mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-11-04 01:41:27 +00:00 
			
		
		
		
	When d4a72f23 was merged, pss_pass_issued was incorrectly
added to the middle of the pool_scan_stat_t structure
instead of the end. This patch simply corrects this issue.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #6909
		
	
			
		
			
				
	
	
		
			2216 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2216 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * CDDL HEADER START
 | 
						|
 *
 | 
						|
 * The contents of this file are subject to the terms of the
 | 
						|
 * Common Development and Distribution License (the "License").
 | 
						|
 * You may not use this file except in compliance with the License.
 | 
						|
 *
 | 
						|
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | 
						|
 * or http://www.opensolaris.org/os/licensing.
 | 
						|
 * See the License for the specific language governing permissions
 | 
						|
 * and limitations under the License.
 | 
						|
 *
 | 
						|
 * When distributing Covered Code, include this CDDL HEADER in each
 | 
						|
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | 
						|
 * If applicable, add the following below this CDDL HEADER, with the
 | 
						|
 * fields enclosed by brackets "[]" replaced with your own identifying
 | 
						|
 * information: Portions Copyright [yyyy] [name of copyright owner]
 | 
						|
 *
 | 
						|
 * CDDL HEADER END
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | 
						|
 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
 | 
						|
 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
 | 
						|
 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
 | 
						|
 * Copyright 2013 Saso Kiselkov. All rights reserved.
 | 
						|
 * Copyright (c) 2017 Datto Inc.
 | 
						|
 */
 | 
						|
 | 
						|
#include <sys/zfs_context.h>
 | 
						|
#include <sys/spa_impl.h>
 | 
						|
#include <sys/zio.h>
 | 
						|
#include <sys/zio_checksum.h>
 | 
						|
#include <sys/zio_compress.h>
 | 
						|
#include <sys/dmu.h>
 | 
						|
#include <sys/dmu_tx.h>
 | 
						|
#include <sys/zap.h>
 | 
						|
#include <sys/zil.h>
 | 
						|
#include <sys/vdev_impl.h>
 | 
						|
#include <sys/vdev_file.h>
 | 
						|
#include <sys/vdev_raidz.h>
 | 
						|
#include <sys/metaslab.h>
 | 
						|
#include <sys/uberblock_impl.h>
 | 
						|
#include <sys/txg.h>
 | 
						|
#include <sys/avl.h>
 | 
						|
#include <sys/unique.h>
 | 
						|
#include <sys/dsl_pool.h>
 | 
						|
#include <sys/dsl_dir.h>
 | 
						|
#include <sys/dsl_prop.h>
 | 
						|
#include <sys/fm/util.h>
 | 
						|
#include <sys/dsl_scan.h>
 | 
						|
#include <sys/fs/zfs.h>
 | 
						|
#include <sys/metaslab_impl.h>
 | 
						|
#include <sys/arc.h>
 | 
						|
#include <sys/ddt.h>
 | 
						|
#include <sys/kstat.h>
 | 
						|
#include "zfs_prop.h"
 | 
						|
#include <sys/zfeature.h>
 | 
						|
#include "qat_compress.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * SPA locking
 | 
						|
 *
 | 
						|
 * There are four basic locks for managing spa_t structures:
 | 
						|
 *
 | 
						|
 * spa_namespace_lock (global mutex)
 | 
						|
 *
 | 
						|
 *	This lock must be acquired to do any of the following:
 | 
						|
 *
 | 
						|
 *		- Lookup a spa_t by name
 | 
						|
 *		- Add or remove a spa_t from the namespace
 | 
						|
 *		- Increase spa_refcount from non-zero
 | 
						|
 *		- Check if spa_refcount is zero
 | 
						|
 *		- Rename a spa_t
 | 
						|
 *		- add/remove/attach/detach devices
 | 
						|
 *		- Held for the duration of create/destroy/import/export
 | 
						|
 *
 | 
						|
 *	It does not need to handle recursion.  A create or destroy may
 | 
						|
 *	reference objects (files or zvols) in other pools, but by
 | 
						|
 *	definition they must have an existing reference, and will never need
 | 
						|
 *	to lookup a spa_t by name.
 | 
						|
 *
 | 
						|
 * spa_refcount (per-spa refcount_t protected by mutex)
 | 
						|
 *
 | 
						|
 *	This reference count keep track of any active users of the spa_t.  The
 | 
						|
 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
 | 
						|
 *	the refcount is never really 'zero' - opening a pool implicitly keeps
 | 
						|
 *	some references in the DMU.  Internally we check against spa_minref, but
 | 
						|
 *	present the image of a zero/non-zero value to consumers.
 | 
						|
 *
 | 
						|
 * spa_config_lock[] (per-spa array of rwlocks)
 | 
						|
 *
 | 
						|
 *	This protects the spa_t from config changes, and must be held in
 | 
						|
 *	the following circumstances:
 | 
						|
 *
 | 
						|
 *		- RW_READER to perform I/O to the spa
 | 
						|
 *		- RW_WRITER to change the vdev config
 | 
						|
 *
 | 
						|
 * The locking order is fairly straightforward:
 | 
						|
 *
 | 
						|
 *		spa_namespace_lock	->	spa_refcount
 | 
						|
 *
 | 
						|
 *	The namespace lock must be acquired to increase the refcount from 0
 | 
						|
 *	or to check if it is zero.
 | 
						|
 *
 | 
						|
 *		spa_refcount		->	spa_config_lock[]
 | 
						|
 *
 | 
						|
 *	There must be at least one valid reference on the spa_t to acquire
 | 
						|
 *	the config lock.
 | 
						|
 *
 | 
						|
 *		spa_namespace_lock	->	spa_config_lock[]
 | 
						|
 *
 | 
						|
 *	The namespace lock must always be taken before the config lock.
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * The spa_namespace_lock can be acquired directly and is globally visible.
 | 
						|
 *
 | 
						|
 * The namespace is manipulated using the following functions, all of which
 | 
						|
 * require the spa_namespace_lock to be held.
 | 
						|
 *
 | 
						|
 *	spa_lookup()		Lookup a spa_t by name.
 | 
						|
 *
 | 
						|
 *	spa_add()		Create a new spa_t in the namespace.
 | 
						|
 *
 | 
						|
 *	spa_remove()		Remove a spa_t from the namespace.  This also
 | 
						|
 *				frees up any memory associated with the spa_t.
 | 
						|
 *
 | 
						|
 *	spa_next()		Returns the next spa_t in the system, or the
 | 
						|
 *				first if NULL is passed.
 | 
						|
 *
 | 
						|
 *	spa_evict_all()		Shutdown and remove all spa_t structures in
 | 
						|
 *				the system.
 | 
						|
 *
 | 
						|
 *	spa_guid_exists()	Determine whether a pool/device guid exists.
 | 
						|
 *
 | 
						|
 * The spa_refcount is manipulated using the following functions:
 | 
						|
 *
 | 
						|
 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
 | 
						|
 *				called with spa_namespace_lock held if the
 | 
						|
 *				refcount is currently zero.
 | 
						|
 *
 | 
						|
 *	spa_close()		Remove a reference from the spa_t.  This will
 | 
						|
 *				not free the spa_t or remove it from the
 | 
						|
 *				namespace.  No locking is required.
 | 
						|
 *
 | 
						|
 *	spa_refcount_zero()	Returns true if the refcount is currently
 | 
						|
 *				zero.  Must be called with spa_namespace_lock
 | 
						|
 *				held.
 | 
						|
 *
 | 
						|
 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
 | 
						|
 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
 | 
						|
 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
 | 
						|
 *
 | 
						|
 * To read the configuration, it suffices to hold one of these locks as reader.
 | 
						|
 * To modify the configuration, you must hold all locks as writer.  To modify
 | 
						|
 * vdev state without altering the vdev tree's topology (e.g. online/offline),
 | 
						|
 * you must hold SCL_STATE and SCL_ZIO as writer.
 | 
						|
 *
 | 
						|
 * We use these distinct config locks to avoid recursive lock entry.
 | 
						|
 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
 | 
						|
 * block allocations (SCL_ALLOC), which may require reading space maps
 | 
						|
 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
 | 
						|
 *
 | 
						|
 * The spa config locks cannot be normal rwlocks because we need the
 | 
						|
 * ability to hand off ownership.  For example, SCL_ZIO is acquired
 | 
						|
 * by the issuing thread and later released by an interrupt thread.
 | 
						|
 * They do, however, obey the usual write-wanted semantics to prevent
 | 
						|
 * writer (i.e. system administrator) starvation.
 | 
						|
 *
 | 
						|
 * The lock acquisition rules are as follows:
 | 
						|
 *
 | 
						|
 * SCL_CONFIG
 | 
						|
 *	Protects changes to the vdev tree topology, such as vdev
 | 
						|
 *	add/remove/attach/detach.  Protects the dirty config list
 | 
						|
 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
 | 
						|
 *
 | 
						|
 * SCL_STATE
 | 
						|
 *	Protects changes to pool state and vdev state, such as vdev
 | 
						|
 *	online/offline/fault/degrade/clear.  Protects the dirty state list
 | 
						|
 *	(spa_state_dirty_list) and global pool state (spa_state).
 | 
						|
 *
 | 
						|
 * SCL_ALLOC
 | 
						|
 *	Protects changes to metaslab groups and classes.
 | 
						|
 *	Held as reader by metaslab_alloc() and metaslab_claim().
 | 
						|
 *
 | 
						|
 * SCL_ZIO
 | 
						|
 *	Held by bp-level zios (those which have no io_vd upon entry)
 | 
						|
 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
 | 
						|
 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
 | 
						|
 *
 | 
						|
 * SCL_FREE
 | 
						|
 *	Protects changes to metaslab groups and classes.
 | 
						|
 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
 | 
						|
 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
 | 
						|
 *	blocks in zio_done() while another i/o that holds either
 | 
						|
 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
 | 
						|
 *
 | 
						|
 * SCL_VDEV
 | 
						|
 *	Held as reader to prevent changes to the vdev tree during trivial
 | 
						|
 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
 | 
						|
 *	other locks, and lower than all of them, to ensure that it's safe
 | 
						|
 *	to acquire regardless of caller context.
