mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-10-26 05:28:04 +00:00 
			
		
		
		
	 3c617c7921
			
		
	
	
		3c617c7921
		
	
	
	
	
		
			
			Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Closes #12968
		
			
				
	
	
		
			1660 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1660 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or http://www.opensolaris.org/os/licensing.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
 | |
|  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright (c) 2014, 2021 by Delphix. All rights reserved.
 | |
|  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
 | |
|  * Copyright 2017 RackTop Systems.
 | |
|  * Copyright (c) 2018 Datto Inc.
 | |
|  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Routines to manage ZFS mounts.  We separate all the nasty routines that have
 | |
|  * to deal with the OS.  The following functions are the main entry points --
 | |
|  * they are used by mount and unmount and when changing a filesystem's
 | |
|  * mountpoint.
 | |
|  *
 | |
|  *	zfs_is_mounted()
 | |
|  *	zfs_mount()
 | |
|  *	zfs_mount_at()
 | |
|  *	zfs_unmount()
 | |
|  *	zfs_unmountall()
 | |
|  *
 | |
|  * This file also contains the functions used to manage sharing filesystems via
 | |
|  * NFS and iSCSI:
 | |
|  *
 | |
|  *	zfs_is_shared()
 | |
|  *	zfs_share()
 | |
|  *	zfs_unshare()
 | |
|  *
 | |
|  *	zfs_is_shared_nfs()
 | |
|  *	zfs_is_shared_smb()
 | |
|  *	zfs_share_proto()
 | |
|  *	zfs_shareall();
 | |
|  *	zfs_unshare_nfs()
 | |
|  *	zfs_unshare_smb()
 | |
|  *	zfs_unshareall_nfs()
 | |
|  *	zfs_unshareall_smb()
 | |
|  *	zfs_unshareall()
 | |
|  *	zfs_unshareall_bypath()
 | |
|  *
 | |
|  * The following functions are available for pool consumers, and will
 | |
|  * mount/unmount and share/unshare all datasets within pool:
 | |
|  *
 | |
|  *	zpool_enable_datasets()
 | |
|  *	zpool_disable_datasets()
 | |
|  */
 | |
| 
 | |
| #include <dirent.h>
 | |
| #include <dlfcn.h>
 | |
| #include <errno.h>
 | |
| #include <fcntl.h>
 | |
| #include <libgen.h>
 | |
| #include <libintl.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <strings.h>
 | |
| #include <unistd.h>
 | |
| #include <zone.h>
 | |
| #include <sys/mntent.h>
 | |
| #include <sys/mount.h>
 | |
| #include <sys/stat.h>
 | |
| #include <sys/vfs.h>
 | |
| #include <sys/dsl_crypt.h>
 | |
| 
 | |
| #include <libzfs.h>
 | |
| 
 | |
| #include "libzfs_impl.h"
 | |
| #include <thread_pool.h>
 | |
| 
 | |
| #include <libshare.h>
 | |
| #include <sys/systeminfo.h>
 | |
| #define	MAXISALEN	257	/* based on sysinfo(2) man page */
 | |
| 
 | |
| static int mount_tp_nthr = 512;	/* tpool threads for multi-threaded mounting */
 | |
| 
 | |
| static void zfs_mount_task(void *);
 | |
| static zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **,
 | |
|     zfs_share_proto_t);
 | |
| 
 | |
| /*
 | |
|  * The share protocols table must be in the same order as the zfs_share_proto_t
 | |
|  * enum in libzfs_impl.h
 | |
|  */
 | |
| static const proto_table_t proto_table[PROTO_END] = {
 | |
| 	{ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
 | |
| 	{ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
 | |
| };
 | |
| 
 | |
| static const zfs_share_proto_t nfs_only[] = {
 | |
| 	PROTO_NFS,
 | |
| 	PROTO_END
 | |
| };
 | |
| 
 | |
| static const zfs_share_proto_t smb_only[] = {
 | |
| 	PROTO_SMB,
 | |
| 	PROTO_END
 | |
| };
 | |
| static const zfs_share_proto_t share_all_proto[] = {
 | |
| 	PROTO_NFS,
 | |
| 	PROTO_SMB,
 | |
| 	PROTO_END
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| static boolean_t
 | |
| dir_is_empty_stat(const char *dirname)
 | |
| {
 | |
| 	struct stat st;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only want to return false if the given path is a non empty
 | |
| 	 * directory, all other errors are handled elsewhere.
 | |
| 	 */
 | |
| 	if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
 | |
| 		return (B_TRUE);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * An empty directory will still have two entries in it, one
 | |
| 	 * entry for each of "." and "..".
 | |
| 	 */
 | |
| 	if (st.st_size > 2) {
 | |
| 		return (B_FALSE);
 | |
| 	}
 | |
| 
 | |
| 	return (B_TRUE);
 | |
| }
 | |
| 
 | |
| static boolean_t
 | |
| dir_is_empty_readdir(const char *dirname)
 | |
| {
 | |
| 	DIR *dirp;
 | |
| 	struct dirent64 *dp;
 | |
| 	int dirfd;
 | |
| 
 | |
| 	if ((dirfd = openat(AT_FDCWD, dirname,
 | |
| 	    O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
 | |
| 		return (B_TRUE);
 | |
| 	}
 | |
| 
 | |
| 	if ((dirp = fdopendir(dirfd)) == NULL) {
 | |
| 		(void) close(dirfd);
 | |
| 		return (B_TRUE);
 | |
| 	}
 | |
| 
 | |
| 	while ((dp = readdir64(dirp)) != NULL) {
 | |
| 
 | |
| 		if (strcmp(dp->d_name, ".") == 0 ||
 | |
| 		    strcmp(dp->d_name, "..") == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		(void) closedir(dirp);
 | |
| 		return (B_FALSE);
 | |
| 	}
 | |
| 
 | |
| 	(void) closedir(dirp);
 | |
| 	return (B_TRUE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if the specified directory is empty.  If we can't open the
 | |
|  * directory at all, return true so that the mount can fail with a more
 | |
|  * informative error message.
 | |
|  */
 | |
| static boolean_t
 | |
| dir_is_empty(const char *dirname)
 | |
| {
 | |
| 	struct statfs64 st;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the statvfs call fails or the filesystem is not a ZFS
 | |
| 	 * filesystem, fall back to the slow path which uses readdir.
 | |
| 	 */
 | |
| 	if ((statfs64(dirname, &st) != 0) ||
 | |
| 	    (st.f_type != ZFS_SUPER_MAGIC)) {
 | |
| 		return (dir_is_empty_readdir(dirname));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, we know the provided path is on a ZFS
 | |
| 	 * filesystem, so we can use stat instead of readdir to
 | |
| 	 * determine if the directory is empty or not. We try to avoid
 | |
| 	 * using readdir because that requires opening "dirname"; this
 | |
| 	 * open file descriptor can potentially end up in a child
 | |
| 	 * process if there's a concurrent fork, thus preventing the
 | |
| 	 * zfs_mount() from otherwise succeeding (the open file
 | |
| 	 * descriptor inherited by the child process will cause the
 | |
| 	 * parent's mount to fail with EBUSY). The performance
 | |
| 	 * implications of replacing the open, read, and close with a
 | |
| 	 * single stat is nice; but is not the main motivation for the
 | |
| 	 * added complexity.
