mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-30 22:35:48 +00:00 
			
		
		
		
	Hole detection in the zio compression code allows us to opportunistically skip compression on holes. We can go a step further by not doing memory allocations on holes either. Reviewed-by: Brian Atkinson <batkinson@lanl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Signed-off-by: Richard Yao <richard.yao@klarasystems.com> Sponsored-by: Wasabi Technology, Inc. Closes #14500
		
			
				
	
	
		
			3782 lines
		
	
	
		
			110 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3782 lines
		
	
	
		
			110 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
 | |
|  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
 | |
|  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
 | |
|  * Copyright 2014 HybridCluster. All rights reserved.
 | |
|  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
 | |
|  * Copyright (c) 2019, Klara Inc.
 | |
|  * Copyright (c) 2019, Allan Jude
 | |
|  * Copyright (c) 2019 Datto Inc.
 | |
|  * Copyright (c) 2022 Axcient.
 | |
|  */
 | |
| 
 | |
| #include <sys/arc.h>
 | |
| #include <sys/spa_impl.h>
 | |
| #include <sys/dmu.h>
 | |
| #include <sys/dmu_impl.h>
 | |
| #include <sys/dmu_send.h>
 | |
| #include <sys/dmu_recv.h>
 | |
| #include <sys/dmu_tx.h>
 | |
| #include <sys/dbuf.h>
 | |
| #include <sys/dnode.h>
 | |
| #include <sys/zfs_context.h>
 | |
| #include <sys/dmu_objset.h>
 | |
| #include <sys/dmu_traverse.h>
 | |
| #include <sys/dsl_dataset.h>
 | |
| #include <sys/dsl_dir.h>
 | |
| #include <sys/dsl_prop.h>
 | |
| #include <sys/dsl_pool.h>
 | |
| #include <sys/dsl_synctask.h>
 | |
| #include <sys/zfs_ioctl.h>
 | |
| #include <sys/zap.h>
 | |
| #include <sys/zvol.h>
 | |
| #include <sys/zio_checksum.h>
 | |
| #include <sys/zfs_znode.h>
 | |
| #include <zfs_fletcher.h>
 | |
| #include <sys/avl.h>
 | |
| #include <sys/ddt.h>
 | |
| #include <sys/zfs_onexit.h>
 | |
| #include <sys/dsl_destroy.h>
 | |
| #include <sys/blkptr.h>
 | |
| #include <sys/dsl_bookmark.h>
 | |
| #include <sys/zfeature.h>
 | |
| #include <sys/bqueue.h>
 | |
| #include <sys/objlist.h>
 | |
| #ifdef _KERNEL
 | |
| #include <sys/zfs_vfsops.h>
 | |
| #endif
 | |
| #include <sys/zfs_file.h>
 | |
| 
 | |
| static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
 | |
| static uint_t zfs_recv_queue_ff = 20;
 | |
| static uint_t zfs_recv_write_batch_size = 1024 * 1024;
 | |
| static int zfs_recv_best_effort_corrective = 0;
 | |
| 
 | |
| static const void *const dmu_recv_tag = "dmu_recv_tag";
 | |
| const char *const recv_clone_name = "%recv";
 | |
| 
 | |
| typedef enum {
 | |
| 	ORNS_NO,
 | |
| 	ORNS_YES,
 | |
| 	ORNS_MAYBE
 | |
| } or_need_sync_t;
 | |
| 
 | |
| static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
 | |
|     void *buf);
 | |
| 
 | |
| struct receive_record_arg {
 | |
| 	dmu_replay_record_t header;
 | |
| 	void *payload; /* Pointer to a buffer containing the payload */
 | |
| 	/*
 | |
| 	 * If the record is a WRITE or SPILL, pointer to the abd containing the
 | |
| 	 * payload.
 | |
| 	 */
 | |
| 	abd_t *abd;
 | |
| 	int payload_size;
 | |
| 	uint64_t bytes_read; /* bytes read from stream when record created */
 | |
| 	boolean_t eos_marker; /* Marks the end of the stream */
 | |
| 	bqueue_node_t node;
 | |
| };
 | |
| 
 | |
| struct receive_writer_arg {
 | |
| 	objset_t *os;
 | |
| 	boolean_t byteswap;
 | |
| 	bqueue_t q;
 | |
| 
 | |
| 	/*
 | |
| 	 * These three members are used to signal to the main thread when
 | |
| 	 * we're done.
 | |
| 	 */
 | |
| 	kmutex_t mutex;
 | |
| 	kcondvar_t cv;
 | |
| 	boolean_t done;
 | |
| 
 | |
| 	int err;
 | |
| 	const char *tofs;
 | |
| 	boolean_t heal;
 | |
| 	boolean_t resumable;
 | |
| 	boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
 | |
| 	boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
 | |
| 	boolean_t full;  /* this is a full send stream */
 | |
| 	uint64_t last_object;
 | |
| 	uint64_t last_offset;
 | |
| 	uint64_t max_object; /* highest object ID referenced in stream */
 | |
| 	uint64_t bytes_read; /* bytes read when current record created */
 | |
| 
 | |
| 	list_t write_batch;
 | |
| 
 | |
| 	/* Encryption parameters for the last received DRR_OBJECT_RANGE */
 | |
| 	boolean_t or_crypt_params_present;
 | |
| 	uint64_t or_firstobj;
 | |
| 	uint64_t or_numslots;
 | |
| 	uint8_t or_salt[ZIO_DATA_SALT_LEN];
 | |
| 	uint8_t or_iv[ZIO_DATA_IV_LEN];
 | |
| 	uint8_t or_mac[ZIO_DATA_MAC_LEN];
 | |
| 	boolean_t or_byteorder;
 | |
| 	zio_t *heal_pio;
 | |
| 
 | |
| 	/* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */
 | |
| 	or_need_sync_t or_need_sync;
 | |
| };
 | |
| 
 | |
| typedef struct dmu_recv_begin_arg {
 | |
| 	const char *drba_origin;
 | |
| 	dmu_recv_cookie_t *drba_cookie;
 | |
| 	cred_t *drba_cred;
 | |
| 	proc_t *drba_proc;
 | |
| 	dsl_crypto_params_t *drba_dcp;
 | |
| } dmu_recv_begin_arg_t;
 | |
| 
 | |
| static void
 | |
| byteswap_record(dmu_replay_record_t *drr)
 | |
| {
 | |
| #define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
 | |
| #define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
 | |
| 	drr->drr_type = BSWAP_32(drr->drr_type);
 | |
| 	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
 | |
| 
 | |
| 	switch (drr->drr_type) {
 | |
| 	case DRR_BEGIN:
 | |
| 		DO64(drr_begin.drr_magic);
 | |
| 		DO64(drr_begin.drr_versioninfo);
 | |
| 		DO64(drr_begin.drr_creation_time);
 | |
| 		DO32(drr_begin.drr_type);
 | |
| 		DO32(drr_begin.drr_flags);
 | |
| 		DO64(drr_begin.drr_toguid);
 | |
| 		DO64(drr_begin.drr_fromguid);
 | |
| 		break;
 | |
| 	case DRR_OBJECT:
 | |
| 		DO64(drr_object.drr_object);
 | |
| 		DO32(drr_object.drr_type);
 | |
| 		DO32(drr_object.drr_bonustype);
 | |
| 		DO32(drr_object.drr_blksz);
 | |
| 		DO32(drr_object.drr_bonuslen);
 | |
| 		DO32(drr_object.drr_raw_bonuslen);
 | |
| 		DO64(drr_object.drr_toguid);
 | |
| 		DO64(drr_object.drr_maxblkid);
 | |
| 		break;
 | |
| 	case DRR_FREEOBJECTS:
 | |
| 		DO64(drr_freeobjects.drr_firstobj);
 | |
| 		DO64(drr_freeobjects.drr_numobjs);
 | |
| 		DO64(drr_freeobjects.drr_toguid);
 | |
| 		break;
 | |
| 	case DRR_WRITE:
 | |
| 		DO64(drr_write.drr_object);
 | |
| 		DO32(drr_write.drr_type);
 | |
| 		DO64(drr_write.drr_offset);
 | |
| 		DO64(drr_write.drr_logical_size);
 | |
| 		DO64(drr_write.drr_toguid);
 | |
| 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
 | |
| 		DO64(drr_write.drr_key.ddk_prop);
 | |
| 		DO64(drr_write.drr_compressed_size);
 | |
| 		break;
 | |
| 	case DRR_WRITE_EMBEDDED:
 | |
| 		DO64(drr_write_embedded.drr_object);
 | |
| 		DO64(drr_write_embedded.drr_offset);
 | |
| 		DO64(drr_write_embedded.drr_length);
 | |
| 		DO64(drr_write_embedded.drr_toguid);
 | |
| 		DO32(drr_write_embedded.drr_lsize);
 | |
| 		DO32(drr_write_embedded.drr_psize);
 | |
| 		break;
 | |
| 	case DRR_FREE:
 | |
| 		DO64(drr_free.drr_object);
 | |
| 		DO64(drr_free.drr_offset);
 | |
| 		DO64(drr_free.drr_length);
 | |
| 		DO64(drr_free.drr_toguid);
 | |
| 		break;
 | |
| 	case DRR_SPILL:
 | |
| 		DO64(drr_spill.drr_object);
 | |
| 		DO64(drr_spill.drr_length);
 | |
| 		DO64(drr_spill.drr_toguid);
 | |
| 		DO64(drr_spill.drr_compressed_size);
 | |
| 		DO32(drr_spill.drr_type);
 | |
| 		break;
 | |
| 	case DRR_OBJECT_RANGE:
 | |
| 		DO64(drr_object_range.drr_firstobj);
 | |
| 		DO64(drr_object_range.drr_numslots);
 | |
| 		DO64(drr_object_range.drr_toguid);
 | |
| 		break;
 | |
| 	case DRR_REDACT:
 | |
| 		DO64(drr_redact.drr_object);
 | |
| 		DO64(drr_redact.drr_offset);
 | |
| 		DO64(drr_redact.drr_length);
 | |
| 		DO64(drr_redact.drr_toguid);
 | |
| 		break;
 | |
| 	case DRR_END:
 | |
| 		DO64(drr_end.drr_toguid);
 | |
| 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (drr->drr_type != DRR_BEGIN) {
 | |
| 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
 | |
| 	}
 | |
| 
 | |
| #undef DO64
 | |
| #undef DO32
 | |
| }
 | |
| 
 | |
| static boolean_t
 | |
| redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
 | |
| {
 | |
| 	for (int i = 0; i < num_snaps; i++) {
 | |
| 		if (snaps[i] == guid)
 | |
| 			return (B_TRUE);
 | |
| 	}
 | |
| 	return (B_FALSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that the new stream we're trying to receive is redacted with respect to
 | |
|  * a subset of the snapshots that the origin was redacted with respect to.  For
 | |
|  * the reasons behind this, see the man page on redacted zfs sends and receives.
 | |
|  */
 | |
| static boolean_t
 | |
| compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
 | |
|     uint64_t *redact_snaps, uint64_t num_redact_snaps)
 | |
| {
 | |
| 	/*
 | |
| 	 * Short circuit the comparison; if we are redacted with respect to
 | |
| 	 * more snapshots than the origin, we can't be redacted with respect
 | |
| 	 * to a subset.
 | |
| 	 */
 | |
| 	if (num_redact_snaps > origin_num_snaps) {
 | |
| 		return (B_FALSE);
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < num_redact_snaps; i++) {
 | |
| 		if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
 | |
| 		    redact_snaps[i])) {
 | |
| 			return (B_FALSE);
 | |
| 		}
 | |
| 	}
 | |
| 	return (B_TRUE);
 | |
| }
 | |
| 
 | |
| static boolean_t
 | |
| redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
 | |
| {
 | |
| 	uint64_t *origin_snaps;
 | |
| 	uint64_t origin_num_snaps;
 | |
| 	dmu_recv_cookie_t *drc = drba->drba_cookie;
 | |
| 	struct drr_begin *drrb = drc->drc_drrb;
 | |
| 	int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
 | |
| 	int err = 0;
 | |
| 	boolean_t ret = B_TRUE;
 | |
| 	uint64_t *redact_snaps;
 | |
| 	uint_t numredactsnaps;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a full send stream, we're safe no matter what.
 | |
| 	 */
 | |
| 	if (drrb->drr_fromguid == 0)
 | |
| 		return (ret);
 | |
| 
 | |
| 	VERIFY(dsl_dataset_get_uint64_array_feature(origin,
 | |
| 	    SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
 | |
| 
 | |
| 	if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
 | |
| 	    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
 | |
| 	    0) {
 | |
| 		/*
 | |
| 		 * If the send stream was sent from the redaction bookmark or
 | |
| 		 * the redacted version of the dataset, then we're safe.  Verify
 | |
| 		 * that this is from the a compatible redaction bookmark or
 | |
| 		 * redacted dataset.
 | |
| 		 */
 | |
| 		if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
 | |
| 		    redact_snaps, numredactsnaps)) {
 | |
| 			err = EINVAL;
 | |
| 		}
 | |
| 	} else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
 | |
| 		/*
 | |
| 		 * If the stream is redacted, it must be redacted with respect
 | |
| 		 * to a subset of what the origin is redacted with respect to.
 | |
| 		 * See case number 2 in the zfs man page section on redacted zfs
 | |
| 		 * send.
 | |
| 		 */
 | |
| 		err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
 | |
| 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
 | |
| 
 | |
| 		if (err != 0 || !compatible_redact_snaps(origin_snaps,
 | |
| 		    origin_num_snaps, redact_snaps, numredactsnaps)) {
 | |
| 			err = EINVAL;
 | |
| 		}
 | |
| 	} else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
 | |
| 	    drrb->drr_toguid)) {
 | |
| 		/*
 | |
| 		 * If the stream isn't redacted but the origin is, this must be
 | |
| 		 * one of the snapshots the origin is redacted with respect to.
 | |
| 		 * See case number 1 in the zfs man page section on redacted zfs
 | |
| 		 * send.
 | |
| 		 */
 | |
| 		err = EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (err != 0)
 | |
| 		ret = B_FALSE;
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we previously received a stream with --large-block, we don't support
 | |
|  * receiving an incremental on top of it without --large-block.  This avoids
 | |
|  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
 | |
|  * records.
 | |
|  */
 | |
| static int
 | |
| recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
 | |
| {
 | |
| 	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
 | |
| 	    !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
 | |
| 		return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
 | |
|     uint64_t fromguid, uint64_t featureflags)
 | |
| {
 | |
| 	uint64_t obj;
 | |
| 	uint64_t children;
 | |
| 	int error;
 | |
| 	dsl_dataset_t *snap;
 | |
| 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
 | |
| 	boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
 | |
| 	boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
 | |
| 	boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
 | |
| 
 | |
| 	/* Temporary clone name must not exist. */
 | |
| 	error = zap_lookup(dp->dp_meta_objset,
 | |
| 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
 | |
| 	    8, 1, &obj);
 | |
| 	if (error != ENOENT)
 | |
| 		return (error == 0 ? SET_ERROR(EBUSY) : error);
 | |
| 
 | |
| 	/* Resume state must not be set. */
 | |
| 	if (dsl_dataset_has_resume_receive_state(ds))
 | |
| 		return (SET_ERROR(EBUSY));
 | |
| 
 | |
| 	/* New snapshot name must not exist if we're not healing it. */
 | |
| 	error = zap_lookup(dp->dp_meta_objset,
 | |
| 	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
 | |
| 	    drba->drba_cookie->drc_tosnap, 8, 1, &obj);
 | |
| 	if (drba->drba_cookie->drc_heal) {
 | |
| 		if (error != 0)
 | |
| 			return (error);
 | |
| 	} else if (error != ENOENT) {
 | |
| 		return (error == 0 ? SET_ERROR(EEXIST) : error);
 | |
| 	}
 | |
| 
 | |
| 	/* Must not have children if receiving a ZVOL. */
 | |
| 	error = zap_count(dp->dp_meta_objset,
 | |
| 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 	if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
 | |
| 	    children > 0)
 | |
| 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
 | |
| 
 | |
| 	/*
 | |
| 	 * Check snapshot limit before receiving. We'll recheck again at the
 | |
| 	 * end, but might as well abort before receiving if we're already over
 | |
| 	 * the limit.
 | |
| 	 *
 | |
| 	 * Note that we do not check the file system limit with
 | |
| 	 * dsl_dir_fscount_check because the temporary %clones don't count
 | |
| 	 * against that limit.
 | |
| 	 */
 | |
| 	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
 | |
| 	    NULL, drba->drba_cred, drba->drba_proc);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	if (drba->drba_cookie->drc_heal) {
 | |
| 		/* Encryption is incompatible with embedded data. */
 | |
| 		if (encrypted && embed)
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 		/* Healing is not supported when in 'force' mode. */
 | |
| 		if (drba->drba_cookie->drc_force)
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 		/* Must have keys loaded if doing encrypted non-raw recv. */
 | |
| 		if (encrypted && !raw) {
 | |
| 			if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
 | |
| 			    NULL, NULL) != 0)
 | |
| 				return (SET_ERROR(EACCES));
 | |
| 		}
 | |
| 
 | |
| 		error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
 | |
| 		if (error != 0)
 | |
| 			return (error);
 | |
| 
 | |
| 		/*
 | |
| 		 * When not doing best effort corrective recv healing can only
 | |
| 		 * be done if the send stream is for the same snapshot as the
 | |
| 		 * one we are trying to heal.
