mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-11-04 08:52:47 +00:00 
			
		
		
		
	arc_prune_task uses a refcount to protect arc_prune_t, but it doesn't prevent the underlying zsb from disappearing if there's a concurrent umount. We fix this by force the caller of arc_remove_prune_callback to wait for arc_prune_taskq to finish. Signed-off-by: Chunwei Chen <david.chen@osnexus.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4687 Closes #4690
		
			
				
	
	
		
			7191 lines
		
	
	
		
			210 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7191 lines
		
	
	
		
			210 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * CDDL HEADER START
 | 
						|
 *
 | 
						|
 * The contents of this file are subject to the terms of the
 | 
						|
 * Common Development and Distribution License (the "License").
 | 
						|
 * You may not use this file except in compliance with the License.
 | 
						|
 *
 | 
						|
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | 
						|
 * or http://www.opensolaris.org/os/licensing.
 | 
						|
 * See the License for the specific language governing permissions
 | 
						|
 * and limitations under the License.
 | 
						|
 *
 | 
						|
 * When distributing Covered Code, include this CDDL HEADER in each
 | 
						|
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | 
						|
 * If applicable, add the following below this CDDL HEADER, with the
 | 
						|
 * fields enclosed by brackets "[]" replaced with your own identifying
 | 
						|
 * information: Portions Copyright [yyyy] [name of copyright owner]
 | 
						|
 *
 | 
						|
 * CDDL HEADER END
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 | 
						|
 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
 | 
						|
 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
 | 
						|
 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
 | 
						|
 * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * DVA-based Adjustable Replacement Cache
 | 
						|
 *
 | 
						|
 * While much of the theory of operation used here is
 | 
						|
 * based on the self-tuning, low overhead replacement cache
 | 
						|
 * presented by Megiddo and Modha at FAST 2003, there are some
 | 
						|
 * significant differences:
 | 
						|
 *
 | 
						|
 * 1. The Megiddo and Modha model assumes any page is evictable.
 | 
						|
 * Pages in its cache cannot be "locked" into memory.  This makes
 | 
						|
 * the eviction algorithm simple: evict the last page in the list.
 | 
						|
 * This also make the performance characteristics easy to reason
 | 
						|
 * about.  Our cache is not so simple.  At any given moment, some
 | 
						|
 * subset of the blocks in the cache are un-evictable because we
 | 
						|
 * have handed out a reference to them.  Blocks are only evictable
 | 
						|
 * when there are no external references active.  This makes
 | 
						|
 * eviction far more problematic:  we choose to evict the evictable
 | 
						|
 * blocks that are the "lowest" in the list.
 | 
						|
 *
 | 
						|
 * There are times when it is not possible to evict the requested
 | 
						|
 * space.  In these circumstances we are unable to adjust the cache
 | 
						|
 * size.  To prevent the cache growing unbounded at these times we
 | 
						|
 * implement a "cache throttle" that slows the flow of new data
 | 
						|
 * into the cache until we can make space available.
 | 
						|
 *
 | 
						|
 * 2. The Megiddo and Modha model assumes a fixed cache size.
 | 
						|
 * Pages are evicted when the cache is full and there is a cache
 | 
						|
 * miss.  Our model has a variable sized cache.  It grows with
 | 
						|
 * high use, but also tries to react to memory pressure from the
 | 
						|
 * operating system: decreasing its size when system memory is
 | 
						|
 * tight.
 | 
						|
 *
 | 
						|
 * 3. The Megiddo and Modha model assumes a fixed page size. All
 | 
						|
 * elements of the cache are therefore exactly the same size.  So
 | 
						|
 * when adjusting the cache size following a cache miss, its simply
 | 
						|
 * a matter of choosing a single page to evict.  In our model, we
 | 
						|
 * have variable sized cache blocks (rangeing from 512 bytes to
 | 
						|
 * 128K bytes).  We therefore choose a set of blocks to evict to make
 | 
						|
 * space for a cache miss that approximates as closely as possible
 | 
						|
 * the space used by the new block.
 | 
						|
 *
 | 
						|
 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
 | 
						|
 * by N. Megiddo & D. Modha, FAST 2003
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * The locking model:
 | 
						|
 *
 | 
						|
 * A new reference to a cache buffer can be obtained in two
 | 
						|
 * ways: 1) via a hash table lookup using the DVA as a key,
 | 
						|
 * or 2) via one of the ARC lists.  The arc_read() interface
 | 
						|
 * uses method 1, while the internal arc algorithms for
 | 
						|
 * adjusting the cache use method 2.  We therefore provide two
 | 
						|
 * types of locks: 1) the hash table lock array, and 2) the
 | 
						|
 * arc list locks.