 | |
| 	 */
 | |
| 	return (dir_is_empty_stat(dirname));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks to see if the mount is active.  If the filesystem is mounted, we fill
 | |
|  * in 'where' with the current mountpoint, and return 1.  Otherwise, we return
 | |
|  * 0.
 | |
|  */
 | |
| boolean_t
 | |
| is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
 | |
| {
 | |
| 	struct mnttab entry;
 | |
| 
 | |
| 	if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	if (where != NULL)
 | |
| 		*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
 | |
| 
 | |
| 	return (B_TRUE);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| zfs_is_mounted(zfs_handle_t *zhp, char **where)
 | |
| {
 | |
| 	return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks any higher order concerns about whether the given dataset is
 | |
|  * mountable, false otherwise.  zfs_is_mountable_internal specifically assumes
 | |
|  * that the caller has verified the sanity of mounting the dataset at
 | |
|  * its mountpoint to the extent the caller wants.
 | |
|  */
 | |
| static boolean_t
 | |
| zfs_is_mountable_internal(zfs_handle_t *zhp)
 | |
| {
 | |
| 	if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
 | |
| 	    getzoneid() == GLOBAL_ZONEID)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	return (B_TRUE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if the given dataset is mountable, false otherwise.  Returns the
 | |
|  * mountpoint in 'buf'.
 | |
|  */
 | |
| boolean_t
 | |
| zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
 | |
|     zprop_source_t *source, int flags)
 | |
| {
 | |
| 	char sourceloc[MAXNAMELEN];
 | |
| 	zprop_source_t sourcetype;
 | |
| 
 | |
| 	if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
 | |
| 	    B_FALSE))
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
 | |
| 	    &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
 | |
| 
 | |
| 	if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
 | |
| 	    strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	if (!zfs_is_mountable_internal(zhp))
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE))
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	if (source)
 | |
| 		*source = sourcetype;
 | |
| 
 | |
| 	return (B_TRUE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The filesystem is mounted by invoking the system mount utility rather
 | |
|  * than by the system call mount(2).  This ensures that the /etc/mtab
 | |
|  * file is correctly locked for the update.  Performing our own locking
 | |
|  * and /etc/mtab update requires making an unsafe assumption about how
 | |
|  * the mount utility performs its locking.  Unfortunately, this also means
 | |
|  * in the case of a mount failure we do not have the exact errno.  We must
 | |
|  * make due with return value from the mount process.
 | |
|  *
 | |
|  * In the long term a shared library called libmount is under development
 | |
|  * which provides a common API to address the locking and errno issues.
 | |
|  * Once the standard mount utility has been updated to use this library
 | |
|  * we can add an autoconf check to conditionally use it.
 | |
|  *
 | |
|  * http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
 | |
|  */
 | |
| 
 | |
| static int
 | |
| zfs_add_option(zfs_handle_t *zhp, char *options, int len,
 | |
|     zfs_prop_t prop, char *on, char *off)
 | |
| {
 | |
| 	char *source;
 | |
| 	uint64_t value;
 | |
| 
 | |
| 	/* Skip adding duplicate default options */
 | |
| 	if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
 | |
| 		return (0);
 | |
| 
 | |
| 	/*
 | |
| 	 * zfs_prop_get_int() is not used to ensure our mount options
 | |
| 	 * are not influenced by the current /proc/self/mounts contents.
 | |
| 	 */
 | |
| 	value = getprop_uint64(zhp, prop, &source);
 | |
| 
 | |
| 	(void) strlcat(options, ",", len);
 | |
| 	(void) strlcat(options, value ? on : off, len);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zfs_add_options(zfs_handle_t *zhp, char *options, int len)
 | |
| {
 | |
| 	int error = 0;
 | |
| 
 | |
| 	error = zfs_add_option(zhp, options, len,
 | |
| 	    ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
 | |
| 	/*
 | |
| 	 * don't add relatime/strictatime when atime=off, otherwise strictatime
 | |
| 	 * will force atime=on
 | |
| 	 */
 | |
| 	if (strstr(options, MNTOPT_NOATIME) == NULL) {
 | |
| 		error = zfs_add_option(zhp, options, len,
 | |
| 		    ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME);
 | |
| 	}
 | |
| 	error = error ? error : zfs_add_option(zhp, options, len,
 | |
| 	    ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
 | |
| 	error = error ? error : zfs_add_option(zhp, options, len,
 | |
| 	    ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
 | |
| 	error = error ? error : zfs_add_option(zhp, options, len,
 | |
| 	    ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
 | |
| 	error = error ? error : zfs_add_option(zhp, options, len,
 | |
| 	    ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
 | |
| 	error = error ? error : zfs_add_option(zhp, options, len,
 | |
| 	    ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
 | |
| {
 | |
| 	char mountpoint[ZFS_MAXPROPLEN];
 | |
| 
 | |
| 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL,
 | |
| 	    flags))
 | |
| 		return (0);
 | |
| 
 | |
| 	return (zfs_mount_at(zhp, options, flags, mountpoint));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mount the given filesystem.
 | |
|  */
 | |
| int
 | |
| zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags,
 | |
|     const char *mountpoint)
 | |
| {
 | |
| 	struct stat buf;
 | |
| 	char mntopts[MNT_LINE_MAX];
 | |
| 	char overlay[ZFS_MAXPROPLEN];
 | |
| 	char prop_encroot[MAXNAMELEN];
 | |
| 	boolean_t is_encroot;
 | |
| 	zfs_handle_t *encroot_hp = zhp;
 | |
| 	libzfs_handle_t *hdl = zhp->zfs_hdl;
 | |
| 	uint64_t keystatus;
 | |
| 	int remount = 0, rc;
 | |
| 
 | |
| 	if (options == NULL) {
 | |
| 		(void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
 | |
| 	} else {
 | |
| 		(void) strlcpy(mntopts, options, sizeof (mntopts));
 | |
| 	}
 | |
| 
 | |
| 	if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
 | |
| 		remount = 1;
 | |
| 
 | |
| 	/* Potentially duplicates some checks if invoked by zfs_mount(). */
 | |
| 	if (!zfs_is_mountable_internal(zhp))
 | |
| 		return (0);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the pool is imported read-only then all mounts must be read-only
 | |
| 	 */
 | |
| 	if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
 | |
| 		(void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
 | |
| 
 | |
| 	/*
 | |
| 	 * Append default mount options which apply to the mount point.
 | |
| 	 * This is done because under Linux (unlike Solaris) multiple mount
 | |
| 	 * points may reference a single super block.  This means that just
 | |
| 	 * given a super block there is no back reference to update the per
 | |
| 	 * mount point options.
