 	if (lsize == 0)
 | |
| 		return (0);	/* No inflation needed */
 | |
| 	return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the amount of slop space in bytes.  It is typically 1/32 of the pool
 | |
|  * (3.2%), minus the embedded log space.  On very small pools, it may be
 | |
|  * slightly larger than this.  On very large pools, it will be capped to
 | |
|  * the value of spa_max_slop.  The embedded log space is not included in
 | |
|  * spa_dspace.  By subtracting it, the usable space (per "zfs list") is a
 | |
|  * constant 97% of the total space, regardless of metaslab size (assuming the
 | |
|  * default spa_slop_shift=5 and a non-tiny pool).
 | |
|  *
 | |
|  * See the comment above spa_slop_shift for more details.
 | |
|  */
 | |
| uint64_t
 | |
| spa_get_slop_space(spa_t *spa)
 | |
| {
 | |
| 	uint64_t space = 0;
 | |
| 	uint64_t slop = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure spa_dedup_dspace has been set.
 | |
| 	 */
 | |
| 	if (spa->spa_dedup_dspace == ~0ULL)
 | |
| 		spa_update_dspace(spa);
 | |
| 
 | |
| 	/*
 | |
| 	 * spa_get_dspace() includes the space only logically "used" by
 | |
| 	 * deduplicated data, so since it's not useful to reserve more
 | |
| 	 * space with more deduplicated data, we subtract that out here.
 | |
| 	 */
 | |
| 	space = spa_get_dspace(spa) - spa->spa_dedup_dspace;
 | |
| 	slop = MIN(space >> spa_slop_shift, spa_max_slop);
 | |
| 
 | |
| 	/*
 | |
| 	 * Subtract the embedded log space, but no more than half the (3.2%)
 | |
| 	 * unusable space.  Note, the "no more than half" is only relevant if
 | |
| 	 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
 | |
| 	 * default.
 | |
| 	 */
 | |
| 	uint64_t embedded_log =
 | |
| 	    metaslab_class_get_dspace(spa_embedded_log_class(spa));
 | |
| 	slop -= MIN(embedded_log, slop >> 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Slop space should be at least spa_min_slop, but no more than half
 | |
| 	 * the entire pool.
 | |
| 	 */
 | |
| 	slop = MAX(slop, MIN(space >> 1, spa_min_slop));
 | |
| 	return (slop);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_get_dspace(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_dspace);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_get_checkpoint_space(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_checkpoint_info.sci_dspace);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_update_dspace(spa_t *spa)
 | |
| {
 | |
| 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
 | |
| 	    ddt_get_dedup_dspace(spa);
 | |
| 	if (spa->spa_nonallocating_dspace > 0) {
 | |
| 		/*
 | |
| 		 * Subtract the space provided by all non-allocating vdevs that
 | |
| 		 * contribute to dspace.  If a file is overwritten, its old
 | |
| 		 * blocks are freed and new blocks are allocated.  If there are
 | |
| 		 * no snapshots of the file, the available space should remain
 | |
| 		 * the same.  The old blocks could be freed from the
 | |
| 		 * non-allocating vdev, but the new blocks must be allocated on
 | |
| 		 * other (allocating) vdevs.  By reserving the entire size of
 | |
| 		 * the non-allocating vdevs (including allocated space), we
 | |
| 		 * ensure that there will be enough space on the allocating
 | |
| 		 * vdevs for this file overwrite to succeed.
 | |
| 		 *
 | |
| 		 * Note that the DMU/DSL doesn't actually know or care
 | |
| 		 * how much space is allocated (it does its own tracking
 | |
| 		 * of how much space has been logically used).  So it
 | |
| 		 * doesn't matter that the data we are moving may be
 | |
| 		 * allocated twice (on the old device and the new device).
 | |
| 		 */
 | |
| 		ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace);
 | |
| 		spa->spa_dspace -= spa->spa_nonallocating_dspace;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the failure mode that has been set to this pool. The default
 | |
|  * behavior will be to block all I/Os when a complete failure occurs.
 | |
|  */
 | |
| uint64_t
 | |
| spa_get_failmode(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_failmode);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| spa_suspended(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_version(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_ubsync.ub_version);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| spa_deflate(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_deflate);
 | |
| }
 | |
| 
 | |
| metaslab_class_t *
 | |
| spa_normal_class(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_normal_class);
 | |
| }
 | |
| 
 | |
| metaslab_class_t *
 | |
| spa_log_class(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_log_class);
 | |
| }
 | |
| 
 | |
| metaslab_class_t *
 | |
| spa_embedded_log_class(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_embedded_log_class);
 | |
| }
 | |
| 
 | |
| metaslab_class_t *
 | |
| spa_special_class(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_special_class);
 | |
| }
 | |
| 
 | |
| metaslab_class_t *
 | |
| spa_dedup_class(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_dedup_class);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locate an appropriate allocation class
 | |
|  */
 | |
| metaslab_class_t *
 | |
| spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
 | |
|     uint_t level, uint_t special_smallblk)
 | |
| {
 | |
| 	/*
 | |
| 	 * ZIL allocations determine their class in zio_alloc_zil().
