mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-31 05:50:49 +00:00 
			
		
		
		
	 18168da727
			
		
	
	
		18168da727
		
			
		
	
	
	
	
		
			
			Evaluated every variable that lives in .data (and globals in .rodata) in the kernel modules, and constified/eliminated/localised them appropriately. This means that all read-only data is now actually read-only data, and, if possible, at file scope. A lot of previously- global-symbols became inlinable (and inlined!) constants. Probably not in a big Wowee Performance Moment, but hey. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Closes #12899
		
			
				
	
	
		
			1150 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1150 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or http://www.opensolaris.org/os/licensing.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
 | |
|  * Copyright (c) 2019 by Delphix. All rights reserved.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * See abd.c for a general overview of the arc buffered data (ABD).
 | |
|  *
 | |
|  * Linear buffers act exactly like normal buffers and are always mapped into the
 | |
|  * kernel's virtual memory space, while scattered ABD data chunks are allocated
 | |
|  * as physical pages and then mapped in only while they are actually being
 | |
|  * accessed through one of the abd_* library functions. Using scattered ABDs
 | |
|  * provides several benefits:
 | |
|  *
 | |
|  *  (1) They avoid use of kmem_*, preventing performance problems where running
 | |
|  *      kmem_reap on very large memory systems never finishes and causes
 | |
|  *      constant TLB shootdowns.
 | |
|  *
 | |
|  *  (2) Fragmentation is less of an issue since when we are at the limit of
 | |
|  *      allocatable space, we won't have to search around for a long free
 | |
|  *      hole in the VA space for large ARC allocations. Each chunk is mapped in
 | |
|  *      individually, so even if we are using HIGHMEM (see next point) we
 | |
|  *      wouldn't need to worry about finding a contiguous address range.
 | |
|  *
 | |
|  *  (3) If we are not using HIGHMEM, then all physical memory is always
 | |
|  *      mapped into the kernel's address space, so we also avoid the map /
 | |
|  *      unmap costs on each ABD access.
 | |
|  *
 | |
|  * If we are not using HIGHMEM, scattered buffers which have only one chunk
 | |
|  * can be treated as linear buffers, because they are contiguous in the
 | |
|  * kernel's virtual address space.  See abd_alloc_chunks() for details.
 | |
|  */
 | |
| 
 | |
| #include <sys/abd_impl.h>
 | |
| #include <sys/param.h>
 | |
| #include <sys/zio.h>
 | |
| #include <sys/arc.h>
 | |
| #include <sys/zfs_context.h>
 | |
| #include <sys/zfs_znode.h>
 | |
| #ifdef _KERNEL
 | |
| #include <linux/kmap_compat.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #else
 | |
| #define	MAX_ORDER	1
 | |
| #endif
 | |
| 
 | |
| typedef struct abd_stats {
 | |
| 	kstat_named_t abdstat_struct_size;
 | |
| 	kstat_named_t abdstat_linear_cnt;
 | |
| 	kstat_named_t abdstat_linear_data_size;
 | |
| 	kstat_named_t abdstat_scatter_cnt;
 | |
| 	kstat_named_t abdstat_scatter_data_size;
 | |
| 	kstat_named_t abdstat_scatter_chunk_waste;
 | |
| 	kstat_named_t abdstat_scatter_orders[MAX_ORDER];
 | |
| 	kstat_named_t abdstat_scatter_page_multi_chunk;
 | |
| 	kstat_named_t abdstat_scatter_page_multi_zone;
 | |
| 	kstat_named_t abdstat_scatter_page_alloc_retry;
 | |
| 	kstat_named_t abdstat_scatter_sg_table_retry;
 | |
| } abd_stats_t;
 | |
| 
 | |
| static abd_stats_t abd_stats = {
 | |
| 	/* Amount of memory occupied by all of the abd_t struct allocations */
 | |
| 	{ "struct_size",			KSTAT_DATA_UINT64 },
 | |
| 	/*
 | |
| 	 * The number of linear ABDs which are currently allocated, excluding
 | |
| 	 * ABDs which don't own their data (for instance the ones which were
 | |
| 	 * allocated through abd_get_offset() and abd_get_from_buf()). If an
 | |
| 	 * ABD takes ownership of its buf then it will become tracked.
 | |
| 	 */
 | |
| 	{ "linear_cnt",				KSTAT_DATA_UINT64 },
 | |
| 	/* Amount of data stored in all linear ABDs tracked by linear_cnt */
 | |
| 	{ "linear_data_size",			KSTAT_DATA_UINT64 },
 | |
| 	/*
 | |
| 	 * The number of scatter ABDs which are currently allocated, excluding
 | |
| 	 * ABDs which don't own their data (for instance the ones which were
 | |
| 	 * allocated through abd_get_offset()).
 | |
| 	 */
 | |
| 	{ "scatter_cnt",			KSTAT_DATA_UINT64 },
 | |
| 	/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
 | |
| 	{ "scatter_data_size",			KSTAT_DATA_UINT64 },
 | |
| 	/*
 | |
| 	 * The amount of space wasted at the end of the last chunk across all
 | |
| 	 * scatter ABDs tracked by scatter_cnt.
 | |
| 	 */
 | |
| 	{ "scatter_chunk_waste",		KSTAT_DATA_UINT64 },
 | |
| 	/*
 | |
| 	 * The number of compound allocations of a given order.  These
 | |
| 	 * allocations are spread over all currently allocated ABDs, and
 | |
| 	 * act as a measure of memory fragmentation.
 | |
| 	 */
 | |
| 	{ { "scatter_order_N",			KSTAT_DATA_UINT64 } },
 | |
| 	/*
 | |
| 	 * The number of scatter ABDs which contain multiple chunks.
 | |
| 	 * ABDs are preferentially allocated from the minimum number of
 | |
| 	 * contiguous multi-page chunks, a single chunk is optimal.
