mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-30 06:07:32 +00:00 
			
		
		
		
	 ef70eff198
			
		
	
	
		ef70eff198
		
	
	
	
	
		
			
			Reviewed-by: Alejandro Colomar <alx.manpages@gmail.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Closes #13110
		
			
				
	
	
		
			2177 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2177 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or http://www.opensolaris.org/os/licensing.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
 | |
|  */
 | |
| 
 | |
| /* Portions Copyright 2010 Robert Milkowski */
 | |
| 
 | |
| #include <sys/types.h>
 | |
| #include <sys/param.h>
 | |
| #include <sys/sysmacros.h>
 | |
| #include <sys/kmem.h>
 | |
| #include <sys/pathname.h>
 | |
| #include <sys/vnode.h>
 | |
| #include <sys/vfs.h>
 | |
| #include <sys/mntent.h>
 | |
| #include <sys/cmn_err.h>
 | |
| #include <sys/zfs_znode.h>
 | |
| #include <sys/zfs_vnops.h>
 | |
| #include <sys/zfs_dir.h>
 | |
| #include <sys/zil.h>
 | |
| #include <sys/fs/zfs.h>
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/dsl_prop.h>
 | |
| #include <sys/dsl_dataset.h>
 | |
| #include <sys/dsl_deleg.h>
 | |
| #include <sys/spa.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/sa.h>
 | |
| #include <sys/sa_impl.h>
 | |
| #include <sys/policy.h>
 | |
| #include <sys/atomic.h>
 | |
| #include <sys/zfs_ioctl.h>
 | |
| #include <sys/zfs_ctldir.h>
 | |
| #include <sys/zfs_fuid.h>
 | |
| #include <sys/zfs_quota.h>
 | |
| #include <sys/sunddi.h>
 | |
| #include <sys/dmu_objset.h>
 | |
| #include <sys/dsl_dir.h>
 | |
| #include <sys/spa_boot.h>
 | |
| #include <sys/objlist.h>
 | |
| #include <sys/zpl.h>
 | |
| #include <linux/vfs_compat.h>
 | |
| #include "zfs_comutil.h"
 | |
| 
 | |
| enum {
 | |
| 	TOKEN_RO,
 | |
| 	TOKEN_RW,
 | |
| 	TOKEN_SETUID,
 | |
| 	TOKEN_NOSETUID,
 | |
| 	TOKEN_EXEC,
 | |
| 	TOKEN_NOEXEC,
 | |
| 	TOKEN_DEVICES,
 | |
| 	TOKEN_NODEVICES,
 | |
| 	TOKEN_DIRXATTR,
 | |
| 	TOKEN_SAXATTR,
 | |
| 	TOKEN_XATTR,
 | |
| 	TOKEN_NOXATTR,
 | |
| 	TOKEN_ATIME,
 | |
| 	TOKEN_NOATIME,
 | |
| 	TOKEN_RELATIME,
 | |
| 	TOKEN_NORELATIME,
 | |
| 	TOKEN_NBMAND,
 | |
| 	TOKEN_NONBMAND,
 | |
| 	TOKEN_MNTPOINT,
 | |
| 	TOKEN_LAST,
 | |
| };
 | |
| 
 | |
| static const match_table_t zpl_tokens = {
 | |
| 	{ TOKEN_RO,		MNTOPT_RO },
 | |
| 	{ TOKEN_RW,		MNTOPT_RW },
 | |
| 	{ TOKEN_SETUID,		MNTOPT_SETUID },
 | |
| 	{ TOKEN_NOSETUID,	MNTOPT_NOSETUID },
 | |
| 	{ TOKEN_EXEC,		MNTOPT_EXEC },
 | |
| 	{ TOKEN_NOEXEC,		MNTOPT_NOEXEC },
 | |
| 	{ TOKEN_DEVICES,	MNTOPT_DEVICES },
 | |
| 	{ TOKEN_NODEVICES,	MNTOPT_NODEVICES },
 | |
| 	{ TOKEN_DIRXATTR,	MNTOPT_DIRXATTR },
 | |
| 	{ TOKEN_SAXATTR,	MNTOPT_SAXATTR },
 | |
| 	{ TOKEN_XATTR,		MNTOPT_XATTR },
 | |
| 	{ TOKEN_NOXATTR,	MNTOPT_NOXATTR },
 | |
| 	{ TOKEN_ATIME,		MNTOPT_ATIME },
 | |
| 	{ TOKEN_NOATIME,	MNTOPT_NOATIME },
 | |
| 	{ TOKEN_RELATIME,	MNTOPT_RELATIME },
 | |
| 	{ TOKEN_NORELATIME,	MNTOPT_NORELATIME },
 | |
| 	{ TOKEN_NBMAND,		MNTOPT_NBMAND },
 | |
| 	{ TOKEN_NONBMAND,	MNTOPT_NONBMAND },
 | |
| 	{ TOKEN_MNTPOINT,	MNTOPT_MNTPOINT "=%s" },
 | |
| 	{ TOKEN_LAST,		NULL },
 | |
| };
 | |
| 
 | |
| static void
 | |
| zfsvfs_vfs_free(vfs_t *vfsp)
 | |
| {
 | |
| 	if (vfsp != NULL) {
 | |
| 		if (vfsp->vfs_mntpoint != NULL)
 | |
| 			kmem_strfree(vfsp->vfs_mntpoint);
 | |
| 
 | |
| 		kmem_free(vfsp, sizeof (vfs_t));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
 | |
| {
 | |
| 	switch (token) {
 | |
| 	case TOKEN_RO:
 | |
| 		vfsp->vfs_readonly = B_TRUE;
 | |
| 		vfsp->vfs_do_readonly = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_RW:
 | |
| 		vfsp->vfs_readonly = B_FALSE;
 | |
| 		vfsp->vfs_do_readonly = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_SETUID:
 | |
| 		vfsp->vfs_setuid = B_TRUE;
 | |
| 		vfsp->vfs_do_setuid = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_NOSETUID:
 | |
| 		vfsp->vfs_setuid = B_FALSE;
 | |
| 		vfsp->vfs_do_setuid = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_EXEC:
 | |
| 		vfsp->vfs_exec = B_TRUE;
 | |
| 		vfsp->vfs_do_exec = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_NOEXEC:
 | |
| 		vfsp->vfs_exec = B_FALSE;
 | |
| 		vfsp->vfs_do_exec = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_DEVICES:
 | |
| 		vfsp->vfs_devices = B_TRUE;
 | |
| 		vfsp->vfs_do_devices = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_NODEVICES:
 | |
| 		vfsp->vfs_devices = B_FALSE;
 | |
| 		vfsp->vfs_do_devices = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_DIRXATTR:
 | |
| 		vfsp->vfs_xattr = ZFS_XATTR_DIR;
 | |
| 		vfsp->vfs_do_xattr = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_SAXATTR:
 | |
| 		vfsp->vfs_xattr = ZFS_XATTR_SA;
 | |
| 		vfsp->vfs_do_xattr = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_XATTR:
 | |
| 		vfsp->vfs_xattr = ZFS_XATTR_DIR;
 | |
| 		vfsp->vfs_do_xattr = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_NOXATTR:
 | |
| 		vfsp->vfs_xattr = ZFS_XATTR_OFF;
 | |
| 		vfsp->vfs_do_xattr = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_ATIME:
 | |
| 		vfsp->vfs_atime = B_TRUE;
 | |
| 		vfsp->vfs_do_atime = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_NOATIME:
 | |
| 		vfsp->vfs_atime = B_FALSE;
 | |
| 		vfsp->vfs_do_atime = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_RELATIME:
 | |
| 		vfsp->vfs_relatime = B_TRUE;
 | |
| 		vfsp->vfs_do_relatime = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_NORELATIME:
 | |
| 		vfsp->vfs_relatime = B_FALSE;
 | |
| 		vfsp->vfs_do_relatime = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_NBMAND:
 | |
| 		vfsp->vfs_nbmand = B_TRUE;
 | |
| 		vfsp->vfs_do_nbmand = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_NONBMAND:
 | |
| 		vfsp->vfs_nbmand = B_FALSE;
 | |
| 		vfsp->vfs_do_nbmand = B_TRUE;
 | |
| 		break;
 | |
| 	case TOKEN_MNTPOINT:
 | |
| 		vfsp->vfs_mntpoint = match_strdup(&args[0]);
 | |
| 		if (vfsp->vfs_mntpoint == NULL)
 | |
| 			return (SET_ERROR(ENOMEM));
 | |
| 
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse the raw mntopts and return a vfs_t describing the options.
 | |
|  */
 | |
| static int
 | |
| zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
 | |
| {
 | |
| 	vfs_t *tmp_vfsp;
 | |
| 	int error;
 | |
| 
 | |
| 	tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
 | |
| 
 | |
| 	if (mntopts != NULL) {
 | |
| 		substring_t args[MAX_OPT_ARGS];
 | |
| 		char *tmp_mntopts, *p, *t;
 | |
| 		int token;
 | |
| 
 | |
| 		tmp_mntopts = t = kmem_strdup(mntopts);
 | |
| 		if (tmp_mntopts == NULL)
 | |
| 			return (SET_ERROR(ENOMEM));
 | |
| 
 | |
| 		while ((p = strsep(&t, ",")) != NULL) {
 | |
| 			if (!*p)
 | |
| 				continue;
 | |
| 
 | |
| 			args[0].to = args[0].from = NULL;
 | |
| 			token = match_token(p, zpl_tokens, args);
 | |
| 			error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
 | |
| 			if (error) {
 | |
| 				kmem_strfree(tmp_mntopts);
 | |
| 				zfsvfs_vfs_free(tmp_vfsp);
 | |
| 				return (error);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		kmem_strfree(tmp_mntopts);
 | |
| 	}
 | |
| 
 | |
| 	*vfsp = tmp_vfsp;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| zfs_is_readonly(zfsvfs_t *zfsvfs)
 | |
| {
 | |
| 	return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_sync(struct super_block *sb, int wait, cred_t *cr)
 | |
| {
 | |
| 	(void) cr;
 | |
| 	zfsvfs_t *zfsvfs = sb->s_fs_info;
 | |
| 
 | |
| 	/*
 | |
| 	 * Semantically, the only requirement is that the sync be initiated.