 | |
| 	 */
 | |
| 	ASSERT(objtype != DMU_OT_INTENT_LOG);
 | |
| 
 | |
| 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
 | |
| 
 | |
| 	if (DMU_OT_IS_DDT(objtype)) {
 | |
| 		if (spa->spa_dedup_class->mc_groups != 0)
 | |
| 			return (spa_dedup_class(spa));
 | |
| 		else if (has_special_class && zfs_ddt_data_is_special)
 | |
| 			return (spa_special_class(spa));
 | |
| 		else
 | |
| 			return (spa_normal_class(spa));
 | |
| 	}
 | |
| 
 | |
| 	/* Indirect blocks for user data can land in special if allowed */
 | |
| 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
 | |
| 		if (has_special_class && zfs_user_indirect_is_special)
 | |
| 			return (spa_special_class(spa));
 | |
| 		else
 | |
| 			return (spa_normal_class(spa));
 | |
| 	}
 | |
| 
 | |
| 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
 | |
| 		if (has_special_class)
 | |
| 			return (spa_special_class(spa));
 | |
| 		else
 | |
| 			return (spa_normal_class(spa));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow small file blocks in special class in some cases (like
 | |
| 	 * for the dRAID vdev feature). But always leave a reserve of
 | |
| 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
 | |
| 	 */
 | |
| 	if (DMU_OT_IS_FILE(objtype) &&
 | |
| 	    has_special_class && size <= special_smallblk) {
 | |
| 		metaslab_class_t *special = spa_special_class(spa);
 | |
| 		uint64_t alloc = metaslab_class_get_alloc(special);
 | |
| 		uint64_t space = metaslab_class_get_space(special);
 | |
| 		uint64_t limit =
 | |
| 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
 | |
| 		    / 100;
 | |
| 
 | |
| 		if (alloc < limit)
 | |
| 			return (special);
 | |
| 	}
 | |
| 
 | |
| 	return (spa_normal_class(spa));
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_evicting_os_register(spa_t *spa, objset_t *os)
 | |
| {
 | |
| 	mutex_enter(&spa->spa_evicting_os_lock);
 | |
| 	list_insert_head(&spa->spa_evicting_os_list, os);
 | |
| 	mutex_exit(&spa->spa_evicting_os_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_evicting_os_deregister(spa_t *spa, objset_t *os)
 | |
| {
 | |
| 	mutex_enter(&spa->spa_evicting_os_lock);
 | |
| 	list_remove(&spa->spa_evicting_os_list, os);
 | |
| 	cv_broadcast(&spa->spa_evicting_os_cv);
 | |
| 	mutex_exit(&spa->spa_evicting_os_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_evicting_os_wait(spa_t *spa)
 | |
| {
 | |
| 	mutex_enter(&spa->spa_evicting_os_lock);
 | |
| 	while (!list_is_empty(&spa->spa_evicting_os_list))
 | |
| 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
 | |
| 	mutex_exit(&spa->spa_evicting_os_lock);
 | |
| 
 | |
| 	dmu_buf_user_evict_wait();
 | |
| }
 | |
| 
 | |
| int
 | |
| spa_max_replication(spa_t *spa)
 | |
| {
 | |
| 	/*
 | |
| 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
 | |
| 	 * handle BPs with more than one DVA allocated.  Set our max
 | |
| 	 * replication level accordingly.
