mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-11-03 23:46:39 +00:00 
			
		
		
		
	This patch adds a new slow I/Os (-s) column to zpool status to show the number of VDEV slow I/Os. This is the number of I/Os that didn't complete in zio_slow_io_ms milliseconds. It also adds a new parsable (-p) flag to display exact values. NAME STATE READ WRITE CKSUM SLOW testpool ONLINE 0 0 0 - mirror-0 ONLINE 0 0 0 - loop0 ONLINE 0 0 0 20 loop1 ONLINE 0 0 0 0 Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Tony Hutter <hutter2@llnl.gov> Closes #7756 Closes #6885
		
			
				
	
	
		
			1084 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1084 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * CDDL HEADER START
 | 
						|
 *
 | 
						|
 * The contents of this file are subject to the terms of the
 | 
						|
 * Common Development and Distribution License (the "License").
 | 
						|
 * You may not use this file except in compliance with the License.
 | 
						|
 *
 | 
						|
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | 
						|
 * or http://www.opensolaris.org/os/licensing.
 | 
						|
 * See the License for the specific language governing permissions
 | 
						|
 * and limitations under the License.
 | 
						|
 *
 | 
						|
 * When distributing Covered Code, include this CDDL HEADER in each
 | 
						|
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | 
						|
 * If applicable, add the following below this CDDL HEADER, with the
 | 
						|
 * fields enclosed by brackets "[]" replaced with your own identifying
 | 
						|
 * information: Portions Copyright [yyyy] [name of copyright owner]
 | 
						|
 *
 | 
						|
 * CDDL HEADER END
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 | 
						|
 * Use is subject to license terms.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Copyright (c) 2012 by Delphix. All rights reserved.
 | 
						|
 */
 | 
						|
 | 
						|
#include <sys/spa.h>
 | 
						|
#include <sys/spa_impl.h>
 | 
						|
#include <sys/vdev.h>
 | 
						|
#include <sys/vdev_impl.h>
 | 
						|
#include <sys/zio.h>
 | 
						|
#include <sys/zio_checksum.h>
 | 
						|
 | 
						|
#include <sys/fm/fs/zfs.h>
 | 
						|
#include <sys/fm/protocol.h>
 | 
						|
#include <sys/fm/util.h>
 | 
						|
#include <sys/sysevent.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * This general routine is responsible for generating all the different ZFS
 | 
						|
 * ereports.  The payload is dependent on the class, and which arguments are
 | 
						|
 * supplied to the function:
 | 
						|
 *
 | 
						|
 * 	EREPORT			POOL	VDEV	IO
 | 
						|
 * 	block			X	X	X
 | 
						|
 * 	data			X		X
 | 
						|
 * 	device			X	X
 | 
						|
 * 	pool			X
 | 
						|
 *
 | 
						|
 * If we are in a loading state, all errors are chained together by the same
 | 
						|
 * SPA-wide ENA (Error Numeric Association).
 | 
						|
 *
 | 
						|
 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
 | 
						|
 * gets very complicated due to RAID-Z, gang blocks, and vdev caching.  We want
 | 
						|
 * to chain together all ereports associated with a logical piece of data.  For
 | 
						|
 * read I/Os, there  are basically three 'types' of I/O, which form a roughly
 | 
						|
 * layered diagram:
 | 
						|
 *
 | 
						|
 *      +---------------+
 | 
						|
 * 	| Aggregate I/O |	No associated logical data or device
 | 
						|
 * 	+---------------+
 | 
						|
 *              |
 | 
						|
 *              V
 | 
						|
 * 	+---------------+	Reads associated with a piece of logical data.
 | 
						|
 * 	|   Read I/O    |	This includes reads on behalf of RAID-Z,
 | 
						|
 * 	+---------------+       mirrors, gang blocks, retries, etc.
 | 
						|
 *              |
 | 
						|
 *              V
 | 
						|
 * 	+---------------+	Reads associated with a particular device, but
 | 
						|
 * 	| Physical I/O  |	no logical data.  Issued as part of vdev caching
 | 
						|
 * 	+---------------+	and I/O aggregation.
 | 
						|
 *
 | 
						|
 * Note that 'physical I/O' here is not the same terminology as used in the rest
 | 
						|
 * of ZIO.  Typically, 'physical I/O' simply means that there is no attached
 | 
						|
 * blockpointer.  But I/O with no associated block pointer can still be related
 | 
						|
 * to a logical piece of data (i.e. RAID-Z requests).
 | 
						|
 *
 | 
						|
 * Purely physical I/O always have unique ENAs.  They are not related to a
 | 
						|
 * particular piece of logical data, and therefore cannot be chained together.
 | 
						|
 * We still generate an ereport, but the DE doesn't correlate it with any
 | 
						|
 * logical piece of data.  When such an I/O fails, the delegated I/O requests
 | 
						|
 * will issue a retry, which will trigger the 'real' ereport with the correct
 | 
						|
 * ENA.
 | 
						|
 *
 | 
						|
 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
 | 
						|
 * When a new logical I/O is issued, we set this to point to itself.  Child I/Os
 | 
						|
 * then inherit this pointer, so that when it is first set subsequent failures
 | 
						|
 * will use the same ENA.  For vdev cache fill and queue aggregation I/O,
 | 
						|
 * this pointer is set to NULL, and no ereport will be generated (since it
 | 
						|
 * doesn't actually correspond to any particular device or piece of data,
 | 
						|
 * and the caller will always retry without caching or queueing anyway).
