mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-26 19:07:47 +00:00 
			
		
		
		
	 dc72c60ec1
			
		
	
	
		dc72c60ec1
		
			
		
	
	
	
	
		
			
			Add handling to dmu_object_next for the case where *objectp == 0. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #14479
		
			
				
	
	
		
			526 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			526 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
 | |
|  * Copyright 2014 HybridCluster. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <sys/dbuf.h>
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/dmu_impl.h>
 | |
| #include <sys/dmu_objset.h>
 | |
| #include <sys/dmu_tx.h>
 | |
| #include <sys/dnode.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/zfeature.h>
 | |
| #include <sys/dsl_dataset.h>
 | |
| 
 | |
| /*
 | |
|  * Each of the concurrent object allocators will grab
 | |
|  * 2^dmu_object_alloc_chunk_shift dnode slots at a time.  The default is to
 | |
|  * grab 128 slots, which is 4 blocks worth.  This was experimentally
 | |
|  * determined to be the lowest value that eliminates the measurable effect
 | |
|  * of lock contention from this code path.
 | |
|  */
 | |
| uint_t dmu_object_alloc_chunk_shift = 7;
 | |
| 
 | |
| static uint64_t
 | |
| dmu_object_alloc_impl(objset_t *os, dmu_object_type_t ot, int blocksize,
 | |
|     int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
 | |
|     int dnodesize, dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
 | |
| {
 | |
| 	uint64_t object;
 | |
| 	uint64_t L1_dnode_count = DNODES_PER_BLOCK <<
 | |
| 	    (DMU_META_DNODE(os)->dn_indblkshift - SPA_BLKPTRSHIFT);
 | |
| 	dnode_t *dn = NULL;
 | |
| 	int dn_slots = dnodesize >> DNODE_SHIFT;
 | |
| 	boolean_t restarted = B_FALSE;
 | |
| 	uint64_t *cpuobj = NULL;
 | |
| 	uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
 | |
| 	int error;
 | |
| 
 | |
| 	cpuobj = &os->os_obj_next_percpu[CPU_SEQID_UNSTABLE %
 | |
| 	    os->os_obj_next_percpu_len];
 | |
| 
 | |
| 	if (dn_slots == 0) {
 | |
| 		dn_slots = DNODE_MIN_SLOTS;
 | |
| 	} else {
 | |
| 		ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
 | |
| 		ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The "chunk" of dnodes that is assigned to a CPU-specific
 | |
| 	 * allocator needs to be at least one block's worth, to avoid
 | |
| 	 * lock contention on the dbuf.  It can be at most one L1 block's
 | |
| 	 * worth, so that the "rescan after polishing off a L1's worth"
 | |
| 	 * logic below will be sure to kick in.
 | |
| 	 */
 | |
| 	if (dnodes_per_chunk < DNODES_PER_BLOCK)
 | |
| 		dnodes_per_chunk = DNODES_PER_BLOCK;
 | |
| 	if (dnodes_per_chunk > L1_dnode_count)
 | |
| 		dnodes_per_chunk = L1_dnode_count;
 | |
| 
 | |
| 	/*
 | |
| 	 * The caller requested the dnode be returned as a performance
 | |
| 	 * optimization in order to avoid releasing the hold only to
 | |
| 	 * immediately reacquire it.  Since they caller is responsible
 | |
| 	 * for releasing the hold they must provide the tag.
 | |
| 	 */
 | |
| 	if (allocated_dnode != NULL) {
 | |
| 		ASSERT3P(tag, !=, NULL);
 | |
| 	} else {
 | |
| 		ASSERT3P(tag, ==, NULL);
 | |
| 		tag = FTAG;
 | |
| 	}
 | |
| 
 | |
| 	object = *cpuobj;
 | |
| 	for (;;) {
 | |
| 		/*
 | |
| 		 * If we finished a chunk of dnodes, get a new one from
 | |
| 		 * the global allocator.
 | |
| 		 */
 | |
| 		if ((P2PHASE(object, dnodes_per_chunk) == 0) ||
 | |
| 		    (P2PHASE(object + dn_slots - 1, dnodes_per_chunk) <
 | |
| 		    dn_slots)) {
 | |
| 			DNODE_STAT_BUMP(dnode_alloc_next_chunk);
 | |
