mirror_zfs/include/sys/range_tree.h
Ivan Volosyuk 55b21552d3 Linux 6.12 compat: Rename range_tree_* to zfs_range_tree_*
Linux 6.12 has conflicting range_tree_{find,destroy,clear} symbols.

Signed-off-by: Ivan Volosyuk <Ivan.Volosyuk@gmail.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Rob Norris <robn@despairlabs.com>
2025-02-28 00:42:29 +05:00

327 lines
9.9 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2013, 2019 by Delphix. All rights reserved.
*/
#ifndef _SYS_RANGE_TREE_H
#define _SYS_RANGE_TREE_H
#include <sys/btree.h>
#include <sys/dmu.h>
#ifdef __cplusplus
extern "C" {
#endif
#define RANGE_TREE_HISTOGRAM_SIZE 64
typedef struct zfs_range_tree_ops zfs_range_tree_ops_t;
typedef enum zfs_range_seg_type {
ZFS_RANGE_SEG32,
ZFS_RANGE_SEG64,
ZFS_RANGE_SEG_GAP,
ZFS_RANGE_SEG_NUM_TYPES,
} zfs_range_seg_type_t;
/*
* Note: the range_tree may not be accessed concurrently; consumers
* must provide external locking if required.
*/
typedef struct zfs_range_tree {
zfs_btree_t rt_root; /* offset-ordered segment b-tree */
uint64_t rt_space; /* sum of all segments in the map */
zfs_range_seg_type_t rt_type; /* type of zfs_range_seg_t in use */
/*
* All data that is stored in the range tree must have a start higher
* than or equal to rt_start, and all sizes and offsets must be
* multiples of 1 << rt_shift.
*/
uint8_t rt_shift;
uint64_t rt_start;
const zfs_range_tree_ops_t *rt_ops;
void *rt_arg;
uint64_t rt_gap; /* allowable inter-segment gap */
/*
* The rt_histogram maintains a histogram of ranges. Each bucket,
* rt_histogram[i], contains the number of ranges whose size is:
* 2^i <= size of range in bytes < 2^(i+1)
*/
uint64_t rt_histogram[RANGE_TREE_HISTOGRAM_SIZE];
} zfs_range_tree_t;
typedef struct range_seg32 {
uint32_t rs_start; /* starting offset of this segment */
uint32_t rs_end; /* ending offset (non-inclusive) */
} range_seg32_t;
/*
* Extremely large metaslabs, vdev-wide trees, and dnode-wide trees may
* require 64-bit integers for ranges.
*/
typedef struct range_seg64 {
uint64_t rs_start; /* starting offset of this segment */
uint64_t rs_end; /* ending offset (non-inclusive) */
} range_seg64_t;
typedef struct range_seg_gap {
uint64_t rs_start; /* starting offset of this segment */
uint64_t rs_end; /* ending offset (non-inclusive) */
uint64_t rs_fill; /* actual fill if gap mode is on */
} range_seg_gap_t;
/*
* This type needs to be the largest of the range segs, since it will be stack
* allocated and then cast the actual type to do tree operations.
*/
typedef range_seg_gap_t range_seg_max_t;
/*
* This is just for clarity of code purposes, so we can make it clear that a
* pointer is to a range seg of some type; when we need to do the actual math,
* we'll figure out the real type.