 | 
						|
 *
 | 
						|
 * For checksum errors, we want to include more information about the actual
 | 
						|
 * error which occurs.  Accordingly, we build an ereport when the error is
 | 
						|
 * noticed, but instead of sending it in immediately, we hang it off of the
 | 
						|
 * io_cksum_report field of the logical IO.  When the logical IO completes
 | 
						|
 * (successfully or not), zfs_ereport_finish_checksum() is called with the
 | 
						|
 * good and bad versions of the buffer (if available), and we annotate the
 | 
						|
 * ereport with information about the differences.
 | 
						|
 */
 | 
						|
#ifdef _KERNEL
 | 
						|
void
 | 
						|
zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
 | 
						|
{
 | 
						|
	if (nvl)
 | 
						|
		fm_nvlist_destroy(nvl, FM_NVA_FREE);
 | 
						|
 | 
						|
	if (detector)
 | 
						|
		fm_nvlist_destroy(detector, FM_NVA_FREE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We want to rate limit ZIO delay and checksum events so as to not
 | 
						|
 * flood ZED when a disk is acting up.
 | 
						|
 *
 | 
						|
 * Returns 1 if we're ratelimiting, 0 if not.
 | 
						|
 */
 | 
						|
static int
 | 
						|
zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
 | 
						|
{
 | 
						|
	int rc = 0;
 | 
						|
	/*
 | 
						|
	 * __ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
 | 
						|
	 * are.  Invert it to get our return value.
 | 
						|
	 */
 | 
						|
	if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
 | 
						|
		rc = !zfs_ratelimit(&vd->vdev_delay_rl);
 | 
						|
	} else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
 | 
						|
		rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
 | 
						|
	}
 | 
						|
 | 
						|
	if (rc)	{
 | 
						|
		/* We're rate limiting */
 | 
						|
		fm_erpt_dropped_increment();
 | 
						|
	}
 | 
						|
 | 
						|
	return (rc);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return B_TRUE if the event actually posted, B_FALSE if not.
 | 
						|
 */
 | 
						|
static boolean_t
 | 
						|
zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
 | 
						|
    const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
 | 
						|
    zio_t *zio, uint64_t stateoroffset, uint64_t size)
 | 
						|
{
 | 
						|
	nvlist_t *ereport, *detector;
 | 
						|
 | 
						|
	uint64_t ena;
 | 
						|
	char class[64];
 | 
						|
 | 
						|
	if (!zfs_ereport_is_valid(subclass, spa, vd, zio))
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	if ((ereport = fm_nvlist_create(NULL)) == NULL)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	if ((detector = fm_nvlist_create(NULL)) == NULL) {
 | 
						|
		fm_nvlist_destroy(ereport, FM_NVA_FREE);
 | 
						|
		return (B_FALSE);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Serialize ereport generation
 | 
						|
	 */
 | 
						|
	mutex_enter(&spa->spa_errlist_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Determine the ENA to use for this event.  If we are in a loading
 | 
						|
	 * state, use a SPA-wide ENA.  Otherwise, if we are in an I/O state, use
 | 
						|
	 * a root zio-wide ENA.  Otherwise, simply use a unique ENA.
 | 
						|
	 */
 | 
						|
	if (spa_load_state(spa) != SPA_LOAD_NONE) {
 | 
						|
		if (spa->spa_ena == 0)
 | 
						|
			spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
 | 
						|
		ena = spa->spa_ena;
 | 
						|
	} else if (zio != NULL && zio->io_logical != NULL) {
 | 
						|
		if (zio->io_logical->io_ena == 0)
 | 
						|
			zio->io_logical->io_ena =
 | 
						|
			    fm_ena_generate(0, FM_ENA_FMT1);
 | 
						|
		ena = zio->io_logical->io_ena;
 | 
						|
	} else {
 | 
						|
		ena = fm_ena_generate(0, FM_ENA_FMT1);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Construct the full class, detector, and other standard FMA fields.
 | 
						|
	 */
 | 
						|
	(void) snprintf(class, sizeof (class), "%s.%s",
 | 
						|
	    ZFS_ERROR_CLASS, subclass);
 | 
						|
 | 
						|
	fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
 | 
						|
	    vd != NULL ? vd->vdev_guid : 0);
 | 
						|
 | 
						|
	fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Construct the per-ereport payload, depending on which parameters are
 | 
						|
	 * passed in.
 | 
						|
	 */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Generic payload members common to all ereports.