 | |
| 		 */
 | |
| 		if (zfs_recv_best_effort_corrective == 0 &&
 | |
| 		    drba->drba_cookie->drc_drrb->drr_toguid !=
 | |
| 		    dsl_dataset_phys(snap)->ds_guid) {
 | |
| 			dsl_dataset_rele(snap, FTAG);
 | |
| 			return (SET_ERROR(ENOTSUP));
 | |
| 		}
 | |
| 		dsl_dataset_rele(snap, FTAG);
 | |
| 	} else if (fromguid != 0) {
 | |
| 		/* Sanity check the incremental recv */
 | |
| 		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
 | |
| 
 | |
| 		/* Can't perform a raw receive on top of a non-raw receive */
 | |
| 		if (!encrypted && raw)
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 		/* Encryption is incompatible with embedded data */
 | |
| 		if (encrypted && embed)
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 		/* Find snapshot in this dir that matches fromguid. */
 | |
| 		while (obj != 0) {
 | |
| 			error = dsl_dataset_hold_obj(dp, obj, FTAG,
 | |
| 			    &snap);
 | |
| 			if (error != 0)
 | |
| 				return (SET_ERROR(ENODEV));
 | |
| 			if (snap->ds_dir != ds->ds_dir) {
 | |
| 				dsl_dataset_rele(snap, FTAG);
 | |
| 				return (SET_ERROR(ENODEV));
 | |
| 			}
 | |
| 			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
 | |
| 				break;
 | |
| 			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
 | |
| 			dsl_dataset_rele(snap, FTAG);
 | |
| 		}
 | |
| 		if (obj == 0)
 | |
| 			return (SET_ERROR(ENODEV));
 | |
| 
 | |
| 		if (drba->drba_cookie->drc_force) {
 | |
| 			drba->drba_cookie->drc_fromsnapobj = obj;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * If we are not forcing, there must be no
 | |
| 			 * changes since fromsnap. Raw sends have an
 | |
| 			 * additional constraint that requires that
 | |
| 			 * no "noop" snapshots exist between fromsnap
 | |
| 			 * and tosnap for the IVset checking code to
 | |
| 			 * work properly.
 | |
| 			 */
 | |
| 			if (dsl_dataset_modified_since_snap(ds, snap) ||
 | |
| 			    (raw &&
 | |
| 			    dsl_dataset_phys(ds)->ds_prev_snap_obj !=
 | |
| 			    snap->ds_object)) {
 | |
| 				dsl_dataset_rele(snap, FTAG);
 | |
| 				return (SET_ERROR(ETXTBSY));
 | |
| 			}
 | |
| 			drba->drba_cookie->drc_fromsnapobj =
 | |
| 			    ds->ds_prev->ds_object;
 | |
| 		}
 | |
| 
 | |
| 		if (dsl_dataset_feature_is_active(snap,
 | |
| 		    SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
 | |
| 		    snap)) {
 | |
| 			dsl_dataset_rele(snap, FTAG);
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 		}
 | |
| 
 | |
| 		error = recv_check_large_blocks(snap, featureflags);
 | |
| 		if (error != 0) {
 | |
| 			dsl_dataset_rele(snap, FTAG);
 | |
| 			return (error);
 | |
| 		}
 | |
| 
 | |
| 		dsl_dataset_rele(snap, FTAG);
 | |
| 	} else {
 | |
| 		/* If full and not healing then must be forced. */
 | |
| 		if (!drba->drba_cookie->drc_force)
 | |
| 			return (SET_ERROR(EEXIST));
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't support using zfs recv -F to blow away
 | |
| 		 * encrypted filesystems. This would require the
 | |
| 		 * dsl dir to point to the old encryption key and
 | |
| 		 * the new one at the same time during the receive.
 | |
| 		 */
 | |
| 		if ((!encrypted && raw) || encrypted)
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 		/*
 | |
| 		 * Perform the same encryption checks we would if
 | |
| 		 * we were creating a new dataset from scratch.
 | |
| 		 */
 | |
| 		if (!raw) {
 | |
| 			boolean_t will_encrypt;
 | |
| 
 | |
| 			error = dmu_objset_create_crypt_check(
 | |
| 			    ds->ds_dir->dd_parent, drba->drba_dcp,
 | |
| 			    &will_encrypt);
 | |
| 			if (error != 0)
 | |
| 				return (error);
 | |
| 
 | |
| 			if (will_encrypt && embed)
 | |
| 				return (SET_ERROR(EINVAL));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that any feature flags used in the data stream we're receiving are
 | |
|  * supported by the pool we are receiving into.
 | |
|  *
 | |
|  * Note that some of the features we explicitly check here have additional
 | |
|  * (implicit) features they depend on, but those dependencies are enforced
 | |
|  * through the zfeature_register() calls declaring the features that we
 | |
|  * explicitly check.
 | |
|  */
 | |
| static int
 | |
| recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
 | |
| {
 | |
| 	/*
 | |
| 	 * Check if there are any unsupported feature flags.
 | |
| 	 */
 | |
| 	if (!DMU_STREAM_SUPPORTED(featureflags)) {
 | |
| 		return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
 | |
| 	}
 | |
| 
 | |
| 	/* Verify pool version supports SA if SA_SPILL feature set */
 | |
| 	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
 | |
| 	    spa_version(spa) < SPA_VERSION_SA)
 | |
| 		return (SET_ERROR(ENOTSUP));
 | |
| 
 | |
| 	/*
 | |
| 	 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
 | |
| 	 * and large_dnodes in the stream can only be used if those pool
 | |
| 	 * features are enabled because we don't attempt to decompress /
 | |
| 	 * un-embed / un-mooch / split up the blocks / dnodes during the
 | |
| 	 * receive process.
 | |
| 	 */
 | |
| 	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
 | |
| 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
 | |
| 		return (SET_ERROR(ENOTSUP));
 | |
| 	if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
 | |
| 	    !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
 | |
| 		return (SET_ERROR(ENOTSUP));
 | |
| 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
 | |
| 	    !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
 | |
| 		return (SET_ERROR(ENOTSUP));
 | |
| 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
 | |
| 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
 | |
| 		return (SET_ERROR(ENOTSUP));
 | |
| 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
 | |
| 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
 | |
| 		return (SET_ERROR(ENOTSUP));
 | |
| 
 | |
| 	/*
 | |
| 	 * Receiving redacted streams requires that redacted datasets are
 | |
| 	 * enabled.
 | |
| 	 */
 | |
| 	if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
 | |
| 	    !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
 | |
| 		return (SET_ERROR(ENOTSUP));
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	dmu_recv_begin_arg_t *drba = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
 | |
| 	uint64_t fromguid = drrb->drr_fromguid;
 | |
| 	int flags = drrb->drr_flags;
 | |
| 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
 | |
| 	int error;
 | |
| 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
 | |
| 	dsl_dataset_t *ds;
 | |
| 	const char *tofs = drba->drba_cookie->drc_tofs;
 | |
| 
 | |
| 	/* already checked */
 | |
| 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
 | |
| 	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
 | |
| 
 | |
| 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
 | |
| 	    DMU_COMPOUNDSTREAM ||
 | |
| 	    drrb->drr_type >= DMU_OST_NUMTYPES ||
 | |
| 	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	/* Resumable receives require extensible datasets */
 | |
| 	if (drba->drba_cookie->drc_resumable &&
 | |
| 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
 | |
| 		return (SET_ERROR(ENOTSUP));
 | |
| 
 | |
| 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
 | |
| 		/* raw receives require the encryption feature */
 | |
| 		if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
 | |
| 			return (SET_ERROR(ENOTSUP));
 | |
| 
 | |
| 		/* embedded data is incompatible with encryption and raw recv */
 | |
| 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 		/* raw receives require spill block allocation flag */
 | |
| 		if (!(flags & DRR_FLAG_SPILL_BLOCK))
 | |
| 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We support unencrypted datasets below encrypted ones now,
 | |
| 		 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
 | |
| 		 * with a dataset we may encrypt.
 | |
| 		 */
 | |
| 		if (drba->drba_dcp == NULL ||
 | |
| 		    drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
 | |
| 			dsflags |= DS_HOLD_FLAG_DECRYPT;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
 | |
| 	if (error == 0) {
 | |
| 		/* target fs already exists; recv into temp clone */
 | |
| 
 | |
| 		/* Can't recv a clone into an existing fs */
 | |
| 		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
 | |
| 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 		}
 | |
| 
 | |
| 		error = recv_begin_check_existing_impl(drba, ds, fromguid,
 | |
| 		    featureflags);
 | |
| 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 	} else if (error == ENOENT) {
 | |
| 		/* target fs does not exist; must be a full backup or clone */
 | |
| 		char buf[ZFS_MAX_DATASET_NAME_LEN];
 | |
| 		objset_t *os;
 | |
| 
 | |
| 		/* healing recv must be done "into" an existing snapshot */
 | |
| 		if (drba->drba_cookie->drc_heal == B_TRUE)
 | |
| 			return (SET_ERROR(ENOTSUP));
 | |
| 
 | |
| 		/*
 | |
| 		 * If it's a non-clone incremental, we are missing the
 | |
| 		 * target fs, so fail the recv.
 | |
| 		 */
 | |
| 		if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
 | |
| 		    drba->drba_origin))
 | |
| 			return (SET_ERROR(ENOENT));
 | |
| 
 | |
| 		/*
 | |
| 		 * If we're receiving a full send as a clone, and it doesn't
 | |
| 		 * contain all the necessary free records and freeobject
 | |
| 		 * records, reject it.
 | |
| 		 */
 | |
| 		if (fromguid == 0 && drba->drba_origin != NULL &&
 | |
| 		    !(flags & DRR_FLAG_FREERECORDS))
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 		/* Open the parent of tofs */
 | |
| 		ASSERT3U(strlen(tofs), <, sizeof (buf));
 | |
| 		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
 | |
| 		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
 | |
| 		if (error != 0)
 | |
| 			return (error);
 | |
| 
 | |
| 		if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
 | |
| 		    drba->drba_origin == NULL) {
 | |
| 			boolean_t will_encrypt;
 | |
| 
 | |
| 			/*
 | |
| 			 * Check that we aren't breaking any encryption rules
 | |
| 			 * and that we have all the parameters we need to
 | |
| 			 * create an encrypted dataset if necessary. If we are
 | |
| 			 * making an encrypted dataset the stream can't have
 | |
| 			 * embedded data.
 | |
| 			 */
 | |
| 			error = dmu_objset_create_crypt_check(ds->ds_dir,
 | |
| 			    drba->drba_dcp, &will_encrypt);
 | |
| 			if (error != 0) {
 | |
| 				dsl_dataset_rele(ds, FTAG);
 | |
| 				return (error);
 | |
| 			}
 | |
| 
 | |
| 			if (will_encrypt &&
 | |
| 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
 | |
| 				dsl_dataset_rele(ds, FTAG);
 | |
| 				return (SET_ERROR(EINVAL));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Check filesystem and snapshot limits before receiving. We'll
 | |
| 		 * recheck snapshot limits again at the end (we create the
 | |
| 		 * filesystems and increment those counts during begin_sync).
 | |
| 		 */
 | |
| 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
 | |
| 		    ZFS_PROP_FILESYSTEM_LIMIT, NULL,
 | |
| 		    drba->drba_cred, drba->drba_proc);
 | |
| 		if (error != 0) {
 | |
| 			dsl_dataset_rele(ds, FTAG);
 | |
| 			return (error);
 | |
| 		}
 | |
| 
 | |
| 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
 | |
| 		    ZFS_PROP_SNAPSHOT_LIMIT, NULL,
 | |
| 		    drba->drba_cred, drba->drba_proc);
 | |
| 		if (error != 0) {
 | |
| 			dsl_dataset_rele(ds, FTAG);
 | |
| 			return (error);
 | |
| 		}
 | |
| 
 | |
| 		/* can't recv below anything but filesystems (eg. no ZVOLs) */
 | |
| 		error = dmu_objset_from_ds(ds, &os);
 | |
| 		if (error != 0) {
 | |
| 			dsl_dataset_rele(ds, FTAG);
 | |
| 			return (error);
 | |
| 		}
 | |
| 		if (dmu_objset_type(os) != DMU_OST_ZFS) {
 | |
| 			dsl_dataset_rele(ds, FTAG);
 | |
| 			return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
 | |
| 		}
 | |
| 
 | |
| 		if (drba->drba_origin != NULL) {
 | |
| 			dsl_dataset_t *origin;
 | |
| 			error = dsl_dataset_hold_flags(dp, drba->drba_origin,
 | |
| 			    dsflags, FTAG, &origin);
 | |
| 			if (error != 0) {
 | |
| 				dsl_dataset_rele(ds, FTAG);
 | |
| 				return (error);
 | |
| 			}
 | |
| 			if (!origin->ds_is_snapshot) {
 | |
| 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
 | |
| 				dsl_dataset_rele(ds, FTAG);
 | |
| 				return (SET_ERROR(EINVAL));
 | |
| 			}
 | |
| 			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
 | |
| 			    fromguid != 0) {
 | |
| 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
 | |
| 				dsl_dataset_rele(ds, FTAG);
 | |
| 				return (SET_ERROR(ENODEV));
 | |
| 			}
 | |
| 
 | |
| 			if (origin->ds_dir->dd_crypto_obj != 0 &&
 | |
| 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
 | |
| 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
 | |
| 				dsl_dataset_rele(ds, FTAG);
 | |
| 				return (SET_ERROR(EINVAL));
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * If the origin is redacted we need to verify that this
 | |
| 			 * send stream can safely be received on top of the
 | |
| 			 * origin.
 | |
| 			 */
 | |
| 			if (dsl_dataset_feature_is_active(origin,
 | |
| 			    SPA_FEATURE_REDACTED_DATASETS)) {
 | |
| 				if (!redact_check(drba, origin)) {
 | |
| 					dsl_dataset_rele_flags(origin, dsflags,
 | |
| 					    FTAG);
 | |
| 					dsl_dataset_rele_flags(ds, dsflags,
 | |
| 					    FTAG);
 | |
| 					return (SET_ERROR(EINVAL));
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			error = recv_check_large_blocks(ds, featureflags);
 | |
| 			if (error != 0) {
 | |
| 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
 | |
| 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 				return (error);
 | |
| 			}
 | |
| 
 | |
| 			dsl_dataset_rele_flags(origin, dsflags, FTAG);
 | |
| 		}
 | |
| 
 | |
| 		dsl_dataset_rele(ds, FTAG);
 | |
| 		error = 0;
 | |
| 	}
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	dmu_recv_begin_arg_t *drba = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	objset_t *mos = dp->dp_meta_objset;
 | |
| 	dmu_recv_cookie_t *drc = drba->drba_cookie;
 | |
| 	struct drr_begin *drrb = drc->drc_drrb;
 | |
| 	const char *tofs = drc->drc_tofs;
 | |
| 	uint64_t featureflags = drc->drc_featureflags;
 | |
| 	dsl_dataset_t *ds, *newds;
 | |
| 	objset_t *os;
 | |
| 	uint64_t dsobj;
 | |
| 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
 | |
| 	int error;
 | |
| 	uint64_t crflags = 0;
 | |
| 	dsl_crypto_params_t dummy_dcp = { 0 };
 | |
| 	dsl_crypto_params_t *dcp = drba->drba_dcp;
 | |
| 
 | |
| 	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
 | |
| 		crflags |= DS_FLAG_CI_DATASET;
 | |
| 
 | |
| 	if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
 | |
| 		dsflags |= DS_HOLD_FLAG_DECRYPT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Raw, non-incremental recvs always use a dummy dcp with
 | |
| 	 * the raw cmd set. Raw incremental recvs do not use a dcp
 | |
| 	 * since the encryption parameters are already set in stone.
 | |
| 	 */
 | |
| 	if (dcp == NULL && drrb->drr_fromguid == 0 &&
 | |
| 	    drba->drba_origin == NULL) {
 | |
| 		ASSERT3P(dcp, ==, NULL);
 | |
| 		dcp = &dummy_dcp;
 | |
| 
 | |
| 		if (featureflags & DMU_BACKUP_FEATURE_RAW)
 | |
| 			dcp->cp_cmd = DCP_CMD_RAW_RECV;
 | |
| 	}
 | |
| 
 | |
| 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
 | |
| 	if (error == 0) {
 | |
| 		/* Create temporary clone unless we're doing corrective recv */
 | |
| 		dsl_dataset_t *snap = NULL;
 | |
| 
 | |
| 		if (drba->drba_cookie->drc_fromsnapobj != 0) {
 | |
| 			VERIFY0(dsl_dataset_hold_obj(dp,
 | |
| 			    drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
 | |
| 			ASSERT3P(dcp, ==, NULL);
 | |
| 		}
 | |
| 		if (drc->drc_heal) {
 | |
| 			/* When healing we want to use the provided snapshot */
 | |
| 			VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
 | |
| 			    &dsobj));
 | |
| 		} else {
 | |
| 			dsobj = dsl_dataset_create_sync(ds->ds_dir,
 | |
| 			    recv_clone_name, snap, crflags, drba->drba_cred,
 | |
| 			    dcp, tx);
 | |
| 		}
 | |
| 		if (drba->drba_cookie->drc_fromsnapobj != 0)
 | |
| 			dsl_dataset_rele(snap, FTAG);
 | |
| 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 	} else {
 | |
| 		dsl_dir_t *dd;
 | |
| 		const char *tail;
 | |
| 		dsl_dataset_t *origin = NULL;
 | |
| 
 | |
| 		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
 | |
| 
 | |
| 		if (drba->drba_origin != NULL) {
 | |
| 			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
 | |
| 			    FTAG, &origin));
 | |
| 			ASSERT3P(dcp, ==, NULL);
 | |
| 		}
 | |
| 
 | |
| 		/* Create new dataset. */
 | |
| 		dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
 | |
| 		    origin, crflags, drba->drba_cred, dcp, tx);
 | |
| 		if (origin != NULL)
 | |
| 			dsl_dataset_rele(origin, FTAG);
 | |
| 		dsl_dir_rele(dd, FTAG);
 | |
| 		drc->drc_newfs = B_TRUE;
 | |
| 	}
 | |
| 	VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
 | |
| 	    &newds));
 | |
| 	if (dsl_dataset_feature_is_active(newds,
 | |
| 	    SPA_FEATURE_REDACTED_DATASETS)) {
 | |
| 		/*
 | |
| 		 * If the origin dataset is redacted, the child will be redacted
 | |
| 		 * when we create it.  We clear the new dataset's
 | |
| 		 * redaction info; if it should be redacted, we'll fill
 | |
| 		 * in its information later.