 | 
						|
 *
 | 
						|
 * In addition, the following rules apply:
 | 
						|
 *
 | 
						|
 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
 | 
						|
 *	The lock ordering is SCL_CONFIG > spa_props_lock.
 | 
						|
 *
 | 
						|
 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
 | 
						|
 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
 | 
						|
 *	or zio_write_phys() -- the caller must ensure that the config cannot
 | 
						|
 *	cannot change in the interim, and that the vdev cannot be reopened.
 | 
						|
 *	SCL_STATE as reader suffices for both.
 | 
						|
 *
 | 
						|
 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
 | 
						|
 *
 | 
						|
 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
 | 
						|
 *				for writing.
 | 
						|
 *
 | 
						|
 *	spa_vdev_exit()		Release the config lock, wait for all I/O
 | 
						|
 *				to complete, sync the updated configs to the
 | 
						|
 *				cache, and release the namespace lock.
 | 
						|
 *
 | 
						|
 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
 | 
						|
 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
 | 
						|
 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
 | 
						|
 *
 | 
						|
 * spa_rename() is also implemented within this file since it requires
 | 
						|
 * manipulation of the namespace.
 | 
						|
 */
 | 
						|
 | 
						|
static avl_tree_t spa_namespace_avl;
 | 
						|
kmutex_t spa_namespace_lock;
 | 
						|
static kcondvar_t spa_namespace_cv;
 | 
						|
int spa_max_replication_override = SPA_DVAS_PER_BP;
 | 
						|
 | 
						|
static kmutex_t spa_spare_lock;
 | 
						|
static avl_tree_t spa_spare_avl;
 | 
						|
static kmutex_t spa_l2cache_lock;
 | 
						|
static avl_tree_t spa_l2cache_avl;
 | 
						|
 | 
						|
kmem_cache_t *spa_buffer_pool;
 | 
						|
int spa_mode_global;
 | 
						|
 | 
						|
#ifdef ZFS_DEBUG
 | 
						|
/* Everything except dprintf and spa is on by default in debug builds */
 | 
						|
int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
 | 
						|
#else
 | 
						|
int zfs_flags = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * zfs_recover can be set to nonzero to attempt to recover from
 | 
						|
 * otherwise-fatal errors, typically caused by on-disk corruption.  When
 | 
						|
 * set, calls to zfs_panic_recover() will turn into warning messages.
 | 
						|
 * This should only be used as a last resort, as it typically results
 | 
						|
 * in leaked space, or worse.
 | 
						|
 */
 | 
						|
int zfs_recover = B_FALSE;
 | 
						|
 | 
						|
/*
 | 
						|
 * If destroy encounters an EIO while reading metadata (e.g. indirect
 | 
						|
 * blocks), space referenced by the missing metadata can not be freed.
 | 
						|
 * Normally this causes the background destroy to become "stalled", as
 | 
						|
 * it is unable to make forward progress.  While in this stalled state,
 | 
						|
 * all remaining space to free from the error-encountering filesystem is
 | 
						|
 * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
 | 
						|
 * permanently leak the space from indirect blocks that can not be read,
 | 
						|
 * and continue to free everything else that it can.
 | 
						|
 *
 | 
						|
 * The default, "stalling" behavior is useful if the storage partially
 | 
						|
 * fails (i.e. some but not all i/os fail), and then later recovers.  In
 | 
						|
 * this case, we will be able to continue pool operations while it is
 | 
						|
 * partially failed, and when it recovers, we can continue to free the
 | 
						|
 * space, with no leaks.  However, note that this case is actually
 | 
						|
 * fairly rare.
 | 
						|
 *
 | 
						|
 * Typically pools either (a) fail completely (but perhaps temporarily,
 | 
						|
 * e.g. a top-level vdev going offline), or (b) have localized,
 | 
						|
 * permanent errors (e.g. disk returns the wrong data due to bit flip or
 | 
						|
 * firmware bug).  In case (a), this setting does not matter because the
 | 
						|
 * pool will be suspended and the sync thread will not be able to make
 | 
						|
 * forward progress regardless.  In case (b), because the error is
 | 
						|
 * permanent, the best we can do is leak the minimum amount of space,
 | 
						|
 * which is what setting this flag will do.  Therefore, it is reasonable
 | 
						|
 * for this flag to normally be set, but we chose the more conservative
 | 
						|
 * approach of not setting it, so that there is no possibility of
 | 
						|
 * leaking space in the "partial temporary" failure case.
 | 
						|
 */
 | 
						|
int zfs_free_leak_on_eio = B_FALSE;
 | 
						|
 | 
						|
/*
 | 
						|
 * Expiration time in milliseconds. This value has two meanings. First it is
 | 
						|
 * used to determine when the spa_deadman() logic should fire. By default the
 | 
						|
 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
 | 
						|
 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
 | 
						|
 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
 | 
						|
 * in a system panic.
 | 
						|
 */
 | 
						|
unsigned long zfs_deadman_synctime_ms = 1000000ULL;
 | 
						|
 | 
						|
/*
 | 
						|
 * Check time in milliseconds. This defines the frequency at which we check
 | 
						|
 * for hung I/O.
 | 
						|
 */
 | 
						|
unsigned long  zfs_deadman_checktime_ms = 5000ULL;
 | 
						|
 | 
						|
/*
 | 
						|
 * By default the deadman is enabled.
 | 
						|
 */
 | 
						|
int zfs_deadman_enabled = 1;
 | 
						|
 | 
						|
/*
 | 
						|
 * The worst case is single-sector max-parity RAID-Z blocks, in which
 | 
						|
 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
 | 
						|
 * times the size; so just assume that.  Add to this the fact that
 | 
						|
 * we can have up to 3 DVAs per bp, and one more factor of 2 because
 | 
						|
 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
 | 
						|
 * the worst case is:
 | 
						|
 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
 | 
						|
 */
 | 
						|
int spa_asize_inflation = 24;
 | 
						|
 | 
						|
/*
 | 
						|
 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
 | 
						|
 * the pool to be consumed.  This ensures that we don't run the pool
 | 
						|
 * completely out of space, due to unaccounted changes (e.g. to the MOS).
 | 
						|
 * It also limits the worst-case time to allocate space.  If we have
 | 
						|
 * less than this amount of free space, most ZPL operations (e.g. write,
 | 
						|
 * create) will return ENOSPC.
 | 
						|
 *
 | 
						|
 * Certain operations (e.g. file removal, most administrative actions) can
 | 
						|
 * use half the slop space.  They will only return ENOSPC if less than half
 | 
						|
 * the slop space is free.  Typically, once the pool has less than the slop
 | 
						|
 * space free, the user will use these operations to free up space in the pool.
 | 
						|
 * These are the operations that call dsl_pool_adjustedsize() with the netfree
 | 
						|
 * argument set to TRUE.
 | 
						|
 *
 | 
						|
 * A very restricted set of operations are always permitted, regardless of
 | 
						|
 * the amount of free space.  These are the operations that call
 | 
						|
 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
 | 
						|
 * operations result in a net increase in the amount of space used,
 | 
						|
 * it is possible to run the pool completely out of space, causing it to
 | 
						|
 * be permanently read-only.
 | 
						|
 *
 | 
						|
 * Note that on very small pools, the slop space will be larger than
 | 
						|
 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
 | 
						|
 * but we never allow it to be more than half the pool size.
 | 
						|
 *
 | 
						|
 * See also the comments in zfs_space_check_t.