 | 
						|
 *
 | 
						|
 * Buffers do not have their own mutexes, rather they rely on the
 | 
						|
 * hash table mutexes for the bulk of their protection (i.e. most
 | 
						|
 * fields in the arc_buf_hdr_t are protected by these mutexes).
 | 
						|
 *
 | 
						|
 * buf_hash_find() returns the appropriate mutex (held) when it
 | 
						|
 * locates the requested buffer in the hash table.  It returns
 | 
						|
 * NULL for the mutex if the buffer was not in the table.
 | 
						|
 *
 | 
						|
 * buf_hash_remove() expects the appropriate hash mutex to be
 | 
						|
 * already held before it is invoked.
 | 
						|
 *
 | 
						|
 * Each arc state also has a mutex which is used to protect the
 | 
						|
 * buffer list associated with the state.  When attempting to
 | 
						|
 * obtain a hash table lock while holding an arc list lock you
 | 
						|
 * must use: mutex_tryenter() to avoid deadlock.  Also note that
 | 
						|
 * the active state mutex must be held before the ghost state mutex.
 | 
						|
 *
 | 
						|
 * Arc buffers may have an associated eviction callback function.
 | 
						|
 * This function will be invoked prior to removing the buffer (e.g.
 | 
						|
 * in arc_do_user_evicts()).  Note however that the data associated
 | 
						|
 * with the buffer may be evicted prior to the callback.  The callback
 | 
						|
 * must be made with *no locks held* (to prevent deadlock).  Additionally,
 | 
						|
 * the users of callbacks must ensure that their private data is
 | 
						|
 * protected from simultaneous callbacks from arc_clear_callback()
 | 
						|
 * and arc_do_user_evicts().
 | 
						|
 *
 | 
						|
 * It as also possible to register a callback which is run when the
 | 
						|
 * arc_meta_limit is reached and no buffers can be safely evicted.  In
 | 
						|
 * this case the arc user should drop a reference on some arc buffers so
 | 
						|
 * they can be reclaimed and the arc_meta_limit honored.  For example,
 | 
						|
 * when using the ZPL each dentry holds a references on a znode.  These
 | 
						|
 * dentries must be pruned before the arc buffer holding the znode can
 | 
						|
 * be safely evicted.
 | 
						|
 *
 | 
						|
 * Note that the majority of the performance stats are manipulated
 | 
						|
 * with atomic operations.
 | 
						|
 *
 | 
						|
 * The L2ARC uses the l2ad_mtx on each vdev for the following:
 | 
						|
 *
 | 
						|
 *	- L2ARC buflist creation
 | 
						|
 *	- L2ARC buflist eviction
 | 
						|
 *	- L2ARC write completion, which walks L2ARC buflists
 | 
						|
 *	- ARC header destruction, as it removes from L2ARC buflists
 | 
						|
 *	- ARC header release, as it removes from L2ARC buflists
 | 
						|
 */
 | 
						|
 | 
						|
#include <sys/spa.h>
 | 
						|
#include <sys/zio.h>
 | 
						|
#include <sys/zio_compress.h>
 | 
						|
#include <sys/zfs_context.h>
 | 
						|
#include <sys/arc.h>
 | 
						|
#include <sys/refcount.h>
 | 
						|
#include <sys/vdev.h>
 | 
						|
#include <sys/vdev_impl.h>
 | 
						|
#include <sys/dsl_pool.h>
 | 
						|
#include <sys/multilist.h>
 | 
						|
#ifdef _KERNEL
 | 
						|
#include <sys/vmsystm.h>
 | 
						|
#include <vm/anon.h>
 | 
						|
#include <sys/fs/swapnode.h>
 | 
						|
#include <sys/zpl.h>
 | 
						|
#include <linux/mm_compat.h>
 | 
						|
#endif
 | 
						|
#include <sys/callb.h>
 | 
						|
#include <sys/kstat.h>
 | 
						|
#include <sys/dmu_tx.h>
 | 
						|
#include <zfs_fletcher.h>
 | 
						|
#include <sys/arc_impl.h>
 | 
						|
#include <sys/trace_arc.h>
 | 
						|
 | 
						|
#ifndef _KERNEL
 | 
						|
/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
 | 
						|
boolean_t arc_watch = B_FALSE;
 | 
						|
#endif
 | 
						|
 | 
						|
static kmutex_t		arc_reclaim_lock;
 | 
						|
static kcondvar_t	arc_reclaim_thread_cv;
 | 
						|
static boolean_t	arc_reclaim_thread_exit;
 | 
						|
static kcondvar_t	arc_reclaim_waiters_cv;
 | 
						|
 | 
						|
static kmutex_t		arc_user_evicts_lock;
 | 
						|
static kcondvar_t	arc_user_evicts_cv;
 | 
						|
static boolean_t	arc_user_evicts_thread_exit;
 | 
						|
 | 
						|
/*
 | 
						|
 * The number of headers to evict in arc_evict_state_impl() before
 | 
						|
 * dropping the sublist lock and evicting from another sublist. A lower
 | 
						|
 * value means we're more likely to evict the "correct" header (i.e. the
 | 
						|
 * oldest header in the arc state), but comes with higher overhead
 | 
						|
 * (i.e. more invocations of arc_evict_state_impl()).