 | |
| 	 */
 | |
| 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
 | |
| 		return (1);
 | |
| 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
 | |
| }
 | |
| 
 | |
| int
 | |
| spa_prev_software_version(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_prev_software_version);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_deadman_synctime(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_deadman_synctime);
 | |
| }
 | |
| 
 | |
| spa_autotrim_t
 | |
| spa_get_autotrim(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_autotrim);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_deadman_ziotime(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_deadman_ziotime);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_get_deadman_failmode(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_deadman_failmode);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_set_deadman_failmode(spa_t *spa, const char *failmode)
 | |
| {
 | |
| 	if (strcmp(failmode, "wait") == 0)
 | |
| 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
 | |
| 	else if (strcmp(failmode, "continue") == 0)
 | |
| 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
 | |
| 	else if (strcmp(failmode, "panic") == 0)
 | |
| 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
 | |
| 	else
 | |
| 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_set_deadman_ziotime(hrtime_t ns)
 | |
| {
 | |
| 	spa_t *spa = NULL;
 | |
| 
 | |
| 	if (spa_mode_global != SPA_MODE_UNINIT) {
 | |
| 		mutex_enter(&spa_namespace_lock);
 | |
| 		while ((spa = spa_next(spa)) != NULL)
 | |
| 			spa->spa_deadman_ziotime = ns;
 | |
| 		mutex_exit(&spa_namespace_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_set_deadman_synctime(hrtime_t ns)
 | |
| {
 | |
| 	spa_t *spa = NULL;
 | |
| 
 | |
| 	if (spa_mode_global != SPA_MODE_UNINIT) {
 | |
| 		mutex_enter(&spa_namespace_lock);
 | |
| 		while ((spa = spa_next(spa)) != NULL)
 | |
| 			spa->spa_deadman_synctime = ns;
 | |
| 		mutex_exit(&spa_namespace_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
 | |
| {
 | |
| 	uint64_t asize = DVA_GET_ASIZE(dva);
 | |
| 	uint64_t dsize = asize;
 | |
| 
 | |
| 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
 | |
| 
 | |
| 	if (asize != 0 && spa->spa_deflate) {
 | |
| 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
 | |
| 		if (vd != NULL)
 | |
| 			dsize = (asize >> SPA_MINBLOCKSHIFT) *
 | |
| 			    vd->vdev_deflate_ratio;
 | |
| 	}
 | |
| 
 | |
| 	return (dsize);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
 | |
| {
 | |
| 	uint64_t dsize = 0;
 | |
| 
 | |
| 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
 | |
| 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
 | |
| 
 | |
| 	return (dsize);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| bp_get_dsize(spa_t *spa, const blkptr_t *bp)
 | |
| {
 | |
| 	uint64_t dsize = 0;
 | |
| 
 | |
| 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 | |
| 
 | |
| 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
 | |
| 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
 | |
| 
 | |
| 	spa_config_exit(spa, SCL_VDEV, FTAG);
 | |
| 
 | |
| 	return (dsize);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_dirty_data(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_dsl_pool->dp_dirty_total);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * SPA Import Progress Routines
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| typedef struct spa_import_progress {
 | |
| 	uint64_t		pool_guid;	/* unique id for updates */
 | |
| 	char			*pool_name;
 | |
| 	spa_load_state_t	spa_load_state;
 | |
| 	uint64_t		mmp_sec_remaining;	/* MMP activity check */
 | |
| 	uint64_t		spa_load_max_txg;	/* rewind txg */
 | |
| 	procfs_list_node_t	smh_node;
 | |
| } spa_import_progress_t;
 | |
| 
 | |
| spa_history_list_t *spa_import_progress_list = NULL;
 | |
| 
 | |
| static int
 | |
| spa_import_progress_show_header(struct seq_file *f)
 | |
| {
 | |
| 	seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
 | |
| 	    "load_state", "multihost_secs", "max_txg",
 | |
| 	    "pool_name");
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| spa_import_progress_show(struct seq_file *f, void *data)
 | |
| {
 | |
| 	spa_import_progress_t *sip = (spa_import_progress_t *)data;
 | |
| 
 | |
| 	seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
 | |
| 	    (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
 | |
| 	    (u_longlong_t)sip->mmp_sec_remaining,
 | |
| 	    (u_longlong_t)sip->spa_load_max_txg,
 | |
| 	    (sip->pool_name ? sip->pool_name : "-"));
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /* Remove oldest elements from list until there are no more than 'size' left */
 | |
| static void
 | |
| spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
 | |
| {
 | |
| 	spa_import_progress_t *sip;
 | |
| 	while (shl->size > size) {
 | |
| 		sip = list_remove_head(&shl->procfs_list.pl_list);
 | |
| 		if (sip->pool_name)