 | 
						|
	 */
 | 
						|
	fm_payload_set(ereport,
 | 
						|
	    FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa),
 | 
						|
	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa),
 | 
						|
	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64,
 | 
						|
	    (uint64_t)spa_state(spa),
 | 
						|
	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
 | 
						|
	    (int32_t)spa_load_state(spa), NULL);
 | 
						|
 | 
						|
	fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
 | 
						|
	    DATA_TYPE_STRING,
 | 
						|
	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
 | 
						|
	    FM_EREPORT_FAILMODE_WAIT :
 | 
						|
	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
 | 
						|
	    FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
 | 
						|
	    NULL);
 | 
						|
 | 
						|
	if (vd != NULL) {
 | 
						|
		vdev_t *pvd = vd->vdev_parent;
 | 
						|
		vdev_queue_t *vq = &vd->vdev_queue;
 | 
						|
		vdev_stat_t *vs = &vd->vdev_stat;
 | 
						|
		vdev_t *spare_vd;
 | 
						|
		uint64_t *spare_guids;
 | 
						|
		char **spare_paths;
 | 
						|
		int i, spare_count;
 | 
						|
 | 
						|
		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
 | 
						|
		    DATA_TYPE_UINT64, vd->vdev_guid,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
 | 
						|
		    DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
 | 
						|
		if (vd->vdev_path != NULL)
 | 
						|
			fm_payload_set(ereport,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
 | 
						|
			    DATA_TYPE_STRING, vd->vdev_path, NULL);
 | 
						|
		if (vd->vdev_devid != NULL)
 | 
						|
			fm_payload_set(ereport,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
 | 
						|
			    DATA_TYPE_STRING, vd->vdev_devid, NULL);
 | 
						|
		if (vd->vdev_fru != NULL)
 | 
						|
			fm_payload_set(ereport,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
 | 
						|
			    DATA_TYPE_STRING, vd->vdev_fru, NULL);
 | 
						|
		if (vd->vdev_enc_sysfs_path != NULL)
 | 
						|
			fm_payload_set(ereport,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
 | 
						|
			    DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL);
 | 
						|
		if (vd->vdev_ashift)
 | 
						|
			fm_payload_set(ereport,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
 | 
						|
			    DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
 | 
						|
 | 
						|
		if (vq != NULL) {
 | 
						|
			fm_payload_set(ereport,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
 | 
						|
			    DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
 | 
						|
			fm_payload_set(ereport,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
 | 
						|
			    DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
 | 
						|
		}
 | 
						|
 | 
						|
		if (vs != NULL) {
 | 
						|
			fm_payload_set(ereport,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
 | 
						|
			    DATA_TYPE_UINT64, vs->vs_read_errors,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
 | 
						|
			    DATA_TYPE_UINT64, vs->vs_write_errors,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
 | 
						|
			    DATA_TYPE_UINT64, vs->vs_checksum_errors,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS,
 | 
						|
			    DATA_TYPE_UINT64, vs->vs_slow_ios,
 | 
						|
			    NULL);
 | 
						|
		}
 | 
						|
 | 
						|
		if (pvd != NULL) {
 | 
						|
			fm_payload_set(ereport,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
 | 
						|
			    DATA_TYPE_UINT64, pvd->vdev_guid,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
 | 
						|
			    DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
 | 
						|
			    NULL);
 | 
						|
			if (pvd->vdev_path)
 | 
						|
				fm_payload_set(ereport,
 | 
						|
				    FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
 | 
						|
				    DATA_TYPE_STRING, pvd->vdev_path, NULL);
 | 
						|
			if (pvd->vdev_devid)
 | 
						|
				fm_payload_set(ereport,
 | 
						|
				    FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
 | 
						|
				    DATA_TYPE_STRING, pvd->vdev_devid, NULL);
 | 
						|
		}
 | 
						|
 | 
						|
		spare_count = spa->spa_spares.sav_count;
 | 
						|
		spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
 | 
						|
		    KM_SLEEP);
 | 
						|
		spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
 | 
						|
		    KM_SLEEP);
 | 
						|
 | 
						|
		for (i = 0; i < spare_count; i++) {
 | 
						|
			spare_vd = spa->spa_spares.sav_vdevs[i];
 | 
						|
			if (spare_vd) {
 | 
						|
				spare_paths[i] = spare_vd->vdev_path;
 | 
						|
				spare_guids[i] = spare_vd->vdev_guid;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
 | 
						|
		    DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
 | 
						|
		    DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
 | 
						|
 | 
						|
		kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
 | 
						|
		kmem_free(spare_paths, sizeof (char *) * spare_count);
 | 
						|
	}
 | 
						|
 | 
						|
	if (zio != NULL) {
 | 
						|
		/*
 | 
						|
		 * Payload common to all I/Os.
 | 
						|
		 */
 | 
						|
		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
 | 
						|
		    DATA_TYPE_INT32, zio->io_error, NULL);
 | 
						|
		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
 | 
						|
		    DATA_TYPE_INT32, zio->io_flags, NULL);
 | 
						|
		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
 | 
						|
		    DATA_TYPE_UINT32, zio->io_stage, NULL);
 | 
						|
		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
 | 
						|
		    DATA_TYPE_UINT32, zio->io_pipeline, NULL);
 | 
						|
		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
 | 
						|
		    DATA_TYPE_UINT64, zio->io_delay, NULL);
 | 
						|
		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
 | 
						|
		    DATA_TYPE_UINT64, zio->io_timestamp, NULL);
 | 
						|
		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
 | 
						|
		    DATA_TYPE_UINT64, zio->io_delta, NULL);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the 'size' parameter is non-zero, it indicates this is a
 | 
						|
		 * RAID-Z or other I/O where the physical offset and length are
 | 
						|
		 * provided for us, instead of within the zio_t.
 | 
						|
		 */
 | 
						|
		if (vd != NULL) {
 | 
						|
			if (size)
 | 
						|
				fm_payload_set(ereport,
 | 
						|
				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
 | 
						|
				    DATA_TYPE_UINT64, stateoroffset,
 | 
						|
				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
 | 
						|
				    DATA_TYPE_UINT64, size, NULL);
 | 
						|
			else
 | 
						|
				fm_payload_set(ereport,
 | 
						|
				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
 | 
						|
				    DATA_TYPE_UINT64, zio->io_offset,
 | 
						|
				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
 | 
						|
				    DATA_TYPE_UINT64, zio->io_size, NULL);
 | 
						|
		}
 | 
						|
	} else if (vd != NULL) {
 | 
						|
		/*
 | 
						|
		 * If we have a vdev but no zio, this is a device fault, and the
 | 
						|
		 * 'stateoroffset' parameter indicates the previous state of the
 | 
						|
		 * vdev.
 | 
						|
		 */
 | 
						|
		fm_payload_set(ereport,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
 | 
						|
		    DATA_TYPE_UINT64, stateoroffset, NULL);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Payload for I/Os with corresponding logical information.