 | |
| 	 */
 | |
| 	{ "scatter_page_multi_chunk",		KSTAT_DATA_UINT64 },
 | |
| 	/*
 | |
| 	 * The number of scatter ABDs which are split across memory zones.
 | |
| 	 * ABDs are preferentially allocated using pages from a single zone.
 | |
| 	 */
 | |
| 	{ "scatter_page_multi_zone",		KSTAT_DATA_UINT64 },
 | |
| 	/*
 | |
| 	 *  The total number of retries encountered when attempting to
 | |
| 	 *  allocate the pages to populate the scatter ABD.
 | |
| 	 */
 | |
| 	{ "scatter_page_alloc_retry",		KSTAT_DATA_UINT64 },
 | |
| 	/*
 | |
| 	 *  The total number of retries encountered when attempting to
 | |
| 	 *  allocate the sg table for an ABD.
 | |
| 	 */
 | |
| 	{ "scatter_sg_table_retry",		KSTAT_DATA_UINT64 },
 | |
| };
 | |
| 
 | |
| struct {
 | |
| 	wmsum_t abdstat_struct_size;
 | |
| 	wmsum_t abdstat_linear_cnt;
 | |
| 	wmsum_t abdstat_linear_data_size;
 | |
| 	wmsum_t abdstat_scatter_cnt;
 | |
| 	wmsum_t abdstat_scatter_data_size;
 | |
| 	wmsum_t abdstat_scatter_chunk_waste;
 | |
| 	wmsum_t abdstat_scatter_orders[MAX_ORDER];
 | |
| 	wmsum_t abdstat_scatter_page_multi_chunk;
 | |
| 	wmsum_t abdstat_scatter_page_multi_zone;
 | |
| 	wmsum_t abdstat_scatter_page_alloc_retry;
 | |
| 	wmsum_t abdstat_scatter_sg_table_retry;
 | |
| } abd_sums;
 | |
| 
 | |
| #define	abd_for_each_sg(abd, sg, n, i)	\
 | |
| 	for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
 | |
| 
 | |
| /*
 | |
|  * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
 | |
|  * ABD's.  Smaller allocations will use linear ABD's which uses
 | |
|  * zio_[data_]buf_alloc().
 | |
|  *
 | |
|  * Scatter ABD's use at least one page each, so sub-page allocations waste
 | |
|  * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
 | |
|  * half of each page).  Using linear ABD's for small allocations means that
 | |
|  * they will be put on slabs which contain many allocations.  This can
 | |
|  * improve memory efficiency, but it also makes it much harder for ARC
 | |
|  * evictions to actually free pages, because all the buffers on one slab need
 | |
|  * to be freed in order for the slab (and underlying pages) to be freed.
 | |
|  * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
 | |
|  * possible for them to actually waste more memory than scatter (one page per
 | |
|  * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
 | |
|  *
 | |
|  * Spill blocks are typically 512B and are heavily used on systems running
 | |
|  * selinux with the default dnode size and the `xattr=sa` property set.
 | |
|  *
 | |
|  * By default we use linear allocations for 512B and 1KB, and scatter
 | |
|  * allocations for larger (1.5KB and up).
 | |
|  */
 | |
| static int zfs_abd_scatter_min_size = 512 * 3;
 | |
| 
 | |
| /*
 | |
|  * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
 | |
|  * just a single zero'd page. This allows us to conserve memory by
 | |
|  * only using a single zero page for the scatterlist.
 | |
|  */
 | |
| abd_t *abd_zero_scatter = NULL;
 | |
| 
 | |
| struct page;
 | |
| /*
 | |
|  * abd_zero_page we will be an allocated zero'd PAGESIZE buffer, which is
 | |
|  * assigned to set each of the pages of abd_zero_scatter.
 | |
|  */
 | |
| static struct page *abd_zero_page = NULL;
 | |
| 
 | |
| static kmem_cache_t *abd_cache = NULL;
 | |
| static kstat_t *abd_ksp;
 | |
| 
 | |
| static uint_t
 | |
| abd_chunkcnt_for_bytes(size_t size)
 | |
| {
 | |
| 	return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
 | |
| }
 | |
| 
 | |
| abd_t *
 | |
| abd_alloc_struct_impl(size_t size)
 | |
| {
 | |
| 	/*
 | |
| 	 * In Linux we do not use the size passed in during ABD
 | |
| 	 * allocation, so we just ignore it.
 | |
| 	 */
 | |
| 	(void) size;
 | |
| 	abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
 | |
| 	ASSERT3P(abd, !=, NULL);
 | |
| 	ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
 | |
| 
 | |
| 	return (abd);
 | |
| }
 | |
| 
 | |
| void
 | |
| abd_free_struct_impl(abd_t *abd)
 | |
| {
 | |
| 	kmem_cache_free(abd_cache, abd);
 | |
| 	ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
 | |
| }
 | |
| 
 | |
| #ifdef _KERNEL
 | |
| static unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1;
 | |
| 
 | |
| /*
 | |
|  * Mark zfs data pages so they can be excluded from kernel crash dumps
 | |
|  */
 | |
| #ifdef _LP64
 | |
| #define	ABD_FILE_CACHE_PAGE	0x2F5ABDF11ECAC4E
 | |
| 
 | |
| static inline void
 | |
| abd_mark_zfs_page(struct page *page)
 | |
| {
 | |
| 	get_page(page);
 | |
| 	SetPagePrivate(page);
 | |
| 	set_page_private(page, ABD_FILE_CACHE_PAGE);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| abd_unmark_zfs_page(struct page *page)
 | |
| {
 | |
| 	set_page_private(page, 0UL);
 | |
| 	ClearPagePrivate(page);
 | |
| 	put_page(page);
 | |
| }
 | |
| #else
 | |
| #define	abd_mark_zfs_page(page)
 | |
| #define	abd_unmark_zfs_page(page)
 | |
| #endif /* _LP64 */
 | |
| 
 | |
| #ifndef CONFIG_HIGHMEM
 | |
| 
 | |
| #ifndef __GFP_RECLAIM
 | |
| #define	__GFP_RECLAIM		__GFP_WAIT
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The goal is to minimize fragmentation by preferentially populating ABDs
 | |
|  * with higher order compound pages from a single zone.  Allocation size is
 | |
|  * progressively decreased until it can be satisfied without performing
 | |
|  * reclaim or compaction.  When necessary this function will degenerate to
 | |
|  * allocating individual pages and allowing reclaim to satisfy allocations.