 | |
| 			spa_strfree(sip->pool_name);
 | |
| 		kmem_free(sip, sizeof (spa_import_progress_t));
 | |
| 		shl->size--;
 | |
| 	}
 | |
| 
 | |
| 	IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
 | |
| }
 | |
| 
 | |
| static void
 | |
| spa_import_progress_init(void)
 | |
| {
 | |
| 	spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
 | |
| 	    KM_SLEEP);
 | |
| 
 | |
| 	spa_import_progress_list->size = 0;
 | |
| 
 | |
| 	spa_import_progress_list->procfs_list.pl_private =
 | |
| 	    spa_import_progress_list;
 | |
| 
 | |
| 	procfs_list_install("zfs",
 | |
| 	    NULL,
 | |
| 	    "import_progress",
 | |
| 	    0644,
 | |
| 	    &spa_import_progress_list->procfs_list,
 | |
| 	    spa_import_progress_show,
 | |
| 	    spa_import_progress_show_header,
 | |
| 	    NULL,
 | |
| 	    offsetof(spa_import_progress_t, smh_node));
 | |
| }
 | |
| 
 | |
| static void
 | |
| spa_import_progress_destroy(void)
 | |
| {
 | |
| 	spa_history_list_t *shl = spa_import_progress_list;
 | |
| 	procfs_list_uninstall(&shl->procfs_list);
 | |
| 	spa_import_progress_truncate(shl, 0);
 | |
| 	procfs_list_destroy(&shl->procfs_list);
 | |
| 	kmem_free(shl, sizeof (spa_history_list_t));
 | |
| }
 | |
| 
 | |
| int
 | |
| spa_import_progress_set_state(uint64_t pool_guid,
 | |
|     spa_load_state_t load_state)
 | |
| {
 | |
| 	spa_history_list_t *shl = spa_import_progress_list;
 | |
| 	spa_import_progress_t *sip;
 | |
| 	int error = ENOENT;
 | |
| 
 | |
| 	if (shl->size == 0)
 | |
| 		return (0);
 | |
| 
 | |
| 	mutex_enter(&shl->procfs_list.pl_lock);
 | |
| 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
 | |
| 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
 | |
| 		if (sip->pool_guid == pool_guid) {
 | |
| 			sip->spa_load_state = load_state;
 | |
| 			error = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_exit(&shl->procfs_list.pl_lock);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| int
 | |
| spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
 | |
| {
 | |
| 	spa_history_list_t *shl = spa_import_progress_list;
 | |
| 	spa_import_progress_t *sip;
 | |
| 	int error = ENOENT;
 | |
| 
 | |
| 	if (shl->size == 0)
 | |
| 		return (0);
 | |
| 
 | |
| 	mutex_enter(&shl->procfs_list.pl_lock);
 | |
| 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
 | |
| 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
 | |
| 		if (sip->pool_guid == pool_guid) {
 | |
| 			sip->spa_load_max_txg = load_max_txg;
 | |
| 			error = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_exit(&shl->procfs_list.pl_lock);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| int
 | |
| spa_import_progress_set_mmp_check(uint64_t pool_guid,
 | |
|     uint64_t mmp_sec_remaining)
 | |
| {
 | |
| 	spa_history_list_t *shl = spa_import_progress_list;
 | |
| 	spa_import_progress_t *sip;
 | |
| 	int error = ENOENT;
 | |
| 
 | |
| 	if (shl->size == 0)
 | |
| 		return (0);
 | |
| 
 | |
| 	mutex_enter(&shl->procfs_list.pl_lock);
 | |
| 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
 | |
| 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
 | |
| 		if (sip->pool_guid == pool_guid) {
 | |
| 			sip->mmp_sec_remaining = mmp_sec_remaining;
 | |
| 			error = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_exit(&shl->procfs_list.pl_lock);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A new import is in progress, add an entry.
 | |
|  */
 | |
| void
 | |
| spa_import_progress_add(spa_t *spa)
 | |
| {
 | |
| 	spa_history_list_t *shl = spa_import_progress_list;
 | |
| 	spa_import_progress_t *sip;
 | |
| 	char *poolname = NULL;
 | |
| 
 | |
| 	sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
 | |
| 	sip->pool_guid = spa_guid(spa);
 | |
| 
 | |
| 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
 | |
| 	    &poolname);
 | |
| 	if (poolname == NULL)
 | |
| 		poolname = spa_name(spa);
 | |
| 	sip->pool_name = spa_strdup(poolname);
 | |
| 	sip->spa_load_state = spa_load_state(spa);
 | |
| 
 | |
| 	mutex_enter(&shl->procfs_list.pl_lock);
 | |
| 	procfs_list_add(&shl->procfs_list, sip);
 | |
| 	shl->size++;
 | |
| 	mutex_exit(&shl->procfs_list.pl_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_import_progress_remove(uint64_t pool_guid)
 | |
| {
 | |
| 	spa_history_list_t *shl = spa_import_progress_list;
 | |
| 	spa_import_progress_t *sip;
 | |
| 
 | |
| 	mutex_enter(&shl->procfs_list.pl_lock);
 | |
| 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
 | |
| 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
 | |
| 		if (sip->pool_guid == pool_guid) {
 | |
| 			if (sip->pool_name)
 | |
| 				spa_strfree(sip->pool_name);
 | |
| 			list_remove(&shl->procfs_list.pl_list, sip);
 | |
| 			shl->size--;
 | |
| 			kmem_free(sip, sizeof (spa_import_progress_t));
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_exit(&shl->procfs_list.pl_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ==========================================================================
 | |