 | |
| 	 * The DMU syncs out txgs frequently, so there's nothing to do.
 | |
| 	 */
 | |
| 	if (!wait)
 | |
| 		return (0);
 | |
| 
 | |
| 	if (zfsvfs != NULL) {
 | |
| 		/*
 | |
| 		 * Sync a specific filesystem.
 | |
| 		 */
 | |
| 		dsl_pool_t *dp;
 | |
| 
 | |
| 		ZFS_ENTER(zfsvfs);
 | |
| 		dp = dmu_objset_pool(zfsvfs->z_os);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the system is shutting down, then skip any
 | |
| 		 * filesystems which may exist on a suspended pool.
 | |
| 		 */
 | |
| 		if (spa_suspended(dp->dp_spa)) {
 | |
| 			ZFS_EXIT(zfsvfs);
 | |
| 			return (0);
 | |
| 		}
 | |
| 
 | |
| 		if (zfsvfs->z_log != NULL)
 | |
| 			zil_commit(zfsvfs->z_log, 0);
 | |
| 
 | |
| 		ZFS_EXIT(zfsvfs);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Sync all ZFS filesystems.  This is what happens when you
 | |
| 		 * run sync(1).  Unlike other filesystems, ZFS honors the
 | |
| 		 * request by waiting for all pools to commit all dirty data.
 | |
| 		 */
 | |
| 		spa_sync_allpools();
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| atime_changed_cb(void *arg, uint64_t newval)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = arg;
 | |
| 	struct super_block *sb = zfsvfs->z_sb;
 | |
| 
 | |
| 	if (sb == NULL)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Update SB_NOATIME bit in VFS super block.  Since atime update is
 | |
| 	 * determined by atime_needs_update(), atime_needs_update() needs to
 | |
| 	 * return false if atime is turned off, and not unconditionally return
 | |
| 	 * false if atime is turned on.
 | |
| 	 */
 | |
| 	if (newval)
 | |
| 		sb->s_flags &= ~SB_NOATIME;
 | |
| 	else
 | |
| 		sb->s_flags |= SB_NOATIME;
 | |
| }
 | |
| 
 | |
| static void
 | |
| relatime_changed_cb(void *arg, uint64_t newval)
 | |
| {
 | |
| 	((zfsvfs_t *)arg)->z_relatime = newval;
 | |
| }
 | |
| 
 | |
| static void
 | |
| xattr_changed_cb(void *arg, uint64_t newval)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = arg;
 | |
| 
 | |
| 	if (newval == ZFS_XATTR_OFF) {
 | |
| 		zfsvfs->z_flags &= ~ZSB_XATTR;
 | |
| 	} else {
 | |
| 		zfsvfs->z_flags |= ZSB_XATTR;
 | |
| 
 | |
| 		if (newval == ZFS_XATTR_SA)
 | |
| 			zfsvfs->z_xattr_sa = B_TRUE;
 | |
| 		else
 | |
| 			zfsvfs->z_xattr_sa = B_FALSE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| acltype_changed_cb(void *arg, uint64_t newval)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = arg;
 | |
| 
 | |
| 	switch (newval) {
 | |
| 	case ZFS_ACLTYPE_NFSV4:
 | |
| 	case ZFS_ACLTYPE_OFF:
 | |
| 		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
 | |
| 		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
 | |
| 		break;
 | |
| 	case ZFS_ACLTYPE_POSIX:
 | |
| #ifdef CONFIG_FS_POSIX_ACL
 | |
| 		zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
 | |
| 		zfsvfs->z_sb->s_flags |= SB_POSIXACL;
 | |
| #else
 | |
| 		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
 | |
| 		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
 | |
| #endif /* CONFIG_FS_POSIX_ACL */
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| blksz_changed_cb(void *arg, uint64_t newval)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = arg;
 | |
| 	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
 | |
| 	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
 | |
| 	ASSERT(ISP2(newval));
 | |
| 
 | |
| 	zfsvfs->z_max_blksz = newval;
 | |
| }
 | |
| 
 | |
| static void
 | |
| readonly_changed_cb(void *arg, uint64_t newval)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = arg;
 | |
| 	struct super_block *sb = zfsvfs->z_sb;
 | |
| 
 | |
| 	if (sb == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	if (newval)
 | |
| 		sb->s_flags |= SB_RDONLY;
 | |
| 	else
 | |
| 		sb->s_flags &= ~SB_RDONLY;
 | |
| }
 | |
| 
 | |
| static void
 | |
| devices_changed_cb(void *arg, uint64_t newval)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void
 | |
| setuid_changed_cb(void *arg, uint64_t newval)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void
 | |
| exec_changed_cb(void *arg, uint64_t newval)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void
 | |
| nbmand_changed_cb(void *arg, uint64_t newval)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = arg;
 | |
| 	struct super_block *sb = zfsvfs->z_sb;
 | |
| 
 | |
| 	if (sb == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	if (newval == TRUE)
 | |
| 		sb->s_flags |= SB_MANDLOCK;
 | |
| 	else
 | |
| 		sb->s_flags &= ~SB_MANDLOCK;
 | |
| }
 | |
| 
 | |
| static void
 | |
| snapdir_changed_cb(void *arg, uint64_t newval)
 | |
| {
 | |
| 	((zfsvfs_t *)arg)->z_show_ctldir = newval;
 | |
| }
 | |
| 
 | |
| static void
 | |
| acl_mode_changed_cb(void *arg, uint64_t newval)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = arg;
 | |
| 
 | |
| 	zfsvfs->z_acl_mode = newval;
 | |
| }
 | |
| 
 | |
| static void
 | |
| acl_inherit_changed_cb(void *arg, uint64_t newval)
 | |
| {
 | |
| 	((zfsvfs_t *)arg)->z_acl_inherit = newval;
 | |
| }
 | |
| 
 | |
| static int
 | |
| zfs_register_callbacks(vfs_t *vfsp)
 | |
| {
 | |
| 	struct dsl_dataset *ds = NULL;
 | |
| 	objset_t *os = NULL;
 | |
| 	zfsvfs_t *zfsvfs = NULL;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	ASSERT(vfsp);
 | |
| 	zfsvfs = vfsp->vfs_data;
 | |
| 	ASSERT(zfsvfs);
 | |
| 	os = zfsvfs->z_os;
 | |
| 
 | |
| 	/*
 | |
| 	 * The act of registering our callbacks will destroy any mount
 | |
| 	 * options we may have.  In order to enable temporary overrides
 | |
| 	 * of mount options, we stash away the current values and
 | |
| 	 * restore them after we register the callbacks.
 | |
| 	 */
 | |
| 	if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
 | |
| 		vfsp->vfs_do_readonly = B_TRUE;
 | |
| 		vfsp->vfs_readonly = B_TRUE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Register property callbacks.
 | |
| 	 *
 | |
| 	 * It would probably be fine to just check for i/o error from
 | |
| 	 * the first prop_register(), but I guess I like to go
 | |
| 	 * overboard...
 | |
| 	 */
 | |
| 	ds = dmu_objset_ds(os);
 | |
| 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
 | |
| 	error = dsl_prop_register(ds,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
 | |
| 	error = error ? error : dsl_prop_register(ds,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
 | |
| 	error = error ? error : dsl_prop_register(ds,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
 | |
| 	error = error ? error : dsl_prop_register(ds,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
 | |
| 	error = error ? error : dsl_prop_register(ds,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
 | |
| 	error = error ? error : dsl_prop_register(ds,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
 | |
| 	error = error ? error : dsl_prop_register(ds,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
 | |
| 	error = error ? error : dsl_prop_register(ds,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
 | |
| 	error = error ? error : dsl_prop_register(ds,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
 | |
| 	error = error ? error : dsl_prop_register(ds,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
 | |
| 	error = error ? error : dsl_prop_register(ds,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
 | |
| 	error = error ? error : dsl_prop_register(ds,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
 | |
| 	    zfsvfs);
 | |
| 	error = error ? error : dsl_prop_register(ds,
 | |
| 	    zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
 | |
| 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
 | |
| 	if (error)
 | |
| 		goto unregister;
 | |
| 
 | |
| 	/*
 | |
| 	 * Invoke our callbacks to restore temporary mount options.
 | |
| 	 */
 | |
| 	if (vfsp->vfs_do_readonly)
 | |
| 		readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
 | |
| 	if (vfsp->vfs_do_setuid)
 | |
| 		setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
 | |
| 	if (vfsp->vfs_do_exec)
 | |
| 		exec_changed_cb(zfsvfs, vfsp->vfs_exec);
 | |
| 	if (vfsp->vfs_do_devices)
 | |
| 		devices_changed_cb(zfsvfs, vfsp->vfs_devices);
 | |
| 	if (vfsp->vfs_do_xattr)
 | |
| 		xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
 | |
| 	if (vfsp->vfs_do_atime)
 | |
| 		atime_changed_cb(zfsvfs, vfsp->vfs_atime);
 | |
| 	if (vfsp->vfs_do_relatime)
 | |
| 		relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
 | |
| 	if (vfsp->vfs_do_nbmand)
 | |
| 		nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
 | |
| 
 | |
| 	return (0);
 | |
| 
 | |
| unregister:
 | |
| 	dsl_prop_unregister_all(ds, zfsvfs);
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Takes a dataset, a property, a value and that value's setpoint as
 | |
|  * found in the ZAP. Checks if the property has been changed in the vfs.