| 			mutex_enter(&os->os_obj_lock);
 | |
| 			ASSERT0(P2PHASE(os->os_obj_next_chunk,
 | |
| 			    dnodes_per_chunk));
 | |
| 			object = os->os_obj_next_chunk;
 | |
| 
 | |
| 			/*
 | |
| 			 * Each time we polish off a L1 bp worth of dnodes
 | |
| 			 * (2^12 objects), move to another L1 bp that's
 | |
| 			 * still reasonably sparse (at most 1/4 full). Look
 | |
| 			 * from the beginning at most once per txg. If we
 | |
| 			 * still can't allocate from that L1 block, search
 | |
| 			 * for an empty L0 block, which will quickly skip
 | |
| 			 * to the end of the metadnode if no nearby L0
 | |
| 			 * blocks are empty. This fallback avoids a
 | |
| 			 * pathology where full dnode blocks containing
 | |
| 			 * large dnodes appear sparse because they have a
 | |
| 			 * low blk_fill, leading to many failed allocation
 | |
| 			 * attempts. In the long term a better mechanism to
 | |
| 			 * search for sparse metadnode regions, such as
 | |
| 			 * spacemaps, could be implemented.
 | |
| 			 *
 | |
| 			 * os_scan_dnodes is set during txg sync if enough
 | |
| 			 * objects have been freed since the previous
 | |
| 			 * rescan to justify backfilling again.
 | |
| 			 *
 | |
| 			 * Note that dmu_traverse depends on the behavior
 | |
| 			 * that we use multiple blocks of the dnode object
 | |
| 			 * before going back to reuse objects.  Any change
 | |
| 			 * to this algorithm should preserve that property
 | |
| 			 * or find another solution to the issues described
 | |
| 			 * in traverse_visitbp.
 | |
| 			 */
 | |
| 			if (P2PHASE(object, L1_dnode_count) == 0) {
 | |
| 				uint64_t offset;
 | |
| 				uint64_t blkfill;
 | |
| 				int minlvl;
 | |
| 				if (os->os_rescan_dnodes) {
 | |
| 					offset = 0;
 | |
| 					os->os_rescan_dnodes = B_FALSE;
 | |
| 				} else {
 | |
| 					offset = object << DNODE_SHIFT;
 | |
| 				}
 | |
| 				blkfill = restarted ? 1 : DNODES_PER_BLOCK >> 2;
 | |
| 				minlvl = restarted ? 1 : 2;
 | |
| 				restarted = B_TRUE;
 | |
| 				error = dnode_next_offset(DMU_META_DNODE(os),
 | |
| 				    DNODE_FIND_HOLE, &offset, minlvl,
 | |
| 				    blkfill, 0);
 | |
| 				if (error == 0) {
 | |
| 					object = offset >> DNODE_SHIFT;
 | |
| 				}
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Note: if "restarted", we may find a L0 that
 | |
| 			 * is not suitably aligned.
 | |
| 			 */
 | |
| 			os->os_obj_next_chunk =
 | |
| 			    P2ALIGN(object, dnodes_per_chunk) +
 | |
| 			    dnodes_per_chunk;
 | |
| 			(void) atomic_swap_64(cpuobj, object);
 | |
| 			mutex_exit(&os->os_obj_lock);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The value of (*cpuobj) before adding dn_slots is the object
 | |
| 		 * ID assigned to us.  The value afterwards is the object ID
 | |
| 		 * assigned to whoever wants to do an allocation next.
 | |
| 		 */
 | |
| 		object = atomic_add_64_nv(cpuobj, dn_slots) - dn_slots;
 | |
| 
 | |
| 		/*
 | |
| 		 * XXX We should check for an i/o error here and return
 | |
| 		 * up to our caller.  Actually we should pre-read it in
 | |
| 		 * dmu_tx_assign(), but there is currently no mechanism
 | |
| 		 * to do so.
 | |
| 		 */
 | |
| 		error = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE,
 | |
| 		    dn_slots, tag, &dn);
 | |
| 		if (error == 0) {
 | |
| 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 | |
| 			/*
 | |
| 			 * Another thread could have allocated it; check
 | |
| 			 * again now that we have the struct lock.
 | |
| 			 */
 | |
| 			if (dn->dn_type == DMU_OT_NONE) {
 | |
| 				dnode_allocate(dn, ot, blocksize,
 | |