|  * Initialization and Termination
 | |
|  * ==========================================================================
 | |
|  */
 | |
| 
 | |
| static int
 | |
| spa_name_compare(const void *a1, const void *a2)
 | |
| {
 | |
| 	const spa_t *s1 = a1;
 | |
| 	const spa_t *s2 = a2;
 | |
| 	int s;
 | |
| 
 | |
| 	s = strcmp(s1->spa_name, s2->spa_name);
 | |
| 
 | |
| 	return (TREE_ISIGN(s));
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_boot_init(void)
 | |
| {
 | |
| 	spa_config_load();
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_init(spa_mode_t mode)
 | |
| {
 | |
| 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
 | |
| 
 | |
| 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
 | |
| 	    offsetof(spa_t, spa_avl));
 | |
| 
 | |
| 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
 | |
| 	    offsetof(spa_aux_t, aux_avl));
 | |
| 
 | |
| 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
 | |
| 	    offsetof(spa_aux_t, aux_avl));
 | |
| 
 | |
| 	spa_mode_global = mode;
 | |
| 
 | |
| #ifndef _KERNEL
 | |
| 	if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
 | |
| 		struct sigaction sa;
 | |
| 
 | |
| 		sa.sa_flags = SA_SIGINFO;
 | |
| 		sigemptyset(&sa.sa_mask);
 | |
| 		sa.sa_sigaction = arc_buf_sigsegv;
 | |
| 
 | |
| 		if (sigaction(SIGSEGV, &sa, NULL) == -1) {
 | |
| 			perror("could not enable watchpoints: "
 | |
| 			    "sigaction(SIGSEGV, ...) = ");
 | |
| 		} else {
 | |
| 			arc_watch = B_TRUE;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	fm_init();
 | |
| 	zfs_refcount_init();
 | |
| 	unique_init();
 | |
| 	zfs_btree_init();
 | |
| 	metaslab_stat_init();
 | |
| 	ddt_init();
 | |
| 	zio_init();
 | |
| 	dmu_init();
 | |
| 	zil_init();
 | |
| 	vdev_cache_stat_init();
 | |
| 	vdev_mirror_stat_init();
 | |
| 	vdev_raidz_math_init();
 | |
| 	vdev_file_init();
 | |
| 	zfs_prop_init();
 | |
| 	chksum_init();
 | |
| 	zpool_prop_init();
 | |
| 	zpool_feature_init();
 | |
| 	spa_config_load();
 | |
| 	vdev_prop_init();
 | |
| 	l2arc_start();
 | |
| 	scan_init();
 | |
| 	qat_init();
 | |
| 	spa_import_progress_init();
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_fini(void)
 | |
| {
 | |
| 	l2arc_stop();
 | |
| 
 | |
| 	spa_evict_all();
 | |
| 
 | |
| 	vdev_file_fini();
 | |
| 	vdev_cache_stat_fini();
 | |
| 	vdev_mirror_stat_fini();
 | |
| 	vdev_raidz_math_fini();
 | |
| 	chksum_fini();
 | |
| 	zil_fini();
 | |
| 	dmu_fini();
 | |
| 	zio_fini();
 | |
| 	ddt_fini();
 | |
| 	metaslab_stat_fini();
 | |
| 	zfs_btree_fini();
 | |
| 	unique_fini();
 | |
| 	zfs_refcount_fini();
 | |
| 	fm_fini();
 | |
| 	scan_fini();
 | |
| 	qat_fini();
 | |
| 	spa_import_progress_destroy();
 | |
| 
 | |
| 	avl_destroy(&spa_namespace_avl);
 | |
| 	avl_destroy(&spa_spare_avl);
 | |
| 	avl_destroy(&spa_l2cache_avl);
 | |
| 
 | |
| 	cv_destroy(&spa_namespace_cv);
 | |
| 	mutex_destroy(&spa_namespace_lock);
 | |
| 	mutex_destroy(&spa_spare_lock);
 | |
| 	mutex_destroy(&spa_l2cache_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return whether this pool has a dedicated slog device. No locking needed.
 | |
|  * It's not a problem if the wrong answer is returned as it's only for
 | |
|  * performance and not correctness.
 | |
|  */
 | |
| boolean_t
 | |
| spa_has_slogs(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_log_class->mc_groups != 0);
 | |
| }
 | |
| 
 | |
| spa_log_state_t
 | |
| spa_get_log_state(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_log_state);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_set_log_state(spa_t *spa, spa_log_state_t state)
 | |
| {
 | |
| 	spa->spa_log_state = state;
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| spa_is_root(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_is_root);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| spa_writeable(spa_t *spa)
 | |
| {
 | |
| 	return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if there is a pending sync task in any of the current
 | |
|  * syncing txg, the current quiescing txg, or the current open txg.
 | |
|  */
 | |
| boolean_t
 | |
| spa_has_pending_synctask(spa_t *spa)
 | |
| {
 | |
| 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
 | |
| 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
 | |
| }
 | |
| 
 | |
| spa_mode_t
 | |
| spa_mode(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_mode);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_bootfs(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_bootfs);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_delegation(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_delegation);
 | |
| }
 | |
| 
 | |
| objset_t *
 | |
| spa_meta_objset(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_meta_objset);
 | |
| }
 | |
| 
 | |
| enum zio_checksum
 | |
| spa_dedup_checksum(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_dedup_checksum);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reset pool scan stat per scan pass (or reboot).