 | |
|  * If so, val and setpoint will be overwritten with updated content.
 | |
|  * Otherwise, they are left unchanged.
 | |
|  */
 | |
| int
 | |
| zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
 | |
|     char *setpoint)
 | |
| {
 | |
| 	int error;
 | |
| 	zfsvfs_t *zfvp;
 | |
| 	vfs_t *vfsp;
 | |
| 	objset_t *os;
 | |
| 	uint64_t tmp = *val;
 | |
| 
 | |
| 	error = dmu_objset_from_ds(ds, &os);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	if (dmu_objset_type(os) != DMU_OST_ZFS)
 | |
| 		return (EINVAL);
 | |
| 
 | |
| 	mutex_enter(&os->os_user_ptr_lock);
 | |
| 	zfvp = dmu_objset_get_user(os);
 | |
| 	mutex_exit(&os->os_user_ptr_lock);
 | |
| 	if (zfvp == NULL)
 | |
| 		return (ESRCH);
 | |
| 
 | |
| 	vfsp = zfvp->z_vfs;
 | |
| 
 | |
| 	switch (zfs_prop) {
 | |
| 	case ZFS_PROP_ATIME:
 | |
| 		if (vfsp->vfs_do_atime)
 | |
| 			tmp = vfsp->vfs_atime;
 | |
| 		break;
 | |
| 	case ZFS_PROP_RELATIME:
 | |
| 		if (vfsp->vfs_do_relatime)
 | |
| 			tmp = vfsp->vfs_relatime;
 | |
| 		break;
 | |
| 	case ZFS_PROP_DEVICES:
 | |
| 		if (vfsp->vfs_do_devices)
 | |
| 			tmp = vfsp->vfs_devices;
 | |
| 		break;
 | |
| 	case ZFS_PROP_EXEC:
 | |
| 		if (vfsp->vfs_do_exec)
 | |
| 			tmp = vfsp->vfs_exec;
 | |
| 		break;
 | |
| 	case ZFS_PROP_SETUID:
 | |
| 		if (vfsp->vfs_do_setuid)
 | |
| 			tmp = vfsp->vfs_setuid;
 | |
| 		break;
 | |
| 	case ZFS_PROP_READONLY:
 | |
| 		if (vfsp->vfs_do_readonly)
 | |
| 			tmp = vfsp->vfs_readonly;
 | |
| 		break;
 | |
| 	case ZFS_PROP_XATTR:
 | |
| 		if (vfsp->vfs_do_xattr)
 | |
| 			tmp = vfsp->vfs_xattr;
 | |
| 		break;
 | |
| 	case ZFS_PROP_NBMAND:
 | |
| 		if (vfsp->vfs_do_nbmand)
 | |
| 			tmp = vfsp->vfs_nbmand;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return (ENOENT);
 | |
| 	}
 | |
| 
 | |
| 	if (tmp != *val) {
 | |
| 		(void) strcpy(setpoint, "temporary");
 | |
| 		*val = tmp;
 | |
| 	}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Associate this zfsvfs with the given objset, which must be owned.
 | |
|  * This will cache a bunch of on-disk state from the objset in the
 | |
|  * zfsvfs.
 | |
|  */
 | |
| static int
 | |
| zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
 | |
| {
 | |
| 	int error;
 | |
| 	uint64_t val;
 | |
| 
 | |
| 	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
 | |
| 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
 | |
| 	zfsvfs->z_os = os;
 | |
| 
 | |
| 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 	if (zfsvfs->z_version >
 | |
| 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
 | |
| 		(void) printk("Can't mount a version %lld file system "
 | |
| 		    "on a version %lld pool\n. Pool must be upgraded to mount "
 | |
| 		    "this file system.\n", (u_longlong_t)zfsvfs->z_version,
 | |
| 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
 | |
| 		return (SET_ERROR(ENOTSUP));
 | |
| 	}
 | |
| 	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 	zfsvfs->z_norm = (int)val;
 | |
| 
 | |
| 	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 	zfsvfs->z_utf8 = (val != 0);
 | |
| 
 | |
| 	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 	zfsvfs->z_case = (uint_t)val;
 | |
| 
 | |
| 	if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
 | |
| 		return (error);
 | |
| 	zfsvfs->z_acl_type = (uint_t)val;
 | |
| 
 | |
| 	/*
 | |
| 	 * Fold case on file systems that are always or sometimes case
 | |
| 	 * insensitive.
 | |
| 	 */
 | |
| 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
 | |
| 	    zfsvfs->z_case == ZFS_CASE_MIXED)
 | |
| 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
 | |
| 
 | |
| 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
 | |
| 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
 | |
| 
 | |
| 	uint64_t sa_obj = 0;
 | |
| 	if (zfsvfs->z_use_sa) {
 | |
| 		/* should either have both of these objects or none */
 | |
| 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
 | |
| 		    &sa_obj);
 | |
| 		if (error != 0)
 | |
| 			return (error);
 | |
| 
 | |
| 		error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
 | |
| 		if ((error == 0) && (val == ZFS_XATTR_SA))
 | |
| 			zfsvfs->z_xattr_sa = B_TRUE;
 | |
| 	}
 | |
| 
 | |
| 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
 | |
| 	    &zfsvfs->z_root);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 	ASSERT(zfsvfs->z_root != 0);
 | |
| 
 | |
| 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
 | |
| 	    &zfsvfs->z_unlinkedobj);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = zap_lookup(os, MASTER_NODE_OBJ,
 | |
| 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
 | |
| 	    8, 1, &zfsvfs->z_userquota_obj);
 | |
| 	if (error == ENOENT)
 | |
| 		zfsvfs->z_userquota_obj = 0;
 | |
| 	else if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = zap_lookup(os, MASTER_NODE_OBJ,
 | |
| 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
 | |
| 	    8, 1, &zfsvfs->z_groupquota_obj);
 | |
| 	if (error == ENOENT)
 | |
| 		zfsvfs->z_groupquota_obj = 0;
 | |
| 	else if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = zap_lookup(os, MASTER_NODE_OBJ,
 | |
| 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
 | |
| 	    8, 1, &zfsvfs->z_projectquota_obj);
 | |
| 	if (error == ENOENT)
 | |
| 		zfsvfs->z_projectquota_obj = 0;
 | |
| 	else if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = zap_lookup(os, MASTER_NODE_OBJ,
 | |
| 	    zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
 | |
| 	    8, 1, &zfsvfs->z_userobjquota_obj);
 | |
| 	if (error == ENOENT)
 | |
| 		zfsvfs->z_userobjquota_obj = 0;
 | |
| 	else if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = zap_lookup(os, MASTER_NODE_OBJ,
 | |
| 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
 | |
| 	    8, 1, &zfsvfs->z_groupobjquota_obj);
 | |
| 	if (error == ENOENT)
 | |
| 		zfsvfs->z_groupobjquota_obj = 0;
 | |
| 	else if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = zap_lookup(os, MASTER_NODE_OBJ,
 | |
| 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
 | |
| 	    8, 1, &zfsvfs->z_projectobjquota_obj);
 | |
| 	if (error == ENOENT)
 | |
| 		zfsvfs->z_projectobjquota_obj = 0;
 | |
| 	else if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
 | |
| 	    &zfsvfs->z_fuid_obj);
 | |
| 	if (error == ENOENT)
 | |
| 		zfsvfs->z_fuid_obj = 0;
 | |
| 	else if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
 | |
| 	    &zfsvfs->z_shares_dir);
 | |
| 	if (error == ENOENT)
 | |
| 		zfsvfs->z_shares_dir = 0;
 | |
| 	else if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
 | |
| 	    &zfsvfs->z_attr_table);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
 | |
| 		sa_register_update_callback(os, zfs_sa_upgrade);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| int
 | |
| zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
 | |
| {
 | |
| 	objset_t *os;
 | |
| 	zfsvfs_t *zfsvfs;
 | |
| 	int error;
 | |
| 	boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
 | |
| 
 | |
| 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
 | |
| 
 | |
| 	error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
 | |
| 	if (error != 0) {
 | |
| 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	error = zfsvfs_create_impl(zfvp, zfsvfs, os);
 | |
| 	if (error != 0) {
 | |
| 		dmu_objset_disown(os, B_TRUE, zfsvfs);
 | |
| 	}
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
 | |
|  * on a failure.  Do not pass in a statically allocated zfsvfs.
 | |
|  */
 | |
| int
 | |
| zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	zfsvfs->z_vfs = NULL;
 | |
| 	zfsvfs->z_sb = NULL;
 | |
| 	zfsvfs->z_parent = zfsvfs;
 | |
| 
 | |
| 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
 | |
| 	    offsetof(znode_t, z_link_node));
 | |
| 	ZFS_TEARDOWN_INIT(zfsvfs);
 | |
| 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
 | |
| 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
 | |
| 
 | |
| 	int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
 | |
| 	    ZFS_OBJ_MTX_MAX);
 | |
| 	zfsvfs->z_hold_size = size;
 | |
| 	zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
 | |
| 	    KM_SLEEP);
 | |
| 	zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
 | |
| 	for (int i = 0; i != size; i++) {
 | |
| 		avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
 | |
| 		    sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
 | |
| 		mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
 | |
| 	}
 | |
| 
 | |
| 	error = zfsvfs_init(zfsvfs, os);
 | |
| 	if (error != 0) {
 | |
| 		*zfvp = NULL;
 | |
| 		zfsvfs_free(zfsvfs);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	zfsvfs->z_drain_task = TASKQID_INVALID;
 | |
| 	zfsvfs->z_draining = B_FALSE;
 | |
| 	zfsvfs->z_drain_cancel = B_TRUE;
 | |
| 
 | |
| 	*zfvp = zfsvfs;
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
 | |
| {
 | |
| 	int error;
 | |
| 	boolean_t readonly = zfs_is_readonly(zfsvfs);
 | |
| 
 | |
| 	error = zfs_register_callbacks(zfsvfs->z_vfs);
 | |
| 	if (error)
 | |
| 		return (error);
 | |
| 
 | |
| 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are not mounting (ie: online recv), then we don't
 | |
| 	 * have to worry about replaying the log as we blocked all
 | |
| 	 * operations out since we closed the ZIL.