 | 
						|
	 */
 | 
						|
	if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) {
 | 
						|
		fm_payload_set(ereport,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
 | 
						|
		    DATA_TYPE_UINT64, zb->zb_objset,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
 | 
						|
		    DATA_TYPE_UINT64, zb->zb_object,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
 | 
						|
		    DATA_TYPE_INT64, zb->zb_level,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
 | 
						|
		    DATA_TYPE_UINT64, zb->zb_blkid, NULL);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_exit(&spa->spa_errlist_lock);
 | 
						|
 | 
						|
	*ereport_out = ereport;
 | 
						|
	*detector_out = detector;
 | 
						|
	return (B_TRUE);
 | 
						|
}
 | 
						|
 | 
						|
/* if it's <= 128 bytes, save the corruption directly */
 | 
						|
#define	ZFM_MAX_INLINE		(128 / sizeof (uint64_t))
 | 
						|
 | 
						|
#define	MAX_RANGES		16
 | 
						|
 | 
						|
typedef struct zfs_ecksum_info {
 | 
						|
	/* histograms of set and cleared bits by bit number in a 64-bit word */
 | 
						|
	uint32_t zei_histogram_set[sizeof (uint64_t) * NBBY];
 | 
						|
	uint32_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
 | 
						|
 | 
						|
	/* inline arrays of bits set and cleared. */
 | 
						|
	uint64_t zei_bits_set[ZFM_MAX_INLINE];
 | 
						|
	uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * for each range, the number of bits set and cleared.  The Hamming
 | 
						|
	 * distance between the good and bad buffers is the sum of them all.
 | 
						|
	 */
 | 
						|
	uint32_t zei_range_sets[MAX_RANGES];
 | 
						|
	uint32_t zei_range_clears[MAX_RANGES];
 | 
						|
 | 
						|
	struct zei_ranges {
 | 
						|
		uint32_t	zr_start;
 | 
						|
		uint32_t	zr_end;
 | 
						|
	} zei_ranges[MAX_RANGES];
 | 
						|
 | 
						|
	size_t	zei_range_count;
 | 
						|
	uint32_t zei_mingap;
 | 
						|
	uint32_t zei_allowed_mingap;
 | 
						|
 | 
						|
} zfs_ecksum_info_t;
 | 
						|
 | 
						|
static void
 | 
						|
update_histogram(uint64_t value_arg, uint32_t *hist, uint32_t *count)
 | 
						|
{
 | 
						|
	size_t i;
 | 
						|
	size_t bits = 0;
 | 
						|
	uint64_t value = BE_64(value_arg);
 | 
						|
 | 
						|
	/* We store the bits in big-endian (largest-first) order */
 | 
						|
	for (i = 0; i < 64; i++) {
 | 
						|
		if (value & (1ull << i)) {
 | 
						|
			hist[63 - i]++;
 | 
						|
			++bits;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/* update the count of bits changed */
 | 
						|
	*count += bits;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We've now filled up the range array, and need to increase "mingap" and
 | 
						|
 * shrink the range list accordingly.  zei_mingap is always the smallest
 | 
						|
 * distance between array entries, so we set the new_allowed_gap to be
 | 
						|
 * one greater than that.  We then go through the list, joining together
 | 
						|
 * any ranges which are closer than the new_allowed_gap.
 | 
						|
 *
 | 
						|
 * By construction, there will be at least one.  We also update zei_mingap
 | 
						|
 * to the new smallest gap, to prepare for our next invocation.
 | 
						|
 */
 | 
						|
static void
 | 
						|
zei_shrink_ranges(zfs_ecksum_info_t *eip)
 | 
						|
{
 | 
						|
	uint32_t mingap = UINT32_MAX;
 | 
						|
	uint32_t new_allowed_gap = eip->zei_mingap + 1;
 | 
						|
 | 
						|
	size_t idx, output;
 | 
						|
	size_t max = eip->zei_range_count;
 | 
						|
 | 
						|
	struct zei_ranges *r = eip->zei_ranges;
 | 
						|
 | 
						|
	ASSERT3U(eip->zei_range_count, >, 0);
 | 
						|
	ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
 | 
						|
 | 
						|
	output = idx = 0;
 | 
						|
	while (idx < max - 1) {
 | 
						|
		uint32_t start = r[idx].zr_start;
 | 
						|
		uint32_t end = r[idx].zr_end;
 | 
						|
 | 
						|
		while (idx < max - 1) {
 | 
						|
			idx++;
 | 
						|
 | 
						|
			uint32_t nstart = r[idx].zr_start;
 | 
						|
			uint32_t nend = r[idx].zr_end;
 | 
						|
 | 
						|
			uint32_t gap = nstart - end;
 | 
						|
			if (gap < new_allowed_gap) {
 | 
						|
				end = nend;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			if (gap < mingap)
 | 
						|
				mingap = gap;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		r[output].zr_start = start;
 | 
						|
		r[output].zr_end = end;
 | 
						|
		output++;
 | 
						|
	}
 | 
						|
	ASSERT3U(output, <, eip->zei_range_count);
 | 
						|
	eip->zei_range_count = output;
 | 
						|
	eip->zei_mingap = mingap;
 | 
						|
	eip->zei_allowed_mingap = new_allowed_gap;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
 | 
						|
{
 | 
						|
	struct zei_ranges *r = eip->zei_ranges;
 | 
						|
	size_t count = eip->zei_range_count;
 | 
						|
 | 
						|