| 				    indirect_blockshift, bonustype,
 | |
| 				    bonuslen, dn_slots, tx);
 | |
| 				rw_exit(&dn->dn_struct_rwlock);
 | |
| 				dmu_tx_add_new_object(tx, dn);
 | |
| 
 | |
| 				/*
 | |
| 				 * Caller requested the allocated dnode be
 | |
| 				 * returned and is responsible for the hold.
 | |
| 				 */
 | |
| 				if (allocated_dnode != NULL)
 | |
| 					*allocated_dnode = dn;
 | |
| 				else
 | |
| 					dnode_rele(dn, tag);
 | |
| 
 | |
| 				return (object);
 | |
| 			}
 | |
| 			rw_exit(&dn->dn_struct_rwlock);
 | |
| 			dnode_rele(dn, tag);
 | |
| 			DNODE_STAT_BUMP(dnode_alloc_race);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip to next known valid starting point on error.  This
 | |
| 		 * is the start of the next block of dnodes.
 | |
| 		 */
 | |
| 		if (dmu_object_next(os, &object, B_TRUE, 0) != 0) {
 | |
| 			object = P2ROUNDUP(object + 1, DNODES_PER_BLOCK);
 | |
| 			DNODE_STAT_BUMP(dnode_alloc_next_block);
 | |
| 		}
 | |
| 		(void) atomic_swap_64(cpuobj, object);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize,
 | |
|     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 | |
| {
 | |
| 	return dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype,
 | |
| 	    bonuslen, 0, NULL, NULL, tx);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
 | |
|     int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	return dmu_object_alloc_impl(os, ot, blocksize, indirect_blockshift,
 | |
| 	    bonustype, bonuslen, 0, NULL, NULL, tx);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, int blocksize,
 | |
|     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
 | |
| {
 | |
| 	return (dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype,
 | |
| 	    bonuslen, dnodesize, NULL, NULL, tx));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new object and return a pointer to the newly allocated dnode
 | |
|  * via the allocated_dnode argument.  The returned dnode will be held and
 | |
|  * the caller is responsible for releasing the hold by calling dnode_rele().
 | |
|  */
 | |
| uint64_t
 | |
| dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot, int blocksize,
 | |
|     int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
 | |
|     int dnodesize, dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx)
 | |
| {
 | |
| 	return (dmu_object_alloc_impl(os, ot, blocksize, indirect_blockshift,
 | |
| 	    bonustype, bonuslen, dnodesize, allocated_dnode, tag, tx));
 | |
| }
 | |
| 
 | |
| int
 | |
| dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
 | |
|     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 | |
| {
 | |
| 	return (dmu_object_claim_dnsize(os, object, ot, blocksize, bonustype,
 | |
| 	    bonuslen, 0, tx));
 | |
| }
 | |
| 
 | |
| int
 | |
| dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
 | |
|     int blocksize, dmu_object_type_t bonustype, int bonuslen,
 | |
|     int dnodesize, dmu_tx_t *tx)
 | |
| {
 | |
| 	dnode_t *dn;
 | |
| 	int dn_slots = dnodesize >> DNODE_SHIFT;
 | |
| 	int err;
 | |
| 
 | |
| 	if (dn_slots == 0)
 | |
| 		dn_slots = DNODE_MIN_SLOTS;
 | |
| 	ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
 | |
| 	ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
 | |
| 
 | |
| 	if (object == DMU_META_DNODE_OBJECT && !dmu_tx_private_ok(tx))
 | |
| 		return (SET_ERROR(EBADF));
 | |
| 
 | |
| 	err = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, dn_slots,
 | |
| 	    FTAG, &dn);
 | |
| 	if (err)
 | |
| 		return (err);
 | |
| 
 | |
| 	dnode_allocate(dn, ot, blocksize, 0, bonustype, bonuslen, dn_slots, tx);