 | |
|  */
 | |
| void
 | |
| spa_scan_stat_init(spa_t *spa)
 | |
| {
 | |
| 	/* data not stored on disk */
 | |
| 	spa->spa_scan_pass_start = gethrestime_sec();
 | |
| 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
 | |
| 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
 | |
| 	else
 | |
| 		spa->spa_scan_pass_scrub_pause = 0;
 | |
| 	spa->spa_scan_pass_scrub_spent_paused = 0;
 | |
| 	spa->spa_scan_pass_exam = 0;
 | |
| 	spa->spa_scan_pass_issued = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get scan stats for zpool status reports
 | |
|  */
 | |
| int
 | |
| spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
 | |
| {
 | |
| 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
 | |
| 
 | |
| 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
 | |
| 		return (SET_ERROR(ENOENT));
 | |
| 	memset(ps, 0, sizeof (pool_scan_stat_t));
 | |
| 
 | |
| 	/* data stored on disk */
 | |
| 	ps->pss_func = scn->scn_phys.scn_func;
 | |
| 	ps->pss_state = scn->scn_phys.scn_state;
 | |
| 	ps->pss_start_time = scn->scn_phys.scn_start_time;
 | |
| 	ps->pss_end_time = scn->scn_phys.scn_end_time;
 | |
| 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
 | |
| 	ps->pss_examined = scn->scn_phys.scn_examined;
 | |
| 	ps->pss_to_process = scn->scn_phys.scn_to_process;
 | |
| 	ps->pss_processed = scn->scn_phys.scn_processed;
 | |
| 	ps->pss_errors = scn->scn_phys.scn_errors;
 | |
| 
 | |
| 	/* data not stored on disk */
 | |
| 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
 | |
| 	ps->pss_pass_start = spa->spa_scan_pass_start;
 | |
| 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
 | |
| 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
 | |
| 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
 | |
| 	ps->pss_issued =
 | |
| 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| int
 | |
| spa_maxblocksize(spa_t *spa)
 | |
| {
 | |
| 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
 | |
| 		return (SPA_MAXBLOCKSIZE);
 | |
| 	else
 | |
| 		return (SPA_OLD_MAXBLOCKSIZE);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Returns the txg that the last device removal completed. No indirect mappings
 | |
|  * have been added since this txg.
 | |
|  */
 | |
| uint64_t
 | |
| spa_get_last_removal_txg(spa_t *spa)
 | |
| {
 | |
| 	uint64_t vdevid;
 | |
| 	uint64_t ret = -1ULL;
 | |
| 
 | |
| 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 | |
| 	/*
 | |
| 	 * sr_prev_indirect_vdev is only modified while holding all the
 | |
| 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
 | |
| 	 * examining it.
 | |
| 	 */
 | |
| 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
 | |
| 
 | |
| 	while (vdevid != -1ULL) {
 | |
| 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
 | |
| 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
 | |
| 
 | |
| 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the removal did not remap any data, we don't care.
 | |
| 		 */
 | |
| 		if (vdev_indirect_births_count(vib) != 0) {
 | |
| 			ret = vdev_indirect_births_last_entry_txg(vib);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
 | |
| 	}
 | |
| 	spa_config_exit(spa, SCL_VDEV, FTAG);
 | |
| 
 | |
| 	IMPLY(ret != -1ULL,
 | |
| 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| int
 | |
| spa_maxdnodesize(spa_t *spa)
 | |
| {
 | |
| 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
 | |
| 		return (DNODE_MAX_SIZE);
 | |
| 	else
 | |
| 		return (DNODE_MIN_SIZE);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| spa_multihost(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
 | |
| }
 | |
| 
 | |
| uint32_t
 | |
| spa_get_hostid(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_hostid);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| spa_trust_config(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_trust_config);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_missing_tvds_allowed(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_missing_tvds_allowed);
 | |
| }
 | |
| 
 | |
| space_map_t *
 | |
| spa_syncing_log_sm(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_syncing_log_sm);
 | |
| }
 | |
| 
 | |
| void
 | |
| spa_set_missing_tvds(spa_t *spa, uint64_t missing)
 | |
| {
 | |
| 	spa->spa_missing_tvds = missing;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
 | |
|  */
 | |
| const char *