 | |
|  */
 | |
| void
 | |
| abd_alloc_chunks(abd_t *abd, size_t size)
 | |
| {
 | |
| 	struct list_head pages;
 | |
| 	struct sg_table table;
 | |
| 	struct scatterlist *sg;
 | |
| 	struct page *page, *tmp_page = NULL;
 | |
| 	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
 | |
| 	gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
 | |
| 	int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1);
 | |
| 	int nr_pages = abd_chunkcnt_for_bytes(size);
 | |
| 	int chunks = 0, zones = 0;
 | |
| 	size_t remaining_size;
 | |
| 	int nid = NUMA_NO_NODE;
 | |
| 	int alloc_pages = 0;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&pages);
 | |
| 
 | |
| 	while (alloc_pages < nr_pages) {
 | |
| 		unsigned chunk_pages;
 | |
| 		int order;
 | |
| 
 | |
| 		order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
 | |
| 		chunk_pages = (1U << order);
 | |
| 
 | |
| 		page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
 | |
| 		if (page == NULL) {
 | |
| 			if (order == 0) {
 | |
| 				ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
 | |
| 				schedule_timeout_interruptible(1);
 | |
| 			} else {
 | |
| 				max_order = MAX(0, order - 1);
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		list_add_tail(&page->lru, &pages);
 | |
| 
 | |
| 		if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
 | |
| 			zones++;
 | |
| 
 | |
| 		nid = page_to_nid(page);
 | |
| 		ABDSTAT_BUMP(abdstat_scatter_orders[order]);
 | |
| 		chunks++;
 | |
| 		alloc_pages += chunk_pages;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT3S(alloc_pages, ==, nr_pages);
 | |
| 
 | |
| 	while (sg_alloc_table(&table, chunks, gfp)) {
 | |
| 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
 | |
| 		schedule_timeout_interruptible(1);
 | |
| 	}
 | |
| 
 | |
| 	sg = table.sgl;
 | |
| 	remaining_size = size;
 | |
| 	list_for_each_entry_safe(page, tmp_page, &pages, lru) {
 | |
| 		size_t sg_size = MIN(PAGESIZE << compound_order(page),
 | |
| 		    remaining_size);
 | |
| 		sg_set_page(sg, page, sg_size, 0);
 | |
| 		abd_mark_zfs_page(page);
 | |
| 		remaining_size -= sg_size;
 | |
| 
 | |
| 		sg = sg_next(sg);
 | |
| 		list_del(&page->lru);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * These conditions ensure that a possible transformation to a linear
 | |
| 	 * ABD would be valid.
 | |
| 	 */
 | |
| 	ASSERT(!PageHighMem(sg_page(table.sgl)));
 | |
| 	ASSERT0(ABD_SCATTER(abd).abd_offset);
 | |
| 
 | |
| 	if (table.nents == 1) {
 | |
| 		/*
 | |
| 		 * Since there is only one entry, this ABD can be represented
 | |
| 		 * as a linear buffer.  All single-page (4K) ABD's can be
 | |
| 		 * represented this way.  Some multi-page ABD's can also be
 | |
| 		 * represented this way, if we were able to allocate a single
 | |
| 		 * "chunk" (higher-order "page" which represents a power-of-2
 | |
| 		 * series of physically-contiguous pages).  This is often the
 | |
| 		 * case for 2-page (8K) ABD's.
 | |
| 		 *
 | |
| 		 * Representing a single-entry scatter ABD as a linear ABD
 | |
| 		 * has the performance advantage of avoiding the copy (and
 | |
| 		 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
 | |
| 		 * A performance increase of around 5% has been observed for
 | |
| 		 * ARC-cached reads (of small blocks which can take advantage
 | |
| 		 * of this).
 | |
| 		 *
 | |
| 		 * Note that this optimization is only possible because the
 | |
| 		 * pages are always mapped into the kernel's address space.
 | |
| 		 * This is not the case for highmem pages, so the
 | |
| 		 * optimization can not be made there.
 | |
| 		 */
 | |
| 		abd->abd_flags |= ABD_FLAG_LINEAR;
 | |
| 		abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
 | |
| 		abd->abd_u.abd_linear.abd_sgl = table.sgl;
 | |
| 		ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
 | |
| 	} else if (table.nents > 1) {
 | |
| 		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
 | |
| 		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
 | |
| 
 | |
| 		if (zones) {
 | |
| 			ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
 | |
| 			abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
 | |
| 		}
 | |
| 
 | |
| 		ABD_SCATTER(abd).abd_sgl = table.sgl;
 | |
| 		ABD_SCATTER(abd).abd_nents = table.nents;
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| 
 | |
| /*
 | |
|  * Allocate N individual pages to construct a scatter ABD.  This function
 | |
|  * makes no attempt to request contiguous pages and requires the minimal
 | |
|  * number of kernel interfaces.  It's designed for maximum compatibility.