 | |
| 	dmu_tx_add_new_object(tx, dn);
 | |
| 
 | |
| 	dnode_rele(dn, FTAG);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| int
 | |
| dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
 | |
|     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 | |
| {
 | |
| 	return (dmu_object_reclaim_dnsize(os, object, ot, blocksize, bonustype,
 | |
| 	    bonuslen, DNODE_MIN_SIZE, B_FALSE, tx));
 | |
| }
 | |
| 
 | |
| int
 | |
| dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
 | |
|     int blocksize, dmu_object_type_t bonustype, int bonuslen, int dnodesize,
 | |
|     boolean_t keep_spill, dmu_tx_t *tx)
 | |
| {
 | |
| 	dnode_t *dn;
 | |
| 	int dn_slots = dnodesize >> DNODE_SHIFT;
 | |
| 	int err;
 | |
| 
 | |
| 	if (dn_slots == 0)
 | |
| 		dn_slots = DNODE_MIN_SLOTS;
 | |
| 
 | |
| 	if (object == DMU_META_DNODE_OBJECT)
 | |
| 		return (SET_ERROR(EBADF));
 | |
| 
 | |
| 	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
 | |
| 	    FTAG, &dn);
 | |
| 	if (err)
 | |
| 		return (err);
 | |
| 
 | |
| 	dnode_reallocate(dn, ot, blocksize, bonustype, bonuslen, dn_slots,
 | |
| 	    keep_spill, tx);
 | |
| 
 | |
| 	dnode_rele(dn, FTAG);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| int
 | |
| dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
 | |
| {
 | |
| 	dnode_t *dn;
 | |
| 	int err;
 | |
| 
 | |
| 	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
 | |
| 	    FTAG, &dn);
 | |
| 	if (err)
 | |
| 		return (err);
 | |
| 
 | |
| 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 | |
| 	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 | |
| 		dbuf_rm_spill(dn, tx);
 | |
| 		dnode_rm_spill(dn, tx);
 | |
| 	}
 | |
| 	rw_exit(&dn->dn_struct_rwlock);
 | |
| 
 | |
| 	dnode_rele(dn, FTAG);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| int
 | |
| dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx)
 | |
| {
 | |
| 	dnode_t *dn;
 | |
| 	int err;
 | |
| 
 | |
| 	ASSERT(object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
 | |
| 
 | |
| 	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
 | |
| 	    FTAG, &dn);
 | |
| 	if (err)
 | |
| 		return (err);
 | |
| 
 | |
| 	ASSERT(dn->dn_type != DMU_OT_NONE);
 | |
| 	/*
 | |
| 	 * If we don't create this free range, we'll leak indirect blocks when
 | |
| 	 * we get to freeing the dnode in syncing context.
 | |
| 	 */
 | |
| 	dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
 | |
| 	dnode_free(dn, tx);
 | |
| 	dnode_rele(dn, FTAG);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return (in *objectp) the next object which is allocated (or a hole)
 | |
|  * after *object, taking into account only objects that may have been modified
 | |
|  * after the specified txg.
 | |
|  */
 | |
| int
 | |
| dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg)
 | |
| {
 | |
| 	uint64_t offset;
 | |
| 	uint64_t start_obj;
 | |
| 	struct dsl_dataset *ds = os->os_dsl_dataset;
 | |
| 	int error;
 | |
| 
 | |
| 	if (*objectp == 0) {
 | |
| 		start_obj = 1;
 | |
| 	} else if (ds && dsl_dataset_feature_is_active(ds,
 | |
| 	    SPA_FEATURE_LARGE_DNODE)) {
 | |
| 		uint64_t i = *objectp + 1;
 | |
| 		uint64_t last_obj = *objectp | (DNODES_PER_BLOCK - 1);
 | |
| 		dmu_object_info_t doi;
 | |
| 
 | |
| 		/*
 | |
| 		 * Scan through the remaining meta dnode block.  The contents
 | |
| 		 * of each slot in the block are known so it can be quickly
 | |
| 		 * checked.  If the block is exhausted without a match then
 | |
| 		 * hand off to dnode_next_offset() for further scanning.
 | |
| 		 */