 | |
| 	 */
 | |
| 	if (mounting) {
 | |
| 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
 | |
| 		dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
 | |
| 
 | |
| 		/*
 | |
| 		 * During replay we remove the read only flag to
 | |
| 		 * allow replays to succeed.
 | |
| 		 */
 | |
| 		if (readonly != 0) {
 | |
| 			readonly_changed_cb(zfsvfs, B_FALSE);
 | |
| 		} else {
 | |
| 			zap_stats_t zs;
 | |
| 			if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
 | |
| 			    &zs) == 0) {
 | |
| 				dataset_kstats_update_nunlinks_kstat(
 | |
| 				    &zfsvfs->z_kstat, zs.zs_num_entries);
 | |
| 				dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
 | |
| 				    "num_entries in unlinked set: %llu",
 | |
| 				    zs.zs_num_entries);
 | |
| 			}
 | |
| 			zfs_unlinked_drain(zfsvfs);
 | |
| 			dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
 | |
| 			dd->dd_activity_cancelled = B_FALSE;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Parse and replay the intent log.
 | |
| 		 *
 | |
| 		 * Because of ziltest, this must be done after
 | |
| 		 * zfs_unlinked_drain().  (Further note: ziltest
 | |
| 		 * doesn't use readonly mounts, where
 | |
| 		 * zfs_unlinked_drain() isn't called.)  This is because
 | |
| 		 * ziltest causes spa_sync() to think it's committed,
 | |
| 		 * but actually it is not, so the intent log contains
 | |
| 		 * many txg's worth of changes.
 | |
| 		 *
 | |
| 		 * In particular, if object N is in the unlinked set in
 | |
| 		 * the last txg to actually sync, then it could be
 | |
| 		 * actually freed in a later txg and then reallocated
 | |
| 		 * in a yet later txg.  This would write a "create
 | |
| 		 * object N" record to the intent log.  Normally, this
 | |
| 		 * would be fine because the spa_sync() would have
 | |
| 		 * written out the fact that object N is free, before
 | |
| 		 * we could write the "create object N" intent log
 | |
| 		 * record.
 | |
| 		 *
 | |
| 		 * But when we are in ziltest mode, we advance the "open
 | |
| 		 * txg" without actually spa_sync()-ing the changes to
 | |
| 		 * disk.  So we would see that object N is still
 | |
| 		 * allocated and in the unlinked set, and there is an
 | |
| 		 * intent log record saying to allocate it.
 | |
| 		 */
 | |
| 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
 | |
| 			if (zil_replay_disable) {
 | |
| 				zil_destroy(zfsvfs->z_log, B_FALSE);
 | |
| 			} else {
 | |
| 				zfsvfs->z_replay = B_TRUE;
 | |
| 				zil_replay(zfsvfs->z_os, zfsvfs,
 | |
| 				    zfs_replay_vector);
 | |
| 				zfsvfs->z_replay = B_FALSE;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* restore readonly bit */
 | |
| 		if (readonly != 0)
 | |
| 			readonly_changed_cb(zfsvfs, B_TRUE);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the objset user_ptr to track its zfsvfs.
 | |
| 	 */
 | |
| 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
 | |
| 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
 | |
| 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfsvfs_free(zfsvfs_t *zfsvfs)
 | |
| {
 | |
| 	int i, size = zfsvfs->z_hold_size;
 | |
| 
 | |
| 	zfs_fuid_destroy(zfsvfs);
 | |
| 
 | |
| 	mutex_destroy(&zfsvfs->z_znodes_lock);
 | |
| 	mutex_destroy(&zfsvfs->z_lock);
 | |
| 	list_destroy(&zfsvfs->z_all_znodes);
 | |
| 	ZFS_TEARDOWN_DESTROY(zfsvfs);
 | |
| 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
 | |
| 	rw_destroy(&zfsvfs->z_fuid_lock);
 | |
| 	for (i = 0; i != size; i++) {
 | |
| 		avl_destroy(&zfsvfs->z_hold_trees[i]);
 | |
| 		mutex_destroy(&zfsvfs->z_hold_locks[i]);
 | |
| 	}
 | |
| 	vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
 | |
| 	vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
 | |
| 	zfsvfs_vfs_free(zfsvfs->z_vfs);
 | |
| 	dataset_kstats_destroy(&zfsvfs->z_kstat);
 | |
| 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
 | |
| }
 | |
| 
 | |
| static void
 | |
| zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
 | |
| {
 | |
| 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
 | |
| 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
 | |
| }
 | |
| 
 | |
| static void
 | |
| zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
 | |
| {
 | |
| 	objset_t *os = zfsvfs->z_os;
 | |
| 
 | |
| 	if (!dmu_objset_is_snapshot(os))
 | |
| 		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_MLSLABEL
 | |
| /*
 | |
|  * Check that the hex label string is appropriate for the dataset being
 | |
|  * mounted into the global_zone proper.
 | |
|  *
 | |
|  * Return an error if the hex label string is not default or
 | |
|  * admin_low/admin_high.  For admin_low labels, the corresponding
 | |
|  * dataset must be readonly.
 | |
|  */
 | |
| int
 | |
| zfs_check_global_label(const char *dsname, const char *hexsl)
 | |
| {
 | |
| 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
 | |
| 		return (0);
 | |
| 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
 | |
| 		return (0);
 | |
| 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
 | |
| 		/* must be readonly */
 | |
| 		uint64_t rdonly;
 | |
| 
 | |
| 		if (dsl_prop_get_integer(dsname,
 | |
| 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
 | |
| 			return (SET_ERROR(EACCES));
 | |
| 		return (rdonly ? 0 : SET_ERROR(EACCES));
 | |
| 	}
 | |
| 	return (SET_ERROR(EACCES));
 | |
| }
 | |
| #endif /* HAVE_MLSLABEL */
 | |
| 
 | |
| static int
 | |
| zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
 | |
|     uint32_t bshift)
 | |
| {
 | |
| 	char buf[20 + DMU_OBJACCT_PREFIX_LEN];
 | |
| 	uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
 | |
| 	uint64_t quota;
 | |
| 	uint64_t used;
 | |
| 	int err;
 | |
| 
 | |
| 	strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
 | |
| 	err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
 | |
| 	    sizeof (buf) - offset, B_FALSE);
 | |
| 	if (err)
 | |
| 		return (err);
 | |
| 
 | |
| 	if (zfsvfs->z_projectquota_obj == 0)
 | |
| 		goto objs;
 | |
| 
 | |
| 	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
 | |
| 	    buf + offset, 8, 1, "a);
 | |
| 	if (err == ENOENT)
 | |
| 		goto objs;
 | |
| 	else if (err)
 | |
| 		return (err);
 | |
| 
 | |
| 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
 | |
| 	    buf + offset, 8, 1, &used);
 | |
| 	if (unlikely(err == ENOENT)) {
 | |
| 		uint32_t blksize;
 | |
| 		u_longlong_t nblocks;
 | |
| 
 | |
| 		/*
 | |
| 		 * Quota accounting is async, so it is possible race case.
 | |
| 		 * There is at least one object with the given project ID.
 | |
| 		 */
 | |
| 		sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
 | |
| 		if (unlikely(zp->z_blksz == 0))
 | |
| 			blksize = zfsvfs->z_max_blksz;
 | |
| 
 | |
| 		used = blksize * nblocks;
 | |
| 	} else if (err) {
 | |
| 		return (err);
 | |
| 	}
 | |
| 
 | |
| 	statp->f_blocks = quota >> bshift;
 | |
| 	statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
 | |
| 	statp->f_bavail = statp->f_bfree;
 | |
| 
 | |
| objs:
 | |
| 	if (zfsvfs->z_projectobjquota_obj == 0)
 | |
| 		return (0);
 | |
| 
 | |
| 	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
 | |
| 	    buf + offset, 8, 1, "a);
 | |
| 	if (err == ENOENT)
 | |
| 		return (0);
 | |
| 	else if (err)
 | |
| 		return (err);
 | |
| 
 | |
| 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
 | |
| 	    buf, 8, 1, &used);
 | |
| 	if (unlikely(err == ENOENT)) {
 | |
| 		/*
 | |
| 		 * Quota accounting is async, so it is possible race case.
 | |
| 		 * There is at least one object with the given project ID.
 | |
| 		 */
 | |
| 		used = 1;
 | |
| 	} else if (err) {
 | |
| 		return (err);
 | |
| 	}
 | |
| 
 | |
| 	statp->f_files = quota;
 | |
| 	statp->f_ffree = (quota > used) ? (quota - used) : 0;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_statvfs(struct inode *ip, struct kstatfs *statp)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = ITOZSB(ip);
 | |
| 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	ZFS_ENTER(zfsvfs);
 | |
| 
 | |
| 	dmu_objset_space(zfsvfs->z_os,
 | |
| 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
 | |
| 
 | |
| 	uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
 | |
| 	/*
 | |
| 	 * The underlying storage pool actually uses multiple block
 | |
| 	 * size.  Under Solaris frsize (fragment size) is reported as
 | |
| 	 * the smallest block size we support, and bsize (block size)
 | |
| 	 * as the filesystem's maximum block size.  Unfortunately,
 | |
| 	 * under Linux the fragment size and block size are often used
 | |
| 	 * interchangeably.  Thus we are forced to report both of them
 | |
| 	 * as the filesystem's maximum block size.