 | |
|  */
 | |
| void
 | |
| abd_alloc_chunks(abd_t *abd, size_t size)
 | |
| {
 | |
| 	struct scatterlist *sg = NULL;
 | |
| 	struct sg_table table;
 | |
| 	struct page *page;
 | |
| 	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
 | |
| 	int nr_pages = abd_chunkcnt_for_bytes(size);
 | |
| 	int i = 0;
 | |
| 
 | |
| 	while (sg_alloc_table(&table, nr_pages, gfp)) {
 | |
| 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
 | |
| 		schedule_timeout_interruptible(1);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT3U(table.nents, ==, nr_pages);
 | |
| 	ABD_SCATTER(abd).abd_sgl = table.sgl;
 | |
| 	ABD_SCATTER(abd).abd_nents = nr_pages;
 | |
| 
 | |
| 	abd_for_each_sg(abd, sg, nr_pages, i) {
 | |
| 		while ((page = __page_cache_alloc(gfp)) == NULL) {
 | |
| 			ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
 | |
| 			schedule_timeout_interruptible(1);
 | |
| 		}
 | |
| 
 | |
| 		ABDSTAT_BUMP(abdstat_scatter_orders[0]);
 | |
| 		sg_set_page(sg, page, PAGESIZE, 0);
 | |
| 		abd_mark_zfs_page(page);
 | |
| 	}
 | |
| 
 | |
| 	if (nr_pages > 1) {
 | |
| 		ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
 | |
| 		abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
 | |
| 	}
 | |
| }
 | |
| #endif /* !CONFIG_HIGHMEM */
 | |
| 
 | |
| /*
 | |
|  * This must be called if any of the sg_table allocation functions
 | |
|  * are called.
 | |
|  */
 | |
| static void
 | |
| abd_free_sg_table(abd_t *abd)
 | |
| {
 | |
| 	struct sg_table table;
 | |
| 
 | |
| 	table.sgl = ABD_SCATTER(abd).abd_sgl;
 | |
| 	table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
 | |
| 	sg_free_table(&table);
 | |
| }
 | |
| 
 | |
| void
 | |
| abd_free_chunks(abd_t *abd)
 | |
| {
 | |
| 	struct scatterlist *sg = NULL;
 | |
| 	struct page *page;
 | |
| 	int nr_pages = ABD_SCATTER(abd).abd_nents;
 | |
| 	int order, i = 0;
 | |
| 
 | |
| 	if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
 | |
| 		ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
 | |
| 
 | |
| 	if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
 | |
| 		ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
 | |
| 
 | |
| 	abd_for_each_sg(abd, sg, nr_pages, i) {
 | |
| 		page = sg_page(sg);
 | |
| 		abd_unmark_zfs_page(page);
 | |
| 		order = compound_order(page);
 | |
| 		__free_pages(page, order);
 | |
| 		ASSERT3U(sg->length, <=, PAGE_SIZE << order);
 | |
| 		ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
 | |
| 	}
 | |
| 	abd_free_sg_table(abd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
 | |
|  * the scatterlist will be set to the zero'd out buffer abd_zero_page.
 | |
|  */
 | |
| static void
 | |
| abd_alloc_zero_scatter(void)
 | |
| {
 | |
| 	struct scatterlist *sg = NULL;
 | |
| 	struct sg_table table;
 | |
| 	gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
 | |
| 	gfp_t gfp_zero_page = gfp | __GFP_ZERO;
 | |
| 	int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
 | |
| 	int i = 0;
 | |
| 
 | |
| 	while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
 | |
| 		ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
 | |
| 		schedule_timeout_interruptible(1);
 | |
| 	}
 | |
| 	abd_mark_zfs_page(abd_zero_page);
 | |
| 
 | |
| 	while (sg_alloc_table(&table, nr_pages, gfp)) {
 | |
| 		ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
 | |
| 		schedule_timeout_interruptible(1);
 | |
| 	}
 | |
| 	ASSERT3U(table.nents, ==, nr_pages);
 | |
| 
 | |
| 	abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
 | |
| 	abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
 | |
| 	ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
 | |
| 	ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
 | |
| 	ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
 | |
| 	abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
 | |
| 	abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
 | |
| 
 | |
| 	abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
 | |
| 		sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
 | |
| 	}
 | |
| 
 | |
| 	ABDSTAT_BUMP(abdstat_scatter_cnt);
 | |
| 	ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
 | |
| 	ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
 | |
| }
 | |
| 
 | |
| #else /* _KERNEL */
 | |
| 
 | |
| #ifndef PAGE_SHIFT
 | |
| #define	PAGE_SHIFT (highbit64(PAGESIZE)-1)
 | |
| #endif
 | |
| 
 | |
| #define	zfs_kmap_atomic(chunk)		((void *)chunk)
 | |
| #define	zfs_kunmap_atomic(addr)		do { (void)(addr); } while (0)
 | |
| #define	local_irq_save(flags)		do { (void)(flags); } while (0)
 | |
| #define	local_irq_restore(flags)	do { (void)(flags); } while (0)
 | |
| #define	nth_page(pg, i) \
 | |
| 	((struct page *)((void *)(pg) + (i) * PAGESIZE))
 | |
| 
 | |
| struct scatterlist {
 | |
| 	struct page *page;
 | |
| 	int length;
 | |
| 	int end;
 | |
| };
 | |
| 
 | |
| static void
 | |
| sg_init_table(struct scatterlist *sg, int nr)
 | |
| {
 | |
| 	memset(sg, 0, nr * sizeof (struct scatterlist));
 | |
| 	sg[nr - 1].end = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This must be called if any of the sg_table allocation functions
 | |
|  * are called.