*/
typedef void zfs_range_seg_t;
struct zfs_range_tree_ops {
void (*rtop_create)(zfs_range_tree_t *rt, void *arg);
void (*rtop_destroy)(zfs_range_tree_t *rt, void *arg);
void (*rtop_add)(zfs_range_tree_t *rt, void *rs, void *arg);
void (*rtop_remove)(zfs_range_tree_t *rt, void *rs, void *arg);
void (*rtop_vacate)(zfs_range_tree_t *rt, void *arg);
};
static inline uint64_t
zfs_rs_get_start_raw(const zfs_range_seg_t *rs, const zfs_range_tree_t *rt)
{
ASSERT3U(rt->rt_type, <=, ZFS_RANGE_SEG_NUM_TYPES);
switch (rt->rt_type) {
case ZFS_RANGE_SEG32:
return (((const range_seg32_t *)rs)->rs_start);
case ZFS_RANGE_SEG64:
return (((const range_seg64_t *)rs)->rs_start);
case ZFS_RANGE_SEG_GAP:
return (((const range_seg_gap_t *)rs)->rs_start);
default:
VERIFY(0);
return (0);
}
}
static inline uint64_t
zfs_rs_get_end_raw(const zfs_range_seg_t *rs, const zfs_range_tree_t *rt)
{
ASSERT3U(rt->rt_type, <=, ZFS_RANGE_SEG_NUM_TYPES);
switch (rt->rt_type) {
case ZFS_RANGE_SEG32:
return (((const range_seg32_t *)rs)->rs_end);
case ZFS_RANGE_SEG64:
return (((const range_seg64_t *)rs)->rs_end);
case ZFS_RANGE_SEG_GAP:
return (((const range_seg_gap_t *)rs)->rs_end);
default:
VERIFY(0);
return (0);
}
}
static inline uint64_t
zfs_rs_get_fill_raw(const zfs_range_seg_t *rs, const zfs_range_tree_t *rt)
{
ASSERT3U(rt->rt_type, <=, ZFS_RANGE_SEG_NUM_TYPES);
switch (rt->rt_type) {
case ZFS_RANGE_SEG32: {
const range_seg32_t *r32 = (const range_seg32_t *)rs;
return (r32->rs_end - r32->rs_start);
}
case ZFS_RANGE_SEG64: {
const range_seg64_t *r64 = (const range_seg64_t *)rs;
return (r64->rs_end - r64->rs_start);
}
case ZFS_RANGE_SEG_GAP:
return (((const range_seg_gap_t *)rs)->rs_fill);
default:
VERIFY(0);
return (0);
}
}
static inline uint64_t
zfs_rs_get_start(const zfs_range_seg_t *rs, const zfs_range_tree_t *rt)
{
return ((zfs_rs_get_start_raw(rs, rt) << rt->rt_shift) + rt->rt_start);
}
static inline uint64_t
zfs_rs_get_end(const zfs_range_seg_t *rs, const zfs_range_tree_t *rt)
{
return ((zfs_rs_get_end_raw(rs, rt) << rt->rt_shift) + rt->rt_start);
}
static inline uint64_t
zfs_rs_get_fill(const zfs_range_seg_t *rs, const zfs_range_tree_t *rt)
{
return (zfs_rs_get_fill_raw(rs, rt) << rt->rt_shift);
}
static inline void
zfs_rs_set_start_raw(zfs_range_seg_t *rs, zfs_range_tree_t *rt, uint64_t start)
{
ASSERT3U(rt->rt_type, <=, ZFS_RANGE_SEG_NUM_TYPES);
switch (rt->rt_type) {
case ZFS_RANGE_SEG32:
ASSERT3U(start, <=, UINT32_MAX);
((range_seg32_t *)rs)->rs_start = (uint32_t)start;
break;
case ZFS_RANGE_SEG64:
((range_seg64_t *)rs)->rs_start = start;
break;
case ZFS_RANGE_SEG_GAP:
((range_seg_gap_t *)rs)->rs_start = start;
break;
default:
VERIFY(0);
}
}
static inline void
zfs_rs_set_end_raw(zfs_range_seg_t *rs, zfs_range_tree_t *rt, uint64_t end)
{
ASSERT3U(rt->rt_type, <=, ZFS_RANGE_SEG_NUM_TYPES);
switch (rt->rt_type) {
case ZFS_RANGE_SEG32:
ASSERT3U(end, <=, UINT32_MAX);
((range_seg32_t *)rs)->rs_end = (uint32_t)end;
break;
case ZFS_RANGE_SEG64:
((range_seg64_t *)rs)->rs_end = end;
break;
case ZFS_RANGE_SEG_GAP:
((range_seg_gap_t *)rs)->rs_end = end;
break;
default:
VERIFY(0);
}
}
static inline void
zfs_zfs_rs_set_fill_raw(zfs_range_seg_t *rs, zfs_range_tree_t *rt,
uint64_t fill)
{
ASSERT3U(rt->rt_type, <=, ZFS_RANGE_SEG_NUM_TYPES);
switch (rt->rt_type) {