 | 
						|
 */
 | 
						|
int spa_slop_shift = 5;
 | 
						|
uint64_t spa_min_slop = 128 * 1024 * 1024;
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * SPA config locking
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
static void
 | 
						|
spa_config_lock_init(spa_t *spa)
 | 
						|
{
 | 
						|
	for (int i = 0; i < SCL_LOCKS; i++) {
 | 
						|
		spa_config_lock_t *scl = &spa->spa_config_lock[i];
 | 
						|
		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
		refcount_create_untracked(&scl->scl_count);
 | 
						|
		scl->scl_writer = NULL;
 | 
						|
		scl->scl_write_wanted = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
spa_config_lock_destroy(spa_t *spa)
 | 
						|
{
 | 
						|
	for (int i = 0; i < SCL_LOCKS; i++) {
 | 
						|
		spa_config_lock_t *scl = &spa->spa_config_lock[i];
 | 
						|
		mutex_destroy(&scl->scl_lock);
 | 
						|
		cv_destroy(&scl->scl_cv);
 | 
						|
		refcount_destroy(&scl->scl_count);
 | 
						|
		ASSERT(scl->scl_writer == NULL);
 | 
						|
		ASSERT(scl->scl_write_wanted == 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
 | 
						|
{
 | 
						|
	for (int i = 0; i < SCL_LOCKS; i++) {
 | 
						|
		spa_config_lock_t *scl = &spa->spa_config_lock[i];
 | 
						|
		if (!(locks & (1 << i)))
 | 
						|
			continue;
 | 
						|
		mutex_enter(&scl->scl_lock);
 | 
						|
		if (rw == RW_READER) {
 | 
						|
			if (scl->scl_writer || scl->scl_write_wanted) {
 | 
						|
				mutex_exit(&scl->scl_lock);
 | 
						|
				spa_config_exit(spa, locks & ((1 << i) - 1),
 | 
						|
				    tag);
 | 
						|
				return (0);
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			ASSERT(scl->scl_writer != curthread);
 | 
						|
			if (!refcount_is_zero(&scl->scl_count)) {
 | 
						|
				mutex_exit(&scl->scl_lock);
 | 
						|
				spa_config_exit(spa, locks & ((1 << i) - 1),
 | 
						|
				    tag);
 | 
						|
				return (0);
 | 
						|
			}
 | 
						|
			scl->scl_writer = curthread;
 | 
						|
		}
 | 
						|
		(void) refcount_add(&scl->scl_count, tag);
 | 
						|
		mutex_exit(&scl->scl_lock);
 | 
						|
	}
 | 
						|
	return (1);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
 | 
						|
{
 | 
						|
	int wlocks_held = 0;
 | 
						|
 | 
						|
	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
 | 
						|
 | 
						|
	for (int i = 0; i < SCL_LOCKS; i++) {
 | 
						|
		spa_config_lock_t *scl = &spa->spa_config_lock[i];
 | 
						|
		if (scl->scl_writer == curthread)
 | 
						|
			wlocks_held |= (1 << i);
 | 
						|
		if (!(locks & (1 << i)))
 | 
						|
			continue;
 | 
						|
		mutex_enter(&scl->scl_lock);
 | 
						|
		if (rw == RW_READER) {
 | 
						|
			while (scl->scl_writer || scl->scl_write_wanted) {
 | 
						|
				cv_wait(&scl->scl_cv, &scl->scl_lock);
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			ASSERT(scl->scl_writer != curthread);
 | 
						|
			while (!refcount_is_zero(&scl->scl_count)) {
 | 
						|
				scl->scl_write_wanted++;
 | 
						|
				cv_wait(&scl->scl_cv, &scl->scl_lock);
 | 
						|
				scl->scl_write_wanted--;
 | 
						|
			}
 | 
						|
			scl->scl_writer = curthread;
 | 
						|
		}
 | 
						|
		(void) refcount_add(&scl->scl_count, tag);
 | 
						|
		mutex_exit(&scl->scl_lock);
 | 
						|
	}
 | 
						|
	ASSERT(wlocks_held <= locks);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_config_exit(spa_t *spa, int locks, void *tag)
 | 
						|
{
 | 
						|
	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
 | 
						|
		spa_config_lock_t *scl = &spa->spa_config_lock[i];
 | 
						|
		if (!(locks & (1 << i)))
 | 
						|
			continue;
 | 
						|
		mutex_enter(&scl->scl_lock);
 | 
						|
		ASSERT(!refcount_is_zero(&scl->scl_count));
 | 
						|
		if (refcount_remove(&scl->scl_count, tag) == 0) {
 | 
						|
			ASSERT(scl->scl_writer == NULL ||
 | 
						|
			    scl->scl_writer == curthread);
 | 
						|
			scl->scl_writer = NULL;	/* OK in either case */
 | 
						|
			cv_broadcast(&scl->scl_cv);
 | 
						|
		}
 | 
						|
		mutex_exit(&scl->scl_lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
spa_config_held(spa_t *spa, int locks, krw_t rw)
 | 
						|
{
 | 
						|
	int locks_held = 0;
 | 
						|
 | 
						|
	for (int i = 0; i < SCL_LOCKS; i++) {
 | 
						|
		spa_config_lock_t *scl = &spa->spa_config_lock[i];
 | 
						|
		if (!(locks & (1 << i)))
 | 
						|
			continue;
 | 
						|
		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
 | 
						|
		    (rw == RW_WRITER && scl->scl_writer == curthread))
 | 
						|
			locks_held |= 1 << i;
 | 
						|
	}
 | 
						|
 | 
						|
	return (locks_held);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * SPA namespace functions
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
 | 
						|
 * Returns NULL if no matching spa_t is found.
 | 
						|
 */
 | 
						|
spa_t *
 | 
						|
spa_lookup(const char *name)
 | 
						|
{
 | 
						|
	static spa_t search;	/* spa_t is large; don't allocate on stack */
 | 
						|
	spa_t *spa;
 | 
						|
	avl_index_t where;
 | 
						|
	char *cp;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | 
						|
 | 
						|
	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If it's a full dataset name, figure out the pool name and
 | 
						|
	 * just use that.
 | 
						|
	 */
 | 
						|
	cp = strpbrk(search.spa_name, "/@#");
 | 
						|
	if (cp != NULL)
 | 
						|
		*cp = '\0';
 | 
						|
 | 
						|
	spa = avl_find(&spa_namespace_avl, &search, &where);
 | 
						|
 | 
						|
	return (spa);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
 | 
						|
 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
 | 
						|
 * looking for potentially hung I/Os.
 | 
						|
 */
 | 
						|
void
 | 
						|
spa_deadman(void *arg)
 | 
						|
{
 | 
						|
	spa_t *spa = arg;
 | 
						|
 | 
						|
	/* Disable the deadman if the pool is suspended. */
 | 
						|
	if (spa_suspended(spa))
 | 
						|
		return;
 | 
						|
 | 
						|
	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
 | 
						|
	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
 | 
						|
	    ++spa->spa_deadman_calls);
 | 
						|
	if (zfs_deadman_enabled)
 | 
						|
		vdev_deadman(spa->spa_root_vdev);
 | 
						|
 | 
						|
	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
 | 
						|
	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
 | 
						|
	    MSEC_TO_TICK(zfs_deadman_checktime_ms));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Create an uninitialized spa_t with the given name.  Requires
 | 
						|
 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
 | 
						|
 * exist by calling spa_lookup() first.
 | 
						|
 */
 | 
						|
spa_t *
 | 
						|
spa_add(const char *name, nvlist_t *config, const char *altroot)
 | 
						|
{
 | 
						|
	spa_t *spa;
 | 
						|
	spa_config_dirent_t *dp;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | 
						|
 | 
						|
	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
 | 
						|
 | 
						|
	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
 | 
						|
	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
 | 
						|
	for (int t = 0; t < TXG_SIZE; t++)
 | 
						|
		bplist_create(&spa->spa_free_bplist[t]);
 | 
						|
 | 
						|
	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
 | 
						|
	spa->spa_state = POOL_STATE_UNINITIALIZED;
 | 
						|
	spa->spa_freeze_txg = UINT64_MAX;
 | 
						|
	spa->spa_final_txg = UINT64_MAX;
 | 
						|
	spa->spa_load_max_txg = UINT64_MAX;
 | 
						|
	spa->spa_proc = &p0;
 | 
						|
	spa->spa_proc_state = SPA_PROC_NONE;
 | 
						|
 | 
						|
	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
 | 
						|
 | 
						|
	refcount_create(&spa->spa_refcount);
 | 
						|
	spa_config_lock_init(spa);
 | 
						|
	spa_stats_init(spa);
 | 
						|
 | 
						|
	avl_add(&spa_namespace_avl, spa);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set the alternate root, if there is one.
 | 
						|
	 */
 | 
						|
	if (altroot)
 | 
						|
		spa->spa_root = spa_strdup(altroot);
 | 
						|
 | 
						|
	avl_create(&spa->spa_alloc_tree, zio_bookmark_compare,
 | 
						|
	    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Every pool starts with the default cachefile
 | 
						|
	 */
 | 
						|
	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
 | 
						|
	    offsetof(spa_config_dirent_t, scd_link));
 | 
						|
 | 
						|
	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
 | 
						|
	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
 | 
						|
	list_insert_head(&spa->spa_config_list, dp);
 | 
						|
 | 
						|
	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
 | 
						|
	    KM_SLEEP) == 0);
 | 
						|
 | 
						|
	if (config != NULL) {
 | 
						|
		nvlist_t *features;
 | 
						|
 | 
						|
		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
 | 
						|
		    &features) == 0) {
 | 
						|
			VERIFY(nvlist_dup(features, &spa->spa_label_features,
 | 
						|
			    0) == 0);
 | 
						|
		}
 | 
						|
 | 
						|
		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
 | 
						|
	}
 | 
						|
 | 
						|
	if (spa->spa_label_features == NULL) {
 | 
						|
		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
 | 
						|
		    KM_SLEEP) == 0);
 | 
						|
	}
 | 
						|
 | 
						|
	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
 | 
						|
 | 
						|
	spa->spa_min_ashift = INT_MAX;
 | 
						|
	spa->spa_max_ashift = 0;
 | 
						|
 | 
						|
	/* Reset cached value */
 | 
						|
	spa->spa_dedup_dspace = ~0ULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * As a pool is being created, treat all features as disabled by
 | 
						|
	 * setting SPA_FEATURE_DISABLED for all entries in the feature
 | 
						|
	 * refcount cache.
 | 
						|
	 */
 | 
						|
	for (int i = 0; i < SPA_FEATURES; i++) {
 | 
						|
		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
 | 
						|
	}
 | 
						|
 | 
						|
	return (spa);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
 | 
						|
 * spa_namespace_lock.  This is called only after the spa_t has been closed and
 | 
						|
 * deactivated.
 | 
						|
 */
 | 
						|
void
 | 
						|
spa_remove(spa_t *spa)
 | 
						|
{
 | 
						|
	spa_config_dirent_t *dp;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | 
						|
	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
 | 
						|
	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
 | 
						|
 | 
						|
	nvlist_free(spa->spa_config_splitting);
 | 
						|
 | 
						|
	avl_remove(&spa_namespace_avl, spa);
 | 
						|
	cv_broadcast(&spa_namespace_cv);
 | 
						|
 | 
						|
	if (spa->spa_root)
 | 
						|
		spa_strfree(spa->spa_root);
 | 
						|
 | 
						|
	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
 | 
						|
		list_remove(&spa->spa_config_list, dp);
 | 
						|
		if (dp->scd_path != NULL)
 | 
						|
			spa_strfree(dp->scd_path);
 | 
						|
		kmem_free(dp, sizeof (spa_config_dirent_t));
 | 
						|
	}
 | 
						|
 | 
						|
	avl_destroy(&spa->spa_alloc_tree);
 | 
						|
	list_destroy(&spa->spa_config_list);
 | 
						|
 | 
						|
	nvlist_free(spa->spa_label_features);
 | 
						|
	nvlist_free(spa->spa_load_info);
 | 
						|
	nvlist_free(spa->spa_feat_stats);
 | 
						|
	spa_config_set(spa, NULL);
 | 
						|
 | 
						|
	refcount_destroy(&spa->spa_refcount);
 | 
						|
 | 
						|
	spa_stats_destroy(spa);
 | 
						|
	spa_config_lock_destroy(spa);
 | 
						|
 | 
						|
	for (int t = 0; t < TXG_SIZE; t++)
 | 
						|
		bplist_destroy(&spa->spa_free_bplist[t]);
 | 
						|
 | 
						|
	zio_checksum_templates_free(spa);
 | 
						|
 | 
						|
	cv_destroy(&spa->spa_async_cv);
 | 
						|
	cv_destroy(&spa->spa_evicting_os_cv);
 | 
						|
	cv_destroy(&spa->spa_proc_cv);
 | 
						|
	cv_destroy(&spa->spa_scrub_io_cv);
 | 
						|
	cv_destroy(&spa->spa_suspend_cv);
 | 
						|
 | 
						|
	mutex_destroy(&spa->spa_alloc_lock);
 | 
						|
	mutex_destroy(&spa->spa_async_lock);
 | 
						|
	mutex_destroy(&spa->spa_errlist_lock);
 | 
						|
	mutex_destroy(&spa->spa_errlog_lock);
 | 
						|
	mutex_destroy(&spa->spa_evicting_os_lock);
 | 
						|
	mutex_destroy(&spa->spa_history_lock);
 | 
						|
	mutex_destroy(&spa->spa_proc_lock);
 | 
						|
	mutex_destroy(&spa->spa_props_lock);
 | 
						|
	mutex_destroy(&spa->spa_cksum_tmpls_lock);
 | 
						|
	mutex_destroy(&spa->spa_scrub_lock);
 | 
						|
	mutex_destroy(&spa->spa_suspend_lock);
 | 
						|
	mutex_destroy(&spa->spa_vdev_top_lock);
 | 
						|
	mutex_destroy(&spa->spa_feat_stats_lock);
 | 
						|
 | 
						|
	kmem_free(spa, sizeof (spa_t));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Given a pool, return the next pool in the namespace, or NULL if there is
 | 
						|
 * none.  If 'prev' is NULL, return the first pool.