 | |
|  */
 | |
| static void
 | |
| abd_free_sg_table(abd_t *abd)
 | |
| {
 | |
| 	int nents = ABD_SCATTER(abd).abd_nents;
 | |
| 	vmem_free(ABD_SCATTER(abd).abd_sgl,
 | |
| 	    nents * sizeof (struct scatterlist));
 | |
| }
 | |
| 
 | |
| #define	for_each_sg(sgl, sg, nr, i)	\
 | |
| 	for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))
 | |
| 
 | |
| static inline void
 | |
| sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
 | |
|     unsigned int offset)
 | |
| {
 | |
| 	/* currently we don't use offset */
 | |
| 	ASSERT(offset == 0);
 | |
| 	sg->page = page;
 | |
| 	sg->length = len;
 | |
| }
 | |
| 
 | |
| static inline struct page *
 | |
| sg_page(struct scatterlist *sg)
 | |
| {
 | |
| 	return (sg->page);
 | |
| }
 | |
| 
 | |
| static inline struct scatterlist *
 | |
| sg_next(struct scatterlist *sg)
 | |
| {
 | |
| 	if (sg->end)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	return (sg + 1);
 | |
| }
 | |
| 
 | |
| void
 | |
| abd_alloc_chunks(abd_t *abd, size_t size)
 | |
| {
 | |
| 	unsigned nr_pages = abd_chunkcnt_for_bytes(size);
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
 | |
| 	    sizeof (struct scatterlist), KM_SLEEP);
 | |
| 	sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);
 | |
| 
 | |
| 	abd_for_each_sg(abd, sg, nr_pages, i) {
 | |
| 		struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
 | |
| 		sg_set_page(sg, p, PAGESIZE, 0);
 | |
| 	}
 | |
| 	ABD_SCATTER(abd).abd_nents = nr_pages;
 | |
| }
 | |
| 
 | |
| void
 | |
| abd_free_chunks(abd_t *abd)
 | |
| {
 | |
| 	int i, n = ABD_SCATTER(abd).abd_nents;
 | |
| 	struct scatterlist *sg;
 | |
| 
 | |
| 	abd_for_each_sg(abd, sg, n, i) {
 | |
| 		for (int j = 0; j < sg->length; j += PAGESIZE) {
 | |
| 			struct page *p = nth_page(sg_page(sg), j >> PAGE_SHIFT);
 | |
| 			umem_free(p, PAGESIZE);
 | |
| 		}
 | |
| 	}
 | |
| 	abd_free_sg_table(abd);
 | |
| }
 | |
| 
 | |
| static void
 | |
| abd_alloc_zero_scatter(void)
 | |
| {
 | |
| 	unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
 | |
| 	memset(abd_zero_page, 0, PAGESIZE);
 | |
| 	abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
 | |
| 	abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
 | |
| 	abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
 | |
| 	ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
 | |
| 	ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
 | |
| 	abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
 | |
| 	zfs_refcount_create(&abd_zero_scatter->abd_children);
 | |
| 	ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
 | |
| 	    sizeof (struct scatterlist), KM_SLEEP);
 | |
| 
 | |
| 	sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);
 | |
| 
 | |
| 	abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
 | |
| 		sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
 | |
| 	}
 | |
| 
 | |
| 	ABDSTAT_BUMP(abdstat_scatter_cnt);
 | |
| 	ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
 | |
| 	ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
 | |
| }
 | |
| 
 | |
| #endif /* _KERNEL */
 | |
| 
 | |
| boolean_t
 | |
| abd_size_alloc_linear(size_t size)
 | |
| {
 | |
| 	return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size);
 | |
| }
 | |
| 
 | |
| void
 | |
| abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
 | |
| {
 | |
| 	ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
 | |
| 	int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
 | |
| 	if (op == ABDSTAT_INCR) {
 | |
| 		ABDSTAT_BUMP(abdstat_scatter_cnt);
 | |
| 		ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
 | |
| 		ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
 | |
| 		arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
 | |
| 	} else {
 | |
| 		ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
 | |
| 		ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
 | |
| 		ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
 | |
| 		arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
 | |
| {
 | |
| 	ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
 | |
| 	if (op == ABDSTAT_INCR) {
 | |
| 		ABDSTAT_BUMP(abdstat_linear_cnt);
 | |
| 		ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
 | |
| 	} else {
 | |
| 		ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
 | |
| 		ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| abd_verify_scatter(abd_t *abd)
 | |
| {
 | |
| 	size_t n;
 | |
| 	int i = 0;
 | |
| 	struct scatterlist *sg = NULL;
 | |
| 
 | |
| 	ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
 | |
| 	ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
 | |
| 	    ABD_SCATTER(abd).abd_sgl->length);
 | |
| 	n = ABD_SCATTER(abd).abd_nents;
 | |
| 	abd_for_each_sg(abd, sg, n, i) {
 | |
| 		ASSERT3P(sg_page(sg), !=, NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| abd_free_zero_scatter(void)
 | |
| {
 | |
| 	ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
 | |
| 	ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
 | |
| 	ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
 | |
| 
 | |
| 	abd_free_sg_table(abd_zero_scatter);
 | |
| 	abd_free_struct(abd_zero_scatter);
 | |
| 	abd_zero_scatter = NULL;
 | |
| 	ASSERT3P(abd_zero_page, !=, NULL);
 | |
| #if defined(_KERNEL)
 | |
| 	abd_unmark_zfs_page(abd_zero_page);
 | |