 | |
| 	 */
 | |
| 	rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
 | |
| 	if (rc) {
 | |
| 		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 | |
| 		    "default options unavailable"));
 | |
| 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 | |
| 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
 | |
| 		    mountpoint));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the filesystem is encrypted the key must be loaded  in order to
 | |
| 	 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
 | |
| 	 * or not we attempt to load the keys. Note: we must call
 | |
| 	 * zfs_refresh_properties() here since some callers of this function
 | |
| 	 * (most notably zpool_enable_datasets()) may implicitly load our key
 | |
| 	 * by loading the parent's key first.
 | |
| 	 */
 | |
| 	if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
 | |
| 		zfs_refresh_properties(zhp);
 | |
| 		keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the key is unavailable and MS_CRYPT is set give the
 | |
| 		 * user a chance to enter the key. Otherwise just fail
 | |
| 		 * immediately.
 | |
| 		 */
 | |
| 		if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
 | |
| 			if (flags & MS_CRYPT) {
 | |
| 				rc = zfs_crypto_get_encryption_root(zhp,
 | |
| 				    &is_encroot, prop_encroot);
 | |
| 				if (rc) {
 | |
| 					zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 | |
| 					    "Failed to get encryption root for "
 | |
| 					    "'%s'."), zfs_get_name(zhp));
 | |
| 					return (rc);
 | |
| 				}
 | |
| 
 | |
| 				if (!is_encroot) {
 | |
| 					encroot_hp = zfs_open(hdl, prop_encroot,
 | |
| 					    ZFS_TYPE_DATASET);
 | |
| 					if (encroot_hp == NULL)
 | |
| 						return (hdl->libzfs_error);
 | |
| 				}
 | |
| 
 | |
| 				rc = zfs_crypto_load_key(encroot_hp,
 | |
| 				    B_FALSE, NULL);
 | |
| 
 | |
| 				if (!is_encroot)
 | |
| 					zfs_close(encroot_hp);
 | |
| 				if (rc)
 | |
| 					return (rc);
 | |
| 			} else {
 | |
| 				zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 | |
| 				    "encryption key not loaded"));
 | |
| 				return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 | |
| 				    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
 | |
| 				    mountpoint));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Append zfsutil option so the mount helper allow the mount
 | |
| 	 */
 | |
| 	strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
 | |
| 
 | |
| 	/* Create the directory if it doesn't already exist */
 | |
| 	if (lstat(mountpoint, &buf) != 0) {
 | |
| 		if (mkdirp(mountpoint, 0755) != 0) {
 | |
| 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 | |
| 			    "failed to create mountpoint: %s"),
 | |
| 			    strerror(errno));
 | |
| 			return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 | |
| 			    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
 | |
| 			    mountpoint));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Overlay mounts are enabled by default but may be disabled
 | |
| 	 * via the 'overlay' property. The -O flag remains for compatibility.
 | |
| 	 */
 | |
| 	if (!(flags & MS_OVERLAY)) {
 | |
| 		if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay,
 | |
| 		    sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) {
 | |
| 			if (strcmp(overlay, "on") == 0) {
 | |
| 				flags |= MS_OVERLAY;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine if the mountpoint is empty.  If so, refuse to perform the
 | |
| 	 * mount.  We don't perform this check if 'remount' is
 | |
| 	 * specified or if overlay option (-O) is given
 | |
| 	 */
 | |
| 	if ((flags & MS_OVERLAY) == 0 && !remount &&
 | |
| 	    !dir_is_empty(mountpoint)) {
 | |
| 		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 | |
| 		    "directory is not empty"));
 | |
| 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 | |
| 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
 | |
| 	}
 | |
| 
 | |
| 	/* perform the mount */
 | |
| 	rc = do_mount(zhp, mountpoint, mntopts, flags);
 | |
| 	if (rc) {
 | |
| 		/*
 | |
| 		 * Generic errors are nasty, but there are just way too many
 | |
| 		 * from mount(), and they're well-understood.  We pick a few
 | |
| 		 * common ones to improve upon.
 | |
| 		 */
 | |
| 		if (rc == EBUSY) {
 | |
| 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 | |
| 			    "mountpoint or dataset is busy"));
 | |
| 		} else if (rc == EPERM) {
 | |
| 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 | |
| 			    "Insufficient privileges"));
 | |
| 		} else if (rc == ENOTSUP) {
 | |
| 			int spa_version;
 | |
| 
 | |
| 			VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
 | |
| 			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
 | |
| 			    "Can't mount a version %llu "
 | |
| 			    "file system on a version %d pool. Pool must be"
 | |
| 			    " upgraded to mount this file system."),
 | |
| 			    (u_longlong_t)zfs_prop_get_int(zhp,
 | |
| 			    ZFS_PROP_VERSION), spa_version);
 | |
| 		} else {
 | |
| 			zfs_error_aux(hdl, "%s", strerror(rc));
 | |
| 		}
 | |
| 		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
 | |
| 		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
 | |
| 		    zhp->zfs_name));
 | |
| 	}
 | |
| 
 | |
| 	/* remove the mounted entry before re-adding on remount */
 | |
| 	if (remount)
 | |
| 		libzfs_mnttab_remove(hdl, zhp->zfs_name);
 | |
| 
 | |
| 	/* add the mounted entry into our cache */
 | |
| 	libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unmount a single filesystem.
 | |
|  */
 | |
| static int
 | |
| unmount_one(zfs_handle_t *zhp, const char *mountpoint, int flags)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	error = do_unmount(zhp, mountpoint, flags);
 | |
| 	if (error != 0) {
 | |
| 		int libzfs_err;
 | |
| 
 | |
| 		switch (error) {
 | |
| 		case EBUSY:
 | |
| 			libzfs_err = EZFS_BUSY;
 | |
| 			break;
 | |
| 		case EIO:
 | |
| 			libzfs_err = EZFS_IO;
 | |
| 			break;
 | |
| 		case ENOENT:
 | |
| 			libzfs_err = EZFS_NOENT;
 | |
| 			break;
 | |
| 		case ENOMEM:
 | |
| 			libzfs_err = EZFS_NOMEM;
 | |
| 			break;
 | |
| 		case EPERM:
 | |
| 			libzfs_err = EZFS_PERM;
 | |
| 			break;
 | |
| 		default:
 | |
| 			libzfs_err = EZFS_UMOUNTFAILED;
 | |
| 		}
 | |
| 		if (zhp) {
 | |
| 			return (zfs_error_fmt(zhp->zfs_hdl, libzfs_err,
 | |
| 			    dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
 | |
| 			    mountpoint));
 | |
| 		} else {
 | |
| 			return (-1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unmount the given filesystem.
 | |
|  */
 | |
| int
 | |
| zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
 | |
| {
 | |
| 	libzfs_handle_t *hdl = zhp->zfs_hdl;
 | |
| 	struct mnttab entry;
 | |
| 	char *mntpt = NULL;
 | |
| 	boolean_t encroot, unmounted = B_FALSE;
 | |
| 
 | |
| 	/* check to see if we need to unmount the filesystem */
 | |
| 	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
 | |
| 	    libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
 | |
| 		/*
 | |
| 		 * mountpoint may have come from a call to
 | |
| 		 * getmnt/getmntany if it isn't NULL. If it is NULL,
 | |
| 		 * we know it comes from libzfs_mnttab_find which can
 | |
| 		 * then get freed later. We strdup it to play it safe.