 | 
						|
 */
 | 
						|
spa_t *
 | 
						|
spa_next(spa_t *prev)
 | 
						|
{
 | 
						|
	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | 
						|
 | 
						|
	if (prev)
 | 
						|
		return (AVL_NEXT(&spa_namespace_avl, prev));
 | 
						|
	else
 | 
						|
		return (avl_first(&spa_namespace_avl));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * SPA refcount functions
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Add a reference to the given spa_t.  Must have at least one reference, or
 | 
						|
 * have the namespace lock held.
 | 
						|
 */
 | 
						|
void
 | 
						|
spa_open_ref(spa_t *spa, void *tag)
 | 
						|
{
 | 
						|
	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
 | 
						|
	    MUTEX_HELD(&spa_namespace_lock));
 | 
						|
	(void) refcount_add(&spa->spa_refcount, tag);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Remove a reference to the given spa_t.  Must have at least one reference, or
 | 
						|
 * have the namespace lock held.
 | 
						|
 */
 | 
						|
void
 | 
						|
spa_close(spa_t *spa, void *tag)
 | 
						|
{
 | 
						|
	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
 | 
						|
	    MUTEX_HELD(&spa_namespace_lock));
 | 
						|
	(void) refcount_remove(&spa->spa_refcount, tag);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Remove a reference to the given spa_t held by a dsl dir that is
 | 
						|
 * being asynchronously released.  Async releases occur from a taskq
 | 
						|
 * performing eviction of dsl datasets and dirs.  The namespace lock
 | 
						|
 * isn't held and the hold by the object being evicted may contribute to
 | 
						|
 * spa_minref (e.g. dataset or directory released during pool export),
 | 
						|
 * so the asserts in spa_close() do not apply.
 | 
						|
 */
 | 
						|
void
 | 
						|
spa_async_close(spa_t *spa, void *tag)
 | 
						|
{
 | 
						|
	(void) refcount_remove(&spa->spa_refcount, tag);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check to see if the spa refcount is zero.  Must be called with
 | 
						|
 * spa_namespace_lock held.  We really compare against spa_minref, which is the
 | 
						|
 * number of references acquired when opening a pool
 | 
						|
 */
 | 
						|
boolean_t
 | 
						|
spa_refcount_zero(spa_t *spa)
 | 
						|
{
 | 
						|
	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | 
						|
 | 
						|
	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * SPA spare and l2cache tracking
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Hot spares and cache devices are tracked using the same code below,
 | 
						|
 * for 'auxiliary' devices.
 | 
						|
 */
 | 
						|
 | 
						|
typedef struct spa_aux {
 | 
						|
	uint64_t	aux_guid;
 | 
						|
	uint64_t	aux_pool;
 | 
						|
	avl_node_t	aux_avl;
 | 
						|
	int		aux_count;
 | 
						|
} spa_aux_t;
 | 
						|
 | 
						|
static inline int
 | 
						|
spa_aux_compare(const void *a, const void *b)
 | 
						|
{
 | 
						|
	const spa_aux_t *sa = (const spa_aux_t *)a;
 | 
						|
	const spa_aux_t *sb = (const spa_aux_t *)b;
 | 
						|
 | 
						|
	return (AVL_CMP(sa->aux_guid, sb->aux_guid));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_aux_add(vdev_t *vd, avl_tree_t *avl)
 | 
						|
{
 | 
						|
	avl_index_t where;
 | 
						|
	spa_aux_t search;
 | 
						|
	spa_aux_t *aux;
 | 
						|
 | 
						|
	search.aux_guid = vd->vdev_guid;
 | 
						|
	if ((aux = avl_find(avl, &search, &where)) != NULL) {
 | 
						|
		aux->aux_count++;
 | 
						|
	} else {
 | 
						|
		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
 | 
						|
		aux->aux_guid = vd->vdev_guid;
 | 
						|
		aux->aux_count = 1;
 | 
						|
		avl_insert(avl, aux, where);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
 | 
						|
{
 | 
						|
	spa_aux_t search;
 | 
						|
	spa_aux_t *aux;
 | 
						|
	avl_index_t where;
 | 
						|
 | 
						|
	search.aux_guid = vd->vdev_guid;
 | 
						|
	aux = avl_find(avl, &search, &where);
 | 
						|
 | 
						|
	ASSERT(aux != NULL);
 | 
						|
 | 
						|
	if (--aux->aux_count == 0) {
 | 
						|
		avl_remove(avl, aux);
 | 
						|
		kmem_free(aux, sizeof (spa_aux_t));
 | 
						|
	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
 | 
						|
		aux->aux_pool = 0ULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
 | 
						|
{
 | 
						|
	spa_aux_t search, *found;
 | 
						|
 | 
						|
	search.aux_guid = guid;
 | 
						|
	found = avl_find(avl, &search, NULL);
 | 
						|
 | 
						|
	if (pool) {
 | 
						|
		if (found)
 | 
						|
			*pool = found->aux_pool;
 | 
						|
		else
 | 
						|
			*pool = 0ULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (refcnt) {
 | 
						|
		if (found)
 | 
						|
			*refcnt = found->aux_count;
 | 
						|
		else
 | 
						|
			*refcnt = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return (found != NULL);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
 | 
						|
{
 | 
						|
	spa_aux_t search, *found;
 | 
						|
	avl_index_t where;
 | 
						|
 | 
						|
	search.aux_guid = vd->vdev_guid;
 | 
						|
	found = avl_find(avl, &search, &where);
 | 
						|
	ASSERT(found != NULL);
 | 
						|
	ASSERT(found->aux_pool == 0ULL);
 | 
						|
 | 
						|
	found->aux_pool = spa_guid(vd->vdev_spa);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Spares are tracked globally due to the following constraints:
 | 
						|
 *
 | 
						|
 * 	- A spare may be part of multiple pools.
 | 
						|
 * 	- A spare may be added to a pool even if it's actively in use within
 | 
						|
 *	  another pool.
 | 
						|
 * 	- A spare in use in any pool can only be the source of a replacement if
 | 
						|
 *	  the target is a spare in the same pool.
 | 
						|
 *
 | 
						|
 * We keep track of all spares on the system through the use of a reference
 | 
						|
 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
 | 
						|
 * spare, then we bump the reference count in the AVL tree.  In addition, we set
 | 
						|
 * the 'vdev_isspare' member to indicate that the device is a spare (active or
 | 
						|
 * inactive).  When a spare is made active (used to replace a device in the
 | 
						|
 * pool), we also keep track of which pool its been made a part of.
 | 
						|
 *
 | 
						|
 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
 | 
						|
 * called under the spa_namespace lock as part of vdev reconfiguration.  The
 | 
						|
 * separate spare lock exists for the status query path, which does not need to
 | 
						|
 * be completely consistent with respect to other vdev configuration changes.
 | 
						|
 */
 | 
						|
 | 
						|
static int
 | 
						|
spa_spare_compare(const void *a, const void *b)
 | 
						|
{
 | 
						|
	return (spa_aux_compare(a, b));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_spare_add(vdev_t *vd)
 | 
						|
{
 | 
						|
	mutex_enter(&spa_spare_lock);
 | 
						|
	ASSERT(!vd->vdev_isspare);
 | 
						|
	spa_aux_add(vd, &spa_spare_avl);
 | 
						|
	vd->vdev_isspare = B_TRUE;
 | 
						|
	mutex_exit(&spa_spare_lock);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_spare_remove(vdev_t *vd)
 | 
						|
{
 | 
						|
	mutex_enter(&spa_spare_lock);
 | 
						|
	ASSERT(vd->vdev_isspare);
 | 
						|
	spa_aux_remove(vd, &spa_spare_avl);
 | 
						|
	vd->vdev_isspare = B_FALSE;
 | 
						|
	mutex_exit(&spa_spare_lock);
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
 | 
						|
{
 | 
						|
	boolean_t found;
 | 
						|
 | 
						|
	mutex_enter(&spa_spare_lock);
 | 
						|
	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
 | 
						|
	mutex_exit(&spa_spare_lock);
 | 
						|
 | 
						|
	return (found);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_spare_activate(vdev_t *vd)
 | 
						|
{
 | 
						|
	mutex_enter(&spa_spare_lock);
 | 
						|
	ASSERT(vd->vdev_isspare);
 | 
						|
	spa_aux_activate(vd, &spa_spare_avl);
 | 
						|
	mutex_exit(&spa_spare_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Level 2 ARC devices are tracked globally for the same reasons as spares.
 | 
						|
 * Cache devices currently only support one pool per cache device, and so
 | 
						|
 * for these devices the aux reference count is currently unused beyond 1.