| 	__free_page(abd_zero_page);
 | |
| #else
 | |
| 	umem_free(abd_zero_page, PAGESIZE);
 | |
| #endif /* _KERNEL */
 | |
| }
 | |
| 
 | |
| static int
 | |
| abd_kstats_update(kstat_t *ksp, int rw)
 | |
| {
 | |
| 	abd_stats_t *as = ksp->ks_data;
 | |
| 
 | |
| 	if (rw == KSTAT_WRITE)
 | |
| 		return (EACCES);
 | |
| 	as->abdstat_struct_size.value.ui64 =
 | |
| 	    wmsum_value(&abd_sums.abdstat_struct_size);
 | |
| 	as->abdstat_linear_cnt.value.ui64 =
 | |
| 	    wmsum_value(&abd_sums.abdstat_linear_cnt);
 | |
| 	as->abdstat_linear_data_size.value.ui64 =
 | |
| 	    wmsum_value(&abd_sums.abdstat_linear_data_size);
 | |
| 	as->abdstat_scatter_cnt.value.ui64 =
 | |
| 	    wmsum_value(&abd_sums.abdstat_scatter_cnt);
 | |
| 	as->abdstat_scatter_data_size.value.ui64 =
 | |
| 	    wmsum_value(&abd_sums.abdstat_scatter_data_size);
 | |
| 	as->abdstat_scatter_chunk_waste.value.ui64 =
 | |
| 	    wmsum_value(&abd_sums.abdstat_scatter_chunk_waste);
 | |
| 	for (int i = 0; i < MAX_ORDER; i++) {
 | |
| 		as->abdstat_scatter_orders[i].value.ui64 =
 | |
| 		    wmsum_value(&abd_sums.abdstat_scatter_orders[i]);
 | |
| 	}
 | |
| 	as->abdstat_scatter_page_multi_chunk.value.ui64 =
 | |
| 	    wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk);
 | |
| 	as->abdstat_scatter_page_multi_zone.value.ui64 =
 | |
| 	    wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone);
 | |
| 	as->abdstat_scatter_page_alloc_retry.value.ui64 =
 | |
| 	    wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry);
 | |
| 	as->abdstat_scatter_sg_table_retry.value.ui64 =
 | |
| 	    wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| void
 | |
| abd_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
 | |
| 	    0, NULL, NULL, NULL, NULL, NULL, 0);
 | |
| 
 | |
| 	wmsum_init(&abd_sums.abdstat_struct_size, 0);
 | |
| 	wmsum_init(&abd_sums.abdstat_linear_cnt, 0);
 | |
| 	wmsum_init(&abd_sums.abdstat_linear_data_size, 0);
 | |
| 	wmsum_init(&abd_sums.abdstat_scatter_cnt, 0);
 | |
| 	wmsum_init(&abd_sums.abdstat_scatter_data_size, 0);
 | |
| 	wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0);
 | |
| 	for (i = 0; i < MAX_ORDER; i++)
 | |
| 		wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0);
 | |
| 	wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0);
 | |
| 	wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0);
 | |
| 	wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0);
 | |
| 	wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0);
 | |
| 
 | |
| 	abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
 | |
| 	    sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
 | |
| 	if (abd_ksp != NULL) {
 | |
| 		for (i = 0; i < MAX_ORDER; i++) {
 | |
| 			snprintf(abd_stats.abdstat_scatter_orders[i].name,
 | |
| 			    KSTAT_STRLEN, "scatter_order_%d", i);
 | |
| 			abd_stats.abdstat_scatter_orders[i].data_type =
 | |
| 			    KSTAT_DATA_UINT64;
 | |
| 		}
 | |
| 		abd_ksp->ks_data = &abd_stats;
 | |
| 		abd_ksp->ks_update = abd_kstats_update;
 | |
| 		kstat_install(abd_ksp);
 | |
| 	}
 | |
| 
 | |
| 	abd_alloc_zero_scatter();
 | |
| }
 | |
| 
 | |
| void
 | |
| abd_fini(void)
 | |
| {
 | |
| 	abd_free_zero_scatter();
 | |
| 
 | |
| 	if (abd_ksp != NULL) {
 | |
| 		kstat_delete(abd_ksp);
 | |
| 		abd_ksp = NULL;
 | |
| 	}
 | |
| 
 | |
| 	wmsum_fini(&abd_sums.abdstat_struct_size);
 | |
| 	wmsum_fini(&abd_sums.abdstat_linear_cnt);
 | |
| 	wmsum_fini(&abd_sums.abdstat_linear_data_size);
 | |
| 	wmsum_fini(&abd_sums.abdstat_scatter_cnt);
 | |
| 	wmsum_fini(&abd_sums.abdstat_scatter_data_size);
 | |
| 	wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste);
 | |
| 	for (int i = 0; i < MAX_ORDER; i++)
 | |
| 		wmsum_fini(&abd_sums.abdstat_scatter_orders[i]);
 | |
| 	wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk);
 | |
| 	wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone);
 | |
| 	wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry);
 | |
| 	wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry);
 | |
| 
 | |
| 	if (abd_cache) {
 | |
| 		kmem_cache_destroy(abd_cache);
 | |
| 		abd_cache = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| abd_free_linear_page(abd_t *abd)
 | |
| {
 | |
| 	/* Transform it back into a scatter ABD for freeing */
 | |
| 	struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
 | |
| 	abd->abd_flags &= ~ABD_FLAG_LINEAR;
 | |
| 	abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
 | |
| 	ABD_SCATTER(abd).abd_nents = 1;
 | |
| 	ABD_SCATTER(abd).abd_offset = 0;
 | |
| 	ABD_SCATTER(abd).abd_sgl = sg;
 | |
| 	abd_free_chunks(abd);
 | |
| 
 | |
| 	abd_update_scatter_stats(abd, ABDSTAT_DECR);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we're going to use this ABD for doing I/O using the block layer, the
 | |
|  * consumer of the ABD data doesn't care if it's scattered or not, and we don't
 | |
|  * plan to store this ABD in memory for a long period of time, we should
 | |
|  * allocate the ABD type that requires the least data copying to do the I/O.
 | |
|  *
 | |
|  * On Linux the optimal thing to do would be to use abd_get_offset() and
 | |
|  * construct a new ABD which shares the original pages thereby eliminating
 | |
|  * the copy.  But for the moment a new linear ABD is allocated until this
 | |
|  * performance optimization can be implemented.
