mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-30 04:25:43 +00:00 
			
		
		
		
	 a817992559
			
		
	
	
		a817992559
		
	
	
	
	
		
			
			Sponsored-by: https://despairlabs.com/sponsor/ Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de> Signed-off-by: Rob Norris <robn@despairlabs.com> Closes #16479
		
			
				
	
	
		
			1315 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1315 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  *
 | |
|  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
 | |
|  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 | |
|  * LLNL-CODE-403049.
 | |
|  * Rewritten for Linux by:
 | |
|  *   Rohan Puri <rohan.puri15@gmail.com>
 | |
|  *   Brian Behlendorf <behlendorf1@llnl.gov>
 | |
|  * Copyright (c) 2013 by Delphix. All rights reserved.
 | |
|  * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
 | |
|  * Copyright (c) 2018 George Melikov. All Rights Reserved.
 | |
|  * Copyright (c) 2019 Datto, Inc. All rights reserved.
 | |
|  * Copyright (c) 2020 The MathWorks, Inc. All rights reserved.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * ZFS control directory (a.k.a. ".zfs")
 | |
|  *
 | |
|  * This directory provides a common location for all ZFS meta-objects.
 | |
|  * Currently, this is only the 'snapshot' and 'shares' directory, but this may
 | |
|  * expand in the future.  The elements are built dynamically, as the hierarchy
 | |
|  * does not actually exist on disk.
 | |
|  *
 | |
|  * For 'snapshot', we don't want to have all snapshots always mounted, because
 | |
|  * this would take up a huge amount of space in /etc/mnttab.  We have three
 | |
|  * types of objects:
 | |
|  *
 | |
|  *	ctldir ------> snapshotdir -------> snapshot
 | |
|  *                                             |
 | |
|  *                                             |
 | |
|  *                                             V
 | |
|  *                                         mounted fs
 | |
|  *
 | |
|  * The 'snapshot' node contains just enough information to lookup '..' and act
 | |
|  * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
 | |
|  * perform an automount of the underlying filesystem and return the
 | |
|  * corresponding inode.
 | |
|  *
 | |
|  * All mounts are handled automatically by an user mode helper which invokes
 | |
|  * the mount procedure.  Unmounts are handled by allowing the mount
 | |
|  * point to expire so the kernel may automatically unmount it.
 | |
|  *
 | |
|  * The '.zfs', '.zfs/snapshot', and all directories created under
 | |
|  * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
 | |
|  * zfsvfs_t as the head filesystem (what '.zfs' lives under).
 | |
|  *
 | |
|  * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
 | |
|  * (ie: snapshots) are complete ZFS filesystems and have their own unique
 | |
|  * zfsvfs_t.  However, the fsid reported by these mounts will be the same
 | |
|  * as that used by the parent zfsvfs_t to make NFS happy.
 | |
|  */
 | |
| 
 | |
| #include <sys/types.h>
 | |
| #include <sys/param.h>
 | |
| #include <sys/time.h>
 | |
| #include <sys/sysmacros.h>
 | |
| #include <sys/pathname.h>
 | |
| #include <sys/vfs.h>
 | |
| #include <sys/zfs_ctldir.h>
 | |
| #include <sys/zfs_ioctl.h>
 | |
| #include <sys/zfs_vfsops.h>
 | |
| #include <sys/zfs_vnops.h>
 | |
| #include <sys/stat.h>
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/dmu_objset.h>
 | |
| #include <sys/dsl_destroy.h>
 | |
| #include <sys/dsl_deleg.h>
 | |
| #include <sys/zpl.h>
 | |
| #include <sys/mntent.h>
 | |
| #include "zfs_namecheck.h"
 | |
| 
 | |
| /*
 | |
|  * Two AVL trees are maintained which contain all currently automounted
 | |
|  * snapshots.  Every automounted snapshots maps to a single zfs_snapentry_t
 | |
|  * entry which MUST:
 | |
|  *
 | |
|  *   - be attached to both trees, and
 | |
|  *   - be unique, no duplicate entries are allowed.
 | |
|  *
 | |
|  * The zfs_snapshots_by_name tree is indexed by the full dataset name
 | |
|  * while the zfs_snapshots_by_objsetid tree is indexed by the unique
 | |
|  * objsetid.  This allows for fast lookups either by name or objsetid.
 | |
|  */
 | |
| static avl_tree_t zfs_snapshots_by_name;
 | |
| static avl_tree_t zfs_snapshots_by_objsetid;
 | |
| static krwlock_t zfs_snapshot_lock;
 | |
| 
 | |
| /*
 | |
|  * Control Directory Tunables (.zfs)
 | |
|  */
 | |
| int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
 | |
| static int zfs_admin_snapshot = 0;
 | |
| 
 | |
| typedef struct {
 | |
| 	char		*se_name;	/* full snapshot name */
 | |
| 	char		*se_path;	/* full mount path */
 | |
| 	spa_t		*se_spa;	/* pool spa */
 | |
| 	uint64_t	se_objsetid;	/* snapshot objset id */
 | |
| 	struct dentry   *se_root_dentry; /* snapshot root dentry */
 | |
| 	krwlock_t	se_taskqid_lock;  /* scheduled unmount taskqid lock */
 | |
| 	taskqid_t	se_taskqid;	/* scheduled unmount taskqid */
 | |
| 	avl_node_t	se_node_name;	/* zfs_snapshots_by_name link */
 | |
| 	avl_node_t	se_node_objsetid; /* zfs_snapshots_by_objsetid link */
 | |
| 	zfs_refcount_t	se_refcount;	/* reference count */
 | |
| } zfs_snapentry_t;
 | |
| 
 | |
| static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
 | |
| 
 | |
| /*
 | |
|  * Allocate a new zfs_snapentry_t being careful to make a copy of the
 | |
|  * the snapshot name and provided mount point.  No reference is taken.