 | 
						|
 */
 | 
						|
 | 
						|
static int
 | 
						|
spa_l2cache_compare(const void *a, const void *b)
 | 
						|
{
 | 
						|
	return (spa_aux_compare(a, b));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_l2cache_add(vdev_t *vd)
 | 
						|
{
 | 
						|
	mutex_enter(&spa_l2cache_lock);
 | 
						|
	ASSERT(!vd->vdev_isl2cache);
 | 
						|
	spa_aux_add(vd, &spa_l2cache_avl);
 | 
						|
	vd->vdev_isl2cache = B_TRUE;
 | 
						|
	mutex_exit(&spa_l2cache_lock);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_l2cache_remove(vdev_t *vd)
 | 
						|
{
 | 
						|
	mutex_enter(&spa_l2cache_lock);
 | 
						|
	ASSERT(vd->vdev_isl2cache);
 | 
						|
	spa_aux_remove(vd, &spa_l2cache_avl);
 | 
						|
	vd->vdev_isl2cache = B_FALSE;
 | 
						|
	mutex_exit(&spa_l2cache_lock);
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
spa_l2cache_exists(uint64_t guid, uint64_t *pool)
 | 
						|
{
 | 
						|
	boolean_t found;
 | 
						|
 | 
						|
	mutex_enter(&spa_l2cache_lock);
 | 
						|
	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
 | 
						|
	mutex_exit(&spa_l2cache_lock);
 | 
						|
 | 
						|
	return (found);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_l2cache_activate(vdev_t *vd)
 | 
						|
{
 | 
						|
	mutex_enter(&spa_l2cache_lock);
 | 
						|
	ASSERT(vd->vdev_isl2cache);
 | 
						|
	spa_aux_activate(vd, &spa_l2cache_avl);
 | 
						|
	mutex_exit(&spa_l2cache_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * SPA vdev locking
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Lock the given spa_t for the purpose of adding or removing a vdev.
 | 
						|
 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
 | 
						|
 * It returns the next transaction group for the spa_t.
 | 
						|
 */
 | 
						|
uint64_t
 | 
						|
spa_vdev_enter(spa_t *spa)
 | 
						|
{
 | 
						|
	mutex_enter(&spa->spa_vdev_top_lock);
 | 
						|
	mutex_enter(&spa_namespace_lock);
 | 
						|
	return (spa_vdev_config_enter(spa));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Internal implementation for spa_vdev_enter().  Used when a vdev
 | 
						|
 * operation requires multiple syncs (i.e. removing a device) while
 | 
						|
 * keeping the spa_namespace_lock held.
 | 
						|
 */
 | 
						|
uint64_t
 | 
						|
spa_vdev_config_enter(spa_t *spa)
 | 
						|
{
 | 
						|
	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | 
						|
 | 
						|
	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
 | 
						|
 | 
						|
	return (spa_last_synced_txg(spa) + 1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Used in combination with spa_vdev_config_enter() to allow the syncing
 | 
						|
 * of multiple transactions without releasing the spa_namespace_lock.
 | 
						|
 */
 | 
						|
void
 | 
						|
spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
 | 
						|
{
 | 
						|
	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | 
						|
 | 
						|
	int config_changed = B_FALSE;
 | 
						|
 | 
						|
	ASSERT(txg > spa_last_synced_txg(spa));
 | 
						|
 | 
						|
	spa->spa_pending_vdev = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Reassess the DTLs.
 | 
						|
	 */
 | 
						|
	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
 | 
						|
 | 
						|
	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
 | 
						|
		config_changed = B_TRUE;
 | 
						|
		spa->spa_config_generation++;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Verify the metaslab classes.
 | 
						|
	 */
 | 
						|
	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
 | 
						|
	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
 | 
						|
 | 
						|
	spa_config_exit(spa, SCL_ALL, spa);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Panic the system if the specified tag requires it.  This
 | 
						|
	 * is useful for ensuring that configurations are updated
 | 
						|
	 * transactionally.
 | 
						|
	 */
 | 
						|
	if (zio_injection_enabled)
 | 
						|
		zio_handle_panic_injection(spa, tag, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Note: this txg_wait_synced() is important because it ensures
 | 
						|
	 * that there won't be more than one config change per txg.
 | 
						|
	 * This allows us to use the txg as the generation number.
 | 
						|
	 */
 | 
						|
	if (error == 0)
 | 
						|
		txg_wait_synced(spa->spa_dsl_pool, txg);
 | 
						|
 | 
						|
	if (vd != NULL) {
 | 
						|
		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
 | 
						|
		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
 | 
						|
		vdev_free(vd);
 | 
						|
		spa_config_exit(spa, SCL_ALL, spa);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the config changed, update the config cache.
 | 
						|
	 */
 | 
						|
	if (config_changed)
 | 
						|
		spa_config_sync(spa, B_FALSE, B_TRUE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
 | 
						|
 * locking of spa_vdev_enter(), we also want make sure the transactions have
 | 
						|
 * synced to disk, and then update the global configuration cache with the new
 | 
						|
 * information.
 | 
						|
 */
 | 
						|
int
 | 
						|
spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
 | 
						|
{
 | 
						|
	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
 | 
						|
	mutex_exit(&spa_namespace_lock);
 | 
						|
	mutex_exit(&spa->spa_vdev_top_lock);
 | 
						|
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Lock the given spa_t for the purpose of changing vdev state.
 | 
						|
 */
 | 
						|
void
 | 
						|
spa_vdev_state_enter(spa_t *spa, int oplocks)
 | 
						|
{
 | 
						|
	int locks = SCL_STATE_ALL | oplocks;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Root pools may need to read of the underlying devfs filesystem
 | 
						|
	 * when opening up a vdev.  Unfortunately if we're holding the
 | 
						|
	 * SCL_ZIO lock it will result in a deadlock when we try to issue
 | 
						|
	 * the read from the root filesystem.  Instead we "prefetch"
 | 
						|
	 * the associated vnodes that we need prior to opening the
 | 
						|
	 * underlying devices and cache them so that we can prevent
 | 
						|
	 * any I/O when we are doing the actual open.
 | 
						|
	 */
 | 
						|
	if (spa_is_root(spa)) {
 | 
						|
		int low = locks & ~(SCL_ZIO - 1);
 | 
						|
		int high = locks & ~low;
 | 
						|
 | 
						|
		spa_config_enter(spa, high, spa, RW_WRITER);
 | 
						|
		vdev_hold(spa->spa_root_vdev);
 | 
						|
		spa_config_enter(spa, low, spa, RW_WRITER);
 | 
						|
	} else {
 | 
						|
		spa_config_enter(spa, locks, spa, RW_WRITER);
 | 
						|
	}
 | 
						|
	spa->spa_vdev_locks = locks;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
 | 
						|
{
 | 
						|
	boolean_t config_changed = B_FALSE;
 | 
						|
	vdev_t *vdev_top;
 | 
						|
 | 
						|
	if (vd == NULL || vd == spa->spa_root_vdev) {
 | 
						|
		vdev_top = spa->spa_root_vdev;
 | 
						|
	} else {
 | 
						|
		vdev_top = vd->vdev_top;
 | 
						|
	}
 | 
						|
 | 
						|
	if (vd != NULL || error == 0)
 | 
						|
		vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE);
 | 
						|
 | 
						|
	if (vd != NULL) {
 | 
						|
		if (vd != spa->spa_root_vdev)
 | 
						|
			vdev_state_dirty(vdev_top);
 | 
						|
 | 
						|
		config_changed = B_TRUE;
 | 
						|
		spa->spa_config_generation++;
 | 
						|
	}
 | 
						|
 | 
						|
	if (spa_is_root(spa))
 | 
						|
		vdev_rele(spa->spa_root_vdev);
 | 
						|
 | 
						|
	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
 | 
						|
	spa_config_exit(spa, spa->spa_vdev_locks, spa);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If anything changed, wait for it to sync.  This ensures that,
 | 
						|
	 * from the system administrator's perspective, zpool(1M) commands
 | 
						|
	 * are synchronous.  This is important for things like zpool offline:
 | 
						|
	 * when the command completes, you expect no further I/O from ZFS.
 | 
						|
	 */
 | 
						|
	if (vd != NULL)
 | 
						|
		txg_wait_synced(spa->spa_dsl_pool, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the config changed, update the config cache.
 | 
						|
	 */
 | 
						|
	if (config_changed) {
 | 
						|
		mutex_enter(&spa_namespace_lock);
 | 
						|
		spa_config_sync(spa, B_FALSE, B_TRUE);
 | 
						|
		mutex_exit(&spa_namespace_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * Miscellaneous functions
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
 | 
						|
void
 | 
						|
spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
 | 
						|
{
 | 
						|
	if (!nvlist_exists(spa->spa_label_features, feature)) {
 | 
						|
		fnvlist_add_boolean(spa->spa_label_features, feature);
 | 
						|
		/*
 | 
						|
		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
 | 
						|
		 * dirty the vdev config because lock SCL_CONFIG is not held.
 | 
						|
		 * Thankfully, in this case we don't need to dirty the config
 | 
						|
		 * because it will be written out anyway when we finish
 | 
						|
		 * creating the pool.
 | 
						|
		 */
 | 
						|
		if (tx->tx_txg != TXG_INITIAL)
 | 
						|
			vdev_config_dirty(spa->spa_root_vdev);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_deactivate_mos_feature(spa_t *spa, const char *feature)
 | 
						|
{
 | 
						|
	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
 | 
						|
		vdev_config_dirty(spa->spa_root_vdev);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Rename a spa_t.
 | 
						|
 */
 | 
						|
int
 | 
						|
spa_rename(const char *name, const char *newname)
 | 
						|
{
 | 
						|
	spa_t *spa;
 | 
						|
	int err;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Lookup the spa_t and grab the config lock for writing.  We need to
 | 
						|
	 * actually open the pool so that we can sync out the necessary labels.
 | 
						|
	 * It's OK to call spa_open() with the namespace lock held because we
 | 
						|
	 * allow recursive calls for other reasons.