case ZFS_RANGE_SEG32:
/* fall through */
case ZFS_RANGE_SEG64:
ASSERT3U(fill, ==, zfs_rs_get_end_raw(rs, rt) -
zfs_rs_get_start_raw(rs, rt));
break;
case ZFS_RANGE_SEG_GAP:
((range_seg_gap_t *)rs)->rs_fill = fill;
break;
default:
VERIFY(0);
}
}
static inline void
zfs_rs_set_start(zfs_range_seg_t *rs, zfs_range_tree_t *rt, uint64_t start)
{
ASSERT3U(start, >=, rt->rt_start);
ASSERT(IS_P2ALIGNED(start, 1ULL << rt->rt_shift));
zfs_rs_set_start_raw(rs, rt, (start - rt->rt_start) >> rt->rt_shift);
}
static inline void
zfs_rs_set_end(zfs_range_seg_t *rs, zfs_range_tree_t *rt, uint64_t end)
{
ASSERT3U(end, >=, rt->rt_start);
ASSERT(IS_P2ALIGNED(end, 1ULL << rt->rt_shift));
zfs_rs_set_end_raw(rs, rt, (end - rt->rt_start) >> rt->rt_shift);
}
static inline void
zfs_rs_set_fill(zfs_range_seg_t *rs, zfs_range_tree_t *rt, uint64_t fill)
{
ASSERT(IS_P2ALIGNED(fill, 1ULL << rt->rt_shift));
zfs_zfs_rs_set_fill_raw(rs, rt, fill >> rt->rt_shift);
}
typedef void zfs_range_tree_func_t(void *arg, uint64_t start, uint64_t size);
zfs_range_tree_t *zfs_range_tree_create_gap(const zfs_range_tree_ops_t *ops,
zfs_range_seg_type_t type, void *arg, uint64_t start, uint64_t shift,
uint64_t gap);
zfs_range_tree_t *zfs_range_tree_create(const zfs_range_tree_ops_t *ops,
zfs_range_seg_type_t type, void *arg, uint64_t start, uint64_t shift);
void zfs_range_tree_destroy(zfs_range_tree_t *rt);
boolean_t zfs_range_tree_contains(zfs_range_tree_t *rt, uint64_t start,
uint64_t size);
zfs_range_seg_t *zfs_range_tree_find(zfs_range_tree_t *rt, uint64_t start,
uint64_t size);
boolean_t zfs_range_tree_find_in(zfs_range_tree_t *rt, uint64_t start,
uint64_t size, uint64_t *ostart, uint64_t *osize);
void zfs_range_tree_verify_not_present(zfs_range_tree_t *rt,
uint64_t start, uint64_t size);
void zfs_range_tree_resize_segment(zfs_range_tree_t *rt, zfs_range_seg_t *rs,
uint64_t newstart, uint64_t newsize);
uint64_t zfs_range_tree_space(zfs_range_tree_t *rt);
uint64_t zfs_range_tree_numsegs(zfs_range_tree_t *rt);
boolean_t zfs_range_tree_is_empty(zfs_range_tree_t *rt);
void zfs_range_tree_swap(zfs_range_tree_t **rtsrc, zfs_range_tree_t **rtdst);
void zfs_range_tree_stat_verify(zfs_range_tree_t *rt);
uint64_t zfs_range_tree_min(zfs_range_tree_t *rt);
uint64_t zfs_range_tree_max(zfs_range_tree_t *rt);
uint64_t zfs_range_tree_span(zfs_range_tree_t *rt);
void zfs_range_tree_add(void *arg, uint64_t start, uint64_t size);
void zfs_range_tree_remove(void *arg, uint64_t start, uint64_t size);
void zfs_range_tree_remove_fill(zfs_range_tree_t *rt, uint64_t start,
uint64_t size);
void zfs_range_tree_adjust_fill(zfs_range_tree_t *rt, zfs_range_seg_t *rs,
int64_t delta);
void zfs_range_tree_clear(zfs_range_tree_t *rt, uint64_t start, uint64_t size);
void zfs_range_tree_vacate(zfs_range_tree_t *rt, zfs_range_tree_func_t *func,
void *arg);
void zfs_range_tree_walk(zfs_range_tree_t *rt, zfs_range_tree_func_t *func,
void *arg);
zfs_range_seg_t *zfs_range_tree_first(zfs_range_tree_t *rt);
void zfs_range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
zfs_range_tree_t *removefrom, zfs_range_tree_t *addto);
void zfs_range_tree_remove_xor_add(zfs_range_tree_t *rt,
zfs_range_tree_t *removefrom, zfs_range_tree_t *addto);
#ifdef __cplusplus
}
#endif
#endif /* _SYS_RANGE_TREE_H */