 | |
|  */
 | |
| static zfs_snapentry_t *
 | |
| zfsctl_snapshot_alloc(const char *full_name, const char *full_path, spa_t *spa,
 | |
|     uint64_t objsetid, struct dentry *root_dentry)
 | |
| {
 | |
| 	zfs_snapentry_t *se;
 | |
| 
 | |
| 	se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
 | |
| 
 | |
| 	se->se_name = kmem_strdup(full_name);
 | |
| 	se->se_path = kmem_strdup(full_path);
 | |
| 	se->se_spa = spa;
 | |
| 	se->se_objsetid = objsetid;
 | |
| 	se->se_root_dentry = root_dentry;
 | |
| 	se->se_taskqid = TASKQID_INVALID;
 | |
| 	rw_init(&se->se_taskqid_lock, NULL, RW_DEFAULT, NULL);
 | |
| 
 | |
| 	zfs_refcount_create(&se->se_refcount);
 | |
| 
 | |
| 	return (se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a zfs_snapentry_t the caller must ensure there are no active
 | |
|  * references.
 | |
|  */
 | |
| static void
 | |
| zfsctl_snapshot_free(zfs_snapentry_t *se)
 | |
| {
 | |
| 	zfs_refcount_destroy(&se->se_refcount);
 | |
| 	kmem_strfree(se->se_name);
 | |
| 	kmem_strfree(se->se_path);
 | |
| 	rw_destroy(&se->se_taskqid_lock);
 | |
| 
 | |
| 	kmem_free(se, sizeof (zfs_snapentry_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hold a reference on the zfs_snapentry_t.
 | |
|  */
 | |
| static void
 | |
| zfsctl_snapshot_hold(zfs_snapentry_t *se)
 | |
| {
 | |
| 	zfs_refcount_add(&se->se_refcount, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release a reference on the zfs_snapentry_t.  When the number of
 | |
|  * references drops to zero the structure will be freed.
 | |
|  */
 | |
| static void
 | |
| zfsctl_snapshot_rele(zfs_snapentry_t *se)
 | |
| {
 | |
| 	if (zfs_refcount_remove(&se->se_refcount, NULL) == 0)
 | |
| 		zfsctl_snapshot_free(se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
 | |
|  * zfs_snapshots_by_objsetid trees.  While the zfs_snapentry_t is part
 | |
|  * of the trees a reference is held.
 | |
|  */
 | |
| static void
 | |
| zfsctl_snapshot_add(zfs_snapentry_t *se)
 | |
| {
 | |
| 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
 | |
| 	zfsctl_snapshot_hold(se);
 | |
| 	avl_add(&zfs_snapshots_by_name, se);
 | |
| 	avl_add(&zfs_snapshots_by_objsetid, se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
 | |
|  * zfs_snapshots_by_objsetid trees.  Upon removal a reference is dropped,
 | |
|  * this can result in the structure being freed if that was the last
 | |
|  * remaining reference.
 | |
|  */
 | |
| static void
 | |
| zfsctl_snapshot_remove(zfs_snapentry_t *se)
 | |
| {
 | |
| 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
 | |
| 	avl_remove(&zfs_snapshots_by_name, se);
 | |
| 	avl_remove(&zfs_snapshots_by_objsetid, se);
 | |
| 	zfsctl_snapshot_rele(se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Snapshot name comparison function for the zfs_snapshots_by_name.
 | |
|  */
 | |
| static int
 | |
| snapentry_compare_by_name(const void *a, const void *b)
 | |
| {
 | |
| 	const zfs_snapentry_t *se_a = a;
 | |
| 	const zfs_snapentry_t *se_b = b;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = strcmp(se_a->se_name, se_b->se_name);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		return (-1);
 | |
| 	else if (ret > 0)
 | |
| 		return (1);
 | |
| 	else
 | |
| 		return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
 | |
|  */
 | |
| static int
 | |
| snapentry_compare_by_objsetid(const void *a, const void *b)
 | |
| {
 | |
| 	const zfs_snapentry_t *se_a = a;
 | |
| 	const zfs_snapentry_t *se_b = b;
 | |
| 
 | |
| 	if (se_a->se_spa != se_b->se_spa)
 | |
| 		return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
 | |
| 
 | |
| 	if (se_a->se_objsetid < se_b->se_objsetid)
 | |
| 		return (-1);
 | |
| 	else if (se_a->se_objsetid > se_b->se_objsetid)
 | |
| 		return (1);
 | |
| 	else
 | |
| 		return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a zfs_snapentry_t in zfs_snapshots_by_name.  If the snapname
 | |
|  * is found a pointer to the zfs_snapentry_t is returned and a reference
 | |
|  * taken on the structure.  The caller is responsible for dropping the
 | |
|  * reference with zfsctl_snapshot_rele().  If the snapname is not found
 | |
|  * NULL will be returned.
 | |
|  */
 | |
| static zfs_snapentry_t *
 | |
| zfsctl_snapshot_find_by_name(const char *snapname)
 | |
| {
 | |
| 	zfs_snapentry_t *se, search;
 | |
| 
 | |
| 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
 | |
| 
 | |
| 	search.se_name = (char *)snapname;
 | |
| 	se = avl_find(&zfs_snapshots_by_name, &search, NULL);
 | |
| 	if (se)
 | |
| 		zfsctl_snapshot_hold(se);
 | |
| 
 | |
| 	return (se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
 | |
|  * rather than the snapname.  In all other respects it behaves the same
 | |
|  * as zfsctl_snapshot_find_by_name().
 | |
|  */
 | |
| static zfs_snapentry_t *
 | |
| zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
 | |
| {
 | |
| 	zfs_snapentry_t *se, search;
 | |
| 
 | |
| 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
 | |
| 
 | |
| 	search.se_spa = spa;
 | |
| 	search.se_objsetid = objsetid;
 | |
| 	se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
 | |
| 	if (se)
 | |
| 		zfsctl_snapshot_hold(se);
 | |
| 
 | |
| 	return (se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rename a zfs_snapentry_t in the zfs_snapshots_by_name.  The structure is
 | |
|  * removed, renamed, and added back to the new correct location in the tree.