 | |
| 		 */
 | |
| 		dsl_dataset_deactivate_feature(newds,
 | |
| 		    SPA_FEATURE_REDACTED_DATASETS, tx);
 | |
| 	}
 | |
| 	VERIFY0(dmu_objset_from_ds(newds, &os));
 | |
| 
 | |
| 	if (drc->drc_resumable) {
 | |
| 		dsl_dataset_zapify(newds, tx);
 | |
| 		if (drrb->drr_fromguid != 0) {
 | |
| 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
 | |
| 			    8, 1, &drrb->drr_fromguid, tx));
 | |
| 		}
 | |
| 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
 | |
| 		    8, 1, &drrb->drr_toguid, tx));
 | |
| 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
 | |
| 		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
 | |
| 		uint64_t one = 1;
 | |
| 		uint64_t zero = 0;
 | |
| 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
 | |
| 		    8, 1, &one, tx));
 | |
| 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
 | |
| 		    8, 1, &zero, tx));
 | |
| 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
 | |
| 		    8, 1, &zero, tx));
 | |
| 		if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
 | |
| 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
 | |
| 			    8, 1, &one, tx));
 | |
| 		}
 | |
| 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
 | |
| 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
 | |
| 			    8, 1, &one, tx));
 | |
| 		}
 | |
| 		if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
 | |
| 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
 | |
| 			    8, 1, &one, tx));
 | |
| 		}
 | |
| 		if (featureflags & DMU_BACKUP_FEATURE_RAW) {
 | |
| 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
 | |
| 			    8, 1, &one, tx));
 | |
| 		}
 | |
| 
 | |
| 		uint64_t *redact_snaps;
 | |
| 		uint_t numredactsnaps;
 | |
| 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
 | |
| 		    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
 | |
| 		    &numredactsnaps) == 0) {
 | |
| 			VERIFY0(zap_add(mos, dsobj,
 | |
| 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
 | |
| 			    sizeof (*redact_snaps), numredactsnaps,
 | |
| 			    redact_snaps, tx));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Usually the os->os_encrypted value is tied to the presence of a
 | |
| 	 * DSL Crypto Key object in the dd. However, that will not be received
 | |
| 	 * until dmu_recv_stream(), so we set the value manually for now.
 | |
| 	 */
 | |
| 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
 | |
| 		os->os_encrypted = B_TRUE;
 | |
| 		drba->drba_cookie->drc_raw = B_TRUE;
 | |
| 	}
 | |
| 
 | |
| 	if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
 | |
| 		uint64_t *redact_snaps;
 | |
| 		uint_t numredactsnaps;
 | |
| 		VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
 | |
| 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
 | |
| 		dsl_dataset_activate_redaction(newds, redact_snaps,
 | |
| 		    numredactsnaps, tx);
 | |
| 	}
 | |
| 
 | |
| 	dmu_buf_will_dirty(newds->ds_dbuf, tx);
 | |
| 	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we actually created a non-clone, we need to create the objset
 | |
| 	 * in our new dataset. If this is a raw send we postpone this until
 | |
| 	 * dmu_recv_stream() so that we can allocate the metadnode with the
 | |
| 	 * properties from the DRR_BEGIN payload.
 | |
| 	 */
 | |
| 	rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
 | |
| 	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
 | |
| 	    (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
 | |
| 	    !drc->drc_heal) {
 | |
| 		(void) dmu_objset_create_impl(dp->dp_spa,
 | |
| 		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
 | |
| 	}
 | |
| 	rrw_exit(&newds->ds_bp_rwlock, FTAG);
 | |
| 
 | |
| 	drba->drba_cookie->drc_ds = newds;
 | |
| 	drba->drba_cookie->drc_os = os;
 | |
| 
 | |
| 	spa_history_log_internal_ds(newds, "receive", tx, " ");
 | |
| }
 | |
| 
 | |
| static int
 | |
| dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	dmu_recv_begin_arg_t *drba = arg;
 | |
| 	dmu_recv_cookie_t *drc = drba->drba_cookie;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	struct drr_begin *drrb = drc->drc_drrb;
 | |
| 	int error;
 | |
| 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
 | |
| 	dsl_dataset_t *ds;
 | |
| 	const char *tofs = drc->drc_tofs;
 | |
| 
 | |
| 	/* already checked */
 | |
| 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
 | |
| 	ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
 | |
| 
 | |
| 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
 | |
| 	    DMU_COMPOUNDSTREAM ||
 | |
| 	    drrb->drr_type >= DMU_OST_NUMTYPES)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	/*
 | |
| 	 * This is mostly a sanity check since we should have already done these
 | |
| 	 * checks during a previous attempt to receive the data.
 | |
| 	 */
 | |
| 	error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
 | |
| 	    dp->dp_spa);
 | |
| 	if (error != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	/* 6 extra bytes for /%recv */
 | |
| 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
 | |
| 
 | |
| 	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
 | |
| 	    tofs, recv_clone_name);
 | |
| 
 | |
| 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
 | |
| 		/* raw receives require spill block allocation flag */
 | |
| 		if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
 | |
| 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
 | |
| 	} else {
 | |
| 		dsflags |= DS_HOLD_FLAG_DECRYPT;
 | |
| 	}
 | |
| 
 | |
| 	boolean_t recvexist = B_TRUE;
 | |
| 	if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
 | |
| 		/* %recv does not exist; continue in tofs */
 | |
| 		recvexist = B_FALSE;
 | |
| 		error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
 | |
| 		if (error != 0)
 | |
| 			return (error);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Resume of full/newfs recv on existing dataset should be done with
 | |
| 	 * force flag
 | |
| 	 */
 | |
| 	if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) {
 | |
| 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 		return (SET_ERROR(ZFS_ERR_RESUME_EXISTS));
 | |
| 	}
 | |
| 
 | |
| 	/* check that ds is marked inconsistent */
 | |
| 	if (!DS_IS_INCONSISTENT(ds)) {
 | |
| 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	/* check that there is resuming data, and that the toguid matches */
 | |
| 	if (!dsl_dataset_is_zapified(ds)) {
 | |
| 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 	uint64_t val;
 | |
| 	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
 | |
| 	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
 | |
| 	if (error != 0 || drrb->drr_toguid != val) {
 | |
| 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the receive is still running.  If so, it will be owned.
 | |
| 	 * Note that nothing else can own the dataset (e.g. after the receive
 | |
| 	 * fails) because it will be marked inconsistent.
 | |
| 	 */
 | |
| 	if (dsl_dataset_has_owner(ds)) {
 | |
| 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 		return (SET_ERROR(EBUSY));
 | |
| 	}
 | |
| 
 | |
| 	/* There should not be any snapshots of this fs yet. */
 | |
| 	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
 | |
| 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: resume point will be checked when we process the first WRITE
 | |
| 	 * record.
 | |
| 	 */
 | |
| 
 | |
| 	/* check that the origin matches */
 | |
| 	val = 0;
 | |
| 	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
 | |
| 	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
 | |
| 	if (drrb->drr_fromguid != val) {
 | |
| 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
 | |
| 		drc->drc_fromsnapobj = ds->ds_prev->ds_object;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're resuming, and the send is redacted, then the original send
 | |
| 	 * must have been redacted, and must have been redacted with respect to
 | |
| 	 * the same snapshots.
 | |
| 	 */
 | |
| 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
 | |
| 		uint64_t num_ds_redact_snaps;
 | |
| 		uint64_t *ds_redact_snaps;
 | |
| 
 | |
| 		uint_t num_stream_redact_snaps;
 | |
| 		uint64_t *stream_redact_snaps;
 | |
| 
 | |
| 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
 | |
| 		    BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
 | |
| 		    &num_stream_redact_snaps) != 0) {
 | |
| 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 		}
 | |
| 
 | |
| 		if (!dsl_dataset_get_uint64_array_feature(ds,
 | |
| 		    SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
 | |
| 		    &ds_redact_snaps)) {
 | |
| 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 		}
 | |
| 
 | |
| 		for (int i = 0; i < num_ds_redact_snaps; i++) {
 | |
| 			if (!redact_snaps_contains(ds_redact_snaps,
 | |
| 			    num_ds_redact_snaps, stream_redact_snaps[i])) {
 | |
| 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 				return (SET_ERROR(EINVAL));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	error = recv_check_large_blocks(ds, drc->drc_featureflags);
 | |
| 	if (error != 0) {
 | |
| 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 		return (error);
 | |
| 	}
 | |
| 
 | |
| 	dsl_dataset_rele_flags(ds, dsflags, FTAG);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	dmu_recv_begin_arg_t *drba = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	const char *tofs = drba->drba_cookie->drc_tofs;
 | |
| 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
 | |
| 	dsl_dataset_t *ds;
 | |
| 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
 | |
| 	/* 6 extra bytes for /%recv */
 | |
| 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
 | |
| 
 | |
| 	(void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
 | |
| 	    recv_clone_name);
 | |
| 
 | |
| 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
 | |
| 		drba->drba_cookie->drc_raw = B_TRUE;
 | |
| 	} else {
 | |
| 		dsflags |= DS_HOLD_FLAG_DECRYPT;
 | |
| 	}
 | |
| 
 | |
| 	if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
 | |
| 	    != 0) {
 | |
| 		/* %recv does not exist; continue in tofs */
 | |
| 		VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
 | |
| 		    &ds));
 | |
| 		drba->drba_cookie->drc_newfs = B_TRUE;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(DS_IS_INCONSISTENT(ds));
 | |
| 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
 | |
| 	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
 | |
| 	    drba->drba_cookie->drc_raw);
 | |
| 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
 | |
| 
 | |
| 	drba->drba_cookie->drc_ds = ds;
 | |
| 	VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
 | |
| 	drba->drba_cookie->drc_should_save = B_TRUE;
 | |
| 
 | |
| 	spa_history_log_internal_ds(ds, "resume receive", tx, " ");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
 | |
|  * succeeds; otherwise we will leak the holds on the datasets.
 | |
|  */
 | |
| int
 | |
| dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
 | |
|     boolean_t force, boolean_t heal, boolean_t resumable, nvlist_t *localprops,
 | |
|     nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
 | |
|     zfs_file_t *fp, offset_t *voffp)
 | |
| {
 | |
| 	dmu_recv_begin_arg_t drba = { 0 };
 | |
| 	int err;
 | |
| 
 | |
| 	memset(drc, 0, sizeof (dmu_recv_cookie_t));
 | |
| 	drc->drc_drr_begin = drr_begin;
 | |
| 	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
 | |
| 	drc->drc_tosnap = tosnap;
 | |
| 	drc->drc_tofs = tofs;
 | |
| 	drc->drc_force = force;
 | |
| 	drc->drc_heal = heal;
 | |
| 	drc->drc_resumable = resumable;
 | |
| 	drc->drc_cred = CRED();
 | |
| 	drc->drc_proc = curproc;
 | |
| 	drc->drc_clone = (origin != NULL);
 | |
| 
 | |
| 	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
 | |
| 		drc->drc_byteswap = B_TRUE;
 | |
| 		(void) fletcher_4_incremental_byteswap(drr_begin,
 | |
| 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
 | |
| 		byteswap_record(drr_begin);
 | |
| 	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
 | |
| 		(void) fletcher_4_incremental_native(drr_begin,
 | |
| 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
 | |
| 	} else {
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	drc->drc_fp = fp;
 | |
| 	drc->drc_voff = *voffp;
 | |
| 	drc->drc_featureflags =
 | |
| 	    DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
 | |
| 
 | |
| 	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
 | |
| 	void *payload = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace
 | |
| 	 * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard
 | |
| 	 * upper limit. Systems with less than 1GB of RAM will see a lower
 | |
| 	 * limit from `arc_all_memory() / 4`.
 | |
| 	 */
 | |
| 	if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4)))
 | |
| 		return (E2BIG);
 | |
| 
 | |
| 	if (payloadlen != 0)
 | |
| 		payload = vmem_alloc(payloadlen, KM_SLEEP);
 | |
| 
 | |
| 	err = receive_read_payload_and_next_header(drc, payloadlen,
 | |
| 	    payload);
 | |
| 	if (err != 0) {
 | |
| 		vmem_free(payload, payloadlen);
 | |
| 		return (err);
 | |
| 	}
 | |
| 	if (payloadlen != 0) {
 | |
| 		err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
 | |
| 		    KM_SLEEP);
 | |
| 		vmem_free(payload, payloadlen);
 | |
| 		if (err != 0) {
 | |
| 			kmem_free(drc->drc_next_rrd,
 | |
| 			    sizeof (*drc->drc_next_rrd));
 | |
| 			return (err);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
 | |
| 		drc->drc_spill = B_TRUE;
 | |
| 
 | |
| 	drba.drba_origin = origin;
 | |
| 	drba.drba_cookie = drc;
 | |
| 	drba.drba_cred = CRED();
 | |
| 	drba.drba_proc = curproc;
 | |
| 
 | |
| 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
 | |
| 		err = dsl_sync_task(tofs,
 | |
| 		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
 | |
| 		    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * For non-raw, non-incremental, non-resuming receives the
 | |
| 		 * user can specify encryption parameters on the command line
 | |
| 		 * with "zfs recv -o". For these receives we create a dcp and
 | |
| 		 * pass it to the sync task. Creating the dcp will implicitly
 | |
| 		 * remove the encryption params from the localprops nvlist,
 | |
| 		 * which avoids errors when trying to set these normally
 | |
| 		 * read-only properties. Any other kind of receive that
 | |
| 		 * attempts to set these properties will fail as a result.
 | |
| 		 */
 | |
| 		if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
 | |
| 		    DMU_BACKUP_FEATURE_RAW) == 0 &&
 | |
| 		    origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
 | |
| 			err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
 | |
| 			    localprops, hidden_args, &drba.drba_dcp);
 | |
| 		}
 | |
| 
 | |
| 		if (err == 0) {
 | |
| 			err = dsl_sync_task(tofs,
 | |
| 			    dmu_recv_begin_check, dmu_recv_begin_sync,
 | |
| 			    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
 | |
| 			dsl_crypto_params_free(drba.drba_dcp, !!err);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (err != 0) {
 | |
| 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
 | |
| 		nvlist_free(drc->drc_begin_nvl);
 | |
| 	}
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Holds data need for corrective recv callback
 | |
|  */
 | |
| typedef struct cr_cb_data {
 | |
| 	uint64_t size;
 | |
| 	zbookmark_phys_t zb;
 | |
| 	spa_t *spa;
 | |
| } cr_cb_data_t;
 | |
| 
 | |
| static void
 | |
| corrective_read_done(zio_t *zio)
 | |
| {
 | |
| 	cr_cb_data_t *data = zio->io_private;
 | |
| 	/* Corruption corrected; update error log if needed */
 | |
| 	if (zio->io_error == 0)
 | |
| 		spa_remove_error(data->spa, &data->zb);
 | |
| 	kmem_free(data, sizeof (cr_cb_data_t));
 | |
| 	abd_free(zio->io_abd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
 | |
|  */
 | |
| static int
 | |
| do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
 | |
|     struct receive_record_arg *rrd, blkptr_t *bp)
 | |
| {
 | |
| 	int err;
 | |
| 	zio_t *io;
 | |
| 	zbookmark_phys_t zb;
 | |
| 	dnode_t *dn;
 | |
| 	abd_t *abd = rrd->abd;
 | |
| 	zio_cksum_t bp_cksum = bp->blk_cksum;
 | |
| 	zio_flag_t flags = ZIO_FLAG_SPECULATIVE |
 | |
| 	    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL;
 | |
| 
 | |
| 	if (rwa->raw)
 | |
| 		flags |= ZIO_FLAG_RAW;
 | |
| 
 | |
| 	err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 	SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
 | |
| 	    dbuf_whichblock(dn, 0, drrw->drr_offset));
 | |
| 	dnode_rele(dn, FTAG);
 | |
| 
 | |
| 	if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
 | |
| 		/* Decompress the stream data */
 | |
| 		abd_t *dabd = abd_alloc_linear(
 | |
| 		    drrw->drr_logical_size, B_FALSE);
 | |
| 		err = zio_decompress_data(drrw->drr_compressiontype,
 | |
| 		    abd, abd_to_buf(dabd), abd_get_size(abd),
 | |
| 		    abd_get_size(dabd), NULL);
 | |
| 
 | |
| 		if (err != 0) {
 | |
| 			abd_free(dabd);
 | |
| 			return (err);
 | |
| 		}
 | |
| 		/* Swap in the newly decompressed data into the abd */
 | |
| 		abd_free(abd);
 | |
| 		abd = dabd;
 | |
| 	}
 | |
| 
 | |
| 	if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
 | |
| 		/* Recompress the data */
 | |
| 		abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
 | |
| 		    B_FALSE);
 | |
| 		void *buf = abd_to_buf(cabd);
 | |
| 		uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
 | |
| 		    abd, &buf, abd_get_size(abd),
 | |
| 		    rwa->os->os_complevel);
 | |
| 		abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
 | |
| 		/* Swap in newly compressed data into the abd */
 | |
| 		abd_free(abd);
 | |
| 		abd = cabd;
 | |
| 		flags |= ZIO_FLAG_RAW_COMPRESS;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The stream is not encrypted but the data on-disk is.
 | |
| 	 * We need to re-encrypt the buf using the same
 | |
| 	 * encryption type, salt, iv, and mac that was used to encrypt
 | |
| 	 * the block previosly.