 | |
| spa_state_to_name(spa_t *spa)
 | |
| {
 | |
| 	ASSERT3P(spa, !=, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * it is possible for the spa to exist, without root vdev
 | |
| 	 * as the spa transitions during import/export
 | |
| 	 */
 | |
| 	vdev_t *rvd = spa->spa_root_vdev;
 | |
| 	if (rvd == NULL) {
 | |
| 		return ("TRANSITIONING");
 | |
| 	}
 | |
| 	vdev_state_t state = rvd->vdev_state;
 | |
| 	vdev_aux_t aux = rvd->vdev_stat.vs_aux;
 | |
| 
 | |
| 	if (spa_suspended(spa) &&
 | |
| 	    (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
 | |
| 		return ("SUSPENDED");
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case VDEV_STATE_CLOSED:
 | |
| 	case VDEV_STATE_OFFLINE:
 | |
| 		return ("OFFLINE");
 | |
| 	case VDEV_STATE_REMOVED:
 | |
| 		return ("REMOVED");
 | |
| 	case VDEV_STATE_CANT_OPEN:
 | |
| 		if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
 | |
| 			return ("FAULTED");
 | |
| 		else if (aux == VDEV_AUX_SPLIT_POOL)
 | |
| 			return ("SPLIT");
 | |
| 		else
 | |
| 			return ("UNAVAIL");
 | |
| 	case VDEV_STATE_FAULTED:
 | |
| 		return ("FAULTED");
 | |
| 	case VDEV_STATE_DEGRADED:
 | |
| 		return ("DEGRADED");
 | |
| 	case VDEV_STATE_HEALTHY:
 | |
| 		return ("ONLINE");
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ("UNKNOWN");
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| spa_top_vdevs_spacemap_addressable(spa_t *spa)
 | |
| {
 | |
| 	vdev_t *rvd = spa->spa_root_vdev;
 | |
| 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
 | |
| 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
 | |
| 			return (B_FALSE);
 | |
| 	}
 | |
| 	return (B_TRUE);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| spa_has_checkpoint(spa_t *spa)
 | |
| {
 | |
| 	return (spa->spa_checkpoint_txg != 0);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| spa_importing_readonly_checkpoint(spa_t *spa)
 | |
| {
 | |
| 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
 | |
| 	    spa->spa_mode == SPA_MODE_READ);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spa_min_claim_txg(spa_t *spa)
 | |
| {
 | |
| 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
 | |
| 
 | |
| 	if (checkpoint_txg != 0)
 | |
| 		return (checkpoint_txg + 1);
 | |
| 
 | |
| 	return (spa->spa_first_txg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If there is a checkpoint, async destroys may consume more space from
 | |
|  * the pool instead of freeing it. In an attempt to save the pool from
 | |
|  * getting suspended when it is about to run out of space, we stop
 | |
|  * processing async destroys.
 | |
|  */
 | |
| boolean_t
 | |
| spa_suspend_async_destroy(spa_t *spa)
 | |
| {
 | |
| 	dsl_pool_t *dp = spa_get_dsl(spa);
 | |
| 
 | |
| 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
 | |
| 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
 | |
| 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
 | |
| 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
 | |
| 
 | |
| 	if (spa_has_checkpoint(spa) && avail == 0)
 | |
| 		return (B_TRUE);
 | |
| 
 | |
| 	return (B_FALSE);
 | |
| }
 | |
| 
 | |
| #if defined(_KERNEL)
 | |
| 
 | |
| int
 | |
| param_set_deadman_failmode_common(const char *val)
 | |
| {
 | |
| 	spa_t *spa = NULL;
 | |
| 	char *p;
 | |
| 
 | |
| 	if (val == NULL)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if ((p = strchr(val, '\n')) != NULL)
 | |
| 		*p = '\0';
 | |
| 
 | |
| 	if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
 | |
| 	    strcmp(val, "panic"))
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if (spa_mode_global != SPA_MODE_UNINIT) {
 | |
| 		mutex_enter(&spa_namespace_lock);
 | |
| 		while ((spa = spa_next(spa)) != NULL)
 | |
| 			spa_set_deadman_failmode(spa, val);
 | |
| 		mutex_exit(&spa_namespace_lock);
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Namespace manipulation */
 | |
| EXPORT_SYMBOL(spa_lookup);
 | |
| EXPORT_SYMBOL(spa_add);
 | |
| EXPORT_SYMBOL(spa_remove);
 | |
| EXPORT_SYMBOL(spa_next);
 | |
| 
 | |
| /* Refcount functions */
 | |
| EXPORT_SYMBOL(spa_open_ref);
 | |
| EXPORT_SYMBOL(spa_close);
 | |
| EXPORT_SYMBOL(spa_refcount_zero);
 | |
| 
 | |
| /* Pool configuration lock */
 | |
| EXPORT_SYMBOL(spa_config_tryenter);
 | |
| EXPORT_SYMBOL(spa_config_enter);
 | |
| EXPORT_SYMBOL(spa_config_exit);
 | |
| EXPORT_SYMBOL(spa_config_held);
 | |