 | |
|  */
 | |
| static int
 | |
| zfsctl_snapshot_rename(const char *old_snapname, const char *new_snapname)
 | |
| {
 | |
| 	zfs_snapentry_t *se;
 | |
| 
 | |
| 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
 | |
| 
 | |
| 	se = zfsctl_snapshot_find_by_name(old_snapname);
 | |
| 	if (se == NULL)
 | |
| 		return (SET_ERROR(ENOENT));
 | |
| 
 | |
| 	zfsctl_snapshot_remove(se);
 | |
| 	kmem_strfree(se->se_name);
 | |
| 	se->se_name = kmem_strdup(new_snapname);
 | |
| 	zfsctl_snapshot_add(se);
 | |
| 	zfsctl_snapshot_rele(se);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Delayed task responsible for unmounting an expired automounted snapshot.
 | |
|  */
 | |
| static void
 | |
| snapentry_expire(void *data)
 | |
| {
 | |
| 	zfs_snapentry_t *se = (zfs_snapentry_t *)data;
 | |
| 	spa_t *spa = se->se_spa;
 | |
| 	uint64_t objsetid = se->se_objsetid;
 | |
| 
 | |
| 	if (zfs_expire_snapshot <= 0) {
 | |
| 		zfsctl_snapshot_rele(se);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
 | |
| 	se->se_taskqid = TASKQID_INVALID;
 | |
| 	rw_exit(&se->se_taskqid_lock);
 | |
| 	(void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
 | |
| 	zfsctl_snapshot_rele(se);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
 | |
| 	 * This can occur when the snapshot is busy.
 | |
| 	 */
 | |
| 	rw_enter(&zfs_snapshot_lock, RW_READER);
 | |
| 	if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
 | |
| 		zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
 | |
| 		zfsctl_snapshot_rele(se);
 | |
| 	}
 | |
| 	rw_exit(&zfs_snapshot_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cancel an automatic unmount of a snapname.  This callback is responsible
 | |
|  * for dropping the reference on the zfs_snapentry_t which was taken when
 | |
|  * during dispatch.
 | |
|  */
 | |
| static void
 | |
| zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
 | |
| 	err = taskq_cancel_id(system_delay_taskq, se->se_taskqid);
 | |
| 	/*
 | |
| 	 * if we get ENOENT, the taskq couldn't be found to be
 | |
| 	 * canceled, so we can just mark it as invalid because
 | |
| 	 * it's already gone. If we got EBUSY, then we already
 | |
| 	 * blocked until it was gone _anyway_, so we don't care.
 | |
| 	 */
 | |
| 	se->se_taskqid = TASKQID_INVALID;
 | |
| 	rw_exit(&se->se_taskqid_lock);
 | |
| 	if (err == 0) {
 | |
| 		zfsctl_snapshot_rele(se);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dispatch the unmount task for delayed handling with a hold protecting it.
 | |
|  */
 | |
| static void
 | |
| zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
 | |
| {
 | |
| 
 | |
| 	if (delay <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	zfsctl_snapshot_hold(se);
 | |
| 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
 | |
| 	/*
 | |
| 	 * If this condition happens, we managed to:
 | |
| 	 * - dispatch once
 | |
| 	 * - want to dispatch _again_ before it returned
 | |
| 	 *
 | |
| 	 * So let's just return - if that task fails at unmounting,
 | |
| 	 * we'll eventually dispatch again, and if it succeeds,
 | |
| 	 * no problem.
 | |
| 	 */
 | |
| 	if (se->se_taskqid != TASKQID_INVALID) {
 | |
| 		rw_exit(&se->se_taskqid_lock);
 | |
| 		zfsctl_snapshot_rele(se);
 | |
| 		return;
 | |
| 	}
 | |
| 	se->se_taskqid = taskq_dispatch_delay(system_delay_taskq,
 | |
| 	    snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
 | |
| 	rw_exit(&se->se_taskqid_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Schedule an automatic unmount of objset id to occur in delay seconds from
 | |
|  * now.  Any previous delayed unmount will be cancelled in favor of the
 | |
|  * updated deadline.  A reference is taken by zfsctl_snapshot_find_by_name()
 | |
|  * and held until the outstanding task is handled or cancelled.
 | |
|  */
 | |
| int
 | |
| zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
 | |
| {
 | |
| 	zfs_snapentry_t *se;
 | |
| 	int error = ENOENT;
 | |
| 
 | |
| 	rw_enter(&zfs_snapshot_lock, RW_READER);
 | |
| 	if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
 | |
| 		zfsctl_snapshot_unmount_cancel(se);
 | |
| 		zfsctl_snapshot_unmount_delay_impl(se, delay);
 | |
| 		zfsctl_snapshot_rele(se);
 | |
| 		error = 0;
 | |
| 	}
 | |
| 	rw_exit(&zfs_snapshot_lock);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if snapname is currently mounted.  Returned non-zero when mounted
 | |
|  * and zero when unmounted.
 | |
|  */
 | |
| static boolean_t
 | |
| zfsctl_snapshot_ismounted(const char *snapname)
 | |
| {
 | |
| 	zfs_snapentry_t *se;
 | |
| 	boolean_t ismounted = B_FALSE;
 | |
| 
 | |
| 	rw_enter(&zfs_snapshot_lock, RW_READER);
 | |
| 	if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
 | |
| 		zfsctl_snapshot_rele(se);
 | |
| 		ismounted = B_TRUE;
 | |
| 	}
 | |
| 	rw_exit(&zfs_snapshot_lock);
 | |
| 
 | |
| 	return (ismounted);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if the given inode is a part of the virtual .zfs directory.
 | |
|  */
 | |
| boolean_t
 | |
| zfsctl_is_node(struct inode *ip)
 | |
| {
 | |
| 	return (ITOZ(ip)->z_is_ctldir);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if the given inode is a .zfs/snapshots/snapname directory.