 | |
| 		 */
 | |
| 		if (mountpoint == NULL)
 | |
| 			mntpt = zfs_strdup(hdl, entry.mnt_mountp);
 | |
| 		else
 | |
| 			mntpt = zfs_strdup(hdl, mountpoint);
 | |
| 
 | |
| 		/*
 | |
| 		 * Unshare and unmount the filesystem
 | |
| 		 */
 | |
| 		if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) {
 | |
| 			free(mntpt);
 | |
| 			return (-1);
 | |
| 		}
 | |
| 		zfs_commit_all_shares();
 | |
| 
 | |
| 		if (unmount_one(zhp, mntpt, flags) != 0) {
 | |
| 			free(mntpt);
 | |
| 			(void) zfs_shareall(zhp);
 | |
| 			zfs_commit_all_shares();
 | |
| 			return (-1);
 | |
| 		}
 | |
| 
 | |
| 		libzfs_mnttab_remove(hdl, zhp->zfs_name);
 | |
| 		free(mntpt);
 | |
| 		unmounted = B_TRUE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the MS_CRYPT flag is provided we must ensure we attempt to
 | |
| 	 * unload the dataset's key regardless of whether we did any work
 | |
| 	 * to unmount it. We only do this for encryption roots.
 | |
| 	 */
 | |
| 	if ((flags & MS_CRYPT) != 0 &&
 | |
| 	    zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
 | |
| 		zfs_refresh_properties(zhp);
 | |
| 
 | |
| 		if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 &&
 | |
| 		    unmounted) {
 | |
| 			(void) zfs_mount(zhp, NULL, 0);
 | |
| 			return (-1);
 | |
| 		}
 | |
| 
 | |
| 		if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
 | |
| 		    ZFS_KEYSTATUS_AVAILABLE &&
 | |
| 		    zfs_crypto_unload_key(zhp) != 0) {
 | |
| 			(void) zfs_mount(zhp, NULL, 0);
 | |
| 			return (-1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	zpool_disable_volume_os(zhp->zfs_name);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unmount this filesystem and any children inheriting the mountpoint property.
 | |
|  * To do this, just act like we're changing the mountpoint property, but don't
 | |
|  * remount the filesystems afterwards.
 | |
|  */
 | |
| int
 | |
| zfs_unmountall(zfs_handle_t *zhp, int flags)
 | |
| {
 | |
| 	prop_changelist_t *clp;
 | |
| 	int ret;
 | |
| 
 | |
| 	clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
 | |
| 	    CL_GATHER_ITER_MOUNTED, flags);
 | |
| 	if (clp == NULL)
 | |
| 		return (-1);
 | |
| 
 | |
| 	ret = changelist_prefix(clp);
 | |
| 	changelist_free(clp);
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| zfs_is_shared(zfs_handle_t *zhp)
 | |
| {
 | |
| 	zfs_share_type_t rc = 0;
 | |
| 	const zfs_share_proto_t *curr_proto;
 | |
| 
 | |
| 	if (ZFS_IS_VOLUME(zhp))
 | |
| 		return (B_FALSE);
 | |
| 
 | |
| 	for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
 | |
| 	    curr_proto++)
 | |
| 		rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto);
 | |
| 
 | |
| 	return (rc ? B_TRUE : B_FALSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unshare a filesystem by mountpoint.
 | |
|  */
 | |
| int
 | |
| unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
 | |
|     zfs_share_proto_t proto)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = sa_disable_share(mountpoint, proto_table[proto].p_name);
 | |
| 	if (err != SA_OK) {
 | |
| 		return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
 | |
| 		    dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
 | |
| 		    name, sa_errorstr(err)));
 | |
| 	}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Query libshare for the given mountpoint and protocol, returning
 | |
|  * a zfs_share_type_t value.
 | |
|  */
 | |
| zfs_share_type_t
 | |
| is_shared(const char *mountpoint, zfs_share_proto_t proto)
 | |
| {
 | |
| 	if (sa_is_shared(mountpoint, proto_table[proto].p_name)) {
 | |
| 		switch (proto) {
 | |
| 		case PROTO_NFS:
 | |
| 			return (SHARED_NFS);
 | |
| 		case PROTO_SMB:
 | |
| 			return (SHARED_SMB);
 | |
| 		default:
 | |
| 			return (SHARED_NOT_SHARED);
 | |
| 		}
 | |
| 	}
 | |
| 	return (SHARED_NOT_SHARED);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Share the given filesystem according to the options in the specified
 | |
|  * protocol specific properties (sharenfs, sharesmb).  We rely
 | |
|  * on "libshare" to do the dirty work for us.
 | |
|  */
 | |
| int
 | |
| zfs_share_proto(zfs_handle_t *zhp, const zfs_share_proto_t *proto)
 | |
| {
 | |
| 	char mountpoint[ZFS_MAXPROPLEN];
 | |
| 	char shareopts[ZFS_MAXPROPLEN];
 | |
| 	char sourcestr[ZFS_MAXPROPLEN];
 | |
| 	const zfs_share_proto_t *curr_proto;
 | |
| 	zprop_source_t sourcetype;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0))
 | |
| 		return (0);
 | |
| 
 | |
| 	for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
 | |
| 		/*
 | |
| 		 * Return success if there are no share options.
 | |
| 		 */
 | |
| 		if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
 | |
| 		    shareopts, sizeof (shareopts), &sourcetype, sourcestr,
 | |
| 		    ZFS_MAXPROPLEN, B_FALSE) != 0 ||
 | |
| 		    strcmp(shareopts, "off") == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the 'zoned' property is set, then zfs_is_mountable()
 | |
| 		 * will have already bailed out if we are in the global zone.
 | |
| 		 * But local zones cannot be NFS servers, so we ignore it for
 | |
| 		 * local zones as well.
 | |
| 		 */
 | |
| 		if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
 | |
| 			continue;
 | |
| 
 | |
| 		err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts,
 | |
| 		    proto_table[*curr_proto].p_name);
 | |
| 		if (err != SA_OK) {
 | |
| 			return (zfs_error_fmt(zhp->zfs_hdl,
 | |
| 			    proto_table[*curr_proto].p_share_err,
 | |
| 			    dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"),
 | |
| 			    zfs_get_name(zhp), sa_errorstr(err)));
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_share(zfs_handle_t *zhp)
 | |
| {
 | |
| 	assert(!ZFS_IS_VOLUME(zhp));
 | |
| 	return (zfs_share_proto(zhp, share_all_proto));
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_unshare(zfs_handle_t *zhp)
 | |
| {
 | |
| 	assert(!ZFS_IS_VOLUME(zhp));
 | |
| 	return (zfs_unshareall(zhp));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if the filesystem is currently shared.