 | 
						|
 */
 | 
						|
int zfs_arc_evict_batch_limit = 10;
 | 
						|
 | 
						|
/*
 | 
						|
 * The number of sublists used for each of the arc state lists. If this
 | 
						|
 * is not set to a suitable value by the user, it will be configured to
 | 
						|
 * the number of CPUs on the system in arc_init().
 | 
						|
 */
 | 
						|
int zfs_arc_num_sublists_per_state = 0;
 | 
						|
 | 
						|
/* number of seconds before growing cache again */
 | 
						|
static int		arc_grow_retry = 5;
 | 
						|
 | 
						|
/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
 | 
						|
int		zfs_arc_overflow_shift = 8;
 | 
						|
 | 
						|
/* shift of arc_c for calculating both min and max arc_p */
 | 
						|
static int		arc_p_min_shift = 4;
 | 
						|
 | 
						|
/* log2(fraction of arc to reclaim) */
 | 
						|
static int		arc_shrink_shift = 7;
 | 
						|
 | 
						|
/*
 | 
						|
 * log2(fraction of ARC which must be free to allow growing).
 | 
						|
 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
 | 
						|
 * when reading a new block into the ARC, we will evict an equal-sized block
 | 
						|
 * from the ARC.
 | 
						|
 *
 | 
						|
 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
 | 
						|
 * we will still not allow it to grow.
 | 
						|
 */
 | 
						|
int			arc_no_grow_shift = 5;
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * minimum lifespan of a prefetch block in clock ticks
 | 
						|
 * (initialized in arc_init())
 | 
						|
 */
 | 
						|
static int		arc_min_prefetch_lifespan;
 | 
						|
 | 
						|
/*
 | 
						|
 * If this percent of memory is free, don't throttle.
 | 
						|
 */
 | 
						|
int arc_lotsfree_percent = 10;
 | 
						|
 | 
						|
static int arc_dead;
 | 
						|
 | 
						|
/*
 | 
						|
 * The arc has filled available memory and has now warmed up.
 | 
						|
 */
 | 
						|
static boolean_t arc_warm;
 | 
						|
 | 
						|
/*
 | 
						|
 * These tunables are for performance analysis.