 | |
|  */
 | |
| boolean_t
 | |
| zfsctl_is_snapdir(struct inode *ip)
 | |
| {
 | |
| 	return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new inode with the passed id and ops.
 | |
|  */
 | |
| static struct inode *
 | |
| zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id,
 | |
|     const struct file_operations *fops, const struct inode_operations *ops,
 | |
|     uint64_t creation)
 | |
| {
 | |
| 	struct inode *ip;
 | |
| 	znode_t *zp;
 | |
| 	inode_timespec_t now = {.tv_sec = creation};
 | |
| 
 | |
| 	ip = new_inode(zfsvfs->z_sb);
 | |
| 	if (ip == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	if (!creation)
 | |
| 		now = current_time(ip);
 | |
| 	zp = ITOZ(ip);
 | |
| 	ASSERT3P(zp->z_dirlocks, ==, NULL);
 | |
| 	ASSERT3P(zp->z_acl_cached, ==, NULL);
 | |
| 	ASSERT3P(zp->z_xattr_cached, ==, NULL);
 | |
| 	zp->z_id = id;
 | |
| 	zp->z_unlinked = B_FALSE;
 | |
| 	zp->z_atime_dirty = B_FALSE;
 | |
| 	zp->z_zn_prefetch = B_FALSE;
 | |
| 	zp->z_is_sa = B_FALSE;
 | |
| 	zp->z_is_ctldir = B_TRUE;
 | |
| 	zp->z_sa_hdl = NULL;
 | |
| 	zp->z_blksz = 0;
 | |
| 	zp->z_seq = 0;
 | |
| 	zp->z_mapcnt = 0;
 | |
| 	zp->z_size = 0;
 | |
| 	zp->z_pflags = 0;
 | |
| 	zp->z_mode = 0;
 | |
| 	zp->z_sync_cnt = 0;
 | |
| 	zp->z_sync_writes_cnt = 0;
 | |
| 	zp->z_async_writes_cnt = 0;
 | |
| 	ip->i_generation = 0;
 | |
| 	ip->i_ino = id;
 | |
| 	ip->i_mode = (S_IFDIR | S_IRWXUGO);
 | |
| 	ip->i_uid = SUID_TO_KUID(0);
 | |
| 	ip->i_gid = SGID_TO_KGID(0);
 | |
| 	ip->i_blkbits = SPA_MINBLOCKSHIFT;
 | |
| 	zpl_inode_set_atime_to_ts(ip, now);
 | |
| 	zpl_inode_set_mtime_to_ts(ip, now);
 | |
| 	zpl_inode_set_ctime_to_ts(ip, now);
 | |
| 	ip->i_fop = fops;
 | |
| 	ip->i_op = ops;
 | |
| #if defined(IOP_XATTR)
 | |
| 	ip->i_opflags &= ~IOP_XATTR;
 | |
| #endif
 | |
| 
 | |
| 	if (insert_inode_locked(ip)) {
 | |
| 		unlock_new_inode(ip);
 | |
| 		iput(ip);
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	mutex_enter(&zfsvfs->z_znodes_lock);
 | |
| 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
 | |
| 	membar_producer();
 | |
| 	mutex_exit(&zfsvfs->z_znodes_lock);
 | |
| 
 | |
| 	unlock_new_inode(ip);
 | |
| 
 | |
| 	return (ip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup the inode with given id, it will be allocated if needed.
 | |
|  */
 | |
| static struct inode *
 | |
| zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id,
 | |
|     const struct file_operations *fops, const struct inode_operations *ops)
 | |
| {
 | |
| 	struct inode *ip = NULL;
 | |
| 	uint64_t creation = 0;
 | |
| 	dsl_dataset_t *snap_ds;
 | |
| 	dsl_pool_t *pool;
 | |
| 
 | |
| 	while (ip == NULL) {
 | |
| 		ip = ilookup(zfsvfs->z_sb, (unsigned long)id);
 | |
| 		if (ip)
 | |
| 			break;
 | |
| 
 | |
| 		if (id <= ZFSCTL_INO_SNAPDIRS && !creation) {
 | |
| 			pool = dmu_objset_pool(zfsvfs->z_os);
 | |
| 			dsl_pool_config_enter(pool, FTAG);
 | |
| 			if (!dsl_dataset_hold_obj(pool,
 | |
| 			    ZFSCTL_INO_SNAPDIRS - id, FTAG, &snap_ds)) {
 | |
| 				creation = dsl_get_creation(snap_ds);
 | |
| 				dsl_dataset_rele(snap_ds, FTAG);
 | |
| 			}
 | |
| 			dsl_pool_config_exit(pool, FTAG);
 | |
| 		}
 | |
| 
 | |
| 		/* May fail due to concurrent zfsctl_inode_alloc() */
 | |
| 		ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops, creation);
 | |
| 	}
 | |
| 
 | |
| 	return (ip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create the '.zfs' directory.  This directory is cached as part of the VFS
 | |
|  * structure.  This results in a hold on the zfsvfs_t.  The code in zfs_umount()
 | |
|  * therefore checks against a vfs_count of 2 instead of 1.  This reference
 | |
|  * is removed when the ctldir is destroyed in the unmount.  All other entities
 | |
|  * under the '.zfs' directory are created dynamically as needed.
 | |
|  *
 | |
|  * Because the dynamically created '.zfs' directory entries assume the use
 | |
|  * of 64-bit inode numbers this support must be disabled on 32-bit systems.
 | |
|  */
 | |
| int
 | |
| zfsctl_create(zfsvfs_t *zfsvfs)
 | |
| {
 | |
| 	ASSERT(zfsvfs->z_ctldir == NULL);
 | |
| 
 | |
| 	zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT,
 | |
| 	    &zpl_fops_root, &zpl_ops_root, 0);
 | |
| 	if (zfsvfs->z_ctldir == NULL)
 | |
| 		return (SET_ERROR(ENOENT));
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
 | |
|  * Only called when the filesystem is unmounted.