 | |
| 	 */
 | |
| 	if (!rwa->raw && BP_USES_CRYPT(bp)) {
 | |
| 		dsl_dataset_t *ds;
 | |
| 		dsl_crypto_key_t *dck = NULL;
 | |
| 		uint8_t salt[ZIO_DATA_SALT_LEN];
 | |
| 		uint8_t iv[ZIO_DATA_IV_LEN];
 | |
| 		uint8_t mac[ZIO_DATA_MAC_LEN];
 | |
| 		boolean_t no_crypt = B_FALSE;
 | |
| 		dsl_pool_t *dp = dmu_objset_pool(rwa->os);
 | |
| 		abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
 | |
| 
 | |
| 		zio_crypt_decode_params_bp(bp, salt, iv);
 | |
| 		zio_crypt_decode_mac_bp(bp, mac);
 | |
| 
 | |
| 		dsl_pool_config_enter(dp, FTAG);
 | |
| 		err = dsl_dataset_hold_flags(dp, rwa->tofs,
 | |
| 		    DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
 | |
| 		if (err != 0) {
 | |
| 			dsl_pool_config_exit(dp, FTAG);
 | |
| 			abd_free(eabd);
 | |
| 			return (SET_ERROR(EACCES));
 | |
| 		}
 | |
| 
 | |
| 		/* Look up the key from the spa's keystore */
 | |
| 		err = spa_keystore_lookup_key(rwa->os->os_spa,
 | |
| 		    zb.zb_objset, FTAG, &dck);
 | |
| 		if (err != 0) {
 | |
| 			dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
 | |
| 			    FTAG);
 | |
| 			dsl_pool_config_exit(dp, FTAG);
 | |
| 			abd_free(eabd);
 | |
| 			return (SET_ERROR(EACCES));
 | |
| 		}
 | |
| 
 | |
| 		err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
 | |
| 		    BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
 | |
| 		    mac, abd_get_size(abd), abd, eabd, &no_crypt);
 | |
| 
 | |
| 		spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
 | |
| 		dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
 | |
| 		dsl_pool_config_exit(dp, FTAG);
 | |
| 
 | |
| 		ASSERT0(no_crypt);
 | |
| 		if (err != 0) {
 | |
| 			abd_free(eabd);
 | |
| 			return (err);
 | |
| 		}
 | |
| 		/* Swap in the newly encrypted data into the abd */
 | |
| 		abd_free(abd);
 | |
| 		abd = eabd;
 | |
| 
 | |
| 		/*
 | |
| 		 * We want to prevent zio_rewrite() from trying to
 | |
| 		 * encrypt the data again
 | |
| 		 */
 | |
| 		flags |= ZIO_FLAG_RAW_ENCRYPT;
 | |
| 	}
 | |
| 	rrd->abd = abd;
 | |
| 
 | |
| 	io = zio_rewrite(NULL, rwa->os->os_spa, bp->blk_birth, bp, abd,
 | |
| 	    BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, &zb);
 | |
| 
 | |
| 	ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
 | |
| 	    abd_get_size(abd) == BP_GET_PSIZE(bp));
 | |
| 
 | |
| 	/* compute new bp checksum value and make sure it matches the old one */
 | |
| 	zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
 | |
| 	if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
 | |
| 		zio_destroy(io);
 | |
| 		if (zfs_recv_best_effort_corrective != 0)
 | |
| 			return (0);
 | |
| 		return (SET_ERROR(ECKSUM));
 | |
| 	}
 | |
| 
 | |
| 	/* Correct the corruption in place */
 | |
| 	err = zio_wait(io);
 | |
| 	if (err == 0) {
 | |
| 		cr_cb_data_t *cb_data =
 | |
| 		    kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
 | |
| 		cb_data->spa = rwa->os->os_spa;
 | |
| 		cb_data->size = drrw->drr_logical_size;
 | |
| 		cb_data->zb = zb;
 | |
| 		/* Test if healing worked by re-reading the bp */
 | |
| 		err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
 | |
| 		    abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
 | |
| 		    drrw->drr_logical_size, corrective_read_done,
 | |
| 		    cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
 | |
| 	}
 | |
| 	if (err != 0 && zfs_recv_best_effort_corrective != 0)
 | |
| 		err = 0;
 | |
| 
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| static int
 | |
| receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
 | |
| {
 | |
| 	int done = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The code doesn't rely on this (lengths being multiples of 8).  See
 | |
| 	 * comment in dump_bytes.
 | |
| 	 */
 | |
| 	ASSERT(len % 8 == 0 ||
 | |
| 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
 | |
| 
 | |
| 	while (done < len) {
 | |
| 		ssize_t resid = len - done;
 | |
| 		zfs_file_t *fp = drc->drc_fp;
 | |
| 		int err = zfs_file_read(fp, (char *)buf + done,
 | |
| 		    len - done, &resid);
 | |
| 		if (err == 0 && resid == len - done) {
 | |
| 			/*
 | |
| 			 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
 | |
| 			 * that the receive was interrupted and can
 | |
| 			 * potentially be resumed.
 | |
| 			 */
 | |
| 			err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
 | |
| 		}
 | |
| 		drc->drc_voff += len - done - resid;
 | |
| 		done = len - resid;
 | |
| 		if (err != 0)
 | |
| 			return (err);
 | |
| 	}
 | |
| 
 | |
| 	drc->drc_bytes_read += len;
 | |
| 
 | |
| 	ASSERT3U(done, ==, len);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static inline uint8_t
 | |
| deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
 | |
| {
 | |
| 	if (bonus_type == DMU_OT_SA) {
 | |
| 		return (1);
 | |
| 	} else {
 | |
| 		return (1 +
 | |
| 		    ((DN_OLD_MAX_BONUSLEN -
 | |
| 		    MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| save_resume_state(struct receive_writer_arg *rwa,
 | |
|     uint64_t object, uint64_t offset, dmu_tx_t *tx)
 | |
| {
 | |
| 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
 | |
| 
 | |
| 	if (!rwa->resumable)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We use ds_resume_bytes[] != 0 to indicate that we need to
 | |
| 	 * update this on disk, so it must not be 0.
 | |
| 	 */
 | |
| 	ASSERT(rwa->bytes_read != 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * We only resume from write records, which have a valid
 | |
| 	 * (non-meta-dnode) object number.
 | |
| 	 */
 | |
| 	ASSERT(object != 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * For resuming to work correctly, we must receive records in order,
 | |
| 	 * sorted by object,offset.  This is checked by the callers, but
 | |
| 	 * assert it here for good measure.
 | |
| 	 */
 | |
| 	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
 | |
| 	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
 | |
| 	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
 | |
| 	ASSERT3U(rwa->bytes_read, >=,
 | |
| 	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
 | |
| 
 | |
| 	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
 | |
| 	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
 | |
| 	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
 | |
| }
 | |
| 
 | |
| static int
 | |
| receive_object_is_same_generation(objset_t *os, uint64_t object,
 | |
|     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
 | |
|     const void *new_bonus, boolean_t *samegenp)
 | |
| {
 | |
| 	zfs_file_info_t zoi;
 | |
| 	int err;
 | |
| 
 | |
| 	dmu_buf_t *old_bonus_dbuf;
 | |
| 	err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 	err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
 | |
| 	    &zoi);
 | |
| 	dmu_buf_rele(old_bonus_dbuf, FTAG);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 	uint64_t old_gen = zoi.zfi_generation;
 | |
| 
 | |
| 	err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
 | |
| 	if (err != 0)
 | |
| 		return (err);
 | |
| 	uint64_t new_gen = zoi.zfi_generation;
 | |
| 
 | |
| 	*samegenp = (old_gen == new_gen);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| receive_handle_existing_object(const struct receive_writer_arg *rwa,
 | |
|     const struct drr_object *drro, const dmu_object_info_t *doi,
 | |
|     const void *bonus_data,
 | |
|     uint64_t *object_to_hold, uint32_t *new_blksz)
 | |
| {
 | |
| 	uint32_t indblksz = drro->drr_indblkshift ?
 | |
| 	    1ULL << drro->drr_indblkshift : 0;
 | |
| 	int nblkptr = deduce_nblkptr(drro->drr_bonustype,
 | |
| 	    drro->drr_bonuslen);
 | |
| 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
 | |
| 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
 | |
| 	boolean_t do_free_range = B_FALSE;
 | |
| 	int err;
 | |
| 
 | |
| 	*object_to_hold = drro->drr_object;
 | |
| 
 | |
| 	/* nblkptr should be bounded by the bonus size and type */
 | |
| 	if (rwa->raw && nblkptr != drro->drr_nblkptr)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	/*
 | |
| 	 * After the previous send stream, the sending system may
 | |
| 	 * have freed this object, and then happened to re-allocate
 | |
| 	 * this object number in a later txg. In this case, we are
 | |
| 	 * receiving a different logical file, and the block size may
 | |
| 	 * appear to be different.  i.e. we may have a different
 | |
| 	 * block size for this object than what the send stream says.
 | |
| 	 * In this case we need to remove the object's contents,
 | |
| 	 * so that its structure can be changed and then its contents
 | |
| 	 * entirely replaced by subsequent WRITE records.
 | |
| 	 *
 | |
| 	 * If this is a -L (--large-block) incremental stream, and
 | |
| 	 * the previous stream was not -L, the block size may appear
 | |
| 	 * to increase.  i.e. we may have a smaller block size for
 | |
| 	 * this object than what the send stream says.  In this case
 | |
| 	 * we need to keep the object's contents and block size
 | |
| 	 * intact, so that we don't lose parts of the object's
 | |
| 	 * contents that are not changed by this incremental send
 | |
| 	 * stream.
 | |
| 	 *
 | |
| 	 * We can distinguish between the two above cases by using
 | |
| 	 * the ZPL's generation number (see
 | |
| 	 * receive_object_is_same_generation()).  However, we only
 | |
| 	 * want to rely on the generation number when absolutely
 | |
| 	 * necessary, because with raw receives, the generation is
 | |
| 	 * encrypted.  We also want to minimize dependence on the
 | |
| 	 * ZPL, so that other types of datasets can also be received
 | |
| 	 * (e.g. ZVOLs, although note that ZVOLS currently do not
 | |
| 	 * reallocate their objects or change their structure).
 | |
| 	 * Therefore, we check a number of different cases where we
 | |
| 	 * know it is safe to discard the object's contents, before
 | |
| 	 * using the ZPL's generation number to make the above
 | |
| 	 * distinction.
 | |
| 	 */
 | |
| 	if (drro->drr_blksz != doi->doi_data_block_size) {
 | |
| 		if (rwa->raw) {
 | |
| 			/*
 | |
| 			 * RAW streams always have large blocks, so
 | |
| 			 * we are sure that the data is not needed
 | |
| 			 * due to changing --large-block to be on.
 | |
| 			 * Which is fortunate since the bonus buffer
 | |
| 			 * (which contains the ZPL generation) is
 | |
| 			 * encrypted, and the key might not be
 | |
| 			 * loaded.
 | |
| 			 */
 | |
| 			do_free_range = B_TRUE;
 | |
| 		} else if (rwa->full) {
 | |
| 			/*
 | |
| 			 * This is a full send stream, so it always
 | |
| 			 * replaces what we have.  Even if the
 | |
| 			 * generation numbers happen to match, this
 | |
| 			 * can not actually be the same logical file.
 | |
| 			 * This is relevant when receiving a full
 | |
| 			 * send as a clone.
 | |
| 			 */
 | |
| 			do_free_range = B_TRUE;
 | |
| 		} else if (drro->drr_type !=
 | |
| 		    DMU_OT_PLAIN_FILE_CONTENTS ||
 | |
| 		    doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
 | |
| 			/*
 | |
| 			 * PLAIN_FILE_CONTENTS are the only type of
 | |
| 			 * objects that have ever been stored with
 | |
| 			 * large blocks, so we don't need the special
 | |
| 			 * logic below.  ZAP blocks can shrink (when
 | |
| 			 * there's only one block), so we don't want
 | |
| 			 * to hit the error below about block size
 | |
| 			 * only increasing.
 | |
| 			 */
 | |
| 			do_free_range = B_TRUE;
 | |
| 		} else if (doi->doi_max_offset <=
 | |
| 		    doi->doi_data_block_size) {
 | |
| 			/*
 | |
| 			 * There is only one block.  We can free it,
 | |
| 			 * because its contents will be replaced by a
 | |
| 			 * WRITE record.  This can not be the no-L ->
 | |
| 			 * -L case, because the no-L case would have
 | |
| 			 * resulted in multiple blocks.  If we
 | |
| 			 * supported -L -> no-L, it would not be safe
 | |
| 			 * to free the file's contents.  Fortunately,
 | |
| 			 * that is not allowed (see
 | |
| 			 * recv_check_large_blocks()).
 | |
| 			 */
 | |
| 			do_free_range = B_TRUE;
 | |
| 		} else {
 | |
| 			boolean_t is_same_gen;
 | |
| 			err = receive_object_is_same_generation(rwa->os,
 | |
| 			    drro->drr_object, doi->doi_bonus_type,
 | |
| 			    drro->drr_bonustype, bonus_data, &is_same_gen);
 | |
| 			if (err != 0)
 | |
| 				return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 			if (is_same_gen) {
 | |
| 				/*
 | |
| 				 * This is the same logical file, and
 | |
| 				 * the block size must be increasing.
 | |
| 				 * It could only decrease if
 | |
| 				 * --large-block was changed to be
 | |
| 				 * off, which is checked in
 | |
| 				 * recv_check_large_blocks().
 | |
| 				 */
 | |
| 				if (drro->drr_blksz <=
 | |
| 				    doi->doi_data_block_size)
 | |
| 					return (SET_ERROR(EINVAL));
 | |
| 				/*
 | |
| 				 * We keep the existing blocksize and
 | |
| 				 * contents.
 | |
| 				 */
 | |
| 				*new_blksz =
 | |
| 				    doi->doi_data_block_size;
 | |
| 			} else {
 | |
| 				do_free_range = B_TRUE;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* nblkptr can only decrease if the object was reallocated */
 | |
| 	if (nblkptr < doi->doi_nblkptr)
 | |
| 		do_free_range = B_TRUE;
 | |
| 
 | |
| 	/* number of slots can only change on reallocation */
 | |
| 	if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
 | |
| 		do_free_range = B_TRUE;
 | |
| 
 | |
| 	/*
 | |
| 	 * For raw sends we also check a few other fields to
 | |
| 	 * ensure we are preserving the objset structure exactly
 | |
| 	 * as it was on the receive side:
 | |
| 	 *     - A changed indirect block size
 | |
| 	 *     - A smaller nlevels
 | |
| 	 */
 | |
| 	if (rwa->raw) {
 | |
| 		if (indblksz != doi->doi_metadata_block_size)
 | |
| 			do_free_range = B_TRUE;
 | |
| 		if (drro->drr_nlevels < doi->doi_indirection)
 | |
| 			do_free_range = B_TRUE;
 | |
| 	}
 | |
| 
 | |
| 	if (do_free_range) {
 | |
| 		err = dmu_free_long_range(rwa->os, drro->drr_object,
 | |
| 		    0, DMU_OBJECT_END);
 | |
| 		if (err != 0)
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The dmu does not currently support decreasing nlevels
 | |
| 	 * or changing the number of dnode slots on an object. For
 | |
| 	 * non-raw sends, this does not matter and the new object
 | |
| 	 * can just use the previous one's nlevels. For raw sends,
 | |
| 	 * however, the structure of the received dnode (including
 | |
| 	 * nlevels and dnode slots) must match that of the send
 | |
| 	 * side. Therefore, instead of using dmu_object_reclaim(),
 | |
| 	 * we must free the object completely and call
 | |
| 	 * dmu_object_claim_dnsize() instead.
 | |
| 	 */
 | |
| 	if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
 | |
| 	    dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
 | |
| 		err = dmu_free_long_object(rwa->os, drro->drr_object);
 | |
| 		if (err != 0)
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
 | |
| 		*object_to_hold = DMU_NEW_OBJECT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For raw receives, free everything beyond the new incoming
 | |
| 	 * maxblkid. Normally this would be done with a DRR_FREE
 | |
| 	 * record that would come after this DRR_OBJECT record is
 | |
| 	 * processed. However, for raw receives we manually set the
 | |
| 	 * maxblkid from the drr_maxblkid and so we must first free
 | |
| 	 * everything above that blkid to ensure the DMU is always
 | |
| 	 * consistent with itself. We will never free the first block
 | |
| 	 * of the object here because a maxblkid of 0 could indicate
 | |
| 	 * an object with a single block or one with no blocks. This
 | |
| 	 * free may be skipped when dmu_free_long_range() was called
 | |
| 	 * above since it covers the entire object's contents.
 | |
| 	 */
 | |
| 	if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
 | |
| 		err = dmu_free_long_range(rwa->os, drro->drr_object,
 | |
| 		    (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
 | |
| 		    DMU_OBJECT_END);
 | |
| 		if (err != 0)
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| noinline static int
 | |
| receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
 | |
|     void *data)
 | |
| {
 | |
| 	dmu_object_info_t doi;
 | |
| 	dmu_tx_t *tx;
 | |
| 	int err;
 | |
| 	uint32_t new_blksz = drro->drr_blksz;
 | |
| 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
 | |
| 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
 | |
| 
 | |
| 	if (drro->drr_type == DMU_OT_NONE ||
 | |
| 	    !DMU_OT_IS_VALID(drro->drr_type) ||
 | |
| 	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
 | |
| 	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
 | |
| 	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
 | |
| 	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
 | |
| 	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
 | |
| 	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
 | |
| 	    drro->drr_bonuslen >
 | |
| 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
 | |
| 	    dn_slots >
 | |
| 	    (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	if (rwa->raw) {
 | |
| 		/*
 | |
| 		 * We should have received a DRR_OBJECT_RANGE record
 | |
| 		 * containing this block and stored it in rwa.
 | |
| 		 */
 | |
| 		if (drro->drr_object < rwa->or_firstobj ||
 | |
| 		    drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
 | |
| 		    drro->drr_raw_bonuslen < drro->drr_bonuslen ||
 | |
| 		    drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
 | |
| 		    drro->drr_nlevels > DN_MAX_LEVELS ||
 | |
| 		    drro->drr_nblkptr > DN_MAX_NBLKPTR ||
 | |
| 		    DN_SLOTS_TO_BONUSLEN(dn_slots) <
 | |
| 		    drro->drr_raw_bonuslen)
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
 | |
| 		 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
 | |
| 		 */
 | |
| 		if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
 | |
| 		    (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 		}
 | |
| 
 | |
| 		if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
 | |
| 		    drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
 | |
| 
 | |
| 	if (err != 0 && err != ENOENT && err != EEXIST)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if (drro->drr_object > rwa->max_object)
 | |
| 		rwa->max_object = drro->drr_object;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are losing blkptrs or changing the block size this must
 | |
| 	 * be a new file instance.  We must clear out the previous file
 | |
| 	 * contents before we can change this type of metadata in the dnode.