 | |
|  */
 | |
| static zfs_share_type_t
 | |
| zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto)
 | |
| {
 | |
| 	char *mountpoint;
 | |
| 	zfs_share_type_t rc;
 | |
| 
 | |
| 	if (!zfs_is_mounted(zhp, &mountpoint))
 | |
| 		return (SHARED_NOT_SHARED);
 | |
| 
 | |
| 	if ((rc = is_shared(mountpoint, proto))
 | |
| 	    != SHARED_NOT_SHARED) {
 | |
| 		if (where != NULL)
 | |
| 			*where = mountpoint;
 | |
| 		else
 | |
| 			free(mountpoint);
 | |
| 		return (rc);
 | |
| 	} else {
 | |
| 		free(mountpoint);
 | |
| 		return (SHARED_NOT_SHARED);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| zfs_is_shared_nfs(zfs_handle_t *zhp, char **where)
 | |
| {
 | |
| 	return (zfs_is_shared_proto(zhp, where,
 | |
| 	    PROTO_NFS) != SHARED_NOT_SHARED);
 | |
| }
 | |
| 
 | |
| boolean_t
 | |
| zfs_is_shared_smb(zfs_handle_t *zhp, char **where)
 | |
| {
 | |
| 	return (zfs_is_shared_proto(zhp, where,
 | |
| 	    PROTO_SMB) != SHARED_NOT_SHARED);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * zfs_parse_options(options, proto)
 | |
|  *
 | |
|  * Call the legacy parse interface to get the protocol specific
 | |
|  * options using the NULL arg to indicate that this is a "parse" only.
 | |
|  */
 | |
| int
 | |
| zfs_parse_options(char *options, zfs_share_proto_t proto)
 | |
| {
 | |
| 	return (sa_validate_shareopts(options, proto_table[proto].p_name));
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_commit_proto(const zfs_share_proto_t *proto)
 | |
| {
 | |
| 	const zfs_share_proto_t *curr_proto;
 | |
| 	for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++)
 | |
| 		sa_commit_shares(proto_table[*curr_proto].p_name);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_commit_nfs_shares(void)
 | |
| {
 | |
| 	zfs_commit_proto(nfs_only);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_commit_smb_shares(void)
 | |
| {
 | |
| 	zfs_commit_proto(smb_only);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_commit_all_shares(void)
 | |
| {
 | |
| 	zfs_commit_proto(share_all_proto);
 | |
| }
 | |
| 
 | |
| void
 | |
| zfs_commit_shares(const char *proto)
 | |
| {
 | |
| 	if (proto == NULL)
 | |
| 		zfs_commit_proto(share_all_proto);
 | |
| 	else if (strcmp(proto, "nfs") == 0)
 | |
| 		zfs_commit_proto(nfs_only);
 | |
| 	else if (strcmp(proto, "smb") == 0)
 | |
| 		zfs_commit_proto(smb_only);
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_share_nfs(zfs_handle_t *zhp)
 | |
| {
 | |
| 	return (zfs_share_proto(zhp, nfs_only));
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_share_smb(zfs_handle_t *zhp)
 | |
| {
 | |
| 	return (zfs_share_proto(zhp, smb_only));
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_shareall(zfs_handle_t *zhp)
 | |
| {
 | |
| 	return (zfs_share_proto(zhp, share_all_proto));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unshare the given filesystem.
 | |
|  */
 | |
| int
 | |
| zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint,
 | |
|     const zfs_share_proto_t *proto)
 | |
| {
 | |
| 	libzfs_handle_t *hdl = zhp->zfs_hdl;
 | |
| 	struct mnttab entry;
 | |
| 	char *mntpt = NULL;
 | |
| 
 | |
| 	/* check to see if need to unmount the filesystem */
 | |
| 	if (mountpoint != NULL)
 | |
| 		mntpt = zfs_strdup(hdl, mountpoint);
 | |
| 
 | |
| 	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
 | |
| 	    libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
 | |
| 		const zfs_share_proto_t *curr_proto;
 | |
| 
 | |
| 		if (mountpoint == NULL)
 | |
| 			mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp);
 | |
| 
 | |
| 		for (curr_proto = proto; *curr_proto != PROTO_END;
 | |
| 		    curr_proto++) {
 | |
| 
 | |
| 			if (is_shared(mntpt, *curr_proto)) {
 | |
| 				if (unshare_one(hdl, zhp->zfs_name,
 | |
| 				    mntpt, *curr_proto) != 0) {
 | |
| 					if (mntpt != NULL)
 | |
| 						free(mntpt);
 | |
| 					return (-1);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (mntpt != NULL)
 | |
| 		free(mntpt);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint)
 | |
| {
 | |
| 	return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint)
 | |
| {
 | |
| 	return (zfs_unshare_proto(zhp, mountpoint, smb_only));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Same as zfs_unmountall(), but for NFS and SMB unshares.
 | |
|  */
 | |
| static int
 | |
| zfs_unshareall_proto(zfs_handle_t *zhp, const zfs_share_proto_t *proto)
 | |
| {
 | |
| 	prop_changelist_t *clp;
 | |
| 	int ret;
 | |
| 
 | |
| 	clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
 | |
| 	if (clp == NULL)
 | |
| 		return (-1);
 | |
| 
 | |
| 	ret = changelist_unshare(clp, proto);
 | |
| 	changelist_free(clp);
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_unshareall_nfs(zfs_handle_t *zhp)
 | |
| {
 | |
| 	return (zfs_unshareall_proto(zhp, nfs_only));
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_unshareall_smb(zfs_handle_t *zhp)
 | |
| {
 | |
| 	return (zfs_unshareall_proto(zhp, smb_only));
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_unshareall(zfs_handle_t *zhp)
 | |
| {
 | |
| 	return (zfs_unshareall_proto(zhp, share_all_proto));
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint)
 | |
| {
 | |
| 	return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
 | |
| }
 | |
| 
 | |
| int
 | |
| zfs_unshareall_bytype(zfs_handle_t *zhp, const char *mountpoint,
 | |
|     const char *proto)
 | |
| {
 | |
| 	if (proto == NULL)
 | |
| 		return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
 | |
| 	if (strcmp(proto, "nfs") == 0)
 | |
| 		return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
 | |
| 	else if (strcmp(proto, "smb") == 0)
 | |
| 		return (zfs_unshare_proto(zhp, mountpoint, smb_only));
 | |
| 	else
 | |
| 		return (1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove the mountpoint associated with the current dataset, if necessary.
 | |
|  * We only remove the underlying directory if:
 | |
|  *
 | |
|  *	- The mountpoint is not 'none' or 'legacy'
 | |
|  *	- The mountpoint is non-empty
 | |
|  *	- The mountpoint is the default or inherited
 | |
|  *	- The 'zoned' property is set, or we're in a local zone
 | |
|  *
 | |
|  * Any other directories we leave alone.
 | |
|  */
 | |
| void
 | |
| remove_mountpoint(zfs_handle_t *zhp)
 | |
| {
 | |
| 	char mountpoint[ZFS_MAXPROPLEN];
 | |
| 	zprop_source_t source;
 | |
| 
 | |
| 	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
 | |
| 	    &source, 0))
 | |
| 		return;
 | |
| 
 | |
| 	if (source == ZPROP_SRC_DEFAULT ||
 | |
| 	    source == ZPROP_SRC_INHERITED) {
 | |
| 		/*
 | |
| 		 * Try to remove the directory, silently ignoring any errors.