 | |
|  */
 | |
| void
 | |
| zfsctl_destroy(zfsvfs_t *zfsvfs)
 | |
| {
 | |
| 	if (zfsvfs->z_issnap) {
 | |
| 		zfs_snapentry_t *se;
 | |
| 		spa_t *spa = zfsvfs->z_os->os_spa;
 | |
| 		uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
 | |
| 
 | |
| 		rw_enter(&zfs_snapshot_lock, RW_WRITER);
 | |
| 		se = zfsctl_snapshot_find_by_objsetid(spa, objsetid);
 | |
| 		if (se != NULL)
 | |
| 			zfsctl_snapshot_remove(se);
 | |
| 		rw_exit(&zfs_snapshot_lock);
 | |
| 		if (se != NULL) {
 | |
| 			zfsctl_snapshot_unmount_cancel(se);
 | |
| 			zfsctl_snapshot_rele(se);
 | |
| 		}
 | |
| 	} else if (zfsvfs->z_ctldir) {
 | |
| 		iput(zfsvfs->z_ctldir);
 | |
| 		zfsvfs->z_ctldir = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a root znode, retrieve the associated .zfs directory.
 | |
|  * Add a hold to the vnode and return it.
 | |
|  */
 | |
| struct inode *
 | |
| zfsctl_root(znode_t *zp)
 | |
| {
 | |
| 	ASSERT(zfs_has_ctldir(zp));
 | |
| 	/* Must have an existing ref, so igrab() cannot return NULL */
 | |
| 	VERIFY3P(igrab(ZTOZSB(zp)->z_ctldir), !=, NULL);
 | |
| 	return (ZTOZSB(zp)->z_ctldir);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate a long fid to indicate a snapdir. We encode whether snapdir is
 | |
|  * already mounted in gen field. We do this because nfsd lookup will not
 | |
|  * trigger automount. Next time the nfsd does fh_to_dentry, we will notice
 | |
|  * this and do automount and return ESTALE to force nfsd revalidate and follow
 | |
|  * mount.
 | |
|  */
 | |
| static int
 | |
| zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
 | |
| {
 | |
| 	zfid_short_t *zfid = (zfid_short_t *)fidp;
 | |
| 	zfid_long_t *zlfid = (zfid_long_t *)fidp;
 | |
| 	uint32_t gen = 0;
 | |
| 	uint64_t object;
 | |
| 	uint64_t objsetid;
 | |
| 	int i;
 | |
| 	struct dentry *dentry;
 | |
| 
 | |
| 	if (fidp->fid_len < LONG_FID_LEN) {
 | |
| 		fidp->fid_len = LONG_FID_LEN;
 | |
| 		return (SET_ERROR(ENOSPC));
 | |
| 	}
 | |
| 
 | |
| 	object = ip->i_ino;
 | |
| 	objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
 | |
| 	zfid->zf_len = LONG_FID_LEN;
 | |
| 
 | |
| 	dentry = d_obtain_alias(igrab(ip));
 | |
| 	if (!IS_ERR(dentry)) {
 | |
| 		gen = !!d_mountpoint(dentry);
 | |
| 		dput(dentry);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < sizeof (zfid->zf_object); i++)
 | |
| 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
 | |
| 
 | |
| 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
 | |
| 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
 | |
| 
 | |
| 	for (i = 0; i < sizeof (zlfid->zf_setid); i++)
 | |
| 		zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
 | |
| 
 | |
| 	for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
 | |
| 		zlfid->zf_setgen[i] = 0;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate an appropriate fid for an entry in the .zfs directory.
 | |
|  */
 | |
| int
 | |
| zfsctl_fid(struct inode *ip, fid_t *fidp)
 | |
| {
 | |
| 	znode_t		*zp = ITOZ(ip);
 | |
| 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
 | |
| 	uint64_t	object = zp->z_id;
 | |
| 	zfid_short_t	*zfid;
 | |
| 	int		i;
 | |
| 	int		error;
 | |
| 
 | |
| 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	if (zfsctl_is_snapdir(ip)) {
 | |
| 		zfs_exit(zfsvfs, FTAG);
 | |
| 		return (zfsctl_snapdir_fid(ip, fidp));
 | |
| 	}
 | |
| 
 | |
| 	if (fidp->fid_len < SHORT_FID_LEN) {
 | |
| 		fidp->fid_len = SHORT_FID_LEN;
 | |
| 		zfs_exit(zfsvfs, FTAG);
 | |
| 		return (SET_ERROR(ENOSPC));
 | |
| 	}
 | |
| 
 | |
| 	zfid = (zfid_short_t *)fidp;
 | |
| 
 | |
| 	zfid->zf_len = SHORT_FID_LEN;
 | |
| 
 | |
| 	for (i = 0; i < sizeof (zfid->zf_object); i++)
 | |
| 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
 | |
| 
 | |
| 	/* .zfs znodes always have a generation number of 0 */
 | |
| 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
 | |
| 		zfid->zf_gen[i] = 0;
 | |
| 
 | |
| 	zfs_exit(zfsvfs, FTAG);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Construct a full dataset name in full_name: "pool/dataset@snap_name"
 | |
|  */
 | |
| static int
 | |
| zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len,
 | |
|     char *full_name)
 | |
| {
 | |
| 	objset_t *os = zfsvfs->z_os;
 | |
| 
 | |
| 	if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
 | |
| 		return (SET_ERROR(EILSEQ));
 | |
| 
 | |
| 	dmu_objset_name(os, full_name);
 | |
| 	if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
 | |
| 		return (SET_ERROR(ENAMETOOLONG));
 | |
| 
 | |
| 	(void) strcat(full_name, "@");
 | |
| 	(void) strcat(full_name, snap_name);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
 | |
|  */
 | |
| static int
 | |
| zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid,
 | |
|     int path_len, char *full_path)
 | |
| {
 | |
| 	objset_t *os = zfsvfs->z_os;
 | |
| 	fstrans_cookie_t cookie;
 | |
| 	char *snapname;
 | |
| 	boolean_t case_conflict;
 | |
| 	uint64_t id, pos = 0;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (zfsvfs->z_vfs->vfs_mntpoint == NULL)
 | |
| 		return (SET_ERROR(ENOENT));
 | |
| 
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 	snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
 | |
| 
 | |
| 	while (error == 0) {
 | |
| 		dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
 | |
| 		error = dmu_snapshot_list_next(zfsvfs->z_os,
 | |
| 		    ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
 | |
| 		    &case_conflict);
 | |
| 		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
 | |
| 		if (error)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (id == objsetid)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	snprintf(full_path, path_len, "%s/.zfs/snapshot/%s",
 | |
| 	    zfsvfs->z_vfs->vfs_mntpoint, snapname);
 | |
| out:
 | |
| 	kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Special case the handling of "..".