 | |
| 	 */
 | |
| 	statp->f_frsize = zfsvfs->z_max_blksz;
 | |
| 	statp->f_bsize = zfsvfs->z_max_blksz;
 | |
| 	uint32_t bshift = fls(statp->f_bsize) - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * The following report "total" blocks of various kinds in
 | |
| 	 * the file system, but reported in terms of f_bsize - the
 | |
| 	 * "preferred" size.
 | |
| 	 */
 | |
| 
 | |
| 	/* Round up so we never have a filesystem using 0 blocks. */
 | |
| 	refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
 | |
| 	statp->f_blocks = (refdbytes + availbytes) >> bshift;
 | |
| 	statp->f_bfree = availbytes >> bshift;
 | |
| 	statp->f_bavail = statp->f_bfree; /* no root reservation */
 | |
| 
 | |
| 	/*
 | |
| 	 * statvfs() should really be called statufs(), because it assumes
 | |
| 	 * static metadata.  ZFS doesn't preallocate files, so the best
 | |
| 	 * we can do is report the max that could possibly fit in f_files,
 | |
| 	 * and that minus the number actually used in f_ffree.
 | |
| 	 * For f_ffree, report the smaller of the number of objects available
 | |
| 	 * and the number of blocks (each object will take at least a block).
 | |
| 	 */
 | |
| 	statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
 | |
| 	statp->f_files = statp->f_ffree + usedobjs;
 | |
| 	statp->f_fsid.val[0] = (uint32_t)fsid;
 | |
| 	statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
 | |
| 	statp->f_type = ZFS_SUPER_MAGIC;
 | |
| 	statp->f_namelen = MAXNAMELEN - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have all of 40 characters to stuff a string here.
 | |
| 	 * Is there anything useful we could/should provide?
 | |
| 	 */
 | |
| 	bzero(statp->f_spare, sizeof (statp->f_spare));
 | |
| 
 | |
| 	if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
 | |
| 	    dmu_objset_projectquota_present(zfsvfs->z_os)) {
 | |
| 		znode_t *zp = ITOZ(ip);
 | |
| 
 | |
| 		if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
 | |
| 		    zpl_is_valid_projid(zp->z_projid))
 | |
| 			err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
 | |
| 	}
 | |
| 
 | |
| 	ZFS_EXIT(zfsvfs);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
 | |
| {
 | |
| 	znode_t *rootzp;
 | |
| 	int error;
 | |
| 
 | |
| 	ZFS_ENTER(zfsvfs);
 | |
| 
 | |
| 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
 | |
| 	if (error == 0)
 | |
| 		*ipp = ZTOI(rootzp);
 | |
| 
 | |
| 	ZFS_EXIT(zfsvfs);
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
 | |
|  * To accommodate this we must improvise and manually walk the list of znodes
 | |
|  * attempting to prune dentries in order to be able to drop the inodes.
 | |
|  *
 | |
|  * To avoid scanning the same znodes multiple times they are always rotated
 | |
|  * to the end of the z_all_znodes list.  New znodes are inserted at the
 | |
|  * end of the list so we're always scanning the oldest znodes first.
 | |
|  */
 | |
| static int
 | |
| zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan)
 | |
| {
 | |
| 	znode_t **zp_array, *zp;
 | |
| 	int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
 | |
| 	int objects = 0;
 | |
| 	int i = 0, j = 0;
 | |
| 
 | |
| 	zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
 | |
| 
 | |
| 	mutex_enter(&zfsvfs->z_znodes_lock);
 | |
| 	while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) {
 | |
| 
 | |
| 		if ((i++ > nr_to_scan) || (j >= max_array))
 | |
| 			break;
 | |
| 
 | |
| 		ASSERT(list_link_active(&zp->z_link_node));
 | |
| 		list_remove(&zfsvfs->z_all_znodes, zp);
 | |
| 		list_insert_tail(&zfsvfs->z_all_znodes, zp);
 | |
| 
 | |
| 		/* Skip active znodes and .zfs entries */
 | |
| 		if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
 | |
| 			continue;
 | |
| 
 | |
| 		if (igrab(ZTOI(zp)) == NULL)
 | |
| 			continue;
 | |
| 
 | |
| 		zp_array[j] = zp;
 | |
| 		j++;
 | |
| 	}
 | |
| 	mutex_exit(&zfsvfs->z_znodes_lock);
 | |
| 
 | |
| 	for (i = 0; i < j; i++) {
 | |
| 		zp = zp_array[i];
 | |
| 
 | |
| 		ASSERT3P(zp, !=, NULL);
 | |
| 		d_prune_aliases(ZTOI(zp));
 | |
| 
 | |
| 		if (atomic_read(&ZTOI(zp)->i_count) == 1)
 | |
| 			objects++;
 | |
| 
 | |
| 		zrele(zp);
 | |
| 	}
 | |
| 
 | |
| 	kmem_free(zp_array, max_array * sizeof (znode_t *));
 | |
| 
 | |
| 	return (objects);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The ARC has requested that the filesystem drop entries from the dentry
 | |
|  * and inode caches.  This can occur when the ARC needs to free meta data
 | |
|  * blocks but can't because they are all pinned by entries in these caches.
 | |
|  */
 | |
| int
 | |
| zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = sb->s_fs_info;
 | |
| 	int error = 0;
 | |
| 	struct shrinker *shrinker = &sb->s_shrink;
 | |
| 	struct shrink_control sc = {
 | |
| 		.nr_to_scan = nr_to_scan,
 | |
| 		.gfp_mask = GFP_KERNEL,
 | |
| 	};
 | |
| 
 | |
| 	ZFS_ENTER(zfsvfs);
 | |
| 
 | |
| #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
 | |
| 	defined(SHRINK_CONTROL_HAS_NID) && \
 | |
| 	defined(SHRINKER_NUMA_AWARE)
 | |
| 	if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
 | |
| 		*objects = 0;
 | |
| 		for_each_online_node(sc.nid) {
 | |
| 			*objects += (*shrinker->scan_objects)(shrinker, &sc);
 | |
| 			/*
 | |
| 			 * reset sc.nr_to_scan, modified by
 | |
| 			 * scan_objects == super_cache_scan
 | |
| 			 */
 | |
| 			sc.nr_to_scan = nr_to_scan;
 | |
| 		}
 | |
| 	} else {
 | |
| 			*objects = (*shrinker->scan_objects)(shrinker, &sc);
 | |
| 	}
 | |
| 
 | |
| #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
 | |
| 	*objects = (*shrinker->scan_objects)(shrinker, &sc);
 | |
| #elif defined(HAVE_SINGLE_SHRINKER_CALLBACK)
 | |
| 	*objects = (*shrinker->shrink)(shrinker, &sc);
 | |
| #elif defined(HAVE_D_PRUNE_ALIASES)
 | |
| #define	D_PRUNE_ALIASES_IS_DEFAULT
 | |
| 	*objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
 | |
| #else
 | |
| #error "No available dentry and inode cache pruning mechanism."
 | |
| #endif
 | |
| 
 | |
| #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
 | |
| #undef	D_PRUNE_ALIASES_IS_DEFAULT
 | |
| 	/*
 | |
| 	 * Fall back to zfs_prune_aliases if the kernel's per-superblock
 | |
| 	 * shrinker couldn't free anything, possibly due to the inodes being
 | |
| 	 * allocated in a different memcg.
 | |
| 	 */
 | |
| 	if (*objects == 0)
 | |
| 		*objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
 | |
| #endif
 | |
| 
 | |
| 	ZFS_EXIT(zfsvfs);
 | |
| 
 | |
| 	dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
 | |
| 	    "pruning, nr_to_scan=%lu objects=%d error=%d\n",
 | |
| 	    nr_to_scan, *objects, error);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Teardown the zfsvfs_t.
 | |
|  *
 | |
|  * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
 | |
|  * and 'z_teardown_inactive_lock' held.
 | |
|  */
 | |
| static int
 | |
| zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
 | |
| {
 | |
| 	znode_t	*zp;
 | |
| 
 | |
| 	zfs_unlinked_drain_stop_wait(zfsvfs);
 | |
| 
 | |
| 	/*
 | |
| 	 * If someone has not already unmounted this file system,
 | |
| 	 * drain the zrele_taskq to ensure all active references to the
 | |
| 	 * zfsvfs_t have been handled only then can it be safely destroyed.
 | |
| 	 */
 | |
| 	if (zfsvfs->z_os) {
 | |
| 		/*
 | |
| 		 * If we're unmounting we have to wait for the list to
 | |
| 		 * drain completely.
 | |
| 		 *
 | |
| 		 * If we're not unmounting there's no guarantee the list
 | |
| 		 * will drain completely, but iputs run from the taskq
 | |
| 		 * may add the parents of dir-based xattrs to the taskq
 | |
| 		 * so we want to wait for these.
 | |
| 		 *
 | |
| 		 * We can safely read z_nr_znodes without locking because the
 | |
| 		 * VFS has already blocked operations which add to the
 | |
| 		 * z_all_znodes list and thus increment z_nr_znodes.
 | |
| 		 */
 | |
| 		int round = 0;
 | |
| 		while (zfsvfs->z_nr_znodes > 0) {
 | |
| 			taskq_wait_outstanding(dsl_pool_zrele_taskq(
 | |
| 			    dmu_objset_pool(zfsvfs->z_os)), 0);
 | |
| 			if (++round > 1 && !unmounting)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
 | |
| 
 | |
| 	if (!unmounting) {
 | |
| 		/*
 | |
| 		 * We purge the parent filesystem's super block as the
 | |
| 		 * parent filesystem and all of its snapshots have their
 | |
| 		 * inode's super block set to the parent's filesystem's
 | |
| 		 * super block.  Note,  'z_parent' is self referential
 | |
| 		 * for non-snapshots.