 | 
						|
 */
 | 
						|
unsigned long zfs_arc_max = 0;
 | 
						|
unsigned long zfs_arc_min = 0;
 | 
						|
unsigned long zfs_arc_meta_limit = 0;
 | 
						|
unsigned long zfs_arc_meta_min = 0;
 | 
						|
int zfs_arc_grow_retry = 0;
 | 
						|
int zfs_arc_shrink_shift = 0;
 | 
						|
int zfs_arc_p_min_shift = 0;
 | 
						|
int zfs_disable_dup_eviction = 0;
 | 
						|
int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
 | 
						|
 | 
						|
/*
 | 
						|
 * These tunables are Linux specific
 | 
						|
 */
 | 
						|
unsigned long zfs_arc_sys_free = 0;
 | 
						|
int zfs_arc_min_prefetch_lifespan = 0;
 | 
						|
int zfs_arc_p_aggressive_disable = 1;
 | 
						|
int zfs_arc_p_dampener_disable = 1;
 | 
						|
int zfs_arc_meta_prune = 10000;
 | 
						|
int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
 | 
						|
int zfs_arc_meta_adjust_restarts = 4096;
 | 
						|
int zfs_arc_lotsfree_percent = 10;
 | 
						|
 | 
						|
/* The 6 states: */
 | 
						|
static arc_state_t ARC_anon;
 | 
						|
static arc_state_t ARC_mru;
 | 
						|
static arc_state_t ARC_mru_ghost;
 | 
						|
static arc_state_t ARC_mfu;
 | 
						|
static arc_state_t ARC_mfu_ghost;
 | 
						|
static arc_state_t ARC_l2c_only;
 | 
						|
 | 
						|
typedef struct arc_stats {
 | 
						|
	kstat_named_t arcstat_hits;
 | 
						|
	kstat_named_t arcstat_misses;
 | 
						|
	kstat_named_t arcstat_demand_data_hits;
 | 
						|
	kstat_named_t arcstat_demand_data_misses;
 | 
						|
	kstat_named_t arcstat_demand_metadata_hits;
 | 
						|
	kstat_named_t arcstat_demand_metadata_misses;
 | 
						|
	kstat_named_t arcstat_prefetch_data_hits;
 | 
						|
	kstat_named_t arcstat_prefetch_data_misses;
 | 
						|
	kstat_named_t arcstat_prefetch_metadata_hits;
 | 
						|
	kstat_named_t arcstat_prefetch_metadata_misses;
 | 
						|
	kstat_named_t arcstat_mru_hits;
 | 
						|
	kstat_named_t arcstat_mru_ghost_hits;
 | 
						|
	kstat_named_t arcstat_mfu_hits;
 | 
						|
	kstat_named_t arcstat_mfu_ghost_hits;
 | 
						|
	kstat_named_t arcstat_deleted;
 | 
						|
	/*
 | 
						|
	 * Number of buffers that could not be evicted because the hash lock
 | 
						|
	 * was held by another thread.  The lock may not necessarily be held
 | 
						|
	 * by something using the same buffer, since hash locks are shared
 | 
						|
	 * by multiple buffers.
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_mutex_miss;
 | 
						|
	/*
 | 
						|
	 * Number of buffers skipped because they have I/O in progress, are
 | 
						|
	 * indrect prefetch buffers that have not lived long enough, or are
 | 
						|
	 * not from the spa we're trying to evict from.
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_evict_skip;
 | 
						|
	/*
 | 
						|
	 * Number of times arc_evict_state() was unable to evict enough
 | 
						|
	 * buffers to reach its target amount.
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_evict_not_enough;
 | 
						|
	kstat_named_t arcstat_evict_l2_cached;
 | 
						|
	kstat_named_t arcstat_evict_l2_eligible;
 | 
						|
	kstat_named_t arcstat_evict_l2_ineligible;
 | 
						|
	kstat_named_t arcstat_evict_l2_skip;
 | 
						|
	kstat_named_t arcstat_hash_elements;
 | 
						|
	kstat_named_t arcstat_hash_elements_max;
 | 
						|
	kstat_named_t arcstat_hash_collisions;
 | 
						|
	kstat_named_t arcstat_hash_chains;
 | 
						|
	kstat_named_t arcstat_hash_chain_max;
 | 
						|
	kstat_named_t arcstat_p;
 | 
						|
	kstat_named_t arcstat_c;
 | 
						|
	kstat_named_t arcstat_c_min;
 | 
						|
	kstat_named_t arcstat_c_max;
 | 
						|
	kstat_named_t arcstat_size;
 | 
						|
	/*
 | 
						|
	 * Number of bytes consumed by internal ARC structures necessary
 | 
						|
	 * for tracking purposes; these structures are not actually
 | 
						|
	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
 | 
						|
	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
 | 
						|
	 * caches), and arc_buf_t structures (allocated via arc_buf_t
 | 
						|
	 * cache).
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_hdr_size;
 | 
						|
	/*
 | 
						|
	 * Number of bytes consumed by ARC buffers of type equal to
 | 
						|
	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
 | 
						|
	 * on disk user data (e.g. plain file contents).