 | |
|  */
 | |
| int
 | |
| zfsctl_root_lookup(struct inode *dip, const char *name, struct inode **ipp,
 | |
|     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = ITOZSB(dip);
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	if (strcmp(name, "..") == 0) {
 | |
| 		*ipp = dip->i_sb->s_root->d_inode;
 | |
| 	} else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
 | |
| 		*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR,
 | |
| 		    &zpl_fops_snapdir, &zpl_ops_snapdir);
 | |
| 	} else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
 | |
| 		*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES,
 | |
| 		    &zpl_fops_shares, &zpl_ops_shares);
 | |
| 	} else {
 | |
| 		*ipp = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (*ipp == NULL)
 | |
| 		error = SET_ERROR(ENOENT);
 | |
| 
 | |
| 	zfs_exit(zfsvfs, FTAG);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup entry point for the 'snapshot' directory.  Try to open the
 | |
|  * snapshot if it exist, creating the pseudo filesystem inode as necessary.
 | |
|  */
 | |
| int
 | |
| zfsctl_snapdir_lookup(struct inode *dip, const char *name, struct inode **ipp,
 | |
|     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = ITOZSB(dip);
 | |
| 	uint64_t id;
 | |
| 	int error;
 | |
| 
 | |
| 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id);
 | |
| 	if (error) {
 | |
| 		zfs_exit(zfsvfs, FTAG);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id,
 | |
| 	    &simple_dir_operations, &simple_dir_inode_operations);
 | |
| 	if (*ipp == NULL)
 | |
| 		error = SET_ERROR(ENOENT);
 | |
| 
 | |
| 	zfs_exit(zfsvfs, FTAG);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Renaming a directory under '.zfs/snapshot' will automatically trigger
 | |
|  * a rename of the snapshot to the new given name.  The rename is confined
 | |
|  * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
 | |
|  */
 | |
| int
 | |
| zfsctl_snapdir_rename(struct inode *sdip, const char *snm,
 | |
|     struct inode *tdip, const char *tnm, cred_t *cr, int flags)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = ITOZSB(sdip);
 | |
| 	char *to, *from, *real, *fsname;
 | |
| 	int error;
 | |
| 
 | |
| 	if (!zfs_admin_snapshot)
 | |
| 		return (SET_ERROR(EACCES));
 | |
| 
 | |
| 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
 | |
| 	from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
 | |
| 	real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
 | |
| 	fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
 | |
| 
 | |
| 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
 | |
| 		error = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
 | |
| 		    ZFS_MAX_DATASET_NAME_LEN, NULL);
 | |
| 		if (error == 0) {
 | |
| 			snm = real;
 | |
| 		} else if (error != ENOTSUP) {
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dmu_objset_name(zfsvfs->z_os, fsname);
 | |
| 
 | |
| 	error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
 | |
| 	    ZFS_MAX_DATASET_NAME_LEN, from);
 | |
| 	if (error == 0)
 | |
| 		error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
 | |
| 		    ZFS_MAX_DATASET_NAME_LEN, to);
 | |
| 	if (error == 0)
 | |
| 		error = zfs_secpolicy_rename_perms(from, to, cr);
 | |
| 	if (error != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cannot move snapshots out of the snapdir.
 | |
| 	 */
 | |
| 	if (sdip != tdip) {
 | |
| 		error = SET_ERROR(EINVAL);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No-op when names are identical.
 | |
| 	 */
 | |
| 	if (strcmp(snm, tnm) == 0) {
 | |
| 		error = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rw_enter(&zfs_snapshot_lock, RW_WRITER);
 | |
| 
 | |
| 	error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
 | |
| 	if (error == 0)
 | |
| 		(void) zfsctl_snapshot_rename(snm, tnm);
 | |
| 
 | |
| 	rw_exit(&zfs_snapshot_lock);
 | |
| out:
 | |
| 	kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 	kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 	kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 	kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 
 | |
| 	zfs_exit(zfsvfs, FTAG);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Removing a directory under '.zfs/snapshot' will automatically trigger
 | |
|  * the removal of the snapshot with the given name.
 | |
|  */
 | |
| int
 | |
| zfsctl_snapdir_remove(struct inode *dip, const char *name, cred_t *cr,
 | |
|     int flags)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = ITOZSB(dip);
 | |
| 	char *snapname, *real;
 | |
| 	int error;
 | |
| 
 | |
| 	if (!zfs_admin_snapshot)
 | |
| 		return (SET_ERROR(EACCES));
 | |
| 
 | |
| 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
 | |
| 	real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
 | |
| 
 | |
| 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
 | |
| 		error = dmu_snapshot_realname(zfsvfs->z_os, name, real,
 | |
| 		    ZFS_MAX_DATASET_NAME_LEN, NULL);
 | |
| 		if (error == 0) {
 | |
| 			name = real;
 | |
| 		} else if (error != ENOTSUP) {
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	error = zfsctl_snapshot_name(ITOZSB(dip), name,
 | |
| 	    ZFS_MAX_DATASET_NAME_LEN, snapname);
 | |
| 	if (error == 0)
 | |
| 		error = zfs_secpolicy_destroy_perms(snapname, cr);
 | |
| 	if (error != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
 | |
| 	if ((error == 0) || (error == ENOENT))
 | |
| 		error = dsl_destroy_snapshot(snapname, B_FALSE);
 | |
| out:
 | |
| 	kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 	kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 
 | |
| 	zfs_exit(zfsvfs, FTAG);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Creating a directory under '.zfs/snapshot' will automatically trigger
 | |
|  * the creation of a new snapshot with the given name.