 | |
| 		 */
 | |
| 		shrink_dcache_sb(zfsvfs->z_parent->z_sb);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Close the zil. NB: Can't close the zil while zfs_inactive
 | |
| 	 * threads are blocked as zil_close can call zfs_inactive.
 | |
| 	 */
 | |
| 	if (zfsvfs->z_log) {
 | |
| 		zil_close(zfsvfs->z_log);
 | |
| 		zfsvfs->z_log = NULL;
 | |
| 	}
 | |
| 
 | |
| 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are not unmounting (ie: online recv) and someone already
 | |
| 	 * unmounted this file system while we were doing the switcheroo,
 | |
| 	 * or a reopen of z_os failed then just bail out now.
 | |
| 	 */
 | |
| 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
 | |
| 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
 | |
| 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
 | |
| 		return (SET_ERROR(EIO));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point there are no VFS ops active, and any new VFS ops
 | |
| 	 * will fail with EIO since we have z_teardown_lock for writer (only
 | |
| 	 * relevant for forced unmount).
 | |
| 	 *
 | |
| 	 * Release all holds on dbufs. We also grab an extra reference to all
 | |
| 	 * the remaining inodes so that the kernel does not attempt to free
 | |
| 	 * any inodes of a suspended fs. This can cause deadlocks since the
 | |
| 	 * zfs_resume_fs() process may involve starting threads, which might
 | |
| 	 * attempt to free unreferenced inodes to free up memory for the new
 | |
| 	 * thread.
 | |
| 	 */
 | |
| 	if (!unmounting) {
 | |
| 		mutex_enter(&zfsvfs->z_znodes_lock);
 | |
| 		for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
 | |
| 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
 | |
| 			if (zp->z_sa_hdl)
 | |
| 				zfs_znode_dmu_fini(zp);
 | |
| 			if (igrab(ZTOI(zp)) != NULL)
 | |
| 				zp->z_suspended = B_TRUE;
 | |
| 
 | |
| 		}
 | |
| 		mutex_exit(&zfsvfs->z_znodes_lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are unmounting, set the unmounted flag and let new VFS ops
 | |
| 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
 | |
| 	 * other VFS ops will fail with EIO.
 | |
| 	 */
 | |
| 	if (unmounting) {
 | |
| 		zfsvfs->z_unmounted = B_TRUE;
 | |
| 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
 | |
| 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * z_os will be NULL if there was an error in attempting to reopen
 | |
| 	 * zfsvfs, so just return as the properties had already been
 | |
| 	 *
 | |
| 	 * unregistered and cached data had been evicted before.
 | |
| 	 */
 | |
| 	if (zfsvfs->z_os == NULL)
 | |
| 		return (0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Unregister properties.
 | |
| 	 */
 | |
| 	zfs_unregister_callbacks(zfsvfs);
 | |
| 
 | |
| 	/*
 | |
| 	 * Evict cached data. We must write out any dirty data before
 | |
| 	 * disowning the dataset.
 | |
| 	 */
 | |
| 	objset_t *os = zfsvfs->z_os;
 | |
| 	boolean_t os_dirty = B_FALSE;
 | |
| 	for (int t = 0; t < TXG_SIZE; t++) {
 | |
| 		if (dmu_objset_is_dirty(os, t)) {
 | |
| 			os_dirty = B_TRUE;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!zfs_is_readonly(zfsvfs) && os_dirty) {
 | |
| 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
 | |
| 	}
 | |
| 	dmu_objset_evict_dbufs(zfsvfs->z_os);
 | |
| 	dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
 | |
| 	dsl_dir_cancel_waiters(dd);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| #if defined(HAVE_SUPER_SETUP_BDI_NAME)
 | |
| atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
 | |
| #endif
 | |
| 
 | |
| int
 | |
| zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
 | |
| {
 | |
| 	const char *osname = zm->mnt_osname;
 | |
| 	struct inode *root_inode = NULL;
 | |
| 	uint64_t recordsize;
 | |
| 	int error = 0;
 | |
| 	zfsvfs_t *zfsvfs = NULL;
 | |
| 	vfs_t *vfs = NULL;
 | |
| 
 | |
| 	ASSERT(zm);
 | |
| 	ASSERT(osname);
 | |
| 
 | |
| 	error = zfsvfs_parse_options(zm->mnt_data, &vfs);
 | |
| 	if (error)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
 | |
| 	if (error) {
 | |
| 		zfsvfs_vfs_free(vfs);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if ((error = dsl_prop_get_integer(osname, "recordsize",
 | |
| 	    &recordsize, NULL))) {
 | |
| 		zfsvfs_vfs_free(vfs);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	vfs->vfs_data = zfsvfs;
 | |
| 	zfsvfs->z_vfs = vfs;
 | |
| 	zfsvfs->z_sb = sb;
 | |
| 	sb->s_fs_info = zfsvfs;
 | |
| 	sb->s_magic = ZFS_SUPER_MAGIC;
 | |
| 	sb->s_maxbytes = MAX_LFS_FILESIZE;
 | |
| 	sb->s_time_gran = 1;
 | |
| 	sb->s_blocksize = recordsize;
 | |
| 	sb->s_blocksize_bits = ilog2(recordsize);
 | |
| 
 | |
| 	error = -zpl_bdi_setup(sb, "zfs");
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	sb->s_bdi->ra_pages = 0;
 | |
| 
 | |
| 	/* Set callback operations for the file system. */
 | |
| 	sb->s_op = &zpl_super_operations;
 | |
| 	sb->s_xattr = zpl_xattr_handlers;
 | |
| 	sb->s_export_op = &zpl_export_operations;
 | |
| 	sb->s_d_op = &zpl_dentry_operations;
 | |
| 
 | |
| 	/* Set features for file system. */
 | |
| 	zfs_set_fuid_feature(zfsvfs);
 | |
| 
 | |
| 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
 | |
| 		uint64_t pval;
 | |
| 
 | |
| 		atime_changed_cb(zfsvfs, B_FALSE);
 | |
| 		readonly_changed_cb(zfsvfs, B_TRUE);
 | |
| 		if ((error = dsl_prop_get_integer(osname,
 | |
| 		    "xattr", &pval, NULL)))
 | |
| 			goto out;
 | |
| 		xattr_changed_cb(zfsvfs, pval);
 | |
| 		if ((error = dsl_prop_get_integer(osname,
 | |
| 		    "acltype", &pval, NULL)))
 | |
| 			goto out;
 | |
| 		acltype_changed_cb(zfsvfs, pval);
 | |
| 		zfsvfs->z_issnap = B_TRUE;
 | |
| 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
 | |
| 		zfsvfs->z_snap_defer_time = jiffies;
 | |
| 
 | |
| 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
 | |
| 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
 | |
| 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
 | |
| 	} else {
 | |
| 		if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate a root inode for the filesystem. */
 | |
| 	error = zfs_root(zfsvfs, &root_inode);
 | |
| 	if (error) {
 | |
| 		(void) zfs_umount(sb);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate a root dentry for the filesystem */
 | |
| 	sb->s_root = d_make_root(root_inode);
 | |
| 	if (sb->s_root == NULL) {
 | |
| 		(void) zfs_umount(sb);
 | |
| 		error = SET_ERROR(ENOMEM);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!zfsvfs->z_issnap)
 | |
| 		zfsctl_create(zfsvfs);
 | |
| 
 | |
| 	zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
 | |
| out:
 | |
| 	if (error) {
 | |
| 		if (zfsvfs != NULL) {
 | |
| 			dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
 | |
| 			zfsvfs_free(zfsvfs);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * make sure we don't have dangling sb->s_fs_info which
 | |
| 		 * zfs_preumount will use.
 | |
| 		 */
 | |
| 		sb->s_fs_info = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when an unmount is requested and certain sanity checks have
 | |
|  * already passed.  At this point no dentries or inodes have been reclaimed
 | |
|  * from their respective caches.  We drop the extra reference on the .zfs
 | |
|  * control directory to allow everything to be reclaimed.  All snapshots
 | |
|  * must already have been unmounted to reach this point.
 | |
|  */
 | |
| void
 | |
| zfs_preumount(struct super_block *sb)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = sb->s_fs_info;
 | |
| 
 | |
| 	/* zfsvfs is NULL when zfs_domount fails during mount */
 | |
| 	if (zfsvfs) {
 | |
| 		zfs_unlinked_drain_stop_wait(zfsvfs);
 | |
| 		zfsctl_destroy(sb->s_fs_info);
 | |
| 		/*
 | |
| 		 * Wait for zrele_async before entering evict_inodes in
 | |
| 		 * generic_shutdown_super. The reason we must finish before
 | |
| 		 * evict_inodes is when lazytime is on, or when zfs_purgedir
 | |
| 		 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
 | |
| 		 * would race with the i_count check in evict_inodes. This means
 | |
| 		 * it could destroy the inode while we are still using it.
 | |
| 		 *
 | |
| 		 * We wait for two passes. xattr directories in the first pass
 | |
| 		 * may add xattr entries in zfs_purgedir, so in the second pass
 | |
| 		 * we wait for them. We don't use taskq_wait here because it is
 | |
| 		 * a pool wide taskq. Other mounted filesystems can constantly
 | |
| 		 * do zrele_async and there's no guarantee when taskq will be
 | |
| 		 * empty.
 | |
| 		 */
 | |
| 		taskq_wait_outstanding(dsl_pool_zrele_taskq(
 | |
| 		    dmu_objset_pool(zfsvfs->z_os)), 0);
 | |
| 		taskq_wait_outstanding(dsl_pool_zrele_taskq(
 | |
| 		    dmu_objset_pool(zfsvfs->z_os)), 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called once all other unmount released tear down has occurred.
 | |
|  * It is our responsibility to release any remaining infrastructure.