 | |
| 	 * Raw receives will also check that the indirect structure of the
 | |
| 	 * dnode hasn't changed.
 | |
| 	 */
 | |
| 	uint64_t object_to_hold;
 | |
| 	if (err == 0) {
 | |
| 		err = receive_handle_existing_object(rwa, drro, &doi, data,
 | |
| 		    &object_to_hold, &new_blksz);
 | |
| 		if (err != 0)
 | |
| 			return (err);
 | |
| 	} else if (err == EEXIST) {
 | |
| 		/*
 | |
| 		 * The object requested is currently an interior slot of a
 | |
| 		 * multi-slot dnode. This will be resolved when the next txg
 | |
| 		 * is synced out, since the send stream will have told us
 | |
| 		 * to free this slot when we freed the associated dnode
 | |
| 		 * earlier in the stream.
 | |
| 		 */
 | |
| 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
 | |
| 
 | |
| 		if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 		/* object was freed and we are about to allocate a new one */
 | |
| 		object_to_hold = DMU_NEW_OBJECT;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If the only record in this range so far was DRR_FREEOBJECTS
 | |
| 		 * with at least one actually freed object, it's possible that
 | |
| 		 * the block will now be converted to a hole. We need to wait
 | |
| 		 * for the txg to sync to prevent races.
 | |
| 		 */
 | |
| 		if (rwa->or_need_sync == ORNS_YES)
 | |
| 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
 | |
| 
 | |
| 		/* object is free and we are about to allocate a new one */
 | |
| 		object_to_hold = DMU_NEW_OBJECT;
 | |
| 	}
 | |
| 
 | |
| 	/* Only relevant for the first object in the range */
 | |
| 	rwa->or_need_sync = ORNS_NO;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a multi-slot dnode there is a chance that this
 | |
| 	 * object will expand into a slot that is already used by
 | |
| 	 * another object from the previous snapshot. We must free
 | |
| 	 * these objects before we attempt to allocate the new dnode.
 | |
| 	 */
 | |
| 	if (dn_slots > 1) {
 | |
| 		boolean_t need_sync = B_FALSE;
 | |
| 
 | |
| 		for (uint64_t slot = drro->drr_object + 1;
 | |
| 		    slot < drro->drr_object + dn_slots;
 | |
| 		    slot++) {
 | |
| 			dmu_object_info_t slot_doi;
 | |
| 
 | |
| 			err = dmu_object_info(rwa->os, slot, &slot_doi);
 | |
| 			if (err == ENOENT || err == EEXIST)
 | |
| 				continue;
 | |
| 			else if (err != 0)
 | |
| 				return (err);
 | |
| 
 | |
| 			err = dmu_free_long_object(rwa->os, slot);
 | |
| 			if (err != 0)
 | |
| 				return (err);
 | |
| 
 | |
| 			need_sync = B_TRUE;
 | |
| 		}
 | |
| 
 | |
| 		if (need_sync)
 | |
| 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
 | |
| 	}
 | |
| 
 | |
| 	tx = dmu_tx_create(rwa->os);
 | |
| 	dmu_tx_hold_bonus(tx, object_to_hold);
 | |
| 	dmu_tx_hold_write(tx, object_to_hold, 0, 0);
 | |
| 	err = dmu_tx_assign(tx, TXG_WAIT);
 | |
| 	if (err != 0) {
 | |
| 		dmu_tx_abort(tx);
 | |
| 		return (err);
 | |
| 	}
 | |
| 
 | |
| 	if (object_to_hold == DMU_NEW_OBJECT) {
 | |
| 		/* Currently free, wants to be allocated */
 | |
| 		err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
 | |
| 		    drro->drr_type, new_blksz,
 | |
| 		    drro->drr_bonustype, drro->drr_bonuslen,
 | |
| 		    dn_slots << DNODE_SHIFT, tx);
 | |
| 	} else if (drro->drr_type != doi.doi_type ||
 | |
| 	    new_blksz != doi.doi_data_block_size ||
 | |
| 	    drro->drr_bonustype != doi.doi_bonus_type ||
 | |
| 	    drro->drr_bonuslen != doi.doi_bonus_size) {
 | |
| 		/* Currently allocated, but with different properties */
 | |
| 		err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
 | |
| 		    drro->drr_type, new_blksz,
 | |
| 		    drro->drr_bonustype, drro->drr_bonuslen,
 | |
| 		    dn_slots << DNODE_SHIFT, rwa->spill ?
 | |
| 		    DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
 | |
| 	} else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
 | |
| 		/*
 | |
| 		 * Currently allocated, the existing version of this object
 | |
| 		 * may reference a spill block that is no longer allocated
 | |
| 		 * at the source and needs to be freed.
 | |
| 		 */
 | |
| 		err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
 | |
| 	}
 | |
| 
 | |
| 	if (err != 0) {
 | |
| 		dmu_tx_commit(tx);
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	if (rwa->or_crypt_params_present) {
 | |
| 		/*
 | |
| 		 * Set the crypt params for the buffer associated with this
 | |
| 		 * range of dnodes.  This causes the blkptr_t to have the
 | |
| 		 * same crypt params (byteorder, salt, iv, mac) as on the
 | |
| 		 * sending side.
 | |
| 		 *
 | |
| 		 * Since we are committing this tx now, it is possible for
 | |
| 		 * the dnode block to end up on-disk with the incorrect MAC,
 | |
| 		 * if subsequent objects in this block are received in a
 | |
| 		 * different txg.  However, since the dataset is marked as
 | |
| 		 * inconsistent, no code paths will do a non-raw read (or
 | |
| 		 * decrypt the block / verify the MAC). The receive code and
 | |
| 		 * scrub code can safely do raw reads and verify the
 | |
| 		 * checksum.  They don't need to verify the MAC.
 | |
| 		 */
 | |
| 		dmu_buf_t *db = NULL;
 | |
| 		uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
 | |
| 
 | |
| 		err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
 | |
| 		    offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
 | |
| 		if (err != 0) {
 | |
| 			dmu_tx_commit(tx);
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 		}
 | |
| 
 | |
| 		dmu_buf_set_crypt_params(db, rwa->or_byteorder,
 | |
| 		    rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
 | |
| 
 | |
| 		dmu_buf_rele(db, FTAG);
 | |
| 
 | |
| 		rwa->or_crypt_params_present = B_FALSE;
 | |
| 	}
 | |
| 
 | |
| 	dmu_object_set_checksum(rwa->os, drro->drr_object,
 | |
| 	    drro->drr_checksumtype, tx);
 | |
| 	dmu_object_set_compress(rwa->os, drro->drr_object,
 | |
| 	    drro->drr_compress, tx);
 | |
| 
 | |
| 	/* handle more restrictive dnode structuring for raw recvs */
 | |
| 	if (rwa->raw) {
 | |
| 		/*
 | |
| 		 * Set the indirect block size, block shift, nlevels.
 | |
| 		 * This will not fail because we ensured all of the
 | |
| 		 * blocks were freed earlier if this is a new object.
 | |
| 		 * For non-new objects block size and indirect block
 | |
| 		 * shift cannot change and nlevels can only increase.
 | |
| 		 */
 | |
| 		ASSERT3U(new_blksz, ==, drro->drr_blksz);
 | |
| 		VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
 | |
| 		    drro->drr_blksz, drro->drr_indblkshift, tx));
 | |
| 		VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
 | |
| 		    drro->drr_nlevels, tx));
 | |
| 
 | |
| 		/*
 | |
| 		 * Set the maxblkid. This will always succeed because
 | |
| 		 * we freed all blocks beyond the new maxblkid above.
 | |
| 		 */
 | |
| 		VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
 | |
| 		    drro->drr_maxblkid, tx));
 | |
| 	}
 | |
| 
 | |
| 	if (data != NULL) {
 | |
| 		dmu_buf_t *db;
 | |
| 		dnode_t *dn;
 | |
| 		uint32_t flags = DMU_READ_NO_PREFETCH;
 | |
| 
 | |
| 		if (rwa->raw)
 | |
| 			flags |= DMU_READ_NO_DECRYPT;
 | |
| 
 | |
| 		VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
 | |
| 		VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
 | |
| 
 | |
| 		dmu_buf_will_dirty(db, tx);
 | |
| 
 | |
| 		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
 | |
| 		memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
 | |
| 
 | |
| 		/*
 | |
| 		 * Raw bonus buffers have their byteorder determined by the
 | |
| 		 * DRR_OBJECT_RANGE record.
 | |
| 		 */
 | |
| 		if (rwa->byteswap && !rwa->raw) {
 | |
| 			dmu_object_byteswap_t byteswap =
 | |
| 			    DMU_OT_BYTESWAP(drro->drr_bonustype);
 | |
| 			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
 | |
| 			    DRR_OBJECT_PAYLOAD_SIZE(drro));
 | |
| 		}
 | |
| 		dmu_buf_rele(db, FTAG);
 | |
| 		dnode_rele(dn, FTAG);
 | |
| 	}
 | |
| 	dmu_tx_commit(tx);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| noinline static int
 | |
| receive_freeobjects(struct receive_writer_arg *rwa,
 | |
|     struct drr_freeobjects *drrfo)
 | |
| {
 | |
| 	uint64_t obj;
 | |
| 	int next_err = 0;
 | |
| 
 | |
| 	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
 | |
| 	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
 | |
| 	    obj < DN_MAX_OBJECT && next_err == 0;
 | |
| 	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
 | |
| 		dmu_object_info_t doi;
 | |
| 		int err;
 | |
| 
 | |
| 		err = dmu_object_info(rwa->os, obj, &doi);
 | |
| 		if (err == ENOENT)
 | |
| 			continue;
 | |
| 		else if (err != 0)
 | |
| 			return (err);
 | |
| 
 | |
| 		err = dmu_free_long_object(rwa->os, obj);
 | |
| 
 | |
| 		if (err != 0)
 | |
| 			return (err);
 | |
| 
 | |
| 		if (rwa->or_need_sync == ORNS_MAYBE)
 | |
| 			rwa->or_need_sync = ORNS_YES;
 | |
| 	}
 | |
| 	if (next_err != ESRCH)
 | |
| 		return (next_err);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: if this fails, the caller will clean up any records left on the
 | |
|  * rwa->write_batch list.
 | |
|  */
 | |
| static int
 | |
| flush_write_batch_impl(struct receive_writer_arg *rwa)
 | |
| {
 | |
| 	dnode_t *dn;
 | |
| 	int err;
 | |
| 
 | |
| 	if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
 | |
| 	struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
 | |
| 
 | |
| 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
 | |
| 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
 | |
| 
 | |
| 	ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
 | |
| 	ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
 | |
| 
 | |
| 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
 | |
| 	dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
 | |
| 	    last_drrw->drr_offset - first_drrw->drr_offset +
 | |
| 	    last_drrw->drr_logical_size);
 | |
| 	err = dmu_tx_assign(tx, TXG_WAIT);
 | |
| 	if (err != 0) {
 | |
| 		dmu_tx_abort(tx);
 | |
| 		dnode_rele(dn, FTAG);
 | |
| 		return (err);
 | |
| 	}
 | |
| 
 | |
| 	struct receive_record_arg *rrd;
 | |
| 	while ((rrd = list_head(&rwa->write_batch)) != NULL) {
 | |
| 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
 | |
| 		abd_t *abd = rrd->abd;
 | |
| 
 | |
| 		ASSERT3U(drrw->drr_object, ==, rwa->last_object);
 | |
| 
 | |
| 		if (drrw->drr_logical_size != dn->dn_datablksz) {
 | |
| 			/*
 | |
| 			 * The WRITE record is larger than the object's block
 | |
| 			 * size.  We must be receiving an incremental
 | |
| 			 * large-block stream into a dataset that previously did
 | |
| 			 * a non-large-block receive.  Lightweight writes must
 | |
| 			 * be exactly one block, so we need to decompress the
 | |
| 			 * data (if compressed) and do a normal dmu_write().
 | |
| 			 */
 | |
| 			ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
 | |
| 			if (DRR_WRITE_COMPRESSED(drrw)) {
 | |
| 				abd_t *decomp_abd =
 | |
| 				    abd_alloc_linear(drrw->drr_logical_size,
 | |
| 				    B_FALSE);
 | |
| 
 | |
| 				err = zio_decompress_data(
 | |
| 				    drrw->drr_compressiontype,
 | |
| 				    abd, abd_to_buf(decomp_abd),
 | |
| 				    abd_get_size(abd),
 | |
| 				    abd_get_size(decomp_abd), NULL);
 | |
| 
 | |
| 				if (err == 0) {
 | |
| 					dmu_write_by_dnode(dn,
 | |
| 					    drrw->drr_offset,
 | |
| 					    drrw->drr_logical_size,
 | |
| 					    abd_to_buf(decomp_abd), tx);
 | |
| 				}
 | |
| 				abd_free(decomp_abd);
 | |
| 			} else {
 | |
| 				dmu_write_by_dnode(dn,
 | |
| 				    drrw->drr_offset,
 | |
| 				    drrw->drr_logical_size,
 | |
| 				    abd_to_buf(abd), tx);
 | |
| 			}
 | |
| 			if (err == 0)
 | |
| 				abd_free(abd);
 | |
| 		} else {
 | |
| 			zio_prop_t zp;
 | |
| 			dmu_write_policy(rwa->os, dn, 0, 0, &zp);
 | |
| 
 | |
| 			zio_flag_t zio_flags = 0;
 | |
| 
 | |
| 			if (rwa->raw) {
 | |
| 				zp.zp_encrypt = B_TRUE;
 | |
| 				zp.zp_compress = drrw->drr_compressiontype;
 | |
| 				zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
 | |
| 				    !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
 | |
| 				    rwa->byteswap;
 | |
| 				memcpy(zp.zp_salt, drrw->drr_salt,
 | |
| 				    ZIO_DATA_SALT_LEN);
 | |
| 				memcpy(zp.zp_iv, drrw->drr_iv,
 | |
| 				    ZIO_DATA_IV_LEN);
 | |
| 				memcpy(zp.zp_mac, drrw->drr_mac,
 | |
| 				    ZIO_DATA_MAC_LEN);
 | |
| 				if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
 | |
| 					zp.zp_nopwrite = B_FALSE;
 | |
| 					zp.zp_copies = MIN(zp.zp_copies,
 | |
| 					    SPA_DVAS_PER_BP - 1);
 | |
| 				}
 | |
| 				zio_flags |= ZIO_FLAG_RAW;
 | |
| 			} else if (DRR_WRITE_COMPRESSED(drrw)) {
 | |
| 				ASSERT3U(drrw->drr_compressed_size, >, 0);
 | |
| 				ASSERT3U(drrw->drr_logical_size, >=,
 | |
| 				    drrw->drr_compressed_size);
 | |
| 				zp.zp_compress = drrw->drr_compressiontype;
 | |
| 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
 | |
| 			} else if (rwa->byteswap) {
 | |
| 				/*
 | |
| 				 * Note: compressed blocks never need to be
 | |
| 				 * byteswapped, because WRITE records for
 | |
| 				 * metadata blocks are never compressed. The
 | |
| 				 * exception is raw streams, which are written
 | |
| 				 * in the original byteorder, and the byteorder
 | |
| 				 * bit is preserved in the BP by setting
 | |
| 				 * zp_byteorder above.
 | |
| 				 */
 | |
| 				dmu_object_byteswap_t byteswap =
 | |
| 				    DMU_OT_BYTESWAP(drrw->drr_type);
 | |
| 				dmu_ot_byteswap[byteswap].ob_func(
 | |
| 				    abd_to_buf(abd),
 | |
| 				    DRR_WRITE_PAYLOAD_SIZE(drrw));
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Since this data can't be read until the receive
 | |
| 			 * completes, we can do a "lightweight" write for
 | |
| 			 * improved performance.
 | |
| 			 */
 | |
| 			err = dmu_lightweight_write_by_dnode(dn,
 | |
| 			    drrw->drr_offset, abd, &zp, zio_flags, tx);
 | |
| 		}
 | |
| 
 | |
| 		if (err != 0) {
 | |
| 			/*
 | |
| 			 * This rrd is left on the list, so the caller will
 | |
| 			 * free it (and the abd).