 | |
| 		 * The filesystem may have since been removed or moved around,
 | |
| 		 * and this error isn't really useful to the administrator in
 | |
| 		 * any way.
 | |
| 		 */
 | |
| 		(void) rmdir(mountpoint);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add the given zfs handle to the cb_handles array, dynamically reallocating
 | |
|  * the array if it is out of space.
 | |
|  */
 | |
| void
 | |
| libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
 | |
| {
 | |
| 	if (cbp->cb_alloc == cbp->cb_used) {
 | |
| 		size_t newsz;
 | |
| 		zfs_handle_t **newhandles;
 | |
| 
 | |
| 		newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
 | |
| 		newhandles = zfs_realloc(zhp->zfs_hdl,
 | |
| 		    cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
 | |
| 		    newsz * sizeof (zfs_handle_t *));
 | |
| 		cbp->cb_handles = newhandles;
 | |
| 		cbp->cb_alloc = newsz;
 | |
| 	}
 | |
| 	cbp->cb_handles[cbp->cb_used++] = zhp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Recursive helper function used during file system enumeration
 | |
|  */
 | |
| static int
 | |
| zfs_iter_cb(zfs_handle_t *zhp, void *data)
 | |
| {
 | |
| 	get_all_cb_t *cbp = data;
 | |
| 
 | |
| 	if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
 | |
| 		zfs_close(zhp);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
 | |
| 		zfs_close(zhp);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
 | |
| 	    ZFS_KEYSTATUS_UNAVAILABLE) {
 | |
| 		zfs_close(zhp);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this filesystem is inconsistent and has a receive resume
 | |
| 	 * token, we can not mount it.
 | |
| 	 */
 | |
| 	if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
 | |
| 	    zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
 | |
| 	    NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
 | |
| 		zfs_close(zhp);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	libzfs_add_handle(cbp, zhp);
 | |
| 	if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) {
 | |
| 		zfs_close(zhp);
 | |
| 		return (-1);
 | |
| 	}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sort comparator that compares two mountpoint paths. We sort these paths so
 | |
|  * that subdirectories immediately follow their parents. This means that we
 | |
|  * effectively treat the '/' character as the lowest value non-nul char.
 | |
|  * Since filesystems from non-global zones can have the same mountpoint
 | |
|  * as other filesystems, the comparator sorts global zone filesystems to
 | |
|  * the top of the list. This means that the global zone will traverse the
 | |
|  * filesystem list in the correct order and can stop when it sees the
 | |
|  * first zoned filesystem. In a non-global zone, only the delegated
 | |
|  * filesystems are seen.
 | |
|  *
 | |
|  * An example sorted list using this comparator would look like:
 | |
|  *
 | |
|  * /foo
 | |
|  * /foo/bar
 | |
|  * /foo/bar/baz
 | |
|  * /foo/baz
 | |
|  * /foo.bar
 | |
|  * /foo (NGZ1)
 | |
|  * /foo (NGZ2)
 | |
|  *
 | |
|  * The mounting code depends on this ordering to deterministically iterate
 | |
|  * over filesystems in order to spawn parallel mount tasks.
 | |
|  */
 | |
| static int
 | |
| mountpoint_cmp(const void *arga, const void *argb)
 | |
| {
 | |
| 	zfs_handle_t *const *zap = arga;
 | |
| 	zfs_handle_t *za = *zap;
 | |
| 	zfs_handle_t *const *zbp = argb;
 | |
| 	zfs_handle_t *zb = *zbp;
 | |
| 	char mounta[MAXPATHLEN];
 | |
| 	char mountb[MAXPATHLEN];
 | |
| 	const char *a = mounta;
 | |
| 	const char *b = mountb;
 | |
| 	boolean_t gota, gotb;
 | |
| 	uint64_t zoneda, zonedb;
 | |
| 
 | |
| 	zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
 | |
| 	zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
 | |
| 	if (zoneda && !zonedb)
 | |
| 		return (1);
 | |
| 	if (!zoneda && zonedb)
 | |
| 		return (-1);
 | |
| 
 | |
| 	gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
 | |
| 	if (gota) {
 | |
| 		verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
 | |
| 		    sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
 | |
| 	}
 | |
| 	gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
 | |
| 	if (gotb) {
 | |
| 		verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
 | |
| 		    sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
 | |
| 	}
 | |
| 
 | |
| 	if (gota && gotb) {
 | |
| 		while (*a != '\0' && (*a == *b)) {
 | |
| 			a++;
 | |
| 			b++;
 | |
| 		}
 | |
| 		if (*a == *b)
 | |
| 			return (0);
 | |
| 		if (*a == '\0')
 | |
| 			return (-1);
 | |
| 		if (*b == '\0')
 | |
| 			return (1);
 | |
| 		if (*a == '/')
 | |
| 			return (-1);
 | |
| 		if (*b == '/')
 | |
| 			return (1);
 | |
| 		return (*a < *b ? -1 : *a > *b);
 | |
| 	}
 | |
| 
 | |
| 	if (gota)
 | |
| 		return (-1);
 | |
| 	if (gotb)
 | |
| 		return (1);
 | |
| 
 | |
| 	/*
 | |
| 	 * If neither filesystem has a mountpoint, revert to sorting by
 | |
| 	 * dataset name.
 | |
| 	 */
 | |
| 	return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if path2 is a child of path1 or path2 equals path1 or
 | |
|  * path1 is "/" (path2 is always a child of "/").
 | |
|  */
 | |
| static boolean_t
 | |
| libzfs_path_contains(const char *path1, const char *path2)
 | |
| {
 | |
| 	return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 ||
 | |
| 	    (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a mountpoint specified by idx in the handles array, find the first
 | |
|  * non-descendent of that mountpoint and return its index. Descendant paths
 | |
|  * start with the parent's path. This function relies on the ordering
 | |
|  * enforced by mountpoint_cmp().
 | |
|  */
 | |
| static int
 | |
| non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
 | |
| {
 | |
| 	char parent[ZFS_MAXPROPLEN];
 | |
| 	char child[ZFS_MAXPROPLEN];
 | |
| 	int i;
 | |
| 
 | |
| 	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
 | |
| 	    sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
 | |
| 
 | |
| 	for (i = idx + 1; i < num_handles; i++) {
 | |
| 		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
 | |
| 		    sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
 | |
| 		if (!libzfs_path_contains(parent, child))
 | |
| 			break;
 | |
| 	}
 | |
| 	return (i);
 | |
| }
 | |
| 
 | |
| typedef struct mnt_param {
 | |
| 	libzfs_handle_t	*mnt_hdl;
 | |
| 	tpool_t		*mnt_tp;
 | |
| 	zfs_handle_t	**mnt_zhps; /* filesystems to mount */
 | |
| 	size_t		mnt_num_handles;
 | |
| 	int		mnt_idx;	/* Index of selected entry to mount */
 | |
| 	zfs_iter_f	mnt_func;
 | |
| 	void		*mnt_data;
 | |
| } mnt_param_t;
 | |
| 
 | |
| /*
 | |
|  * Allocate and populate the parameter struct for mount function, and
 | |
|  * schedule mounting of the entry selected by idx.