	if (count >= MAX_RANGES) {
 | 
						|
		zei_shrink_ranges(eip);
 | 
						|
		count = eip->zei_range_count;
 | 
						|
	}
 | 
						|
	if (count == 0) {
 | 
						|
		eip->zei_mingap = UINT32_MAX;
 | 
						|
		eip->zei_allowed_mingap = 1;
 | 
						|
	} else {
 | 
						|
		int gap = start - r[count - 1].zr_end;
 | 
						|
 | 
						|
		if (gap < eip->zei_allowed_mingap) {
 | 
						|
			r[count - 1].zr_end = end;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		if (gap < eip->zei_mingap)
 | 
						|
			eip->zei_mingap = gap;
 | 
						|
	}
 | 
						|
	r[count].zr_start = start;
 | 
						|
	r[count].zr_end = end;
 | 
						|
	eip->zei_range_count++;
 | 
						|
}
 | 
						|
 | 
						|
static size_t
 | 
						|
zei_range_total_size(zfs_ecksum_info_t *eip)
 | 
						|
{
 | 
						|
	struct zei_ranges *r = eip->zei_ranges;
 | 
						|
	size_t count = eip->zei_range_count;
 | 
						|
	size_t result = 0;
 | 
						|
	size_t idx;
 | 
						|
 | 
						|
	for (idx = 0; idx < count; idx++)
 | 
						|
		result += (r[idx].zr_end - r[idx].zr_start);
 | 
						|
 | 
						|
	return (result);
 | 
						|
}
 | 
						|
 | 
						|
static zfs_ecksum_info_t *
 | 
						|
annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
 | 
						|
    const abd_t *goodabd, const abd_t *badabd, size_t size,
 | 
						|
    boolean_t drop_if_identical)
 | 
						|
{
 | 
						|
	const uint64_t *good;
 | 
						|
	const uint64_t *bad;
 | 
						|
 | 
						|
	uint64_t allset = 0;
 | 
						|
	uint64_t allcleared = 0;
 | 
						|
 | 
						|
	size_t nui64s = size / sizeof (uint64_t);
 | 
						|
 | 
						|
	size_t inline_size;
 | 
						|
	int no_inline = 0;
 | 
						|
	size_t idx;
 | 
						|
	size_t range;
 | 
						|
 | 
						|
	size_t offset = 0;
 | 
						|
	ssize_t start = -1;
 | 
						|
 | 
						|
	zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
 | 
						|
 | 
						|
	/* don't do any annotation for injected checksum errors */
 | 
						|
	if (info != NULL && info->zbc_injected)
 | 
						|
		return (eip);
 | 
						|
 | 
						|
	if (info != NULL && info->zbc_has_cksum) {
 | 
						|
		fm_payload_set(ereport,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
 | 
						|
		    DATA_TYPE_UINT64_ARRAY,
 | 
						|
		    sizeof (info->zbc_expected) / sizeof (uint64_t),
 | 
						|
		    (uint64_t *)&info->zbc_expected,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
 | 
						|
		    DATA_TYPE_UINT64_ARRAY,
 | 
						|
		    sizeof (info->zbc_actual) / sizeof (uint64_t),
 | 
						|
		    (uint64_t *)&info->zbc_actual,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
 | 
						|
		    DATA_TYPE_STRING,
 | 
						|
		    info->zbc_checksum_name,
 | 
						|
		    NULL);
 | 
						|
 | 
						|
		if (info->zbc_byteswapped) {
 | 
						|
			fm_payload_set(ereport,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
 | 
						|
			    DATA_TYPE_BOOLEAN, 1,
 | 
						|
			    NULL);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (badabd == NULL || goodabd == NULL)
 | 
						|
		return (eip);
 | 
						|
 | 
						|
	ASSERT3U(nui64s, <=, UINT32_MAX);
 | 
						|
	ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
 | 
						|
	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
 | 
						|
	ASSERT3U(size, <=, UINT32_MAX);
 | 
						|
 | 
						|
	good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
 | 
						|
	bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
 | 
						|
 | 
						|
	/* build up the range list by comparing the two buffers. */
 | 
						|
	for (idx = 0; idx < nui64s; idx++) {
 | 
						|
		if (good[idx] == bad[idx]) {
 | 
						|
			if (start == -1)
 | 
						|
				continue;
 | 
						|
 | 
						|
			zei_add_range(eip, start, idx);
 | 
						|
			start = -1;
 | 
						|
		} else {
 | 
						|
			if (start != -1)
 | 
						|
				continue;
 | 
						|
 | 
						|
			start = idx;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (start != -1)
 | 
						|
		zei_add_range(eip, start, idx);
 | 
						|
 | 
						|
	/* See if it will fit in our inline buffers */
 | 
						|
	inline_size = zei_range_total_size(eip);
 | 
						|
	if (inline_size > ZFM_MAX_INLINE)
 | 
						|
		no_inline = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If there is no change and we want to drop if the buffers are
 | 
						|
	 * identical, do so.
 | 
						|
	 */
 | 
						|
	if (inline_size == 0 && drop_if_identical) {
 | 
						|
		kmem_free(eip, sizeof (*eip));
 | 
						|
		abd_return_buf((abd_t *)goodabd, (void *)good, size);
 | 
						|
		abd_return_buf((abd_t *)badabd, (void *)bad, size);
 | 
						|
		return (NULL);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now walk through the ranges, filling in the details of the
 | 
						|
	 * differences.  Also convert our uint64_t-array offsets to byte
 | 
						|
	 * offsets.