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Note: If the receive fails, we want the resume stream to
 | |
| 		 * start with the same record that we last successfully
 | |
| 		 * received (as opposed to the next record), so that we can
 | |
| 		 * verify that we are resuming from the correct location.
 | |
| 		 */
 | |
| 		save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
 | |
| 
 | |
| 		list_remove(&rwa->write_batch, rrd);
 | |
| 		kmem_free(rrd, sizeof (*rrd));
 | |
| 	}
 | |
| 
 | |
| 	dmu_tx_commit(tx);
 | |
| 	dnode_rele(dn, FTAG);
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| noinline static int
 | |
| flush_write_batch(struct receive_writer_arg *rwa)
 | |
| {
 | |
| 	if (list_is_empty(&rwa->write_batch))
 | |
| 		return (0);
 | |
| 	int err = rwa->err;
 | |
| 	if (err == 0)
 | |
| 		err = flush_write_batch_impl(rwa);
 | |
| 	if (err != 0) {
 | |
| 		struct receive_record_arg *rrd;
 | |
| 		while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
 | |
| 			abd_free(rrd->abd);
 | |
| 			kmem_free(rrd, sizeof (*rrd));
 | |
| 		}
 | |
| 	}
 | |
| 	ASSERT(list_is_empty(&rwa->write_batch));
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| noinline static int
 | |
| receive_process_write_record(struct receive_writer_arg *rwa,
 | |
|     struct receive_record_arg *rrd)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
 | |
| 	struct drr_write *drrw = &rrd->header.drr_u.drr_write;
 | |
| 
 | |
| 	if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
 | |
| 	    !DMU_OT_IS_VALID(drrw->drr_type))
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if (rwa->heal) {
 | |
| 		blkptr_t *bp;
 | |
| 		dmu_buf_t *dbp;
 | |
| 		dnode_t *dn;
 | |
| 		int flags = DB_RF_CANFAIL;
 | |
| 
 | |
| 		if (rwa->raw)
 | |
| 			flags |= DB_RF_NO_DECRYPT;
 | |
| 
 | |
| 		if (rwa->byteswap) {
 | |
| 			dmu_object_byteswap_t byteswap =
 | |
| 			    DMU_OT_BYTESWAP(drrw->drr_type);
 | |
| 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
 | |
| 			    DRR_WRITE_PAYLOAD_SIZE(drrw));
 | |
| 		}
 | |
| 
 | |
| 		err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
 | |
| 		    drrw->drr_offset, FTAG, &dbp);
 | |
| 		if (err != 0)
 | |
| 			return (err);
 | |
| 
 | |
| 		/* Try to read the object to see if it needs healing */
 | |
| 		err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
 | |
| 		/*
 | |
| 		 * We only try to heal when dbuf_read() returns a ECKSUMs.
 | |
| 		 * Other errors (even EIO) get returned to caller.
 | |
| 		 * EIO indicates that the device is not present/accessible,
 | |
| 		 * so writing to it will likely fail.
 | |
| 		 * If the block is healthy, we don't want to overwrite it
 | |
| 		 * unnecessarily.
 | |
| 		 */
 | |
| 		if (err != ECKSUM) {
 | |
| 			dmu_buf_rele(dbp, FTAG);
 | |
| 			return (err);
 | |
| 		}
 | |
| 		dn = dmu_buf_dnode_enter(dbp);
 | |
| 		/* Make sure the on-disk block and recv record sizes match */
 | |
| 		if (drrw->drr_logical_size !=
 | |
| 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT) {
 | |
| 			err = ENOTSUP;
 | |
| 			dmu_buf_dnode_exit(dbp);
 | |
| 			dmu_buf_rele(dbp, FTAG);
 | |
| 			return (err);
 | |
| 		}
 | |
| 		/* Get the block pointer for the corrupted block */
 | |
| 		bp = dmu_buf_get_blkptr(dbp);
 | |
| 		err = do_corrective_recv(rwa, drrw, rrd, bp);
 | |
| 		dmu_buf_dnode_exit(dbp);
 | |
| 		dmu_buf_rele(dbp, FTAG);
 | |
| 		return (err);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For resuming to work, records must be in increasing order
 | |
| 	 * by (object, offset).
 | |
| 	 */
 | |
| 	if (drrw->drr_object < rwa->last_object ||
 | |
| 	    (drrw->drr_object == rwa->last_object &&
 | |
| 	    drrw->drr_offset < rwa->last_offset)) {
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
 | |
| 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
 | |
| 	uint64_t batch_size =
 | |
| 	    MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
 | |
| 	if (first_rrd != NULL &&
 | |
| 	    (drrw->drr_object != first_drrw->drr_object ||
 | |
| 	    drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
 | |
| 		err = flush_write_batch(rwa);
 | |
| 		if (err != 0)
 | |
| 			return (err);
 | |
| 	}
 | |
| 
 | |
| 	rwa->last_object = drrw->drr_object;
 | |
| 	rwa->last_offset = drrw->drr_offset;
 | |
| 
 | |
| 	if (rwa->last_object > rwa->max_object)
 | |
| 		rwa->max_object = rwa->last_object;
 | |
| 
 | |
| 	list_insert_tail(&rwa->write_batch, rrd);
 | |
| 	/*
 | |
| 	 * Return EAGAIN to indicate that we will use this rrd again,
 | |
| 	 * so the caller should not free it
 | |
| 	 */
 | |
| 	return (EAGAIN);
 | |
| }
 | |
| 
 | |
| static int
 | |
| receive_write_embedded(struct receive_writer_arg *rwa,
 | |
|     struct drr_write_embedded *drrwe, void *data)
 | |
| {
 | |
| 	dmu_tx_t *tx;
 | |
| 	int err;
 | |
| 
 | |
| 	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	if (rwa->raw)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if (drrwe->drr_object > rwa->max_object)
 | |
| 		rwa->max_object = drrwe->drr_object;
 | |
| 
 | |
| 	tx = dmu_tx_create(rwa->os);
 | |
| 
 | |
| 	dmu_tx_hold_write(tx, drrwe->drr_object,
 | |
| 	    drrwe->drr_offset, drrwe->drr_length);
 | |
| 	err = dmu_tx_assign(tx, TXG_WAIT);
 | |
| 	if (err != 0) {
 | |
| 		dmu_tx_abort(tx);
 | |
| 		return (err);
 | |
| 	}
 | |
| 
 | |
| 	dmu_write_embedded(rwa->os, drrwe->drr_object,
 | |
| 	    drrwe->drr_offset, data, drrwe->drr_etype,
 | |
| 	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
 | |
| 	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
 | |
| 
 | |
| 	/* See comment in restore_write. */
 | |
| 	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
 | |
| 	dmu_tx_commit(tx);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
 | |
|     abd_t *abd)
 | |
| {
 | |
| 	dmu_buf_t *db, *db_spill;
 | |
| 	int err;
 | |
| 
 | |
| 	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
 | |
| 	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	/*
 | |
| 	 * This is an unmodified spill block which was added to the stream
 | |
| 	 * to resolve an issue with incorrectly removing spill blocks.  It
 | |
| 	 * should be ignored by current versions of the code which support
 | |
| 	 * the DRR_FLAG_SPILL_BLOCK flag.
 | |
| 	 */
 | |
| 	if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
 | |
| 		abd_free(abd);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	if (rwa->raw) {
 | |
| 		if (!DMU_OT_IS_VALID(drrs->drr_type) ||
 | |
| 		    drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
 | |
| 		    drrs->drr_compressed_size == 0)
 | |
| 			return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if (drrs->drr_object > rwa->max_object)
 | |
| 		rwa->max_object = drrs->drr_object;
 | |
| 
 | |
| 	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
 | |
| 	if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
 | |
| 	    &db_spill)) != 0) {
 | |
| 		dmu_buf_rele(db, FTAG);
 | |
| 		return (err);
 | |
| 	}
 | |
| 
 | |
| 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
 | |
| 
 | |
| 	dmu_tx_hold_spill(tx, db->db_object);
 | |
| 
 | |
| 	err = dmu_tx_assign(tx, TXG_WAIT);
 | |
| 	if (err != 0) {
 | |
| 		dmu_buf_rele(db, FTAG);
 | |
| 		dmu_buf_rele(db_spill, FTAG);
 | |
| 		dmu_tx_abort(tx);
 | |
| 		return (err);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Spill blocks may both grow and shrink.  When a change in size
 | |
| 	 * occurs any existing dbuf must be updated to match the logical
 | |
| 	 * size of the provided arc_buf_t.
 | |
| 	 */
 | |
| 	if (db_spill->db_size != drrs->drr_length) {
 | |
| 		dmu_buf_will_fill(db_spill, tx);
 | |
| 		VERIFY0(dbuf_spill_set_blksz(db_spill,
 | |
| 		    drrs->drr_length, tx));
 | |
| 	}
 | |
| 
 | |
| 	arc_buf_t *abuf;
 | |
| 	if (rwa->raw) {
 | |
| 		boolean_t byteorder = ZFS_HOST_BYTEORDER ^
 | |
| 		    !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
 | |
| 		    rwa->byteswap;
 | |
| 
 | |
| 		abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
 | |
| 		    drrs->drr_object, byteorder, drrs->drr_salt,
 | |
| 		    drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
 | |
| 		    drrs->drr_compressed_size, drrs->drr_length,
 | |
| 		    drrs->drr_compressiontype, 0);
 | |
| 	} else {
 | |
| 		abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
 | |
| 		    DMU_OT_IS_METADATA(drrs->drr_type),
 | |
| 		    drrs->drr_length);
 | |
| 		if (rwa->byteswap) {
 | |
| 			dmu_object_byteswap_t byteswap =
 | |
| 			    DMU_OT_BYTESWAP(drrs->drr_type);
 | |
| 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
 | |
| 			    DRR_SPILL_PAYLOAD_SIZE(drrs));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
 | |
| 	abd_free(abd);
 | |
| 	dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
 | |
| 
 | |
| 	dmu_buf_rele(db, FTAG);
 | |
| 	dmu_buf_rele(db_spill, FTAG);
 | |
| 
 | |
| 	dmu_tx_commit(tx);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| noinline static int
 | |
| receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (drrf->drr_length != -1ULL &&
 | |
| 	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if (drrf->drr_object > rwa->max_object)
 | |
| 		rwa->max_object = drrf->drr_object;
 | |
| 
 | |
| 	err = dmu_free_long_range(rwa->os, drrf->drr_object,
 | |
| 	    drrf->drr_offset, drrf->drr_length);
 | |
| 
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| static int
 | |
| receive_object_range(struct receive_writer_arg *rwa,
 | |
|     struct drr_object_range *drror)
 | |
| {
 | |
| 	/*
 | |
| 	 * By default, we assume this block is in our native format
 | |
| 	 * (ZFS_HOST_BYTEORDER). We then take into account whether
 | |
| 	 * the send stream is byteswapped (rwa->byteswap). Finally,
 | |
| 	 * we need to byteswap again if this particular block was
 | |
| 	 * in non-native format on the send side.
 | |
| 	 */
 | |
| 	boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
 | |
| 	    !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since dnode block sizes are constant, we should not need to worry
 | |
| 	 * about making sure that the dnode block size is the same on the
 | |
| 	 * sending and receiving sides for the time being. For non-raw sends,
 | |
| 	 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
 | |
| 	 * record at all). Raw sends require this record type because the
 | |
| 	 * encryption parameters are used to protect an entire block of bonus
 | |
| 	 * buffers. If the size of dnode blocks ever becomes variable,
 | |
| 	 * handling will need to be added to ensure that dnode block sizes
 | |
| 	 * match on the sending and receiving side.
 | |
| 	 */
 | |
| 	if (drror->drr_numslots != DNODES_PER_BLOCK ||
 | |
| 	    P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
 | |
| 	    !rwa->raw)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	if (drror->drr_firstobj > rwa->max_object)
 | |
| 		rwa->max_object = drror->drr_firstobj;
 | |
| 
 | |
| 	/*
 | |
| 	 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
 | |
| 	 * so that the block of dnodes is not written out when it's empty,
 | |
| 	 * and converted to a HOLE BP.
 | |
| 	 */
 | |
| 	rwa->or_crypt_params_present = B_TRUE;
 | |
| 	rwa->or_firstobj = drror->drr_firstobj;
 | |
| 	rwa->or_numslots = drror->drr_numslots;
 | |
| 	memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
 | |
| 	memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
 | |
| 	memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
 | |
| 	rwa->or_byteorder = byteorder;
 | |
| 
 | |
| 	rwa->or_need_sync = ORNS_MAYBE;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Until we have the ability to redact large ranges of data efficiently, we
 | |
|  * process these records as frees.
 | |
|  */
 | |
| noinline static int
 | |
| receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
 | |
| {
 | |
| 	struct drr_free drrf = {0};
 | |
| 	drrf.drr_length = drrr->drr_length;
 | |
| 	drrf.drr_object = drrr->drr_object;
 | |
| 	drrf.drr_offset = drrr->drr_offset;
 | |
| 	drrf.drr_toguid = drrr->drr_toguid;
 | |
| 	return (receive_free(rwa, &drrf));
 | |
| }
 | |
| 
 | |
| /* used to destroy the drc_ds on error */
 | |
| static void
 | |
| dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
 | |
| {
 | |
| 	dsl_dataset_t *ds = drc->drc_ds;
 | |
| 	ds_hold_flags_t dsflags;
 | |
| 
 | |
| 	dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
 | |
| 	/*
 | |
| 	 * Wait for the txg sync before cleaning up the receive. For
 | |
| 	 * resumable receives, this ensures that our resume state has
 | |
| 	 * been written out to disk. For raw receives, this ensures
 | |
| 	 * that the user accounting code will not attempt to do anything
 | |
| 	 * after we stopped receiving the dataset.
 | |
| 	 */
 | |
| 	txg_wait_synced(ds->ds_dir->dd_pool, 0);
 | |
| 	ds->ds_objset->os_raw_receive = B_FALSE;
 | |
| 
 | |
| 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
 | |
| 	if (drc->drc_resumable && drc->drc_should_save &&
 | |
| 	    !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
 | |
| 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
 | |
| 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
 | |
| 	} else {
 | |
| 		char name[ZFS_MAX_DATASET_NAME_LEN];
 | |
| 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
 | |
| 		dsl_dataset_name(ds, name);
 | |
| 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
 | |
| 		if (!drc->drc_heal)
 | |
| 			(void) dsl_destroy_head(name);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
 | |
| {
 | |
| 	if (drc->drc_byteswap) {
 | |
| 		(void) fletcher_4_incremental_byteswap(buf, len,
 | |
| 		    &drc->drc_cksum);
 | |
| 	} else {
 | |
| 		(void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the payload into a buffer of size len, and update the current record's
 | |
|  * payload field.
 | |
|  * Allocate drc->drc_next_rrd and read the next record's header into
 | |
|  * drc->drc_next_rrd->header.
 | |
|  * Verify checksum of payload and next record.
 | |
|  */
 | |
| static int
 | |
| receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (len != 0) {
 | |
| 		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
 | |
| 		err = receive_read(drc, len, buf);
 | |
| 		if (err != 0)
 | |
| 			return (err);
 | |
| 		receive_cksum(drc, len, buf);
 | |
| 
 | |
| 		/* note: rrd is NULL when reading the begin record's payload */
 | |
| 		if (drc->drc_rrd != NULL) {
 | |
| 			drc->drc_rrd->payload = buf;
 | |
| 			drc->drc_rrd->payload_size = len;
 | |
| 			drc->drc_rrd->bytes_read = drc->drc_bytes_read;
 | |
| 		}
 | |
| 	} else {
 | |
| 		ASSERT3P(buf, ==, NULL);
 | |
| 	}
 | |
| 
 | |
| 	drc->drc_prev_cksum = drc->drc_cksum;
 | |
| 
 | |
| 	drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
 | |
| 	err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
 | |
| 	    &drc->drc_next_rrd->header);
 | |
| 	drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
 | |
| 
 | |
| 	if (err != 0) {
 | |
| 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
 | |
| 		drc->drc_next_rrd = NULL;
 | |
| 		return (err);
 | |
| 	}
 | |
| 	if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
 | |
| 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
 | |
| 		drc->drc_next_rrd = NULL;
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: checksum is of everything up to but not including the
 | |
| 	 * checksum itself.
 | |
| 	 */
 | |
| 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
 | |
| 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
 | |
| 	receive_cksum(drc,
 | |
| 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
 | |
| 	    &drc->drc_next_rrd->header);
 | |
| 
 | |
| 	zio_cksum_t cksum_orig =
 | |
| 	    drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
 | |
| 	zio_cksum_t *cksump =
 | |
| 	    &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
 | |
| 
 | |
| 	if (drc->drc_byteswap)
 | |
| 		byteswap_record(&drc->drc_next_rrd->header);
 | |
| 
 | |
| 	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
 | |
| 	    !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
 | |
| 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
 | |
| 		drc->drc_next_rrd = NULL;
 | |
| 		return (SET_ERROR(ECKSUM));
 | |
| 	}
 | |
| 
 | |
| 	receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Issue the prefetch reads for any necessary indirect blocks.
 | |
|  *
 | |
|  * We use the object ignore list to tell us whether or not to issue prefetches
 | |
|  * for a given object.  We do this for both correctness (in case the blocksize
 | |
|  * of an object has changed) and performance (if the object doesn't exist, don't
 | |
|  * needlessly try to issue prefetches).  We also trim the list as we go through
 | |
|  * the stream to prevent it from growing to an unbounded size.
 | |
|  *
 | |
|  * The object numbers within will always be in sorted order, and any write
 | |
|  * records we see will also be in sorted order, but they're not sorted with
 | |
|  * respect to each other (i.e. we can get several object records before
 | |
|  * receiving each object's write records).  As a result, once we've reached a
 | |
|  * given object number, we can safely remove any reference to lower object
 | |
|  * numbers in the ignore list. In practice, we receive up to 32 object records
 | |
|  * before receiving write records, so the list can have up to 32 nodes in it.
 | |
|  */
 | |
| static void
 | |
| receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
 | |
|     uint64_t length)
 | |
| {
 | |
| 	if (!objlist_exists(drc->drc_ignore_objlist, object)) {
 | |
| 		dmu_prefetch(drc->drc_os, object, 1, offset, length,
 | |
| 		    ZIO_PRIORITY_SYNC_READ);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read records off the stream, issuing any necessary prefetches.
 | |
|  */
 | |
| static int
 | |
| receive_read_record(dmu_recv_cookie_t *drc)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	switch (drc->drc_rrd->header.drr_type) {
 | |
| 	case DRR_OBJECT:
 | |
| 	{
 | |
| 		struct drr_object *drro =
 | |
| 		    &drc->drc_rrd->header.drr_u.drr_object;
 | |
| 		uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
 | |
| 		void *buf = NULL;
 | |
| 		dmu_object_info_t doi;
 | |
| 
 | |
| 		if (size != 0)
 | |
| 			buf = kmem_zalloc(size, KM_SLEEP);
 | |
| 
 | |
| 		err = receive_read_payload_and_next_header(drc, size, buf);
 | |
| 		if (err != 0) {
 | |
| 			kmem_free(buf, size);
 | |
| 			return (err);
 | |
| 		}
 | |
| 		err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
 | |
| 		/*
 | |
| 		 * See receive_read_prefetch for an explanation why we're
 | |
| 		 * storing this object in the ignore_obj_list.