 | |
|  */
 | |
| abd_t *
 | |
| abd_alloc_for_io(size_t size, boolean_t is_metadata)
 | |
| {
 | |
| 	return (abd_alloc(size, is_metadata));
 | |
| }
 | |
| 
 | |
| abd_t *
 | |
| abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off,
 | |
|     size_t size)
 | |
| {
 | |
| 	(void) size;
 | |
| 	int i = 0;
 | |
| 	struct scatterlist *sg = NULL;
 | |
| 
 | |
| 	abd_verify(sabd);
 | |
| 	ASSERT3U(off, <=, sabd->abd_size);
 | |
| 
 | |
| 	size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
 | |
| 
 | |
| 	if (abd == NULL)
 | |
| 		abd = abd_alloc_struct(0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Even if this buf is filesystem metadata, we only track that
 | |
| 	 * if we own the underlying data buffer, which is not true in
 | |
| 	 * this case. Therefore, we don't ever use ABD_FLAG_META here.
 | |
| 	 */
 | |
| 
 | |
| 	abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
 | |
| 		if (new_offset < sg->length)
 | |
| 			break;
 | |
| 		new_offset -= sg->length;
 | |
| 	}
 | |
| 
 | |
| 	ABD_SCATTER(abd).abd_sgl = sg;
 | |
| 	ABD_SCATTER(abd).abd_offset = new_offset;
 | |
| 	ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
 | |
| 
 | |
| 	return (abd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the abd_iter.
 | |
|  */
 | |
| void
 | |
| abd_iter_init(struct abd_iter *aiter, abd_t *abd)
 | |
| {
 | |
| 	ASSERT(!abd_is_gang(abd));
 | |
| 	abd_verify(abd);
 | |
| 	aiter->iter_abd = abd;
 | |
| 	aiter->iter_mapaddr = NULL;
 | |
| 	aiter->iter_mapsize = 0;
 | |
| 	aiter->iter_pos = 0;
 | |
| 	if (abd_is_linear(abd)) {
 | |
| 		aiter->iter_offset = 0;
 | |
| 		aiter->iter_sg = NULL;
 | |
| 	} else {
 | |
| 		aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
 | |
| 		aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is just a helper function to see if we have exhausted the
 | |
|  * abd_iter and reached the end.
 | |
|  */
 | |
| boolean_t
 | |
| abd_iter_at_end(struct abd_iter *aiter)
 | |
| {
 | |
| 	return (aiter->iter_pos == aiter->iter_abd->abd_size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Advance the iterator by a certain amount. Cannot be called when a chunk is
 | |
|  * in use. This can be safely called when the aiter has already exhausted, in
 | |
|  * which case this does nothing.
 | |
|  */
 | |
| void
 | |
| abd_iter_advance(struct abd_iter *aiter, size_t amount)
 | |
| {
 | |
| 	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
 | |
| 	ASSERT0(aiter->iter_mapsize);
 | |
| 
 | |
| 	/* There's nothing left to advance to, so do nothing */
 | |
| 	if (abd_iter_at_end(aiter))
 | |
| 		return;
 | |
| 
 | |
| 	aiter->iter_pos += amount;
 | |
| 	aiter->iter_offset += amount;
 | |
| 	if (!abd_is_linear(aiter->iter_abd)) {
 | |
| 		while (aiter->iter_offset >= aiter->iter_sg->length) {
 | |
| 			aiter->iter_offset -= aiter->iter_sg->length;
 | |
| 			aiter->iter_sg = sg_next(aiter->iter_sg);
 | |
| 			if (aiter->iter_sg == NULL) {
 | |
| 				ASSERT0(aiter->iter_offset);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Map the current chunk into aiter. This can be safely called when the aiter
 | |
|  * has already exhausted, in which case this does nothing.
 | |
|  */
 | |
| void
 | |
| abd_iter_map(struct abd_iter *aiter)
 | |
| {
 | |
| 	void *paddr;
 | |
| 	size_t offset = 0;
 | |
| 
 | |
| 	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
 | |
| 	ASSERT0(aiter->iter_mapsize);
 | |
| 
 | |
| 	/* There's nothing left to iterate over, so do nothing */
 | |
| 	if (abd_iter_at_end(aiter))
 | |
| 		return;
 | |
| 
 | |
| 	if (abd_is_linear(aiter->iter_abd)) {
 | |
| 		ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
 | |
| 		offset = aiter->iter_offset;
 | |
| 		aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
 | |
| 		paddr = ABD_LINEAR_BUF(aiter->iter_abd);
 | |
| 	} else {
 | |
| 		offset = aiter->iter_offset;
 | |
| 		aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
 | |
| 		    aiter->iter_abd->abd_size - aiter->iter_pos);
 | |
| 
 | |
| 		paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg));
 | |
| 	}
 | |
| 
 | |
| 	aiter->iter_mapaddr = (char *)paddr + offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unmap the current chunk from aiter. This can be safely called when the aiter
 | |
|  * has already exhausted, in which case this does nothing.
 | |
|  */
 | |
| void
 | |
| abd_iter_unmap(struct abd_iter *aiter)
 | |
| {
 | |
| 	/* There's nothing left to unmap, so do nothing */
 | |
| 	if (abd_iter_at_end(aiter))
 | |
| 		return;
 | |
| 
 | |
| 	if (!abd_is_linear(aiter->iter_abd)) {
 | |
| 		/* LINTED E_FUNC_SET_NOT_USED */
 | |
| 		zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT3P(aiter->iter_mapaddr, !=, NULL);
 | |
| 	ASSERT3U(aiter->iter_mapsize, >, 0);
 | |
| 
 | |
| 	aiter->iter_mapaddr = NULL;
 | |
| 	aiter->iter_mapsize = 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| abd_cache_reap_now(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #if defined(_KERNEL)
 | |
| /*
 | |
|  * bio_nr_pages for ABD.