 | |
|  */
 | |
| static void
 | |
| zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
 | |
|     size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp)
 | |
| {
 | |
| 	mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
 | |
| 
 | |
| 	mnt_param->mnt_hdl = hdl;
 | |
| 	mnt_param->mnt_tp = tp;
 | |
| 	mnt_param->mnt_zhps = handles;
 | |
| 	mnt_param->mnt_num_handles = num_handles;
 | |
| 	mnt_param->mnt_idx = idx;
 | |
| 	mnt_param->mnt_func = func;
 | |
| 	mnt_param->mnt_data = data;
 | |
| 
 | |
| 	(void) tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the structure used to keep state of mounting or sharing operations
 | |
|  * during a call to zpool_enable_datasets().
 | |
|  */
 | |
| typedef struct mount_state {
 | |
| 	/*
 | |
| 	 * ms_mntstatus is set to -1 if any mount fails. While multiple threads
 | |
| 	 * could update this variable concurrently, no synchronization is
 | |
| 	 * needed as it's only ever set to -1.
 | |
| 	 */
 | |
| 	int		ms_mntstatus;
 | |
| 	int		ms_mntflags;
 | |
| 	const char	*ms_mntopts;
 | |
| } mount_state_t;
 | |
| 
 | |
| static int
 | |
| zfs_mount_one(zfs_handle_t *zhp, void *arg)
 | |
| {
 | |
| 	mount_state_t *ms = arg;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * don't attempt to mount encrypted datasets with
 | |
| 	 * unloaded keys
 | |
| 	 */
 | |
| 	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
 | |
| 	    ZFS_KEYSTATUS_UNAVAILABLE)
 | |
| 		return (0);
 | |
| 
 | |
| 	if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
 | |
| 		ret = ms->ms_mntstatus = -1;
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zfs_share_one(zfs_handle_t *zhp, void *arg)
 | |
| {
 | |
| 	mount_state_t *ms = arg;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (zfs_share(zhp) != 0)
 | |
| 		ret = ms->ms_mntstatus = -1;
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Thread pool function to mount one file system. On completion, it finds and
 | |
|  * schedules its children to be mounted. This depends on the sorting done in
 | |
|  * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
 | |
|  * each descending from the previous) will have no parallelism since we always
 | |
|  * have to wait for the parent to finish mounting before we can schedule
 | |
|  * its children.
 | |
|  */
 | |
| static void
 | |
| zfs_mount_task(void *arg)
 | |
| {
 | |
| 	mnt_param_t *mp = arg;
 | |
| 	int idx = mp->mnt_idx;
 | |
| 	zfs_handle_t **handles = mp->mnt_zhps;
 | |
| 	size_t num_handles = mp->mnt_num_handles;
 | |
| 	char mountpoint[ZFS_MAXPROPLEN];
 | |
| 
 | |
| 	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
 | |
| 	    sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
 | |
| 
 | |
| 	if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * We dispatch tasks to mount filesystems with mountpoints underneath
 | |
| 	 * this one. We do this by dispatching the next filesystem with a
 | |
| 	 * descendant mountpoint of the one we just mounted, then skip all of
 | |
| 	 * its descendants, dispatch the next descendant mountpoint, and so on.
 | |
| 	 * The non_descendant_idx() function skips over filesystems that are
 | |
| 	 * descendants of the filesystem we just dispatched.
 | |
| 	 */
 | |
| 	for (int i = idx + 1; i < num_handles;
 | |
| 	    i = non_descendant_idx(handles, num_handles, i)) {
 | |
| 		char child[ZFS_MAXPROPLEN];
 | |
| 		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
 | |
| 		    child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
 | |
| 
 | |
| 		if (!libzfs_path_contains(mountpoint, child))
 | |
| 			break; /* not a descendant, return */
 | |
| 		zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
 | |
| 		    mp->mnt_func, mp->mnt_data, mp->mnt_tp);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	free(mp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Issue the func callback for each ZFS handle contained in the handles
 | |
|  * array. This function is used to mount all datasets, and so this function
 | |
|  * guarantees that filesystems for parent mountpoints are called before their
 | |
|  * children. As such, before issuing any callbacks, we first sort the array
 | |
|  * of handles by mountpoint.
 | |
|  *
 | |
|  * Callbacks are issued in one of two ways:
 | |
|  *
 | |
|  * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
 | |
|  *    environment variable is set, then we issue callbacks sequentially.
 | |
|  *
 | |
|  * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
 | |
|  *    environment variable is not set, then we use a tpool to dispatch threads
 | |
|  *    to mount filesystems in parallel. This function dispatches tasks to mount
 | |
|  *    the filesystems at the top-level mountpoints, and these tasks in turn
 | |
|  *    are responsible for recursively mounting filesystems in their children
 | |
|  *    mountpoints.
 | |
|  */
 | |
| void
 | |
| zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
 | |
|     size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
 | |
| {
 | |
| 	zoneid_t zoneid = getzoneid();
 | |
| 
 | |
| 	/*
 | |
| 	 * The ZFS_SERIAL_MOUNT environment variable is an undocumented
 | |
| 	 * variable that can be used as a convenience to do a/b comparison
 | |
| 	 * of serial vs. parallel mounting.
 | |
| 	 */
 | |
| 	boolean_t serial_mount = !parallel ||
 | |
| 	    (getenv("ZFS_SERIAL_MOUNT") != NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Sort the datasets by mountpoint. See mountpoint_cmp for details
 | |
| 	 * of how these are sorted.
 | |
| 	 */
 | |
| 	qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
 | |
| 
 | |
| 	if (serial_mount) {
 | |
| 		for (int i = 0; i < num_handles; i++) {
 | |
| 			func(handles[i], data);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Issue the callback function for each dataset using a parallel
 | |
| 	 * algorithm that uses a thread pool to manage threads.
 | |
| 	 */
 | |
| 	tpool_t *tp = tpool_create(1, mount_tp_nthr, 0, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * There may be multiple "top level" mountpoints outside of the pool's
 | |
| 	 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
 | |
| 	 * these.
 | |
| 	 */
 | |
| 	for (int i = 0; i < num_handles;
 | |
| 	    i = non_descendant_idx(handles, num_handles, i)) {
 | |
| 		/*
 | |
| 		 * Since the mountpoints have been sorted so that the zoned
 | |
| 		 * filesystems are at the end, a zoned filesystem seen from
 | |
| 		 * the global zone means that we're done.
 | |
| 		 */
 | |
| 		if (zoneid == GLOBAL_ZONEID &&
 | |
| 		    zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
 | |
| 			break;
 | |
| 		zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
 | |
| 		    tp);
 | |
| 	}
 | |
| 
 | |
| 	tpool_wait(tp);	/* wait for all scheduled mounts to complete */
 | |
| 	tpool_destroy(tp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mount and share all datasets within the given pool.  This assumes that no
 | |
|  * datasets within the pool are currently mounted.