 | |
| 		 */
 | |
| 		if (err == ENOENT || err == EEXIST ||
 | |
| 		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
 | |
| 			objlist_insert(drc->drc_ignore_objlist,
 | |
| 			    drro->drr_object);
 | |
| 			err = 0;
 | |
| 		}
 | |
| 		return (err);
 | |
| 	}
 | |
| 	case DRR_FREEOBJECTS:
 | |
| 	{
 | |
| 		err = receive_read_payload_and_next_header(drc, 0, NULL);
 | |
| 		return (err);
 | |
| 	}
 | |
| 	case DRR_WRITE:
 | |
| 	{
 | |
| 		struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
 | |
| 		int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
 | |
| 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
 | |
| 		err = receive_read_payload_and_next_header(drc, size,
 | |
| 		    abd_to_buf(abd));
 | |
| 		if (err != 0) {
 | |
| 			abd_free(abd);
 | |
| 			return (err);
 | |
| 		}
 | |
| 		drc->drc_rrd->abd = abd;
 | |
| 		receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
 | |
| 		    drrw->drr_logical_size);
 | |
| 		return (err);
 | |
| 	}
 | |
| 	case DRR_WRITE_EMBEDDED:
 | |
| 	{
 | |
| 		struct drr_write_embedded *drrwe =
 | |
| 		    &drc->drc_rrd->header.drr_u.drr_write_embedded;
 | |
| 		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
 | |
| 		void *buf = kmem_zalloc(size, KM_SLEEP);
 | |
| 
 | |
| 		err = receive_read_payload_and_next_header(drc, size, buf);
 | |
| 		if (err != 0) {
 | |
| 			kmem_free(buf, size);
 | |
| 			return (err);
 | |
| 		}
 | |
| 
 | |
| 		receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
 | |
| 		    drrwe->drr_length);
 | |
| 		return (err);
 | |
| 	}
 | |
| 	case DRR_FREE:
 | |
| 	case DRR_REDACT:
 | |
| 	{
 | |
| 		/*
 | |
| 		 * It might be beneficial to prefetch indirect blocks here, but
 | |
| 		 * we don't really have the data to decide for sure.
 | |
| 		 */
 | |
| 		err = receive_read_payload_and_next_header(drc, 0, NULL);
 | |
| 		return (err);
 | |
| 	}
 | |
| 	case DRR_END:
 | |
| 	{
 | |
| 		struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
 | |
| 		if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
 | |
| 		    drre->drr_checksum))
 | |
| 			return (SET_ERROR(ECKSUM));
 | |
| 		return (0);
 | |
| 	}
 | |
| 	case DRR_SPILL:
 | |
| 	{
 | |
| 		struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
 | |
| 		int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
 | |
| 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
 | |
| 		err = receive_read_payload_and_next_header(drc, size,
 | |
| 		    abd_to_buf(abd));
 | |
| 		if (err != 0)
 | |
| 			abd_free(abd);
 | |
| 		else
 | |
| 			drc->drc_rrd->abd = abd;
 | |
| 		return (err);
 | |
| 	}
 | |
| 	case DRR_OBJECT_RANGE:
 | |
| 	{
 | |
| 		err = receive_read_payload_and_next_header(drc, 0, NULL);
 | |
| 		return (err);
 | |
| 
 | |
| 	}
 | |
| 	default:
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static void
 | |
| dprintf_drr(struct receive_record_arg *rrd, int err)
 | |
| {
 | |
| #ifdef ZFS_DEBUG
 | |
| 	switch (rrd->header.drr_type) {
 | |
| 	case DRR_OBJECT:
 | |
| 	{
 | |
| 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
 | |
| 		dprintf("drr_type = OBJECT obj = %llu type = %u "
 | |
| 		    "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
 | |
| 		    "compress = %u dn_slots = %u err = %d\n",
 | |
| 		    (u_longlong_t)drro->drr_object, drro->drr_type,
 | |
| 		    drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
 | |
| 		    drro->drr_checksumtype, drro->drr_compress,
 | |
| 		    drro->drr_dn_slots, err);
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRR_FREEOBJECTS:
 | |
| 	{
 | |
| 		struct drr_freeobjects *drrfo =
 | |
| 		    &rrd->header.drr_u.drr_freeobjects;
 | |
| 		dprintf("drr_type = FREEOBJECTS firstobj = %llu "
 | |
| 		    "numobjs = %llu err = %d\n",
 | |
| 		    (u_longlong_t)drrfo->drr_firstobj,
 | |
| 		    (u_longlong_t)drrfo->drr_numobjs, err);
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRR_WRITE:
 | |
| 	{
 | |
| 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
 | |
| 		dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
 | |
| 		    "lsize = %llu cksumtype = %u flags = %u "
 | |
| 		    "compress = %u psize = %llu err = %d\n",
 | |
| 		    (u_longlong_t)drrw->drr_object, drrw->drr_type,
 | |
| 		    (u_longlong_t)drrw->drr_offset,
 | |
| 		    (u_longlong_t)drrw->drr_logical_size,
 | |
| 		    drrw->drr_checksumtype, drrw->drr_flags,
 | |
| 		    drrw->drr_compressiontype,
 | |
| 		    (u_longlong_t)drrw->drr_compressed_size, err);
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRR_WRITE_BYREF:
 | |
| 	{
 | |
| 		struct drr_write_byref *drrwbr =
 | |
| 		    &rrd->header.drr_u.drr_write_byref;
 | |
| 		dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
 | |
| 		    "length = %llu toguid = %llx refguid = %llx "
 | |
| 		    "refobject = %llu refoffset = %llu cksumtype = %u "
 | |
| 		    "flags = %u err = %d\n",
 | |
| 		    (u_longlong_t)drrwbr->drr_object,
 | |
| 		    (u_longlong_t)drrwbr->drr_offset,
 | |
| 		    (u_longlong_t)drrwbr->drr_length,
 | |
| 		    (u_longlong_t)drrwbr->drr_toguid,
 | |
| 		    (u_longlong_t)drrwbr->drr_refguid,
 | |
| 		    (u_longlong_t)drrwbr->drr_refobject,
 | |
| 		    (u_longlong_t)drrwbr->drr_refoffset,
 | |
| 		    drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRR_WRITE_EMBEDDED:
 | |
| 	{
 | |
| 		struct drr_write_embedded *drrwe =
 | |
| 		    &rrd->header.drr_u.drr_write_embedded;
 | |
| 		dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
 | |
| 		    "length = %llu compress = %u etype = %u lsize = %u "
 | |
| 		    "psize = %u err = %d\n",
 | |
| 		    (u_longlong_t)drrwe->drr_object,
 | |
| 		    (u_longlong_t)drrwe->drr_offset,
 | |
| 		    (u_longlong_t)drrwe->drr_length,
 | |
| 		    drrwe->drr_compression, drrwe->drr_etype,
 | |
| 		    drrwe->drr_lsize, drrwe->drr_psize, err);
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRR_FREE:
 | |
| 	{
 | |
| 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
 | |
| 		dprintf("drr_type = FREE obj = %llu offset = %llu "
 | |
| 		    "length = %lld err = %d\n",
 | |
| 		    (u_longlong_t)drrf->drr_object,
 | |
| 		    (u_longlong_t)drrf->drr_offset,
 | |
| 		    (longlong_t)drrf->drr_length,
 | |
| 		    err);
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRR_SPILL:
 | |
| 	{
 | |
| 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
 | |
| 		dprintf("drr_type = SPILL obj = %llu length = %llu "
 | |
| 		    "err = %d\n", (u_longlong_t)drrs->drr_object,
 | |
| 		    (u_longlong_t)drrs->drr_length, err);
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRR_OBJECT_RANGE:
 | |
| 	{
 | |
| 		struct drr_object_range *drror =
 | |
| 		    &rrd->header.drr_u.drr_object_range;
 | |
| 		dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
 | |
| 		    "numslots = %llu flags = %u err = %d\n",
 | |
| 		    (u_longlong_t)drror->drr_firstobj,
 | |
| 		    (u_longlong_t)drror->drr_numslots,
 | |
| 		    drror->drr_flags, err);
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Commit the records to the pool.
 | |
|  */
 | |
| static int
 | |
| receive_process_record(struct receive_writer_arg *rwa,
 | |
|     struct receive_record_arg *rrd)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	/* Processing in order, therefore bytes_read should be increasing. */
 | |
| 	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
 | |
| 	rwa->bytes_read = rrd->bytes_read;
 | |
| 
 | |
| 	/* We can only heal write records; other ones get ignored */
 | |
| 	if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
 | |
| 		if (rrd->abd != NULL) {
 | |
| 			abd_free(rrd->abd);
 | |
| 			rrd->abd = NULL;
 | |
| 		} else if (rrd->payload != NULL) {
 | |
| 			kmem_free(rrd->payload, rrd->payload_size);
 | |
| 			rrd->payload = NULL;
 | |
| 		}
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
 | |
| 		err = flush_write_batch(rwa);
 | |
| 		if (err != 0) {
 | |
| 			if (rrd->abd != NULL) {
 | |
| 				abd_free(rrd->abd);
 | |
| 				rrd->abd = NULL;
 | |
| 				rrd->payload = NULL;
 | |
| 			} else if (rrd->payload != NULL) {
 | |
| 				kmem_free(rrd->payload, rrd->payload_size);
 | |
| 				rrd->payload = NULL;
 | |
| 			}
 | |
| 
 | |
| 			return (err);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	switch (rrd->header.drr_type) {
 | |
| 	case DRR_OBJECT:
 | |
| 	{
 | |
| 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
 | |
| 		err = receive_object(rwa, drro, rrd->payload);
 | |
| 		kmem_free(rrd->payload, rrd->payload_size);
 | |
| 		rrd->payload = NULL;
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRR_FREEOBJECTS:
 | |
| 	{
 | |
| 		struct drr_freeobjects *drrfo =
 | |
| 		    &rrd->header.drr_u.drr_freeobjects;
 | |
| 		err = receive_freeobjects(rwa, drrfo);
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRR_WRITE:
 | |
| 	{
 | |
| 		err = receive_process_write_record(rwa, rrd);
 | |
| 		if (rwa->heal) {
 | |
| 			/*
 | |
| 			 * If healing - always free the abd after processing
 | |
| 			 */
 | |
| 			abd_free(rrd->abd);
 | |
| 			rrd->abd = NULL;
 | |
| 		} else if (err != EAGAIN) {
 | |
| 			/*
 | |
| 			 * On success, a non-healing
 | |
| 			 * receive_process_write_record() returns
 | |
| 			 * EAGAIN to indicate that we do not want to free
 | |
| 			 * the rrd or arc_buf.
 | |
| 			 */
 | |
| 			ASSERT(err != 0);
 | |
| 			abd_free(rrd->abd);
 | |
| 			rrd->abd = NULL;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRR_WRITE_EMBEDDED:
 | |
| 	{
 | |
| 		struct drr_write_embedded *drrwe =
 | |
| 		    &rrd->header.drr_u.drr_write_embedded;
 | |
| 		err = receive_write_embedded(rwa, drrwe, rrd->payload);
 | |
| 		kmem_free(rrd->payload, rrd->payload_size);
 | |
| 		rrd->payload = NULL;
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRR_FREE:
 | |
| 	{
 | |
| 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
 | |
| 		err = receive_free(rwa, drrf);
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRR_SPILL:
 | |
| 	{
 | |
| 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
 | |
| 		err = receive_spill(rwa, drrs, rrd->abd);
 | |
| 		if (err != 0)
 | |
| 			abd_free(rrd->abd);
 | |
| 		rrd->abd = NULL;
 | |
| 		rrd->payload = NULL;
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRR_OBJECT_RANGE:
 | |
| 	{
 | |
| 		struct drr_object_range *drror =
 | |
| 		    &rrd->header.drr_u.drr_object_range;
 | |
| 		err = receive_object_range(rwa, drror);
 | |
| 		break;
 | |
| 	}
 | |
| 	case DRR_REDACT:
 | |
| 	{
 | |
| 		struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
 | |
| 		err = receive_redact(rwa, drrr);
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		err = (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 
 | |
| 	if (err != 0)
 | |
| 		dprintf_drr(rrd, err);
 | |
| 
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * dmu_recv_stream's worker thread; pull records off the queue, and then call
 | |
|  * receive_process_record  When we're done, signal the main thread and exit.
 | |
|  */
 | |
| static __attribute__((noreturn)) void
 | |
| receive_writer_thread(void *arg)
 | |
| {
 | |
| 	struct receive_writer_arg *rwa = arg;
 | |
| 	struct receive_record_arg *rrd;
 | |
| 	fstrans_cookie_t cookie = spl_fstrans_mark();
 | |
| 
 | |
| 	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
 | |
| 	    rrd = bqueue_dequeue(&rwa->q)) {
 | |
| 		/*
 | |
| 		 * If there's an error, the main thread will stop putting things
 | |
| 		 * on the queue, but we need to clear everything in it before we
 | |
| 		 * can exit.
 | |
| 		 */
 | |
| 		int err = 0;
 | |
| 		if (rwa->err == 0) {
 | |
| 			err = receive_process_record(rwa, rrd);
 | |
| 		} else if (rrd->abd != NULL) {
 | |
| 			abd_free(rrd->abd);
 | |
| 			rrd->abd = NULL;
 | |
| 			rrd->payload = NULL;
 | |
| 		} else if (rrd->payload != NULL) {
 | |
| 			kmem_free(rrd->payload, rrd->payload_size);
 | |
| 			rrd->payload = NULL;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * EAGAIN indicates that this record has been saved (on
 | |
| 		 * raw->write_batch), and will be used again, so we don't
 | |
| 		 * free it.
 | |
| 		 * When healing data we always need to free the record.
 | |
| 		 */
 | |
| 		if (err != EAGAIN || rwa->heal) {
 | |
| 			if (rwa->err == 0)
 | |
| 				rwa->err = err;
 | |
| 			kmem_free(rrd, sizeof (*rrd));
 | |
| 		}
 | |
| 	}
 | |
| 	kmem_free(rrd, sizeof (*rrd));
 | |
| 
 | |
| 	if (rwa->heal) {
 | |
| 		zio_wait(rwa->heal_pio);
 | |
| 	} else {
 | |
| 		int err = flush_write_batch(rwa);
 | |
| 		if (rwa->err == 0)
 | |
| 			rwa->err = err;
 | |
| 	}
 | |
| 	mutex_enter(&rwa->mutex);
 | |
| 	rwa->done = B_TRUE;
 | |
| 	cv_signal(&rwa->cv);
 | |
| 	mutex_exit(&rwa->mutex);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 	thread_exit();
 | |
| }
 | |
| 
 | |
| static int
 | |
| resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
 | |
| {
 | |
| 	uint64_t val;
 | |
| 	objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
 | |
| 	uint64_t dsobj = dmu_objset_id(drc->drc_os);
 | |
| 	uint64_t resume_obj, resume_off;
 | |
| 
 | |
| 	if (nvlist_lookup_uint64(begin_nvl,
 | |
| 	    "resume_object", &resume_obj) != 0 ||
 | |
| 	    nvlist_lookup_uint64(begin_nvl,
 | |
| 	    "resume_offset", &resume_off) != 0) {
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	}
 | |
| 	VERIFY0(zap_lookup(mos, dsobj,
 | |
| 	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
 | |
| 	if (resume_obj != val)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 	VERIFY0(zap_lookup(mos, dsobj,
 | |
| 	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
 | |
| 	if (resume_off != val)
 | |
| 		return (SET_ERROR(EINVAL));
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read in the stream's records, one by one, and apply them to the pool.  There
 | |
|  * are two threads involved; the thread that calls this function will spin up a
 | |
|  * worker thread, read the records off the stream one by one, and issue
 | |
|  * prefetches for any necessary indirect blocks.  It will then push the records
 | |
|  * onto an internal blocking queue.  The worker thread will pull the records off
 | |
|  * the queue, and actually write the data into the DMU.  This way, the worker
 | |
|  * thread doesn't have to wait for reads to complete, since everything it needs
 | |
|  * (the indirect blocks) will be prefetched.
 | |
|  *
 | |
|  * NB: callers *must* call dmu_recv_end() if this succeeds.
 | |
|  */
 | |
| int
 | |
| dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
 | |
| 
 | |
| 	if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
 | |
| 		uint64_t bytes = 0;
 | |
| 		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
 | |
| 		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
 | |
| 		    sizeof (bytes), 1, &bytes);
 | |
| 		drc->drc_bytes_read += bytes;
 | |
| 	}
 | |
| 
 | |
| 	drc->drc_ignore_objlist = objlist_create();
 | |
| 
 | |
| 	/* these were verified in dmu_recv_begin */
 | |
| 	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
 | |
| 	    DMU_SUBSTREAM);
 | |
| 	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
 | |
| 
 | |
| 	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
 | |
| 	ASSERT0(drc->drc_os->os_encrypted &&
 | |
| 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
 | |
| 
 | |
| 	/* handle DSL encryption key payload */
 | |
| 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
 | |
| 		nvlist_t *keynvl = NULL;
 | |
| 
 | |
| 		ASSERT(drc->drc_os->os_encrypted);
 | |
| 		ASSERT(drc->drc_raw);
 | |
| 
 | |
| 		err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
 | |
| 		    &keynvl);
 | |
| 		if (err != 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (!drc->drc_heal) {
 | |
| 			/*
 | |
| 			 * If this is a new dataset we set the key immediately.
 | |
| 			 * Otherwise we don't want to change the key until we
 | |
| 			 * are sure the rest of the receive succeeded so we
 | |
| 			 * stash the keynvl away until then.
 | |
| 			 */
 | |
| 			err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
 | |
| 			    drc->drc_ds->ds_object, drc->drc_fromsnapobj,
 | |
| 			    drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
 | |
| 			if (err != 0)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* see comment in dmu_recv_end_sync() */
 | |
| 		drc->drc_ivset_guid = 0;
 | |
| 		(void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
 | |
| 		    &drc->drc_ivset_guid);
 | |
| 
 | |
| 		if (!drc->drc_newfs)
 | |
| 			drc->drc_keynvl = fnvlist_dup(keynvl);
 | |
| 	}
 | |
| 
 | |
| 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
 | |
| 		err = resume_check(drc, drc->drc_begin_nvl);
 | |
| 		if (err != 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we failed before this point we will clean up any new resume
 | |
| 	 * state that was created. Now that we've gotten past the initial
 | |
| 	 * checks we are ok to retain that resume state.