 | 
						|
	 */
 | 
						|
	mutex_enter(&spa_namespace_lock);
 | 
						|
	if ((err = spa_open(name, &spa, FTAG)) != 0) {
 | 
						|
		mutex_exit(&spa_namespace_lock);
 | 
						|
		return (err);
 | 
						|
	}
 | 
						|
 | 
						|
	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 | 
						|
 | 
						|
	avl_remove(&spa_namespace_avl, spa);
 | 
						|
	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
 | 
						|
	avl_add(&spa_namespace_avl, spa);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Sync all labels to disk with the new names by marking the root vdev
 | 
						|
	 * dirty and waiting for it to sync.  It will pick up the new pool name
 | 
						|
	 * during the sync.
 | 
						|
	 */
 | 
						|
	vdev_config_dirty(spa->spa_root_vdev);
 | 
						|
 | 
						|
	spa_config_exit(spa, SCL_ALL, FTAG);
 | 
						|
 | 
						|
	txg_wait_synced(spa->spa_dsl_pool, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Sync the updated config cache.
 | 
						|
	 */
 | 
						|
	spa_config_sync(spa, B_FALSE, B_TRUE);
 | 
						|
 | 
						|
	spa_close(spa, FTAG);
 | 
						|
 | 
						|
	mutex_exit(&spa_namespace_lock);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the spa_t associated with given pool_guid, if it exists.  If
 | 
						|
 * device_guid is non-zero, determine whether the pool exists *and* contains
 | 
						|
 * a device with the specified device_guid.
 | 
						|
 */
 | 
						|
spa_t *
 | 
						|
spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
 | 
						|
{
 | 
						|
	spa_t *spa;
 | 
						|
	avl_tree_t *t = &spa_namespace_avl;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 | 
						|
 | 
						|
	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
 | 
						|
		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
 | 
						|
			continue;
 | 
						|
		if (spa->spa_root_vdev == NULL)
 | 
						|
			continue;
 | 
						|
		if (spa_guid(spa) == pool_guid) {
 | 
						|
			if (device_guid == 0)
 | 
						|
				break;
 | 
						|
 | 
						|
			if (vdev_lookup_by_guid(spa->spa_root_vdev,
 | 
						|
			    device_guid) != NULL)
 | 
						|
				break;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Check any devices we may be in the process of adding.
 | 
						|
			 */
 | 
						|
			if (spa->spa_pending_vdev) {
 | 
						|
				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
 | 
						|
				    device_guid) != NULL)
 | 
						|
					break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return (spa);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine whether a pool with the given pool_guid exists.
 | 
						|
 */
 | 
						|
boolean_t
 | 
						|
spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
 | 
						|
{
 | 
						|
	return (spa_by_guid(pool_guid, device_guid) != NULL);
 | 
						|
}
 | 
						|
 | 
						|
char *
 | 
						|
spa_strdup(const char *s)
 | 
						|
{
 | 
						|
	size_t len;
 | 
						|
	char *new;
 | 
						|
 | 
						|
	len = strlen(s);
 | 
						|
	new = kmem_alloc(len + 1, KM_SLEEP);
 | 
						|
	bcopy(s, new, len);
 | 
						|
	new[len] = '\0';
 | 
						|
 | 
						|
	return (new);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_strfree(char *s)
 | 
						|
{
 | 
						|
	kmem_free(s, strlen(s) + 1);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
spa_get_random(uint64_t range)
 | 
						|
{
 | 
						|
	uint64_t r;
 | 
						|
 | 
						|
	ASSERT(range != 0);
 | 
						|
 | 
						|
	if (range == 1)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
 | 
						|
 | 
						|
	return (r % range);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
spa_generate_guid(spa_t *spa)
 | 
						|
{
 | 
						|
	uint64_t guid = spa_get_random(-1ULL);
 | 
						|
 | 
						|
	if (spa != NULL) {
 | 
						|
		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
 | 
						|
			guid = spa_get_random(-1ULL);
 | 
						|
	} else {
 | 
						|
		while (guid == 0 || spa_guid_exists(guid, 0))
 | 
						|
			guid = spa_get_random(-1ULL);
 | 
						|
	}
 | 
						|
 | 
						|
	return (guid);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
 | 
						|
{
 | 
						|
	char type[256];
 | 
						|
	char *checksum = NULL;
 | 
						|
	char *compress = NULL;
 | 
						|
	char *crypt_type = NULL;
 | 
						|
 | 
						|
	if (bp != NULL) {
 | 
						|
		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
 | 
						|
			dmu_object_byteswap_t bswap =
 | 
						|
			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
 | 
						|
			(void) snprintf(type, sizeof (type), "bswap %s %s",
 | 
						|
			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
 | 
						|
			    "metadata" : "data",
 | 
						|
			    dmu_ot_byteswap[bswap].ob_name);
 | 
						|
		} else {
 | 
						|
			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
 | 
						|
			    sizeof (type));
 | 
						|
		}
 | 
						|
		if (BP_IS_ENCRYPTED(bp)) {
 | 
						|
			crypt_type = "encrypted";
 | 
						|
		} else if (BP_IS_AUTHENTICATED(bp)) {
 | 
						|
			crypt_type = "authenticated";
 | 
						|
		} else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
 | 
						|
			crypt_type = "indirect-MAC";
 | 
						|
		} else {
 | 
						|
			crypt_type = "unencrypted";
 | 
						|
		}
 | 
						|
		if (!BP_IS_EMBEDDED(bp)) {
 | 
						|
			checksum =
 | 
						|
			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
 | 
						|
		}
 | 
						|
		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
 | 
						|
	}
 | 
						|
 | 
						|
	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
 | 
						|
	    crypt_type, compress);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_freeze(spa_t *spa)
 | 
						|
{
 | 
						|
	uint64_t freeze_txg = 0;
 | 
						|
 | 
						|
	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 | 
						|
	if (spa->spa_freeze_txg == UINT64_MAX) {
 | 
						|
		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
 | 
						|
		spa->spa_freeze_txg = freeze_txg;
 | 
						|
	}
 | 
						|
	spa_config_exit(spa, SCL_ALL, FTAG);
 | 
						|
	if (freeze_txg != 0)
 | 
						|
		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
zfs_panic_recover(const char *fmt, ...)
 | 
						|
{
 | 
						|
	va_list adx;
 | 
						|
 | 
						|
	va_start(adx, fmt);
 | 
						|
	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
 | 
						|
	va_end(adx);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is a stripped-down version of strtoull, suitable only for converting
 | 
						|
 * lowercase hexadecimal numbers that don't overflow.
 | 
						|
 */
 | 
						|
uint64_t
 | 
						|
zfs_strtonum(const char *str, char **nptr)
 | 
						|
{
 | 
						|
	uint64_t val = 0;
 | 
						|
	char c;
 | 
						|
	int digit;
 | 
						|
 | 
						|
	while ((c = *str) != '\0') {
 | 
						|
		if (c >= '0' && c <= '9')
 | 
						|
			digit = c - '0';
 | 
						|
		else if (c >= 'a' && c <= 'f')
 | 
						|
			digit = 10 + c - 'a';
 | 
						|
		else
 | 
						|
			break;
 | 
						|
 | 
						|
		val *= 16;
 | 
						|
		val += digit;
 | 
						|
 | 
						|
		str++;
 | 
						|
	}
 | 
						|
 | 
						|
	if (nptr)
 | 
						|
		*nptr = (char *)str;
 | 
						|
 | 
						|
	return (val);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * Accessor functions
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
 | 
						|
boolean_t
 | 
						|
spa_shutting_down(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_async_suspended);
 | 
						|
}
 | 
						|
 | 
						|
dsl_pool_t *
 | 
						|
spa_get_dsl(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_dsl_pool);
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
spa_is_initializing(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_is_initializing);
 | 
						|
}
 | 
						|
 | 
						|
blkptr_t *
 | 
						|
spa_get_rootblkptr(spa_t *spa)
 | 
						|
{
 | 
						|
	return (&spa->spa_ubsync.ub_rootbp);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
 | 
						|
{
 | 
						|
	spa->spa_uberblock.ub_rootbp = *bp;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_altroot(spa_t *spa, char *buf, size_t buflen)
 | 
						|
{
 | 
						|
	if (spa->spa_root == NULL)
 | 
						|
		buf[0] = '\0';
 | 
						|
	else
 | 
						|
		(void) strncpy(buf, spa->spa_root, buflen);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
spa_sync_pass(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_sync_pass);
 | 
						|
}
 | 
						|
 | 
						|
char *
 | 
						|
spa_name(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_name);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
spa_guid(spa_t *spa)
 | 
						|
{
 | 
						|
	dsl_pool_t *dp = spa_get_dsl(spa);
 | 
						|
	uint64_t guid;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we fail to parse the config during spa_load(), we can go through
 | 
						|
	 * the error path (which posts an ereport) and end up here with no root
 | 
						|
	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
 | 
						|
	 * this case.
 | 
						|
	 */
 | 
						|
	if (spa->spa_root_vdev == NULL)
 | 
						|
		return (spa->spa_config_guid);
 | 
						|
 | 
						|
	guid = spa->spa_last_synced_guid != 0 ?
 | 
						|
	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Return the most recently synced out guid unless we're
 | 
						|
	 * in syncing context.
 | 
						|
	 */
 | 
						|
	if (dp && dsl_pool_sync_context(dp))
 | 
						|
		return (spa->spa_root_vdev->vdev_guid);
 | 
						|
	else
 | 
						|
		return (guid);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
spa_load_guid(spa_t *spa)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * This is a GUID that exists solely as a reference for the
 | 
						|
	 * purposes of the arc.  It is generated at load time, and
 | 
						|
	 * is never written to persistent storage.
 | 
						|
	 */
 | 
						|
	return (spa->spa_load_guid);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
spa_last_synced_txg(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_ubsync.ub_txg);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
spa_first_txg(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_first_txg);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
spa_syncing_txg(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_syncing_txg);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the last txg where data can be dirtied. The final txgs
 | 
						|
 * will be used to just clear out any deferred frees that remain.