 | |
|  */
 | |
| int
 | |
| zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
 | |
| {
 | |
| 	get_all_cb_t cb = { 0 };
 | |
| 	mount_state_t ms = { 0 };
 | |
| 	zfs_handle_t *zfsp;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
 | |
| 	    ZFS_TYPE_DATASET)) == NULL)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Gather all non-snapshot datasets within the pool. Start by adding
 | |
| 	 * the root filesystem for this pool to the list, and then iterate
 | |
| 	 * over all child filesystems.
 | |
| 	 */
 | |
| 	libzfs_add_handle(&cb, zfsp);
 | |
| 	if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mount all filesystems
 | |
| 	 */
 | |
| 	ms.ms_mntopts = mntopts;
 | |
| 	ms.ms_mntflags = flags;
 | |
| 	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
 | |
| 	    zfs_mount_one, &ms, B_TRUE);
 | |
| 	if (ms.ms_mntstatus != 0)
 | |
| 		ret = ms.ms_mntstatus;
 | |
| 
 | |
| 	/*
 | |
| 	 * Share all filesystems that need to be shared. This needs to be
 | |
| 	 * a separate pass because libshare is not mt-safe, and so we need
 | |
| 	 * to share serially.
 | |
| 	 */
 | |
| 	ms.ms_mntstatus = 0;
 | |
| 	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
 | |
| 	    zfs_share_one, &ms, B_FALSE);
 | |
| 	if (ms.ms_mntstatus != 0)
 | |
| 		ret = ms.ms_mntstatus;
 | |
| 	else
 | |
| 		zfs_commit_all_shares();
 | |
| 
 | |
| out:
 | |
| 	for (int i = 0; i < cb.cb_used; i++)
 | |
| 		zfs_close(cb.cb_handles[i]);
 | |
| 	free(cb.cb_handles);
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| struct sets_s {
 | |
| 	char *mountpoint;
 | |
| 	zfs_handle_t *dataset;
 | |
| };
 | |
| 
 | |
| static int
 | |
| mountpoint_compare(const void *a, const void *b)
 | |
| {
 | |
| 	const struct sets_s *mounta = (struct sets_s *)a;
 | |
| 	const struct sets_s *mountb = (struct sets_s *)b;
 | |
| 
 | |
| 	return (strcmp(mountb->mountpoint, mounta->mountpoint));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unshare and unmount all datasets within the given pool.  We don't want to
 | |
|  * rely on traversing the DSL to discover the filesystems within the pool,
 | |
|  * because this may be expensive (if not all of them are mounted), and can fail
 | |
|  * arbitrarily (on I/O error, for example).  Instead, we walk /proc/self/mounts
 | |
|  * and gather all the filesystems that are currently mounted.
 | |
|  */
 | |
| int
 | |
| zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
 | |
| {
 | |
| 	int used, alloc;
 | |
| 	FILE *mnttab;
 | |
| 	struct mnttab entry;
 | |
| 	size_t namelen;
 | |
| 	struct sets_s *sets = NULL;
 | |
| 	libzfs_handle_t *hdl = zhp->zpool_hdl;
 | |
| 	int i;
 | |
| 	int ret = -1;
 | |
| 	int flags = (force ? MS_FORCE : 0);
 | |
| 
 | |
| 	namelen = strlen(zhp->zpool_name);
 | |
| 
 | |
| 	if ((mnttab = fopen(MNTTAB, "re")) == NULL)
 | |
| 		return (ENOENT);
 | |
| 
 | |
| 	used = alloc = 0;
 | |
| 	while (getmntent(mnttab, &entry) == 0) {
 | |
| 		/*
 | |
| 		 * Ignore non-ZFS entries.
 | |
| 		 */
 | |
| 		if (entry.mnt_fstype == NULL ||
 | |
| 		    strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Ignore filesystems not within this pool.
 | |
| 		 */
 | |
| 		if (entry.mnt_mountp == NULL ||
 | |
| 		    strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
 | |
| 		    (entry.mnt_special[namelen] != '/' &&
 | |
| 		    entry.mnt_special[namelen] != '\0'))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * At this point we've found a filesystem within our pool.  Add
 | |
| 		 * it to our growing list.
 | |
| 		 */
 | |
| 		if (used == alloc) {
 | |
| 			if (alloc == 0) {
 | |
| 
 | |
| 				if ((sets = zfs_alloc(hdl,
 | |
| 				    8 * sizeof (struct sets_s))) == NULL)
 | |
| 					goto out;
 | |
| 
 | |
| 				alloc = 8;
 | |
| 			} else {
 | |
| 				void *ptr;
 | |
| 
 | |
| 				if ((ptr = zfs_realloc(hdl, sets,
 | |
| 				    alloc * sizeof (struct sets_s),
 | |
| 				    alloc * 2 * sizeof (struct sets_s)))
 | |
| 				    == NULL)
 | |
| 					goto out;
 | |
| 				sets = ptr;
 | |
| 
 | |
| 				alloc *= 2;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if ((sets[used].mountpoint = zfs_strdup(hdl,
 | |
| 		    entry.mnt_mountp)) == NULL)
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * This is allowed to fail, in case there is some I/O error.  It
 | |
| 		 * is only used to determine if we need to remove the underlying
 | |
| 		 * mountpoint, so failure is not fatal.
 | |
| 		 */
 | |
| 		sets[used].dataset = make_dataset_handle(hdl,
 | |
| 		    entry.mnt_special);
 | |
| 
 | |
| 		used++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, we have the entire list of filesystems, so sort it by
 | |
| 	 * mountpoint.
 | |
| 	 */
 | |
| 	qsort(sets, used, sizeof (struct sets_s), mountpoint_compare);
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk through and first unshare everything.
 | |
| 	 */
 | |
| 	for (i = 0; i < used; i++) {
 | |
| 		const zfs_share_proto_t *curr_proto;
 | |
| 		for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
 | |
| 		    curr_proto++) {
 | |
| 			if (is_shared(sets[i].mountpoint, *curr_proto) &&
 | |
| 			    unshare_one(hdl, sets[i].mountpoint,
 | |
| 			    sets[i].mountpoint, *curr_proto) != 0)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	zfs_commit_all_shares();
 | |
| 
 | |
| 	/*
 | |
| 	 * Now unmount everything, removing the underlying directories as
 | |
| 	 * appropriate.
 | |
| 	 */
 | |
| 	for (i = 0; i < used; i++) {
 | |
| 		if (unmount_one(sets[i].dataset, sets[i].mountpoint,
 | |
| 		    flags) != 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < used; i++) {
 | |
| 		if (sets[i].dataset)
 | |
| 			remove_mountpoint(sets[i].dataset);
 | |
| 	}
 | |
| 
 | |
| 	zpool_disable_datasets_os(zhp, force);
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	(void) fclose(mnttab);
 | |
| 	for (i = 0; i < used; i++) {
 | |
| 		if (sets[i].dataset)
 | |
| 			zfs_close(sets[i].dataset);
 | |
| 		free(sets[i].mountpoint);
 | |
| 	}
 | |
| 	free(sets);
 | |
| 
 | |
| 	return (ret);
 | |
| }
 |