 | |
|  */
 | |
| int
 | |
| zfs_umount(struct super_block *sb)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = sb->s_fs_info;
 | |
| 	objset_t *os;
 | |
| 
 | |
| 	if (zfsvfs->z_arc_prune != NULL)
 | |
| 		arc_remove_prune_callback(zfsvfs->z_arc_prune);
 | |
| 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
 | |
| 	os = zfsvfs->z_os;
 | |
| 	zpl_bdi_destroy(sb);
 | |
| 
 | |
| 	/*
 | |
| 	 * z_os will be NULL if there was an error in
 | |
| 	 * attempting to reopen zfsvfs.
 | |
| 	 */
 | |
| 	if (os != NULL) {
 | |
| 		/*
 | |
| 		 * Unset the objset user_ptr.
 | |
| 		 */
 | |
| 		mutex_enter(&os->os_user_ptr_lock);
 | |
| 		dmu_objset_set_user(os, NULL);
 | |
| 		mutex_exit(&os->os_user_ptr_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * Finally release the objset
 | |
| 		 */
 | |
| 		dmu_objset_disown(os, B_TRUE, zfsvfs);
 | |
| 	}
 | |
| 
 | |
| 	zfsvfs_free(zfsvfs);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = sb->s_fs_info;
 | |
| 	vfs_t *vfsp;
 | |
| 	boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
 | |
| 	int error;
 | |
| 
 | |
| 	if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
 | |
| 	    !(*flags & SB_RDONLY)) {
 | |
| 		*flags |= SB_RDONLY;
 | |
| 		return (EROFS);
 | |
| 	}
 | |
| 
 | |
| 	error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
 | |
| 	if (error)
 | |
| 		return (error);
 | |
| 
 | |
| 	if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
 | |
| 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
 | |
| 
 | |
| 	zfs_unregister_callbacks(zfsvfs);
 | |
| 	zfsvfs_vfs_free(zfsvfs->z_vfs);
 | |
| 
 | |
| 	vfsp->vfs_data = zfsvfs;
 | |
| 	zfsvfs->z_vfs = vfsp;
 | |
| 	if (!issnap)
 | |
| 		(void) zfs_register_callbacks(vfsp);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
 | |
| {
 | |
| 	zfsvfs_t	*zfsvfs = sb->s_fs_info;
 | |
| 	znode_t		*zp;
 | |
| 	uint64_t	object = 0;
 | |
| 	uint64_t	fid_gen = 0;
 | |
| 	uint64_t	gen_mask;
 | |
| 	uint64_t	zp_gen;
 | |
| 	int		i, err;
 | |
| 
 | |
| 	*ipp = NULL;
 | |
| 
 | |
| 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
 | |
| 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
 | |
| 
 | |
| 		for (i = 0; i < sizeof (zfid->zf_object); i++)
 | |
| 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
 | |
| 
 | |
| 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
 | |
| 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
 | |
| 	} else {
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	/* LONG_FID_LEN means snapdirs */
 | |
| 	if (fidp->fid_len == LONG_FID_LEN) {
 | |
| 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
 | |
| 		uint64_t	objsetid = 0;
 | |
| 		uint64_t	setgen = 0;
 | |
| 
 | |
| 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
 | |
| 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
 | |
| 
 | |
| 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
 | |
| 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
 | |
| 
 | |
| 		if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
 | |
| 			dprintf("snapdir fid: objsetid (%llu) != "
 | |
| 			    "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
 | |
| 			    objsetid, ZFSCTL_INO_SNAPDIRS, object);
 | |
| 
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 		}
 | |
| 
 | |
| 		if (fid_gen > 1 || setgen != 0) {
 | |
| 			dprintf("snapdir fid: fid_gen (%llu) and setgen "
 | |
| 			    "(%llu)\n", fid_gen, setgen);
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 		}
 | |
| 
 | |
| 		return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
 | |
| 	}
 | |
| 
 | |
| 	ZFS_ENTER(zfsvfs);
 | |
| 	/* A zero fid_gen means we are in the .zfs control directories */
 | |
| 	if (fid_gen == 0 &&
 | |
| 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
 | |
| 		*ipp = zfsvfs->z_ctldir;
 | |
| 		ASSERT(*ipp != NULL);
 | |
| 		if (object == ZFSCTL_INO_SNAPDIR) {
 | |
| 			VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
 | |
| 			    0, kcred, NULL, NULL) == 0);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Must have an existing ref, so igrab()
 | |
| 			 * cannot return NULL
 | |
| 			 */
 | |
| 			VERIFY3P(igrab(*ipp), !=, NULL);
 | |
| 		}
 | |
| 		ZFS_EXIT(zfsvfs);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	gen_mask = -1ULL >> (64 - 8 * i);
 | |
| 
 | |
| 	dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
 | |
| 	if ((err = zfs_zget(zfsvfs, object, &zp))) {
 | |
| 		ZFS_EXIT(zfsvfs);
 | |
| 		return (err);
 | |
| 	}
 | |
| 
 | |
| 	/* Don't export xattr stuff */
 | |
| 	if (zp->z_pflags & ZFS_XATTR) {
 | |
| 		zrele(zp);
 | |
| 		ZFS_EXIT(zfsvfs);
 | |
| 		return (SET_ERROR(ENOENT));
 | |
| 	}
 | |
| 
 | |
| 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
 | |
| 	    sizeof (uint64_t));
 | |
| 	zp_gen = zp_gen & gen_mask;
 | |
| 	if (zp_gen == 0)
 | |
| 		zp_gen = 1;
 | |
| 	if ((fid_gen == 0) && (zfsvfs->z_root == object))
 | |
| 		fid_gen = zp_gen;
 | |
| 	if (zp->z_unlinked || zp_gen != fid_gen) {
 | |
| 		dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
 | |
| 		    fid_gen);
 | |
| 		zrele(zp);
 | |
| 		ZFS_EXIT(zfsvfs);
 | |
| 		return (SET_ERROR(ENOENT));
 | |
| 	}
 | |
| 
 | |
| 	*ipp = ZTOI(zp);
 | |
| 	if (*ipp)
 | |
| 		zfs_znode_update_vfs(ITOZ(*ipp));
 | |
| 
 | |
| 	ZFS_EXIT(zfsvfs);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Block out VFS ops and close zfsvfs_t
 | |
|  *
 | |
|  * Note, if successful, then we return with the 'z_teardown_lock' and
 | |
|  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
 | |
|  * dataset and objset intact so that they can be atomically handed off during
 | |
|  * a subsequent rollback or recv operation and the resume thereafter.
 | |
|  */
 | |
| int
 | |
| zfs_suspend_fs(zfsvfs_t *zfsvfs)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
 | |
|  * is an invariant across any of the operations that can be performed while the
 | |
|  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
 | |
|  * are the same: the relevant objset and associated dataset are owned by
 | |
|  * zfsvfs, held, and long held on entry.
 | |
|  */
 | |
| int
 | |
| zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
 | |
| {
 | |
| 	int err, err2;
 | |
| 	znode_t *zp;
 | |
| 
 | |
| 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
 | |
| 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
 | |
| 
 | |
| 	/*
 | |
| 	 * We already own this, so just update the objset_t, as the one we
 | |
| 	 * had before may have been evicted.
 | |
| 	 */
 | |
| 	objset_t *os;
 | |
| 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
 | |
| 	VERIFY(dsl_dataset_long_held(ds));
 | |
| 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
 | |
| 	dsl_pool_config_enter(dp, FTAG);
 | |
| 	VERIFY0(dmu_objset_from_ds(ds, &os));
 | |
| 	dsl_pool_config_exit(dp, FTAG);
 | |
| 
 | |
| 	err = zfsvfs_init(zfsvfs, os);
 | |
| 	if (err != 0)
 | |
| 		goto bail;
 | |
| 
 | |
| 	ds->ds_dir->dd_activity_cancelled = B_FALSE;
 | |
| 	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
 | |
| 
 | |
| 	zfs_set_fuid_feature(zfsvfs);
 | |
| 	zfsvfs->z_rollback_time = jiffies;
 | |
| 
 | |
| 	/*
 | |
| 	 * Attempt to re-establish all the active inodes with their
 | |
| 	 * dbufs.  If a zfs_rezget() fails, then we unhash the inode
 | |
| 	 * and mark it stale.  This prevents a collision if a new
 | |
| 	 * inode/object is created which must use the same inode
 | |
| 	 * number.  The stale inode will be be released when the
 | |
| 	 * VFS prunes the dentry holding the remaining references
 | |
| 	 * on the stale inode.
 | |
| 	 */
 | |
| 	mutex_enter(&zfsvfs->z_znodes_lock);
 | |
| 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
 | |
| 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
 | |
| 		err2 = zfs_rezget(zp);
 | |
| 		if (err2) {
 | |
| 			remove_inode_hash(ZTOI(zp));
 | |
| 			zp->z_is_stale = B_TRUE;
 | |
| 		}
 | |
| 
 | |
| 		/* see comment in zfs_suspend_fs() */
 | |
| 		if (zp->z_suspended) {
 | |
| 			zfs_zrele_async(zp);
 | |
| 			zp->z_suspended = B_FALSE;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_exit(&zfsvfs->z_znodes_lock);
 | |
| 
 | |
| 	if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
 | |
| 		/*
 | |
| 		 * zfs_suspend_fs() could have interrupted freeing
 | |
| 		 * of dnodes. We need to restart this freeing so
 | |
| 		 * that we don't "leak" the space.
 | |
| 		 */
 | |
| 		zfs_unlinked_drain(zfsvfs);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Most of the time zfs_suspend_fs is used for changing the contents
 | |
| 	 * of the underlying dataset. ZFS rollback and receive operations
 | |
| 	 * might create files for which negative dentries are present in
 | |
| 	 * the cache. Since walking the dcache would require a lot of GPL-only
 | |
| 	 * code duplication, it's much easier on these rather rare occasions
 | |
| 	 * just to flush the whole dcache for the given dataset/filesystem.