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_data_size;
 | 
						|
	/*
 | 
						|
	 * Number of bytes consumed by ARC buffers of type equal to
 | 
						|
	 * ARC_BUFC_METADATA. This is generally consumed by buffers
 | 
						|
	 * backing on disk data that is used for internal ZFS
 | 
						|
	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_metadata_size;
 | 
						|
	/*
 | 
						|
	 * Number of bytes consumed by various buffers and structures
 | 
						|
	 * not actually backed with ARC buffers. This includes bonus
 | 
						|
	 * buffers (allocated directly via zio_buf_* functions),
 | 
						|
	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
 | 
						|
	 * cache), and dnode_t structures (allocated via dnode_t cache).
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_other_size;
 | 
						|
	/*
 | 
						|
	 * Total number of bytes consumed by ARC buffers residing in the
 | 
						|
	 * arc_anon state. This includes *all* buffers in the arc_anon
 | 
						|
	 * state; e.g. data, metadata, evictable, and unevictable buffers
 | 
						|
	 * are all included in this value.
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_anon_size;
 | 
						|
	/*
 | 
						|
	 * Number of bytes consumed by ARC buffers that meet the
 | 
						|
	 * following criteria: backing buffers of type ARC_BUFC_DATA,
 | 
						|
	 * residing in the arc_anon state, and are eligible for eviction
 | 
						|
	 * (e.g. have no outstanding holds on the buffer).
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_anon_evictable_data;
 | 
						|
	/*
 | 
						|
	 * Number of bytes consumed by ARC buffers that meet the
 | 
						|
	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
 | 
						|
	 * residing in the arc_anon state, and are eligible for eviction
 | 
						|
	 * (e.g. have no outstanding holds on the buffer).
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_anon_evictable_metadata;
 | 
						|
	/*
 | 
						|
	 * Total number of bytes consumed by ARC buffers residing in the
 | 
						|
	 * arc_mru state. This includes *all* buffers in the arc_mru
 | 
						|
	 * state; e.g. data, metadata, evictable, and unevictable buffers
 | 
						|
	 * are all included in this value.
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_mru_size;
 | 
						|
	/*
 | 
						|
	 * Number of bytes consumed by ARC buffers that meet the
 | 
						|
	 * following criteria: backing buffers of type ARC_BUFC_DATA,
 | 
						|
	 * residing in the arc_mru state, and are eligible for eviction
 | 
						|
	 * (e.g. have no outstanding holds on the buffer).
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_mru_evictable_data;
 | 
						|
	/*
 | 
						|
	 * Number of bytes consumed by ARC buffers that meet the
 | 
						|
	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
 | 
						|
	 * residing in the arc_mru state, and are eligible for eviction
 | 
						|
	 * (e.g. have no outstanding holds on the buffer).
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_mru_evictable_metadata;
 | 
						|
	/*
 | 
						|
	 * Total number of bytes that *would have been* consumed by ARC
 | 
						|
	 * buffers in the arc_mru_ghost state. The key thing to note
 | 
						|
	 * here, is the fact that this size doesn't actually indicate
 | 
						|
	 * RAM consumption. The ghost lists only consist of headers and
 | 
						|
	 * don't actually have ARC buffers linked off of these headers.
 | 
						|
	 * Thus, *if* the headers had associated ARC buffers, these
 | 
						|
	 * buffers *would have* consumed this number of bytes.
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_mru_ghost_size;
 | 
						|
	/*
 | 
						|
	 * Number of bytes that *would have been* consumed by ARC
 | 
						|
	 * buffers that are eligible for eviction, of type
 | 
						|
	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_mru_ghost_evictable_data;
 | 
						|
	/*
 | 
						|
	 * Number of bytes that *would have been* consumed by ARC
 | 
						|
	 * buffers that are eligible for eviction, of type
 | 
						|
	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_mru_ghost_evictable_metadata;
 | 
						|
	/*
 | 
						|
	 * Total number of bytes consumed by ARC buffers residing in the
 | 
						|
	 * arc_mfu state. This includes *all* buffers in the arc_mfu
 | 
						|
	 * state; e.g. data, metadata, evictable, and unevictable buffers
 | 
						|
	 * are all included in this value.
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_mfu_size;
 | 
						|
	/*
 | 
						|
	 * Number of bytes consumed by ARC buffers that are eligible for
 | 
						|
	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
 | 
						|
	 * state.
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_mfu_evictable_data;
 | 
						|
	/*
 | 
						|
	 * Number of bytes consumed by ARC buffers that are eligible for
 | 
						|
	 * eviction, of type ARC_BUFC_METADATA, and reside in the
 | 
						|
	 * arc_mfu state.