 | 
						|
	 */
 | 
						|
	for (range = 0; range < eip->zei_range_count; range++) {
 | 
						|
		size_t start = eip->zei_ranges[range].zr_start;
 | 
						|
		size_t end = eip->zei_ranges[range].zr_end;
 | 
						|
 | 
						|
		for (idx = start; idx < end; idx++) {
 | 
						|
			uint64_t set, cleared;
 | 
						|
 | 
						|
			// bits set in bad, but not in good
 | 
						|
			set = ((~good[idx]) & bad[idx]);
 | 
						|
			// bits set in good, but not in bad
 | 
						|
			cleared = (good[idx] & (~bad[idx]));
 | 
						|
 | 
						|
			allset |= set;
 | 
						|
			allcleared |= cleared;
 | 
						|
 | 
						|
			if (!no_inline) {
 | 
						|
				ASSERT3U(offset, <, inline_size);
 | 
						|
				eip->zei_bits_set[offset] = set;
 | 
						|
				eip->zei_bits_cleared[offset] = cleared;
 | 
						|
				offset++;
 | 
						|
			}
 | 
						|
 | 
						|
			update_histogram(set, eip->zei_histogram_set,
 | 
						|
			    &eip->zei_range_sets[range]);
 | 
						|
			update_histogram(cleared, eip->zei_histogram_cleared,
 | 
						|
			    &eip->zei_range_clears[range]);
 | 
						|
		}
 | 
						|
 | 
						|
		/* convert to byte offsets */
 | 
						|
		eip->zei_ranges[range].zr_start	*= sizeof (uint64_t);
 | 
						|
		eip->zei_ranges[range].zr_end	*= sizeof (uint64_t);
 | 
						|
	}
 | 
						|
 | 
						|
	abd_return_buf((abd_t *)goodabd, (void *)good, size);
 | 
						|
	abd_return_buf((abd_t *)badabd, (void *)bad, size);
 | 
						|
 | 
						|
	eip->zei_allowed_mingap	*= sizeof (uint64_t);
 | 
						|
	inline_size		*= sizeof (uint64_t);
 | 
						|
 | 
						|
	/* fill in ereport */
 | 
						|
	fm_payload_set(ereport,
 | 
						|
	    FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
 | 
						|
	    DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
 | 
						|
	    (uint32_t *)eip->zei_ranges,
 | 
						|
	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
 | 
						|
	    DATA_TYPE_UINT32, eip->zei_allowed_mingap,
 | 
						|
	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
 | 
						|
	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
 | 
						|
	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
 | 
						|
	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
 | 
						|
	    NULL);
 | 
						|
 | 
						|
	if (!no_inline) {
 | 
						|
		fm_payload_set(ereport,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
 | 
						|
		    DATA_TYPE_UINT8_ARRAY,
 | 
						|
		    inline_size, (uint8_t *)eip->zei_bits_set,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
 | 
						|
		    DATA_TYPE_UINT8_ARRAY,
 | 
						|
		    inline_size, (uint8_t *)eip->zei_bits_cleared,
 | 
						|
		    NULL);
 | 
						|
	} else {
 | 
						|
		fm_payload_set(ereport,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
 | 
						|
		    DATA_TYPE_UINT32_ARRAY,
 | 
						|
		    NBBY * sizeof (uint64_t), eip->zei_histogram_set,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
 | 
						|
		    DATA_TYPE_UINT32_ARRAY,
 | 
						|
		    NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
 | 
						|
		    NULL);
 | 
						|
	}
 | 
						|
	return (eip);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Make sure our event is still valid for the given zio/vdev/pool.  For example,
 | 
						|
 * we don't want to keep logging events for a faulted or missing vdev.
 | 
						|
 */
 | 
						|
boolean_t
 | 
						|
zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio)
 | 
						|
{
 | 
						|
#ifdef _KERNEL
 | 
						|
	/*
 | 
						|
	 * If we are doing a spa_tryimport() or in recovery mode,
 | 
						|
	 * ignore errors.
 | 
						|
	 */
 | 
						|
	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
 | 
						|
	    spa_load_state(spa) == SPA_LOAD_RECOVER)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are in the middle of opening a pool, and the previous attempt
 | 
						|
	 * failed, don't bother logging any new ereports - we're just going to
 | 
						|
	 * get the same diagnosis anyway.
 | 
						|
	 */
 | 
						|
	if (spa_load_state(spa) != SPA_LOAD_NONE &&
 | 
						|
	    spa->spa_last_open_failed)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	if (zio != NULL) {
 | 
						|
		/*
 | 
						|
		 * If this is not a read or write zio, ignore the error.  This
 | 
						|
		 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
 | 
						|
		 */
 | 
						|
		if (zio->io_type != ZIO_TYPE_READ &&
 | 
						|
		    zio->io_type != ZIO_TYPE_WRITE)
 | 
						|
			return (B_FALSE);
 | 
						|
 | 
						|
		if (vd != NULL) {
 | 
						|
			/*
 | 
						|
			 * If the vdev has already been marked as failing due
 | 
						|
			 * to a failed probe, then ignore any subsequent I/O
 | 
						|
			 * errors, as the DE will automatically fault the vdev
 | 
						|
			 * on the first such failure.  This also catches cases
 | 
						|
			 * where vdev_remove_wanted is set and the device has
 | 
						|
			 * not yet been asynchronously placed into the REMOVED
 | 
						|
			 * state.
 | 
						|
			 */
 | 
						|
			if (zio->io_vd == vd && !vdev_accessible(vd, zio))
 | 
						|
				return (B_FALSE);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Ignore checksum errors for reads from DTL regions of
 | 
						|
			 * leaf vdevs.
 | 
						|
			 */
 | 
						|
			if (zio->io_type == ZIO_TYPE_READ &&
 | 
						|
			    zio->io_error == ECKSUM &&
 | 
						|
			    vd->vdev_ops->vdev_op_leaf &&
 | 
						|
			    vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
 | 
						|
				return (B_FALSE);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For probe failure, we want to avoid posting ereports if we've
 | 
						|
	 * already removed the device in the meantime.