 | |
| 		while (i <= last_obj) {
 | |
| 			if (i == 0)
 | |
| 				return (SET_ERROR(ESRCH));
 | |
| 			error = dmu_object_info(os, i, &doi);
 | |
| 			if (error == ENOENT) {
 | |
| 				if (hole) {
 | |
| 					*objectp = i;
 | |
| 					return (0);
 | |
| 				} else {
 | |
| 					i++;
 | |
| 				}
 | |
| 			} else if (error == EEXIST) {
 | |
| 				i++;
 | |
| 			} else if (error == 0) {
 | |
| 				if (hole) {
 | |
| 					i += doi.doi_dnodesize >> DNODE_SHIFT;
 | |
| 				} else {
 | |
| 					*objectp = i;
 | |
| 					return (0);
 | |
| 				}
 | |
| 			} else {
 | |
| 				return (error);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		start_obj = i;
 | |
| 	} else {
 | |
| 		start_obj = *objectp + 1;
 | |
| 	}
 | |
| 
 | |
| 	offset = start_obj << DNODE_SHIFT;
 | |
| 
 | |
| 	error = dnode_next_offset(DMU_META_DNODE(os),
 | |
| 	    (hole ? DNODE_FIND_HOLE : 0), &offset, 0, DNODES_PER_BLOCK, txg);
 | |
| 
 | |
| 	*objectp = offset >> DNODE_SHIFT;
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Turn this object from old_type into DMU_OTN_ZAP_METADATA, and bump the
 | |
|  * refcount on SPA_FEATURE_EXTENSIBLE_DATASET.
 | |
|  *
 | |
|  * Only for use from syncing context, on MOS objects.
 | |
|  */
 | |
| void
 | |
| dmu_object_zapify(objset_t *mos, uint64_t object, dmu_object_type_t old_type,
 | |
|     dmu_tx_t *tx)
 | |
| {
 | |
| 	dnode_t *dn;
 | |
| 
 | |
| 	ASSERT(dmu_tx_is_syncing(tx));
 | |
| 
 | |
| 	VERIFY0(dnode_hold(mos, object, FTAG, &dn));
 | |
| 	if (dn->dn_type == DMU_OTN_ZAP_METADATA) {
 | |
| 		dnode_rele(dn, FTAG);
 | |
| 		return;
 | |
| 	}
 | |
| 	ASSERT3U(dn->dn_type, ==, old_type);
 | |
| 	ASSERT0(dn->dn_maxblkid);
 | |
| 
 | |
| 	/*
 | |
| 	 * We must initialize the ZAP data before changing the type,
 | |
| 	 * so that concurrent calls to *_is_zapified() can determine if
 | |
| 	 * the object has been completely zapified by checking the type.
 | |
| 	 */
 | |
| 	mzap_create_impl(dn, 0, 0, tx);
 | |
| 
 | |
| 	dn->dn_next_type[tx->tx_txg & TXG_MASK] = dn->dn_type =
 | |
| 	    DMU_OTN_ZAP_METADATA;
 | |
| 	dnode_setdirty(dn, tx);
 | |
| 	dnode_rele(dn, FTAG);
 | |
| 
 | |
| 	spa_feature_incr(dmu_objset_spa(mos),
 | |
| 	    SPA_FEATURE_EXTENSIBLE_DATASET, tx);
 | |
| }
 | |
| 
 | |
| void
 | |
| dmu_object_free_zapified(objset_t *mos, uint64_t object, dmu_tx_t *tx)
 | |
| {
 | |
| 	dnode_t *dn;
 | |
| 	dmu_object_type_t t;
 | |
| 
 | |
| 	ASSERT(dmu_tx_is_syncing(tx));
 | |
| 
 | |
| 	VERIFY0(dnode_hold(mos, object, FTAG, &dn));
 | |
| 	t = dn->dn_type;
 | |
| 	dnode_rele(dn, FTAG);
 | |
| 
 | |
| 	if (t == DMU_OTN_ZAP_METADATA) {
 | |
| 		spa_feature_decr(dmu_objset_spa(mos),
 | |
| 		    SPA_FEATURE_EXTENSIBLE_DATASET, tx);
 | |
| 	}
 | |
| 	VERIFY0(dmu_object_free(mos, object, tx));
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dmu_object_alloc);
 | |
| EXPORT_SYMBOL(dmu_object_alloc_ibs);
 | |
| EXPORT_SYMBOL(dmu_object_alloc_dnsize);
 | |
| EXPORT_SYMBOL(dmu_object_alloc_hold);
 | |
| EXPORT_SYMBOL(dmu_object_claim);
 | |
| EXPORT_SYMBOL(dmu_object_claim_dnsize);
 | |
| EXPORT_SYMBOL(dmu_object_reclaim);
 | |
| EXPORT_SYMBOL(dmu_object_reclaim_dnsize);
 | |
| EXPORT_SYMBOL(dmu_object_rm_spill);
 | |
| EXPORT_SYMBOL(dmu_object_free);
 | |
| EXPORT_SYMBOL(dmu_object_next);
 | |
| EXPORT_SYMBOL(dmu_object_zapify);
 | |
| EXPORT_SYMBOL(dmu_object_free_zapified);
 | |
| 
 | |
| /* BEGIN CSTYLED */
 | |
| ZFS_MODULE_PARAM(zfs, , dmu_object_alloc_chunk_shift, UINT, ZMOD_RW,
 | |
| 	"CPU-specific allocator grabs 2^N objects at once");
 | |
| /* END CSTYLED */
 |