 | |
|  * @off is the offset in @abd
 | |
|  */
 | |
| unsigned long
 | |
| abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
 | |
| {
 | |
| 	unsigned long pos;
 | |
| 
 | |
| 	if (abd_is_gang(abd)) {
 | |
| 		unsigned long count = 0;
 | |
| 
 | |
| 		for (abd_t *cabd = abd_gang_get_offset(abd, &off);
 | |
| 		    cabd != NULL && size != 0;
 | |
| 		    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
 | |
| 			ASSERT3U(off, <, cabd->abd_size);
 | |
| 			int mysize = MIN(size, cabd->abd_size - off);
 | |
| 			count += abd_nr_pages_off(cabd, mysize, off);
 | |
| 			size -= mysize;
 | |
| 			off = 0;
 | |
| 		}
 | |
| 		return (count);
 | |
| 	}
 | |
| 
 | |
| 	if (abd_is_linear(abd))
 | |
| 		pos = (unsigned long)abd_to_buf(abd) + off;
 | |
| 	else
 | |
| 		pos = ABD_SCATTER(abd).abd_offset + off;
 | |
| 
 | |
| 	return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
 | |
| 	    (pos >> PAGE_SHIFT));
 | |
| }
 | |
| 
 | |
| static unsigned int
 | |
| bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
 | |
| {
 | |
| 	unsigned int offset, size, i;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	offset = offset_in_page(buf_ptr);
 | |
| 	for (i = 0; i < bio->bi_max_vecs; i++) {
 | |
| 		size = PAGE_SIZE - offset;
 | |
| 
 | |
| 		if (bio_size <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (size > bio_size)
 | |
| 			size = bio_size;
 | |
| 
 | |
| 		if (is_vmalloc_addr(buf_ptr))
 | |
| 			page = vmalloc_to_page(buf_ptr);
 | |
| 		else
 | |
| 			page = virt_to_page(buf_ptr);
 | |
| 
 | |
| 		/*
 | |
| 		 * Some network related block device uses tcp_sendpage, which
 | |
| 		 * doesn't behave well when using 0-count page, this is a
 | |
| 		 * safety net to catch them.
 | |
| 		 */
 | |
| 		ASSERT3S(page_count(page), >, 0);
 | |
| 
 | |
| 		if (bio_add_page(bio, page, size, offset) != size)
 | |
| 			break;
 | |
| 
 | |
| 		buf_ptr += size;
 | |
| 		bio_size -= size;
 | |
| 		offset = 0;
 | |
| 	}
 | |
| 
 | |
| 	return (bio_size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * bio_map for gang ABD.
 | |
|  */
 | |
| static unsigned int
 | |
| abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
 | |
|     unsigned int io_size, size_t off)
 | |
| {
 | |
| 	ASSERT(abd_is_gang(abd));
 | |
| 
 | |
| 	for (abd_t *cabd = abd_gang_get_offset(abd, &off);
 | |
| 	    cabd != NULL;
 | |
| 	    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
 | |
| 		ASSERT3U(off, <, cabd->abd_size);
 | |
| 		int size = MIN(io_size, cabd->abd_size - off);
 | |
| 		int remainder = abd_bio_map_off(bio, cabd, size, off);
 | |
| 		io_size -= (size - remainder);
 | |
| 		if (io_size == 0 || remainder > 0)
 | |
| 			return (io_size);
 | |
| 		off = 0;
 | |
| 	}
 | |
| 	ASSERT0(io_size);
 | |
| 	return (io_size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * bio_map for ABD.
 | |
|  * @off is the offset in @abd
 | |
|  * Remaining IO size is returned
 | |
|  */
 | |
| unsigned int
 | |
| abd_bio_map_off(struct bio *bio, abd_t *abd,
 | |
|     unsigned int io_size, size_t off)
 | |
| {
 | |
| 	struct abd_iter aiter;
 | |
| 
 | |
| 	ASSERT3U(io_size, <=, abd->abd_size - off);
 | |
| 	if (abd_is_linear(abd))
 | |
| 		return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));
 | |
| 
 | |
| 	ASSERT(!abd_is_linear(abd));
 | |
| 	if (abd_is_gang(abd))
 | |
| 		return (abd_gang_bio_map_off(bio, abd, io_size, off));
 | |
| 
 | |
| 	abd_iter_init(&aiter, abd);
 | |
| 	abd_iter_advance(&aiter, off);
 | |
| 
 | |
| 	for (int i = 0; i < bio->bi_max_vecs; i++) {
 | |
| 		struct page *pg;
 | |
| 		size_t len, sgoff, pgoff;
 | |
| 		struct scatterlist *sg;
 | |
| 
 | |
| 		if (io_size <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		sg = aiter.iter_sg;
 | |
| 		sgoff = aiter.iter_offset;
 | |
| 		pgoff = sgoff & (PAGESIZE - 1);
 | |
| 		len = MIN(io_size, PAGESIZE - pgoff);
 | |
| 		ASSERT(len > 0);
 | |
| 
 | |
| 		pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
 | |
| 		if (bio_add_page(bio, pg, len, pgoff) != len)
 | |
| 			break;
 | |
| 
 | |
| 		io_size -= len;
 | |
| 		abd_iter_advance(&aiter, len);
 | |
| 	}
 | |
| 
 | |
| 	return (io_size);
 | |
| }
 | |
| 
 | |
| /* Tunable Parameters */
 | |
| module_param(zfs_abd_scatter_enabled, int, 0644);
 | |
| MODULE_PARM_DESC(zfs_abd_scatter_enabled,
 | |
| 	"Toggle whether ABD allocations must be linear.");
 | |
| module_param(zfs_abd_scatter_min_size, int, 0644);
 | |
| MODULE_PARM_DESC(zfs_abd_scatter_min_size,
 | |
| 	"Minimum size of scatter allocations.");
 | |
| /* CSTYLED */
 | |
| module_param(zfs_abd_scatter_max_order, uint, 0644);
 | |
| MODULE_PARM_DESC(zfs_abd_scatter_max_order,
 | |
| 	"Maximum order allocation used for a scatter ABD.");
 | |
| #endif
 |