 | 
						|
	 */
 | 
						|
	if (vd != NULL &&
 | 
						|
	    strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
 | 
						|
	    (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	/* Ignore bogus delay events (like from ioctls or unqueued IOs) */
 | 
						|
	if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
 | 
						|
	    (zio != NULL) && (!zio->io_timestamp)) {
 | 
						|
		return (B_FALSE);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	return (B_TRUE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return 0 if event was posted, EINVAL if there was a problem posting it or
 | 
						|
 * EBUSY if the event was rate limited.
 | 
						|
 */
 | 
						|
int
 | 
						|
zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
 | 
						|
    const zbookmark_phys_t *zb, zio_t *zio, uint64_t stateoroffset,
 | 
						|
    uint64_t size)
 | 
						|
{
 | 
						|
	int rc = 0;
 | 
						|
#ifdef _KERNEL
 | 
						|
	nvlist_t *ereport = NULL;
 | 
						|
	nvlist_t *detector = NULL;
 | 
						|
 | 
						|
	if (zfs_is_ratelimiting_event(subclass, vd))
 | 
						|
		return (SET_ERROR(EBUSY));
 | 
						|
 | 
						|
	if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
 | 
						|
	    zb, zio, stateoroffset, size))
 | 
						|
		return (SET_ERROR(EINVAL));	/* couldn't post event */
 | 
						|
 | 
						|
	if (ereport == NULL)
 | 
						|
		return (SET_ERROR(EINVAL));
 | 
						|
 | 
						|
	/* Cleanup is handled by the callback function */
 | 
						|
	rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
 | 
						|
#endif
 | 
						|
	return (rc);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
 | 
						|
    struct zio *zio, uint64_t offset, uint64_t length, void *arg,
 | 
						|
    zio_bad_cksum_t *info)
 | 
						|
{
 | 
						|
	zio_cksum_report_t *report;
 | 
						|
 | 
						|
#ifdef _KERNEL
 | 
						|
	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
 | 
						|
		return;
 | 
						|
#endif
 | 
						|
 | 
						|
	report = kmem_zalloc(sizeof (*report), KM_SLEEP);
 | 
						|
 | 
						|
	if (zio->io_vsd != NULL)
 | 
						|
		zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
 | 
						|
	else
 | 
						|
		zio_vsd_default_cksum_report(zio, report, arg);
 | 
						|
 | 
						|
	/* copy the checksum failure information if it was provided */
 | 
						|
	if (info != NULL) {
 | 
						|
		report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
 | 
						|
		bcopy(info, report->zcr_ckinfo, sizeof (*info));
 | 
						|
	}
 | 
						|
 | 
						|
	report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
 | 
						|
	report->zcr_length = length;
 | 
						|
 | 
						|
#ifdef _KERNEL
 | 
						|
	zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
 | 
						|
	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
 | 
						|
 | 
						|
	if (report->zcr_ereport == NULL) {
 | 
						|
		zfs_ereport_free_checksum(report);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	mutex_enter(&spa->spa_errlist_lock);
 | 
						|
	report->zcr_next = zio->io_logical->io_cksum_report;
 | 
						|
	zio->io_logical->io_cksum_report = report;
 | 
						|
	mutex_exit(&spa->spa_errlist_lock);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
 | 
						|
    const abd_t *bad_data, boolean_t drop_if_identical)
 | 
						|
{
 | 
						|
#ifdef _KERNEL
 | 
						|
	zfs_ecksum_info_t *info;
 | 
						|
 | 
						|
	info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
 | 
						|
	    good_data, bad_data, report->zcr_length, drop_if_identical);
 | 
						|
	if (info != NULL)
 | 
						|
		zfs_zevent_post(report->zcr_ereport,
 | 
						|
		    report->zcr_detector, zfs_zevent_post_cb);
 | 
						|
	else
 | 
						|
		zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
 | 
						|
 | 
						|
	report->zcr_ereport = report->zcr_detector = NULL;
 | 
						|
	if (info != NULL)
 | 
						|
		kmem_free(info, sizeof (*info));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
 | 
						|
{
 | 
						|
#ifdef _KERNEL
 | 
						|
	if (rpt->zcr_ereport != NULL) {
 | 
						|
		fm_nvlist_destroy(rpt->zcr_ereport,
 | 
						|
		    FM_NVA_FREE);
 | 
						|
		fm_nvlist_destroy(rpt->zcr_detector,
 | 
						|
		    FM_NVA_FREE);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
 | 
						|
 | 
						|
	if (rpt->zcr_ckinfo != NULL)
 | 
						|
		kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
 | 
						|
 | 
						|
	kmem_free(rpt, sizeof (*rpt));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int
 | 
						|
zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
 | 
						|
    struct zio *zio, uint64_t offset, uint64_t length,
 | 
						|
    const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
 | 
						|
{
 | 
						|
	int rc = 0;
 | 
						|
#ifdef _KERNEL
 | 
						|
	nvlist_t *ereport = NULL;
 | 
						|
	nvlist_t *detector = NULL;
 | 
						|
	zfs_ecksum_info_t *info;
 | 
						|
 | 
						|
	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
 | 
						|
		return (EBUSY);
 | 
						|
 | 
						|
	if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
 | 
						|
	    spa, vd, zb, zio, offset, length) || (ereport == NULL)) {
 | 
						|
		return (SET_ERROR(EINVAL));
 | 
						|
	}
 | 
						|
 | 
						|
	info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
 | 
						|
	    B_FALSE);
 | 
						|
 | 
						|
	if (info != NULL) {
 | 
						|
		rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
 | 
						|
		kmem_free(info, sizeof (*info));
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	return (rc);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
 | 
						|
 * change in the pool.  All sysevents are listed in sys/sysevent/eventdefs.h
 | 
						|
 * and are designed to be consumed by the ZFS Event Daemon (ZED).  For
 | 
						|
 * additional details refer to the zed(8) man page.