 | 
						|
 */
 | 
						|
uint64_t
 | 
						|
spa_final_dirty_txg(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_final_txg - TXG_DEFER_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
pool_state_t
 | 
						|
spa_state(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_state);
 | 
						|
}
 | 
						|
 | 
						|
spa_load_state_t
 | 
						|
spa_load_state(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_load_state);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
spa_freeze_txg(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_freeze_txg);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the inflated asize for a logical write in bytes. This is used by the
 | 
						|
 * DMU to calculate the space a logical write will require on disk.
 | 
						|
 * If lsize is smaller than the largest physical block size allocatable on this
 | 
						|
 * pool we use its value instead, since the write will end up using the whole
 | 
						|
 * block anyway.
 | 
						|
 */
 | 
						|
uint64_t
 | 
						|
spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
 | 
						|
{
 | 
						|
	if (lsize == 0)
 | 
						|
		return (0);	/* No inflation needed */
 | 
						|
	return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
 | 
						|
 * or at least 128MB, unless that would cause it to be more than half the
 | 
						|
 * pool size.
 | 
						|
 *
 | 
						|
 * See the comment above spa_slop_shift for details.
 | 
						|
 */
 | 
						|
uint64_t
 | 
						|
spa_get_slop_space(spa_t *spa)
 | 
						|
{
 | 
						|
	uint64_t space = spa_get_dspace(spa);
 | 
						|
	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
spa_get_dspace(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_dspace);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_update_dspace(spa_t *spa)
 | 
						|
{
 | 
						|
	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
 | 
						|
	    ddt_get_dedup_dspace(spa);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the failure mode that has been set to this pool. The default
 | 
						|
 * behavior will be to block all I/Os when a complete failure occurs.
 | 
						|
 */
 | 
						|
uint8_t
 | 
						|
spa_get_failmode(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_failmode);
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
spa_suspended(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_suspended);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
spa_version(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_ubsync.ub_version);
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
spa_deflate(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_deflate);
 | 
						|
}
 | 
						|
 | 
						|
metaslab_class_t *
 | 
						|
spa_normal_class(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_normal_class);
 | 
						|
}
 | 
						|
 | 
						|
metaslab_class_t *
 | 
						|
spa_log_class(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_log_class);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_evicting_os_register(spa_t *spa, objset_t *os)
 | 
						|
{
 | 
						|
	mutex_enter(&spa->spa_evicting_os_lock);
 | 
						|
	list_insert_head(&spa->spa_evicting_os_list, os);
 | 
						|
	mutex_exit(&spa->spa_evicting_os_lock);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_evicting_os_deregister(spa_t *spa, objset_t *os)
 | 
						|
{
 | 
						|
	mutex_enter(&spa->spa_evicting_os_lock);
 | 
						|
	list_remove(&spa->spa_evicting_os_list, os);
 | 
						|
	cv_broadcast(&spa->spa_evicting_os_cv);
 | 
						|
	mutex_exit(&spa->spa_evicting_os_lock);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_evicting_os_wait(spa_t *spa)
 | 
						|
{
 | 
						|
	mutex_enter(&spa->spa_evicting_os_lock);
 | 
						|
	while (!list_is_empty(&spa->spa_evicting_os_list))
 | 
						|
		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
 | 
						|
	mutex_exit(&spa->spa_evicting_os_lock);
 | 
						|
 | 
						|
	dmu_buf_user_evict_wait();
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
spa_max_replication(spa_t *spa)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
 | 
						|
	 * handle BPs with more than one DVA allocated.  Set our max
 | 
						|
	 * replication level accordingly.
 | 
						|
	 */
 | 
						|
	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
 | 
						|
		return (1);
 | 
						|
	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
spa_prev_software_version(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_prev_software_version);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
spa_deadman_synctime(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_deadman_synctime);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
 | 
						|
{
 | 
						|
	uint64_t asize = DVA_GET_ASIZE(dva);
 | 
						|
	uint64_t dsize = asize;
 | 
						|
 | 
						|
	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
 | 
						|
 | 
						|
	if (asize != 0 && spa->spa_deflate) {
 | 
						|
		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
 | 
						|
		if (vd != NULL)
 | 
						|
			dsize = (asize >> SPA_MINBLOCKSHIFT) *
 | 
						|
			    vd->vdev_deflate_ratio;
 | 
						|
	}
 | 
						|
 | 
						|
	return (dsize);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
 | 
						|
{
 | 
						|
	uint64_t dsize = 0;
 | 
						|
 | 
						|
	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
 | 
						|
		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
 | 
						|
 | 
						|
	return (dsize);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
bp_get_dsize(spa_t *spa, const blkptr_t *bp)
 | 
						|
{
 | 
						|
	uint64_t dsize = 0;
 | 
						|
 | 
						|
	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 | 
						|
 | 
						|
	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
 | 
						|
		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
 | 
						|
 | 
						|
	spa_config_exit(spa, SCL_VDEV, FTAG);
 | 
						|
 | 
						|
	return (dsize);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ==========================================================================
 | 
						|
 * Initialization and Termination
 | 
						|
 * ==========================================================================
 | 
						|
 */
 | 
						|
 | 
						|
static int
 | 
						|
spa_name_compare(const void *a1, const void *a2)
 | 
						|
{
 | 
						|
	const spa_t *s1 = a1;
 | 
						|
	const spa_t *s2 = a2;
 | 
						|
	int s;
 | 
						|
 | 
						|
	s = strcmp(s1->spa_name, s2->spa_name);
 | 
						|
 | 
						|
	return (AVL_ISIGN(s));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_boot_init(void)
 | 
						|
{
 | 
						|
	spa_config_load();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_init(int mode)
 | 
						|
{
 | 
						|
	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
 | 
						|
	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
 | 
						|
	    offsetof(spa_t, spa_avl));
 | 
						|
 | 
						|
	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
 | 
						|
	    offsetof(spa_aux_t, aux_avl));
 | 
						|
 | 
						|
	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
 | 
						|
	    offsetof(spa_aux_t, aux_avl));
 | 
						|
 | 
						|
	spa_mode_global = mode;
 | 
						|
 | 
						|
#ifndef _KERNEL
 | 
						|
	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
 | 
						|
		struct sigaction sa;
 | 
						|
 | 
						|
		sa.sa_flags = SA_SIGINFO;
 | 
						|
		sigemptyset(&sa.sa_mask);
 | 
						|
		sa.sa_sigaction = arc_buf_sigsegv;
 | 
						|
 | 
						|
		if (sigaction(SIGSEGV, &sa, NULL) == -1) {
 | 
						|
			perror("could not enable watchpoints: "
 | 
						|
			    "sigaction(SIGSEGV, ...) = ");
 | 
						|
		} else {
 | 
						|
			arc_watch = B_TRUE;
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	fm_init();
 | 
						|
	refcount_init();
 | 
						|
	unique_init();
 | 
						|
	range_tree_init();
 | 
						|
	metaslab_alloc_trace_init();
 | 
						|
	ddt_init();
 | 
						|
	zio_init();
 | 
						|
	dmu_init();
 | 
						|
	zil_init();
 | 
						|
	vdev_cache_stat_init();
 | 
						|
	vdev_mirror_stat_init();
 | 
						|
	vdev_raidz_math_init();
 | 
						|
	vdev_file_init();
 | 
						|
	zfs_prop_init();
 | 
						|
	zpool_prop_init();
 | 
						|
	zpool_feature_init();
 | 
						|
	spa_config_load();
 | 
						|
	l2arc_start();
 | 
						|
	scan_init();
 | 
						|
	qat_init();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_fini(void)
 | 
						|
{
 | 
						|
	l2arc_stop();
 | 
						|
 | 
						|
	spa_evict_all();
 | 
						|
 | 
						|
	vdev_file_fini();
 | 
						|
	vdev_cache_stat_fini();
 | 
						|
	vdev_mirror_stat_fini();
 | 
						|
	vdev_raidz_math_fini();
 | 
						|
	zil_fini();
 | 
						|
	dmu_fini();
 | 
						|
	zio_fini();
 | 
						|
	ddt_fini();
 | 
						|
	metaslab_alloc_trace_fini();
 | 
						|
	range_tree_fini();
 | 
						|
	unique_fini();
 | 
						|
	refcount_fini();
 | 
						|
	fm_fini();
 | 
						|
	scan_fini();
 | 
						|
	qat_fini();
 | 
						|
 | 
						|
	avl_destroy(&spa_namespace_avl);
 | 
						|
	avl_destroy(&spa_spare_avl);
 | 
						|
	avl_destroy(&spa_l2cache_avl);
 | 
						|
 | 
						|
	cv_destroy(&spa_namespace_cv);
 | 
						|
	mutex_destroy(&spa_namespace_lock);
 | 
						|
	mutex_destroy(&spa_spare_lock);
 | 
						|
	mutex_destroy(&spa_l2cache_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return whether this pool has slogs. No locking needed.
 | 
						|
 * It's not a problem if the wrong answer is returned as it's only for
 | 
						|
 * performance and not correctness
 | 
						|
 */
 | 
						|
boolean_t
 | 
						|
spa_has_slogs(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_log_class->mc_rotor != NULL);
 | 
						|
}
 | 
						|
 | 
						|
spa_log_state_t
 | 
						|
spa_get_log_state(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_log_state);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
spa_set_log_state(spa_t *spa, spa_log_state_t state)
 | 
						|
{
 | 
						|
	spa->spa_log_state = state;
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
spa_is_root(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_is_root);
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
spa_writeable(spa_t *spa)
 | 
						|
{
 | 
						|
	return (!!(spa->spa_mode & FWRITE));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns true if there is a pending sync task in any of the current
 | 
						|
 * syncing txg, the current quiescing txg, or the current open txg.
 | 
						|
 */
 | 
						|
boolean_t
 | 
						|
spa_has_pending_synctask(spa_t *spa)
 | 
						|
{
 | 
						|
	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
spa_mode(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_mode);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
spa_bootfs(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_bootfs);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
spa_delegation(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_delegation);
 | 
						|
}
 | 
						|
 | 
						|
objset_t *
 | 
						|
spa_meta_objset(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_meta_objset);
 | 
						|
}
 | 
						|
 | 
						|
enum zio_checksum
 | 
						|
spa_dedup_checksum(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_dedup_checksum);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reset pool scan stat per scan pass (or reboot).