 | |
|  */
 | |
| int
 | |
| zfsctl_snapdir_mkdir(struct inode *dip, const char *dirname, vattr_t *vap,
 | |
|     struct inode **ipp, cred_t *cr, int flags)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = ITOZSB(dip);
 | |
| 	char *dsname;
 | |
| 	int error;
 | |
| 
 | |
| 	if (!zfs_admin_snapshot)
 | |
| 		return (SET_ERROR(EACCES));
 | |
| 
 | |
| 	dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
 | |
| 
 | |
| 	if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
 | |
| 		error = SET_ERROR(EILSEQ);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	dmu_objset_name(zfsvfs->z_os, dsname);
 | |
| 
 | |
| 	error = zfs_secpolicy_snapshot_perms(dsname, cr);
 | |
| 	if (error != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (error == 0) {
 | |
| 		error = dmu_objset_snapshot_one(dsname, dirname);
 | |
| 		if (error != 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		error = zfsctl_snapdir_lookup(dip, dirname, ipp,
 | |
| 		    0, cr, NULL, NULL);
 | |
| 	}
 | |
| out:
 | |
| 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush everything out of the kernel's export table and such.
 | |
|  * This is needed as once the snapshot is used over NFS, its
 | |
|  * entries in svc_export and svc_expkey caches hold reference
 | |
|  * to the snapshot mount point. There is no known way of flushing
 | |
|  * only the entries related to the snapshot.
 | |
|  */
 | |
| static void
 | |
| exportfs_flush(void)
 | |
| {
 | |
| 	char *argv[] = { "/usr/sbin/exportfs", "-f", NULL };
 | |
| 	char *envp[] = { NULL };
 | |
| 
 | |
| 	(void) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attempt to unmount a snapshot by making a call to user space.
 | |
|  * There is no assurance that this can or will succeed, is just a
 | |
|  * best effort.  In the case where it does fail, perhaps because
 | |
|  * it's in use, the unmount will fail harmlessly.
 | |
|  */
 | |
| int
 | |
| zfsctl_snapshot_unmount(const char *snapname, int flags)
 | |
| {
 | |
| 	char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
 | |
| 	    NULL };
 | |
| 	char *envp[] = { NULL };
 | |
| 	zfs_snapentry_t *se;
 | |
| 	int error;
 | |
| 
 | |
| 	rw_enter(&zfs_snapshot_lock, RW_READER);
 | |
| 	if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
 | |
| 		rw_exit(&zfs_snapshot_lock);
 | |
| 		return (SET_ERROR(ENOENT));
 | |
| 	}
 | |
| 	rw_exit(&zfs_snapshot_lock);
 | |
| 
 | |
| 	exportfs_flush();
 | |
| 
 | |
| 	if (flags & MNT_FORCE)
 | |
| 		argv[4] = "-fn";
 | |
| 	argv[5] = se->se_path;
 | |
| 	dprintf("unmount; path=%s\n", se->se_path);
 | |
| 	error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
 | |
| 	zfsctl_snapshot_rele(se);
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * The umount system utility will return 256 on error.  We must
 | |
| 	 * assume this error is because the file system is busy so it is
 | |
| 	 * converted to the more sensible EBUSY.
 | |
| 	 */
 | |
| 	if (error)
 | |
| 		error = SET_ERROR(EBUSY);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| int
 | |
| zfsctl_snapshot_mount(struct path *path, int flags)
 | |
| {
 | |
| 	struct dentry *dentry = path->dentry;
 | |
| 	struct inode *ip = dentry->d_inode;
 | |
| 	zfsvfs_t *zfsvfs;
 | |
| 	zfsvfs_t *snap_zfsvfs;
 | |
| 	zfs_snapentry_t *se;
 | |
| 	char *full_name, *full_path;
 | |
| 	char *argv[] = { "/usr/bin/env", "mount", "-i", "-t", "zfs", "-n",
 | |
| 	    NULL, NULL, NULL };
 | |
| 	char *envp[] = { NULL };
 | |
| 	int error;
 | |
| 	struct path spath;
 | |
| 
 | |
| 	if (ip == NULL)
 | |
| 		return (SET_ERROR(EISDIR));
 | |
| 
 | |
| 	zfsvfs = ITOZSB(ip);
 | |
| 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
 | |
| 	full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
 | |
| 
 | |
| 	error = zfsctl_snapshot_name(zfsvfs, dname(dentry),
 | |
| 	    ZFS_MAX_DATASET_NAME_LEN, full_name);
 | |
| 	if (error)
 | |
| 		goto error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Construct a mount point path from sb of the ctldir inode and dirent
 | |
| 	 * name, instead of from d_path(), so that chroot'd process doesn't fail
 | |
| 	 * on mount.zfs(8).
 | |
| 	 */
 | |
| 	snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s",
 | |
| 	    zfsvfs->z_vfs->vfs_mntpoint ? zfsvfs->z_vfs->vfs_mntpoint : "",
 | |
| 	    dname(dentry));
 | |
| 
 | |
| 	/*
 | |
| 	 * Multiple concurrent automounts of a snapshot are never allowed.
 | |
| 	 * The snapshot may be manually mounted as many times as desired.