 | 
						|
 */
 | 
						|
nvlist_t *
 | 
						|
zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name,
 | 
						|
    nvlist_t *aux)
 | 
						|
{
 | 
						|
	nvlist_t *resource = NULL;
 | 
						|
#ifdef _KERNEL
 | 
						|
	char class[64];
 | 
						|
 | 
						|
	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
 | 
						|
		return (NULL);
 | 
						|
 | 
						|
	if ((resource = fm_nvlist_create(NULL)) == NULL)
 | 
						|
		return (NULL);
 | 
						|
 | 
						|
	(void) snprintf(class, sizeof (class), "%s.%s.%s", type,
 | 
						|
	    ZFS_ERROR_CLASS, name);
 | 
						|
	VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
 | 
						|
	VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
 | 
						|
	VERIFY0(nvlist_add_string(resource,
 | 
						|
	    FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa)));
 | 
						|
	VERIFY0(nvlist_add_uint64(resource,
 | 
						|
	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
 | 
						|
	VERIFY0(nvlist_add_uint64(resource,
 | 
						|
	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa)));
 | 
						|
	VERIFY0(nvlist_add_int32(resource,
 | 
						|
	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
 | 
						|
 | 
						|
	if (vd) {
 | 
						|
		VERIFY0(nvlist_add_uint64(resource,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
 | 
						|
		VERIFY0(nvlist_add_uint64(resource,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
 | 
						|
		if (vd->vdev_path != NULL)
 | 
						|
			VERIFY0(nvlist_add_string(resource,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
 | 
						|
		if (vd->vdev_devid != NULL)
 | 
						|
			VERIFY0(nvlist_add_string(resource,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
 | 
						|
		if (vd->vdev_fru != NULL)
 | 
						|
			VERIFY0(nvlist_add_string(resource,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
 | 
						|
		if (vd->vdev_enc_sysfs_path != NULL)
 | 
						|
			VERIFY0(nvlist_add_string(resource,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
 | 
						|
			    vd->vdev_enc_sysfs_path));
 | 
						|
	}
 | 
						|
 | 
						|
	/* also copy any optional payload data */
 | 
						|
	if (aux) {
 | 
						|
		nvpair_t *elem = NULL;
 | 
						|
 | 
						|
		while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
 | 
						|
			(void) nvlist_add_nvpair(resource, elem);
 | 
						|
	}
 | 
						|
 | 
						|
#endif
 | 
						|
	return (resource);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
 | 
						|
    nvlist_t *aux)
 | 
						|
{
 | 
						|
#ifdef _KERNEL
 | 
						|
	nvlist_t *resource;
 | 
						|
 | 
						|
	resource = zfs_event_create(spa, vd, type, name, aux);
 | 
						|
	if (resource)
 | 
						|
		zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
 | 
						|
 * has been removed from the system.  This will cause the DE to ignore any
 | 
						|
 * recent I/O errors, inferring that they are due to the asynchronous device
 | 
						|
 * removal.
 | 
						|
 */
 | 
						|
void
 | 
						|
zfs_post_remove(spa_t *spa, vdev_t *vd)
 | 
						|
{
 | 
						|
	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
 | 
						|
 * has the 'autoreplace' property set, and therefore any broken vdevs will be
 | 
						|
 * handled by higher level logic, and no vdev fault should be generated.
 | 
						|
 */
 | 
						|
void
 | 
						|
zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
 | 
						|
{
 | 
						|
	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The 'resource.fs.zfs.statechange' event is an internal signal that the
 | 
						|
 * given vdev has transitioned its state to DEGRADED or HEALTHY.  This will
 | 
						|
 * cause the retire agent to repair any outstanding fault management cases
 | 
						|
 * open because the device was not found (fault.fs.zfs.device).
 | 
						|
 */
 | 
						|
void
 | 
						|
zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
 | 
						|
{
 | 
						|
#ifdef _KERNEL
 | 
						|
	nvlist_t *aux;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Add optional supplemental keys to payload
 | 
						|
	 */
 | 
						|
	aux = fm_nvlist_create(NULL);
 | 
						|
	if (vd && aux) {
 | 
						|
		if (vd->vdev_physpath) {
 | 
						|
			(void) nvlist_add_string(aux,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
 | 
						|
			    vd->vdev_physpath);
 | 
						|
		}
 | 
						|
		if (vd->vdev_enc_sysfs_path) {
 | 
						|
			(void) nvlist_add_string(aux,
 | 
						|
			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
 | 
						|
			    vd->vdev_enc_sysfs_path);
 | 
						|
		}
 | 
						|
 | 
						|
		(void) nvlist_add_uint64(aux,
 | 
						|
		    FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
 | 
						|
	}
 | 
						|
 | 
						|
	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
 | 
						|
	    aux);
 | 
						|
 | 
						|
	if (aux)
 | 
						|
		fm_nvlist_destroy(aux, FM_NVA_FREE);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#if defined(_KERNEL)
 | 
						|
EXPORT_SYMBOL(zfs_ereport_post);
 | 
						|
EXPORT_SYMBOL(zfs_ereport_is_valid);
 | 
						|
EXPORT_SYMBOL(zfs_ereport_post_checksum);
 | 
						|
EXPORT_SYMBOL(zfs_post_remove);
 | 
						|
EXPORT_SYMBOL(zfs_post_autoreplace);
 | 
						|
EXPORT_SYMBOL(zfs_post_state_change);
 | 
						|
#endif /* _KERNEL */
 |