 | 
						|
 */
 | 
						|
void
 | 
						|
spa_scan_stat_init(spa_t *spa)
 | 
						|
{
 | 
						|
	/* data not stored on disk */
 | 
						|
	spa->spa_scan_pass_start = gethrestime_sec();
 | 
						|
	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
 | 
						|
		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
 | 
						|
	else
 | 
						|
		spa->spa_scan_pass_scrub_pause = 0;
 | 
						|
	spa->spa_scan_pass_scrub_spent_paused = 0;
 | 
						|
	spa->spa_scan_pass_exam = 0;
 | 
						|
	spa->spa_scan_pass_issued = 0;
 | 
						|
	vdev_scan_stat_init(spa->spa_root_vdev);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get scan stats for zpool status reports
 | 
						|
 */
 | 
						|
int
 | 
						|
spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
 | 
						|
{
 | 
						|
	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
 | 
						|
 | 
						|
	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
 | 
						|
		return (SET_ERROR(ENOENT));
 | 
						|
	bzero(ps, sizeof (pool_scan_stat_t));
 | 
						|
 | 
						|
	/* data stored on disk */
 | 
						|
	ps->pss_func = scn->scn_phys.scn_func;
 | 
						|
	ps->pss_state = scn->scn_phys.scn_state;
 | 
						|
	ps->pss_start_time = scn->scn_phys.scn_start_time;
 | 
						|
	ps->pss_end_time = scn->scn_phys.scn_end_time;
 | 
						|
	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
 | 
						|
	ps->pss_examined = scn->scn_phys.scn_examined;
 | 
						|
	ps->pss_to_process = scn->scn_phys.scn_to_process;
 | 
						|
	ps->pss_processed = scn->scn_phys.scn_processed;
 | 
						|
	ps->pss_errors = scn->scn_phys.scn_errors;
 | 
						|
 | 
						|
	/* data not stored on disk */
 | 
						|
	ps->pss_pass_exam = spa->spa_scan_pass_exam;
 | 
						|
	ps->pss_pass_start = spa->spa_scan_pass_start;
 | 
						|
	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
 | 
						|
	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
 | 
						|
	ps->pss_pass_issued = spa->spa_scan_pass_issued;
 | 
						|
	ps->pss_issued =
 | 
						|
	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
spa_debug_enabled(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_debug);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
spa_maxblocksize(spa_t *spa)
 | 
						|
{
 | 
						|
	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
 | 
						|
		return (SPA_MAXBLOCKSIZE);
 | 
						|
	else
 | 
						|
		return (SPA_OLD_MAXBLOCKSIZE);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
spa_maxdnodesize(spa_t *spa)
 | 
						|
{
 | 
						|
	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
 | 
						|
		return (DNODE_MAX_SIZE);
 | 
						|
	else
 | 
						|
		return (DNODE_MIN_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
spa_multihost(spa_t *spa)
 | 
						|
{
 | 
						|
	return (spa->spa_multihost ? B_TRUE : B_FALSE);
 | 
						|
}
 | 
						|
 | 
						|
unsigned long
 | 
						|
spa_get_hostid(void)
 | 
						|
{
 | 
						|
	unsigned long myhostid;
 | 
						|
 | 
						|
#ifdef	_KERNEL
 | 
						|
	myhostid = zone_get_hostid(NULL);
 | 
						|
#else	/* _KERNEL */
 | 
						|
	/*
 | 
						|
	 * We're emulating the system's hostid in userland, so
 | 
						|
	 * we can't use zone_get_hostid().
 | 
						|
	 */
 | 
						|
	(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
 | 
						|
#endif	/* _KERNEL */
 | 
						|
 | 
						|
	return (myhostid);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(_KERNEL) && defined(HAVE_SPL)
 | 
						|
/* Namespace manipulation */
 | 
						|
EXPORT_SYMBOL(spa_lookup);
 | 
						|
EXPORT_SYMBOL(spa_add);
 | 
						|
EXPORT_SYMBOL(spa_remove);
 | 
						|
EXPORT_SYMBOL(spa_next);
 | 
						|
 | 
						|
/* Refcount functions */
 | 
						|
EXPORT_SYMBOL(spa_open_ref);
 | 
						|
EXPORT_SYMBOL(spa_close);
 | 
						|
EXPORT_SYMBOL(spa_refcount_zero);
 | 
						|
 | 
						|
/* Pool configuration lock */
 | 
						|
EXPORT_SYMBOL(spa_config_tryenter);
 | 
						|
EXPORT_SYMBOL(spa_config_enter);
 | 
						|
EXPORT_SYMBOL(spa_config_exit);
 | 
						|
EXPORT_SYMBOL(spa_config_held);
 | 
						|
 | 
						|
/* Pool vdev add/remove lock */
 | 
						|
EXPORT_SYMBOL(spa_vdev_enter);
 | 
						|
EXPORT_SYMBOL(spa_vdev_exit);
 | 
						|
 | 
						|
/* Pool vdev state change lock */
 | 
						|
EXPORT_SYMBOL(spa_vdev_state_enter);
 | 
						|
EXPORT_SYMBOL(spa_vdev_state_exit);
 | 
						|
 | 
						|
/* Accessor functions */
 | 
						|
EXPORT_SYMBOL(spa_shutting_down);
 | 
						|
EXPORT_SYMBOL(spa_get_dsl);
 | 
						|
EXPORT_SYMBOL(spa_get_rootblkptr);
 | 
						|
EXPORT_SYMBOL(spa_set_rootblkptr);
 | 
						|
EXPORT_SYMBOL(spa_altroot);
 | 
						|
EXPORT_SYMBOL(spa_sync_pass);
 | 
						|
EXPORT_SYMBOL(spa_name);
 | 
						|
EXPORT_SYMBOL(spa_guid);
 | 
						|
EXPORT_SYMBOL(spa_last_synced_txg);
 | 
						|
EXPORT_SYMBOL(spa_first_txg);
 | 
						|
EXPORT_SYMBOL(spa_syncing_txg);
 | 
						|
EXPORT_SYMBOL(spa_version);
 | 
						|
EXPORT_SYMBOL(spa_state);
 | 
						|
EXPORT_SYMBOL(spa_load_state);
 | 
						|
EXPORT_SYMBOL(spa_freeze_txg);
 | 
						|
EXPORT_SYMBOL(spa_get_dspace);
 | 
						|
EXPORT_SYMBOL(spa_update_dspace);
 | 
						|
EXPORT_SYMBOL(spa_deflate);
 | 
						|
EXPORT_SYMBOL(spa_normal_class);
 | 
						|
EXPORT_SYMBOL(spa_log_class);
 | 
						|
EXPORT_SYMBOL(spa_max_replication);
 | 
						|
EXPORT_SYMBOL(spa_prev_software_version);
 | 
						|
EXPORT_SYMBOL(spa_get_failmode);
 | 
						|
EXPORT_SYMBOL(spa_suspended);
 | 
						|
EXPORT_SYMBOL(spa_bootfs);
 | 
						|
EXPORT_SYMBOL(spa_delegation);
 | 
						|
EXPORT_SYMBOL(spa_meta_objset);
 | 
						|
EXPORT_SYMBOL(spa_maxblocksize);
 | 
						|
EXPORT_SYMBOL(spa_maxdnodesize);
 | 
						|
 | 
						|
/* Miscellaneous support routines */
 | 
						|
EXPORT_SYMBOL(spa_rename);
 | 
						|
EXPORT_SYMBOL(spa_guid_exists);
 | 
						|
EXPORT_SYMBOL(spa_strdup);
 | 
						|
EXPORT_SYMBOL(spa_strfree);
 | 
						|
EXPORT_SYMBOL(spa_get_random);
 | 
						|
EXPORT_SYMBOL(spa_generate_guid);
 | 
						|
EXPORT_SYMBOL(snprintf_blkptr);
 | 
						|
EXPORT_SYMBOL(spa_freeze);
 | 
						|
EXPORT_SYMBOL(spa_upgrade);
 | 
						|
EXPORT_SYMBOL(spa_evict_all);
 | 
						|
EXPORT_SYMBOL(spa_lookup_by_guid);
 | 
						|
EXPORT_SYMBOL(spa_has_spare);
 | 
						|
EXPORT_SYMBOL(dva_get_dsize_sync);
 | 
						|
EXPORT_SYMBOL(bp_get_dsize_sync);
 | 
						|
EXPORT_SYMBOL(bp_get_dsize);
 | 
						|
EXPORT_SYMBOL(spa_has_slogs);
 | 
						|
EXPORT_SYMBOL(spa_is_root);
 | 
						|
EXPORT_SYMBOL(spa_writeable);
 | 
						|
EXPORT_SYMBOL(spa_mode);
 | 
						|
EXPORT_SYMBOL(spa_namespace_lock);
 | 
						|
 | 
						|
/* BEGIN CSTYLED */
 | 
						|
module_param(zfs_flags, uint, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_flags, "Set additional debugging flags");
 | 
						|
 | 
						|
module_param(zfs_recover, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_recover, "Set to attempt to recover from fatal errors");
 | 
						|
 | 
						|
module_param(zfs_free_leak_on_eio, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_free_leak_on_eio,
 | 
						|
	"Set to ignore IO errors during free and permanently leak the space");
 | 
						|
 | 
						|
module_param(zfs_deadman_synctime_ms, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_deadman_synctime_ms, "Expiration time in milliseconds");
 | 
						|
 | 
						|
module_param(zfs_deadman_checktime_ms, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_deadman_checktime_ms,
 | 
						|
	"Dead I/O check interval in milliseconds");
 | 
						|
 | 
						|
module_param(zfs_deadman_enabled, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
 | 
						|
 | 
						|
module_param(spa_asize_inflation, int, 0644);
 | 
						|
MODULE_PARM_DESC(spa_asize_inflation,
 | 
						|
	"SPA size estimate multiplication factor");
 | 
						|
 | 
						|
module_param(spa_slop_shift, int, 0644);
 | 
						|
MODULE_PARM_DESC(spa_slop_shift, "Reserved free space in pool");
 | 
						|
/* END CSTYLED */
 | 
						|
#endif
 |