 | |
| 	 */
 | |
| 	drc->drc_should_save = B_TRUE;
 | |
| 
 | |
| 	(void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
 | |
| 	    MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
 | |
| 	    offsetof(struct receive_record_arg, node));
 | |
| 	cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
 | |
| 	mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
 | |
| 	rwa->os = drc->drc_os;
 | |
| 	rwa->byteswap = drc->drc_byteswap;
 | |
| 	rwa->heal = drc->drc_heal;
 | |
| 	rwa->tofs = drc->drc_tofs;
 | |
| 	rwa->resumable = drc->drc_resumable;
 | |
| 	rwa->raw = drc->drc_raw;
 | |
| 	rwa->spill = drc->drc_spill;
 | |
| 	rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
 | |
| 	rwa->os->os_raw_receive = drc->drc_raw;
 | |
| 	if (drc->drc_heal) {
 | |
| 		rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
 | |
| 		    ZIO_FLAG_GODFATHER);
 | |
| 	}
 | |
| 	list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
 | |
| 	    offsetof(struct receive_record_arg, node.bqn_node));
 | |
| 
 | |
| 	(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
 | |
| 	    TS_RUN, minclsyspri);
 | |
| 	/*
 | |
| 	 * We're reading rwa->err without locks, which is safe since we are the
 | |
| 	 * only reader, and the worker thread is the only writer.  It's ok if we
 | |
| 	 * miss a write for an iteration or two of the loop, since the writer
 | |
| 	 * thread will keep freeing records we send it until we send it an eos
 | |
| 	 * marker.
 | |
| 	 *
 | |
| 	 * We can leave this loop in 3 ways:  First, if rwa->err is
 | |
| 	 * non-zero.  In that case, the writer thread will free the rrd we just
 | |
| 	 * pushed.  Second, if  we're interrupted; in that case, either it's the
 | |
| 	 * first loop and drc->drc_rrd was never allocated, or it's later, and
 | |
| 	 * drc->drc_rrd has been handed off to the writer thread who will free
 | |
| 	 * it.  Finally, if receive_read_record fails or we're at the end of the
 | |
| 	 * stream, then we free drc->drc_rrd and exit.
 | |
| 	 */
 | |
| 	while (rwa->err == 0) {
 | |
| 		if (issig(JUSTLOOKING) && issig(FORREAL)) {
 | |
| 			err = SET_ERROR(EINTR);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ASSERT3P(drc->drc_rrd, ==, NULL);
 | |
| 		drc->drc_rrd = drc->drc_next_rrd;
 | |
| 		drc->drc_next_rrd = NULL;
 | |
| 		/* Allocates and loads header into drc->drc_next_rrd */
 | |
| 		err = receive_read_record(drc);
 | |
| 
 | |
| 		if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
 | |
| 			kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
 | |
| 			drc->drc_rrd = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		bqueue_enqueue(&rwa->q, drc->drc_rrd,
 | |
| 		    sizeof (struct receive_record_arg) +
 | |
| 		    drc->drc_rrd->payload_size);
 | |
| 		drc->drc_rrd = NULL;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT3P(drc->drc_rrd, ==, NULL);
 | |
| 	drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
 | |
| 	drc->drc_rrd->eos_marker = B_TRUE;
 | |
| 	bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
 | |
| 
 | |
| 	mutex_enter(&rwa->mutex);
 | |
| 	while (!rwa->done) {
 | |
| 		/*
 | |
| 		 * We need to use cv_wait_sig() so that any process that may
 | |
| 		 * be sleeping here can still fork.
 | |
| 		 */
 | |
| 		(void) cv_wait_sig(&rwa->cv, &rwa->mutex);
 | |
| 	}
 | |
| 	mutex_exit(&rwa->mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are receiving a full stream as a clone, all object IDs which
 | |
| 	 * are greater than the maximum ID referenced in the stream are
 | |
| 	 * by definition unused and must be freed.
 | |
| 	 */
 | |
| 	if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
 | |
| 		uint64_t obj = rwa->max_object + 1;
 | |
| 		int free_err = 0;
 | |
| 		int next_err = 0;
 | |
| 
 | |
| 		while (next_err == 0) {
 | |
| 			free_err = dmu_free_long_object(rwa->os, obj);
 | |
| 			if (free_err != 0 && free_err != ENOENT)
 | |
| 				break;
 | |
| 
 | |
| 			next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
 | |
| 		}
 | |
| 
 | |
| 		if (err == 0) {
 | |
| 			if (free_err != 0 && free_err != ENOENT)
 | |
| 				err = free_err;
 | |
| 			else if (next_err != ESRCH)
 | |
| 				err = next_err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cv_destroy(&rwa->cv);
 | |
| 	mutex_destroy(&rwa->mutex);
 | |
| 	bqueue_destroy(&rwa->q);
 | |
| 	list_destroy(&rwa->write_batch);
 | |
| 	if (err == 0)
 | |
| 		err = rwa->err;
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * If we hit an error before we started the receive_writer_thread
 | |
| 	 * we need to clean up the next_rrd we create by processing the
 | |
| 	 * DRR_BEGIN record.
 | |
| 	 */
 | |
| 	if (drc->drc_next_rrd != NULL)
 | |
| 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
 | |
| 
 | |
| 	/*
 | |
| 	 * The objset will be invalidated by dmu_recv_end() when we do
 | |
| 	 * dsl_dataset_clone_swap_sync_impl().
 | |
| 	 */
 | |
| 	drc->drc_os = NULL;
 | |
| 
 | |
| 	kmem_free(rwa, sizeof (*rwa));
 | |
| 	nvlist_free(drc->drc_begin_nvl);
 | |
| 
 | |
| 	if (err != 0) {
 | |
| 		/*
 | |
| 		 * Clean up references. If receive is not resumable,
 | |
| 		 * destroy what we created, so we don't leave it in
 | |
| 		 * the inconsistent state.
 | |
| 		 */
 | |
| 		dmu_recv_cleanup_ds(drc);
 | |
| 		nvlist_free(drc->drc_keynvl);
 | |
| 	}
 | |
| 
 | |
| 	objlist_destroy(drc->drc_ignore_objlist);
 | |
| 	drc->drc_ignore_objlist = NULL;
 | |
| 	*voffp = drc->drc_voff;
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| static int
 | |
| dmu_recv_end_check(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	dmu_recv_cookie_t *drc = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	int error;
 | |
| 
 | |
| 	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
 | |
| 
 | |
| 	if (drc->drc_heal) {
 | |
| 		error = 0;
 | |
| 	} else if (!drc->drc_newfs) {
 | |
| 		dsl_dataset_t *origin_head;
 | |
| 
 | |
| 		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
 | |
| 		if (error != 0)
 | |
| 			return (error);
 | |
| 		if (drc->drc_force) {
 | |
| 			/*
 | |
| 			 * We will destroy any snapshots in tofs (i.e. before
 | |
| 			 * origin_head) that are after the origin (which is
 | |
| 			 * the snap before drc_ds, because drc_ds can not
 | |
| 			 * have any snaps of its own).
 | |
| 			 */
 | |
| 			uint64_t obj;
 | |
| 
 | |
| 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
 | |
| 			while (obj !=
 | |
| 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
 | |
| 				dsl_dataset_t *snap;
 | |
| 				error = dsl_dataset_hold_obj(dp, obj, FTAG,
 | |
| 				    &snap);
 | |
| 				if (error != 0)
 | |
| 					break;
 | |
| 				if (snap->ds_dir != origin_head->ds_dir)
 | |
| 					error = SET_ERROR(EINVAL);
 | |
| 				if (error == 0)  {
 | |
| 					error = dsl_destroy_snapshot_check_impl(
 | |
| 					    snap, B_FALSE);
 | |
| 				}
 | |
| 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
 | |
| 				dsl_dataset_rele(snap, FTAG);
 | |
| 				if (error != 0)
 | |
| 					break;
 | |
| 			}
 | |
| 			if (error != 0) {
 | |
| 				dsl_dataset_rele(origin_head, FTAG);
 | |
| 				return (error);
 | |
| 			}
 | |
| 		}
 | |
| 		if (drc->drc_keynvl != NULL) {
 | |
| 			error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
 | |
| 			    drc->drc_keynvl, tx);
 | |
| 			if (error != 0) {
 | |
| 				dsl_dataset_rele(origin_head, FTAG);
 | |
| 				return (error);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
 | |
| 		    origin_head, drc->drc_force, drc->drc_owner, tx);
 | |
| 		if (error != 0) {
 | |
| 			dsl_dataset_rele(origin_head, FTAG);
 | |
| 			return (error);
 | |
| 		}
 | |
| 		error = dsl_dataset_snapshot_check_impl(origin_head,
 | |
| 		    drc->drc_tosnap, tx, B_TRUE, 1,
 | |
| 		    drc->drc_cred, drc->drc_proc);
 | |
| 		dsl_dataset_rele(origin_head, FTAG);
 | |
| 		if (error != 0)
 | |
| 			return (error);
 | |
| 
 | |
| 		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
 | |
| 	} else {
 | |
| 		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
 | |
| 		    drc->drc_tosnap, tx, B_TRUE, 1,
 | |
| 		    drc->drc_cred, drc->drc_proc);
 | |
| 	}
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
 | |
| {
 | |
| 	dmu_recv_cookie_t *drc = arg;
 | |
| 	dsl_pool_t *dp = dmu_tx_pool(tx);
 | |
| 	boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
 | |
| 	uint64_t newsnapobj = 0;
 | |
| 
 | |
| 	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
 | |
| 	    tx, "snap=%s", drc->drc_tosnap);
 | |
| 	drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
 | |
| 
 | |
| 	if (drc->drc_heal) {
 | |
| 		if (drc->drc_keynvl != NULL) {
 | |
| 			nvlist_free(drc->drc_keynvl);
 | |
| 			drc->drc_keynvl = NULL;
 | |
| 		}
 | |
| 	} else if (!drc->drc_newfs) {
 | |
| 		dsl_dataset_t *origin_head;
 | |
| 
 | |
| 		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
 | |
| 		    &origin_head));
 | |
| 
 | |
| 		if (drc->drc_force) {
 | |
| 			/*
 | |
| 			 * Destroy any snapshots of drc_tofs (origin_head)
 | |
| 			 * after the origin (the snap before drc_ds).
 | |
| 			 */
 | |
| 			uint64_t obj;
 | |
| 
 | |
| 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
 | |
| 			while (obj !=
 | |
| 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
 | |
| 				dsl_dataset_t *snap;
 | |
| 				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
 | |
| 				    &snap));
 | |
| 				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
 | |
| 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
 | |
| 				dsl_destroy_snapshot_sync_impl(snap,
 | |
| 				    B_FALSE, tx);
 | |
| 				dsl_dataset_rele(snap, FTAG);
 | |
| 			}
 | |
| 		}
 | |
| 		if (drc->drc_keynvl != NULL) {
 | |
| 			dsl_crypto_recv_raw_key_sync(drc->drc_ds,
 | |
| 			    drc->drc_keynvl, tx);
 | |
| 			nvlist_free(drc->drc_keynvl);
 | |
| 			drc->drc_keynvl = NULL;
 | |
| 		}
 | |
| 
 | |
| 		VERIFY3P(drc->drc_ds->ds_prev, ==,
 | |
| 		    origin_head->ds_prev);
 | |
| 
 | |
| 		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
 | |
| 		    origin_head, tx);
 | |
| 		/*
 | |
| 		 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
 | |
| 		 * so drc_os is no longer valid.
 | |
| 		 */
 | |
| 		drc->drc_os = NULL;
 | |
| 
 | |
| 		dsl_dataset_snapshot_sync_impl(origin_head,
 | |
| 		    drc->drc_tosnap, tx);
 | |
| 
 | |
| 		/* set snapshot's creation time and guid */
 | |
| 		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
 | |
| 		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
 | |
| 		    drc->drc_drrb->drr_creation_time;
 | |
| 		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
 | |
| 		    drc->drc_drrb->drr_toguid;
 | |
| 		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
 | |
| 		    ~DS_FLAG_INCONSISTENT;
 | |
| 
 | |
| 		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
 | |
| 		dsl_dataset_phys(origin_head)->ds_flags &=
 | |
| 		    ~DS_FLAG_INCONSISTENT;
 | |
| 
 | |
| 		newsnapobj =
 | |
| 		    dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
 | |
| 
 | |
| 		dsl_dataset_rele(origin_head, FTAG);
 | |
| 		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
 | |
| 
 | |
| 		if (drc->drc_owner != NULL)
 | |
| 			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
 | |
| 	} else {
 | |
| 		dsl_dataset_t *ds = drc->drc_ds;
 | |
| 
 | |
| 		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
 | |
| 
 | |
| 		/* set snapshot's creation time and guid */
 | |
| 		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
 | |
| 		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
 | |
| 		    drc->drc_drrb->drr_creation_time;
 | |
| 		dsl_dataset_phys(ds->ds_prev)->ds_guid =
 | |
| 		    drc->drc_drrb->drr_toguid;
 | |
| 		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
 | |
| 		    ~DS_FLAG_INCONSISTENT;
 | |
| 
 | |
| 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
 | |
| 		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
 | |
| 		if (dsl_dataset_has_resume_receive_state(ds)) {
 | |
| 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
 | |
| 			    DS_FIELD_RESUME_FROMGUID, tx);
 | |
| 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
 | |
| 			    DS_FIELD_RESUME_OBJECT, tx);
 | |
| 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
 | |
| 			    DS_FIELD_RESUME_OFFSET, tx);
 | |
| 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
 | |
| 			    DS_FIELD_RESUME_BYTES, tx);
 | |
| 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
 | |
| 			    DS_FIELD_RESUME_TOGUID, tx);
 | |
| 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
 | |
| 			    DS_FIELD_RESUME_TONAME, tx);
 | |
| 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
 | |
| 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
 | |
| 		}
 | |
| 		newsnapobj =
 | |
| 		    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a raw receive, the crypt_keydata nvlist will include
 | |
| 	 * a to_ivset_guid for us to set on the new snapshot. This value
 | |
| 	 * will override the value generated by the snapshot code. However,
 | |
| 	 * this value may not be present, because older implementations of
 | |
| 	 * the raw send code did not include this value, and we are still
 | |
| 	 * allowed to receive them if the zfs_disable_ivset_guid_check
 | |
| 	 * tunable is set, in which case we will leave the newly-generated
 | |
| 	 * value.
 | |
| 	 */
 | |
| 	if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
 | |
| 		dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
 | |
| 		    DMU_OT_DSL_DATASET, tx);
 | |
| 		VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
 | |
| 		    DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
 | |
| 		    &drc->drc_ivset_guid, tx));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Release the hold from dmu_recv_begin.  This must be done before
 | |
| 	 * we return to open context, so that when we free the dataset's dnode
 | |
| 	 * we can evict its bonus buffer. Since the dataset may be destroyed
 | |
| 	 * at this point (and therefore won't have a valid pointer to the spa)
 | |
| 	 * we release the key mapping manually here while we do have a valid
 | |
| 	 * pointer, if it exists.
 | |
| 	 */
 | |
| 	if (!drc->drc_raw && encrypted) {
 | |
| 		(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
 | |
| 		    drc->drc_ds->ds_object, drc->drc_ds);
 | |
| 	}
 | |
| 	dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
 | |
| 	drc->drc_ds = NULL;
 | |
| }
 | |
| 
 | |
| static int dmu_recv_end_modified_blocks = 3;
 | |
| 
 | |
| static int
 | |
| dmu_recv_existing_end(dmu_recv_cookie_t *drc)
 | |
| {
 | |
| #ifdef _KERNEL
 | |
| 	/*
 | |
| 	 * We will be destroying the ds; make sure its origin is unmounted if
 | |
| 	 * necessary.
 | |
| 	 */
 | |
| 	char name[ZFS_MAX_DATASET_NAME_LEN];
 | |
| 	dsl_dataset_name(drc->drc_ds, name);
 | |
| 	zfs_destroy_unmount_origin(name);
 | |
| #endif
 | |
| 
 | |
| 	return (dsl_sync_task(drc->drc_tofs,
 | |
| 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
 | |
| 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
 | |
| }
 | |
| 
 | |
| static int
 | |
| dmu_recv_new_end(dmu_recv_cookie_t *drc)
 | |
| {
 | |
| 	return (dsl_sync_task(drc->drc_tofs,
 | |
| 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
 | |
| 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
 | |
| }
 | |
| 
 | |
| int
 | |
| dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	drc->drc_owner = owner;
 | |
| 
 | |
| 	if (drc->drc_newfs)
 | |
| 		error = dmu_recv_new_end(drc);
 | |
| 	else
 | |
| 		error = dmu_recv_existing_end(drc);
 | |
| 
 | |
| 	if (error != 0) {
 | |
| 		dmu_recv_cleanup_ds(drc);
 | |
| 		nvlist_free(drc->drc_keynvl);
 | |
| 	} else if (!drc->drc_heal) {
 | |
| 		if (drc->drc_newfs) {
 | |
| 			zvol_create_minor(drc->drc_tofs);
 | |
| 		}
 | |
| 		char *snapname = kmem_asprintf("%s@%s",
 | |
| 		    drc->drc_tofs, drc->drc_tosnap);
 | |
| 		zvol_create_minor(snapname);
 | |
| 		kmem_strfree(snapname);
 | |
| 	}
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return TRUE if this objset is currently being received into.
 | |
|  */
 | |
| boolean_t
 | |
| dmu_objset_is_receiving(objset_t *os)
 | |
| {
 | |
| 	return (os->os_dsl_dataset != NULL &&
 | |
| 	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
 | |
| }
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW,
 | |
| 	"Maximum receive queue length");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW,
 | |
| 	"Receive queue fill fraction");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW,
 | |
| 	"Maximum amount of writes to batch into one transaction");
 | |
| 
 | |
| ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
 | |
| 	"Ignore errors during corrective receive");
 | |
| /* END CSTYLED */
 |