 | |
| 	 */
 | |
| 	shrink_dcache_sb(zfsvfs->z_sb);
 | |
| 
 | |
| bail:
 | |
| 	if (err != 0)
 | |
| 		zfsvfs->z_unmounted = B_TRUE;
 | |
| 
 | |
| 	/* release the VFS ops */
 | |
| 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
 | |
| 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
 | |
| 
 | |
| 	if (err != 0) {
 | |
| 		/*
 | |
| 		 * Since we couldn't setup the sa framework, try to force
 | |
| 		 * unmount this file system.
 | |
| 		 */
 | |
| 		if (zfsvfs->z_os)
 | |
| 			(void) zfs_umount(zfsvfs->z_sb);
 | |
| 	}
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release VOPs and unmount a suspended filesystem.
 | |
|  */
 | |
| int
 | |
| zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
 | |
| {
 | |
| 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
 | |
| 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
 | |
| 
 | |
| 	/*
 | |
| 	 * We already own this, so just hold and rele it to update the
 | |
| 	 * objset_t, as the one we had before may have been evicted.
 | |
| 	 */
 | |
| 	objset_t *os;
 | |
| 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
 | |
| 	VERIFY(dsl_dataset_long_held(ds));
 | |
| 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
 | |
| 	dsl_pool_config_enter(dp, FTAG);
 | |
| 	VERIFY0(dmu_objset_from_ds(ds, &os));
 | |
| 	dsl_pool_config_exit(dp, FTAG);
 | |
| 	zfsvfs->z_os = os;
 | |
| 
 | |
| 	/* release the VOPs */
 | |
| 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
 | |
| 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to force unmount this file system.
 | |
| 	 */
 | |
| 	(void) zfs_umount(zfsvfs->z_sb);
 | |
| 	zfsvfs->z_unmounted = B_TRUE;
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Automounted snapshots rely on periodic revalidation
 | |
|  * to defer snapshots from being automatically unmounted.
 | |
|  */
 | |
| 
 | |
| inline void
 | |
| zfs_exit_fs(zfsvfs_t *zfsvfs)
 | |
| {
 | |
| 	if (!zfsvfs->z_issnap)
 | |
| 		return;
 | |
| 
 | |
| 	if (time_after(jiffies, zfsvfs->z_snap_defer_time +
 | |
| 	    MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
 | |
| 		zfsvfs->z_snap_defer_time = jiffies;
 | |
| 		zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
 | |
| 		    dmu_objset_id(zfsvfs->z_os),
 | |
| 		    zfs_expire_snapshot);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
 | |
| {
 | |
| 	int error;
 | |
| 	objset_t *os = zfsvfs->z_os;
 | |
| 	dmu_tx_t *tx;
 | |
| 
 | |
| 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if (newvers < zfsvfs->z_version)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if (zfs_spa_version_map(newvers) >
 | |
| 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
 | |
| 		return (SET_ERROR(ENOTSUP));
 | |
| 
 | |
| 	tx = dmu_tx_create(os);
 | |
| 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
 | |
| 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
 | |
| 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
 | |
| 		    ZFS_SA_ATTRS);
 | |
| 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
 | |
| 	}
 | |
| 	error = dmu_tx_assign(tx, TXG_WAIT);
 | |
| 	if (error) {
 | |
| 		dmu_tx_abort(tx);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
 | |
| 	    8, 1, &newvers, tx);
 | |
| 
 | |
| 	if (error) {
 | |
| 		dmu_tx_commit(tx);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
 | |
| 		uint64_t sa_obj;
 | |
| 
 | |
| 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
 | |
| 		    SPA_VERSION_SA);
 | |
| 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
 | |
| 		    DMU_OT_NONE, 0, tx);
 | |
| 
 | |
| 		error = zap_add(os, MASTER_NODE_OBJ,
 | |
| 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
 | |
| 		ASSERT0(error);
 | |
| 
 | |
| 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
 | |
| 		sa_register_update_callback(os, zfs_sa_upgrade);
 | |
| 	}
 | |
| 
 | |
| 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
 | |
| 	    "from %llu to %llu", zfsvfs->z_version, newvers);
 | |
| 
 | |
| 	dmu_tx_commit(tx);
 | |
| 
 | |
| 	zfsvfs->z_version = newvers;
 | |
| 	os->os_version = newvers;
 | |
| 
 | |
| 	zfs_set_fuid_feature(zfsvfs);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a property stored within the master node.
 | |
|  */
 | |
| int
 | |
| zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
 | |
| {
 | |
| 	uint64_t *cached_copy = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out where in the objset_t the cached copy would live, if it
 | |
| 	 * is available for the requested property.
 | |
| 	 */
 | |
| 	if (os != NULL) {
 | |
| 		switch (prop) {
 | |
| 		case ZFS_PROP_VERSION:
 | |
| 			cached_copy = &os->os_version;
 | |
| 			break;
 | |
| 		case ZFS_PROP_NORMALIZE:
 | |
| 			cached_copy = &os->os_normalization;
 | |
| 			break;
 | |
| 		case ZFS_PROP_UTF8ONLY:
 | |
| 			cached_copy = &os->os_utf8only;
 | |
| 			break;
 | |
| 		case ZFS_PROP_CASE:
 | |
| 			cached_copy = &os->os_casesensitivity;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
 | |
| 		*value = *cached_copy;
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the property wasn't cached, look up the file system's value for
 | |
| 	 * the property. For the version property, we look up a slightly
 | |
| 	 * different string.
 | |
| 	 */
 | |
| 	const char *pname;
 | |
| 	int error = ENOENT;
 | |
| 	if (prop == ZFS_PROP_VERSION)
 | |
| 		pname = ZPL_VERSION_STR;
 | |
| 	else
 | |
| 		pname = zfs_prop_to_name(prop);
 | |
| 
 | |
| 	if (os != NULL) {
 | |
| 		ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
 | |
| 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
 | |
| 	}
 | |
| 
 | |
| 	if (error == ENOENT) {
 | |
| 		/* No value set, use the default value */
 | |
| 		switch (prop) {
 | |
| 		case ZFS_PROP_VERSION:
 | |
| 			*value = ZPL_VERSION;
 | |
| 			break;
 | |
| 		case ZFS_PROP_NORMALIZE:
 | |
| 		case ZFS_PROP_UTF8ONLY:
 | |
| 			*value = 0;
 | |
| 			break;
 | |
| 		case ZFS_PROP_CASE:
 | |
| 			*value = ZFS_CASE_SENSITIVE;
 | |
| 			break;
 | |
| 		case ZFS_PROP_ACLTYPE:
 | |
| 			*value = ZFS_ACLTYPE_OFF;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return (error);
 | |
| 		}
 | |
| 		error = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If one of the methods for getting the property value above worked,
 | |
| 	 * copy it into the objset_t's cache.
 | |
| 	 */
 | |
| 	if (error == 0 && cached_copy != NULL) {
 | |
| 		*cached_copy = *value;
 | |
| 	}
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if the corresponding vfs's unmounted flag is set.
 | |
|  * Otherwise return false.
 | |
|  * If this function returns true we know VFS unmount has been initiated.
 | |
|  */
 | |
| boolean_t
 | |
| zfs_get_vfs_flag_unmounted(objset_t *os)
 | |
| {
 | |
| 	zfsvfs_t *zfvp;
 | |
| 	boolean_t unmounted = B_FALSE;
 | |
| 
 | |
| 	ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
 | |
| 
 | |
| 	mutex_enter(&os->os_user_ptr_lock);
 | |
| 	zfvp = dmu_objset_get_user(os);
 | |
| 	if (zfvp != NULL && zfvp->z_unmounted)
 | |
| 		unmounted = B_TRUE;
 | |
| 	mutex_exit(&os->os_user_ptr_lock);
 | |
| 
 | |
| 	return (unmounted);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfsvfs_update_fromname(const char *oldname, const char *newname)
 | |
| {
 | |
| 	/*
 | |
| 	 * We don't need to do anything here, the devname is always current by
 | |
| 	 * virtue of zfsvfs->z_sb->s_op->show_devname.
 | |
| 	 */
 | |
| 	(void) oldname, (void) newname;
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_init(void)
 | |
| {
 | |
| 	zfsctl_init();
 | |
| 	zfs_znode_init();
 | |
| 	dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
 | |
| 	register_filesystem(&zpl_fs_type);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_fini(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * we don't use outstanding because zpl_posix_acl_free might add more.
 | |
| 	 */
 | |
| 	taskq_wait(system_delay_taskq);
 | |
| 	taskq_wait(system_taskq);
 | |
| 	unregister_filesystem(&zpl_fs_type);
 | |
| 	zfs_znode_fini();
 | |
| 	zfsctl_fini();
 | |
| }
 | |
| 
 | |
| #if defined(_KERNEL)
 | |
| EXPORT_SYMBOL(zfs_suspend_fs);
 | |
| EXPORT_SYMBOL(zfs_resume_fs);
 | |
| EXPORT_SYMBOL(zfs_set_version);
 | |
| EXPORT_SYMBOL(zfsvfs_create);
 | |
| EXPORT_SYMBOL(zfsvfs_free);
 | |
| EXPORT_SYMBOL(zfs_is_readonly);
 | |
| EXPORT_SYMBOL(zfs_domount);
 | |
| EXPORT_SYMBOL(zfs_preumount);
 | |
| EXPORT_SYMBOL(zfs_umount);
 | |
| EXPORT_SYMBOL(zfs_remount);
 | |
| EXPORT_SYMBOL(zfs_statvfs);
 | |
| EXPORT_SYMBOL(zfs_vget);
 | |
| EXPORT_SYMBOL(zfs_prune);
 | |
| #endif
 |