| 
 | |
| /* Pool vdev add/remove lock */
 | |
| EXPORT_SYMBOL(spa_vdev_enter);
 | |
| EXPORT_SYMBOL(spa_vdev_exit);
 | |
| 
 | |
| /* Pool vdev state change lock */
 | |
| EXPORT_SYMBOL(spa_vdev_state_enter);
 | |
| EXPORT_SYMBOL(spa_vdev_state_exit);
 | |
| 
 | |
| /* Accessor functions */
 | |
| EXPORT_SYMBOL(spa_shutting_down);
 | |
| EXPORT_SYMBOL(spa_get_dsl);
 | |
| EXPORT_SYMBOL(spa_get_rootblkptr);
 | |
| EXPORT_SYMBOL(spa_set_rootblkptr);
 | |
| EXPORT_SYMBOL(spa_altroot);
 | |
| EXPORT_SYMBOL(spa_sync_pass);
 | |
| EXPORT_SYMBOL(spa_name);
 | |
| EXPORT_SYMBOL(spa_guid);
 | |
| EXPORT_SYMBOL(spa_last_synced_txg);
 | |
| EXPORT_SYMBOL(spa_first_txg);
 | |
| EXPORT_SYMBOL(spa_syncing_txg);
 | |
| EXPORT_SYMBOL(spa_version);
 | |
| EXPORT_SYMBOL(spa_state);
 | |
| EXPORT_SYMBOL(spa_load_state);
 | |
| EXPORT_SYMBOL(spa_freeze_txg);
 | |
| EXPORT_SYMBOL(spa_get_dspace);
 | |
| EXPORT_SYMBOL(spa_update_dspace);
 | |
| EXPORT_SYMBOL(spa_deflate);
 | |
| EXPORT_SYMBOL(spa_normal_class);
 | |
| EXPORT_SYMBOL(spa_log_class);
 | |
| EXPORT_SYMBOL(spa_special_class);
 | |
| EXPORT_SYMBOL(spa_preferred_class);
 | |
| EXPORT_SYMBOL(spa_max_replication);
 | |
| EXPORT_SYMBOL(spa_prev_software_version);
 | |
| EXPORT_SYMBOL(spa_get_failmode);
 | |
| EXPORT_SYMBOL(spa_suspended);
 | |
| EXPORT_SYMBOL(spa_bootfs);
 | |
| EXPORT_SYMBOL(spa_delegation);
 | |
| EXPORT_SYMBOL(spa_meta_objset);
 | |
| EXPORT_SYMBOL(spa_maxblocksize);
 | |
| EXPORT_SYMBOL(spa_maxdnodesize);
 | |
| 
 | |
| /* Miscellaneous support routines */
 | |
| EXPORT_SYMBOL(spa_guid_exists);
 | |
| EXPORT_SYMBOL(spa_strdup);
 | |
| EXPORT_SYMBOL(spa_strfree);
 | |
| EXPORT_SYMBOL(spa_generate_guid);
 | |
| EXPORT_SYMBOL(snprintf_blkptr);
 | |
| EXPORT_SYMBOL(spa_freeze);
 | |
| EXPORT_SYMBOL(spa_upgrade);
 | |
| EXPORT_SYMBOL(spa_evict_all);
 | |
| EXPORT_SYMBOL(spa_lookup_by_guid);
 | |
| EXPORT_SYMBOL(spa_has_spare);
 | |
| EXPORT_SYMBOL(dva_get_dsize_sync);
 | |
| EXPORT_SYMBOL(bp_get_dsize_sync);
 | |
| EXPORT_SYMBOL(bp_get_dsize);
 | |
| EXPORT_SYMBOL(spa_has_slogs);
 | |
| EXPORT_SYMBOL(spa_is_root);
 | |
| EXPORT_SYMBOL(spa_writeable);
 | |
| EXPORT_SYMBOL(spa_mode);
 | |
| EXPORT_SYMBOL(spa_namespace_lock);
 | |
| EXPORT_SYMBOL(spa_trust_config);
 | |
| EXPORT_SYMBOL(spa_missing_tvds_allowed);
 | |
| EXPORT_SYMBOL(spa_set_missing_tvds);
 | |
| EXPORT_SYMBOL(spa_state_to_name);
 | |
| EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
 | |
| EXPORT_SYMBOL(spa_min_claim_txg);
 | |
| EXPORT_SYMBOL(spa_suspend_async_destroy);
 | |
| EXPORT_SYMBOL(spa_has_checkpoint);
 | |
| EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
 | |
| 	"Set additional debugging flags");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
 | |
| 	"Set to attempt to recover from fatal errors");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
 | |
| 	"Set to ignore IO errors during free and permanently leak the space");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW,
 | |
| 	"Dead I/O check interval in milliseconds");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
 | |
| 	"Enable deadman timer");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW,
 | |
| 	"SPA size estimate multiplication factor");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
 | |
| 	"Place DDT data into the special class");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
 | |
| 	"Place user data indirect blocks into the special class");
 | |
| 
 | |
| /* BEGIN CSTYLED */
 | |
| ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
 | |
| 	param_set_deadman_failmode, param_get_charp, ZMOD_RW,
 | |
| 	"Failmode for deadman timer");
 | |
| 
 | |
| ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
 | |
| 	param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW,
 | |
| 	"Pool sync expiration time in milliseconds");
 | |
| 
 | |
| ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
 | |
| 	param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW,
 | |
| 	"IO expiration time in milliseconds");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW,
 | |
| 	"Small file blocks in special vdevs depends on this much "
 | |
| 	"free space available");
 | |
| /* END CSTYLED */
 | |
| 
 | |
| ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
 | |
| 	param_get_uint, ZMOD_RW, "Reserved free space in pool");
 |