 | |
| 	 */
 | |
| 	if (zfsctl_snapshot_ismounted(full_name)) {
 | |
| 		error = 0;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Attempt to mount the snapshot from user space.  Normally this
 | |
| 	 * would be done using the vfs_kern_mount() function, however that
 | |
| 	 * function is marked GPL-only and cannot be used.  On error we
 | |
| 	 * careful to log the real error to the console and return EISDIR
 | |
| 	 * to safely abort the automount.  This should be very rare.
 | |
| 	 *
 | |
| 	 * If the user mode helper happens to return EBUSY, a concurrent
 | |
| 	 * mount is already in progress in which case the error is ignored.
 | |
| 	 * Take note that if the program was executed successfully the return
 | |
| 	 * value from call_usermodehelper() will be (exitcode << 8 + signal).
 | |
| 	 */
 | |
| 	dprintf("mount; name=%s path=%s\n", full_name, full_path);
 | |
| 	argv[6] = full_name;
 | |
| 	argv[7] = full_path;
 | |
| 	error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
 | |
| 	if (error) {
 | |
| 		if (!(error & MOUNT_BUSY << 8)) {
 | |
| 			zfs_dbgmsg("Unable to automount %s error=%d",
 | |
| 			    full_path, error);
 | |
| 			error = SET_ERROR(EISDIR);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * EBUSY, this could mean a concurrent mount, or the
 | |
| 			 * snapshot has already been mounted at completely
 | |
| 			 * different place. We return 0 so VFS will retry. For
 | |
| 			 * the latter case the VFS will retry several times
 | |
| 			 * and return ELOOP, which is probably not a very good
 | |
| 			 * behavior.
 | |
| 			 */
 | |
| 			error = 0;
 | |
| 		}
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
 | |
| 	 * to identify this as an automounted filesystem.
 | |
| 	 */
 | |
| 	spath = *path;
 | |
| 	path_get(&spath);
 | |
| 	if (follow_down_one(&spath)) {
 | |
| 		snap_zfsvfs = ITOZSB(spath.dentry->d_inode);
 | |
| 		snap_zfsvfs->z_parent = zfsvfs;
 | |
| 		dentry = spath.dentry;
 | |
| 		spath.mnt->mnt_flags |= MNT_SHRINKABLE;
 | |
| 
 | |
| 		rw_enter(&zfs_snapshot_lock, RW_WRITER);
 | |
| 		se = zfsctl_snapshot_alloc(full_name, full_path,
 | |
| 		    snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os),
 | |
| 		    dentry);
 | |
| 		zfsctl_snapshot_add(se);
 | |
| 		zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
 | |
| 		rw_exit(&zfs_snapshot_lock);
 | |
| 	}
 | |
| 	path_put(&spath);
 | |
| error:
 | |
| 	kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
 | |
| 	kmem_free(full_path, MAXPATHLEN);
 | |
| 
 | |
| 	zfs_exit(zfsvfs, FTAG);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the snapdir inode from fid
 | |
|  */
 | |
| int
 | |
| zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen,
 | |
|     struct inode **ipp)
 | |
| {
 | |
| 	int error;
 | |
| 	struct path path;
 | |
| 	char *mnt;
 | |
| 	struct dentry *dentry;
 | |
| 
 | |
| 	mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
 | |
| 
 | |
| 	error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
 | |
| 	    MAXPATHLEN, mnt);
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Trigger automount */
 | |
| 	error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	path_put(&path);
 | |
| 	/*
 | |
| 	 * Get the snapdir inode. Note, we don't want to use the above
 | |
| 	 * path because it contains the root of the snapshot rather
 | |
| 	 * than the snapdir.
 | |
| 	 */
 | |
| 	*ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid);
 | |
| 	if (*ipp == NULL) {
 | |
| 		error = SET_ERROR(ENOENT);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* check gen, see zfsctl_snapdir_fid */
 | |
| 	dentry = d_obtain_alias(igrab(*ipp));
 | |
| 	if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) {
 | |
| 		iput(*ipp);
 | |
| 		*ipp = NULL;
 | |
| 		error = SET_ERROR(ENOENT);
 | |
| 	}
 | |
| 	if (!IS_ERR(dentry))
 | |
| 		dput(dentry);
 | |
| out:
 | |
| 	kmem_free(mnt, MAXPATHLEN);
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| int
 | |
| zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
 | |
|     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
 | |
| {
 | |
| 	zfsvfs_t *zfsvfs = ITOZSB(dip);
 | |
| 	znode_t *zp;
 | |
| 	znode_t *dzp;
 | |
| 	int error;
 | |
| 
 | |
| 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	if (zfsvfs->z_shares_dir == 0) {
 | |
| 		zfs_exit(zfsvfs, FTAG);
 | |
| 		return (SET_ERROR(ENOTSUP));
 | |
| 	}
 | |
| 
 | |
| 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
 | |
| 		error = zfs_lookup(dzp, name, &zp, 0, cr, NULL, NULL);
 | |
| 		zrele(dzp);
 | |
| 	}
 | |
| 
 | |
| 	zfs_exit(zfsvfs, FTAG);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the various pieces we'll need to create and manipulate .zfs
 | |
|  * directories.  Currently this is unused but available.
 | |
|  */
 | |
| void
 | |
| zfsctl_init(void)
 | |
| {
 | |
| 	avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
 | |
| 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
 | |
| 	    se_node_name));
 | |
| 	avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
 | |
| 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
 | |
| 	    se_node_objsetid));
 | |
| 	rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cleanup the various pieces we needed for .zfs directories.  In particular
 | |
|  * ensure the expiry timer is canceled safely.
 | |
|  */
 | |
| void
 | |
| zfsctl_fini(void)
 | |
| {
 | |
| 	avl_destroy(&zfs_snapshots_by_name);
 | |
| 	avl_destroy(&zfs_snapshots_by_objsetid);
 | |
| 	rw_destroy(&zfs_snapshot_lock);
 | |
| }
 | |
| 
 | |
| module_param(zfs_admin_snapshot, int, 0644);
 | |
| MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
 | |
| 
 | |
| module_param(zfs_expire_snapshot, int, 0644);
 | |
| MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");
 |