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_mfu_evictable_metadata;
 | 
						|
	/*
 | 
						|
	 * Total number of bytes that *would have been* consumed by ARC
 | 
						|
	 * buffers in the arc_mfu_ghost state. See the comment above
 | 
						|
	 * arcstat_mru_ghost_size for more details.
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_mfu_ghost_size;
 | 
						|
	/*
 | 
						|
	 * Number of bytes that *would have been* consumed by ARC
 | 
						|
	 * buffers that are eligible for eviction, of type
 | 
						|
	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_mfu_ghost_evictable_data;
 | 
						|
	/*
 | 
						|
	 * Number of bytes that *would have been* consumed by ARC
 | 
						|
	 * buffers that are eligible for eviction, of type
 | 
						|
	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
 | 
						|
	 */
 | 
						|
	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
 | 
						|
	kstat_named_t arcstat_l2_hits;
 | 
						|
	kstat_named_t arcstat_l2_misses;
 | 
						|
	kstat_named_t arcstat_l2_feeds;
 | 
						|
	kstat_named_t arcstat_l2_rw_clash;
 | 
						|
	kstat_named_t arcstat_l2_read_bytes;
 | 
						|
	kstat_named_t arcstat_l2_write_bytes;
 | 
						|
	kstat_named_t arcstat_l2_writes_sent;
 | 
						|
	kstat_named_t arcstat_l2_writes_done;
 | 
						|
	kstat_named_t arcstat_l2_writes_error;
 | 
						|
	kstat_named_t arcstat_l2_writes_lock_retry;
 | 
						|
	kstat_named_t arcstat_l2_writes_skip_toobig;
 | 
						|
	kstat_named_t arcstat_l2_evict_lock_retry;
 | 
						|
	kstat_named_t arcstat_l2_evict_reading;
 | 
						|
	kstat_named_t arcstat_l2_evict_l1cached;
 | 
						|
	kstat_named_t arcstat_l2_free_on_write;
 | 
						|
	kstat_named_t arcstat_l2_cdata_free_on_write;
 | 
						|
	kstat_named_t arcstat_l2_abort_lowmem;
 | 
						|
	kstat_named_t arcstat_l2_cksum_bad;
 | 
						|
	kstat_named_t arcstat_l2_io_error;
 | 
						|
	kstat_named_t arcstat_l2_size;
 | 
						|
	kstat_named_t arcstat_l2_asize;
 | 
						|
	kstat_named_t arcstat_l2_hdr_size;
 | 
						|
	kstat_named_t arcstat_l2_compress_successes;
 | 
						|
	kstat_named_t arcstat_l2_compress_zeros;
 | 
						|
	kstat_named_t arcstat_l2_compress_failures;
 | 
						|
	kstat_named_t arcstat_memory_throttle_count;
 | 
						|
	kstat_named_t arcstat_duplicate_buffers;
 | 
						|
	kstat_named_t arcstat_duplicate_buffers_size;
 | 
						|
	kstat_named_t arcstat_duplicate_reads;
 | 
						|
	kstat_named_t arcstat_memory_direct_count;
 | 
						|
	kstat_named_t arcstat_memory_indirect_count;
 | 
						|
	kstat_named_t arcstat_no_grow;
 | 
						|
	kstat_named_t arcstat_tempreserve;
 | 
						|
	kstat_named_t arcstat_loaned_bytes;
 | 
						|
	kstat_named_t arcstat_prune;
 | 
						|
	kstat_named_t arcstat_meta_used;
 | 
						|
	kstat_named_t arcstat_meta_limit;
 | 
						|
	kstat_named_t arcstat_meta_max;
 | 
						|
	kstat_named_t arcstat_meta_min;
 | 
						|
	kstat_named_t arcstat_sync_wait_for_async;
 | 
						|
	kstat_named_t arcstat_demand_hit_predictive_prefetch;
 | 
						|
	kstat_named_t arcstat_need_free;
 | 
						|
	kstat_named_t arcstat_sys_free;
 | 
						|
} arc_stats_t;
 | 
						|
 | 
						|
static arc_stats_t arc_stats = {
 | 
						|
	{ "hits",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "misses",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "mru_hits",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "mfu_hits",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "deleted",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "mutex_miss",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "evict_skip",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "hash_elements",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "hash_collisions",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "hash_chains",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "p",				KSTAT_DATA_UINT64 },
 | 
						|
	{ "c",				KSTAT_DATA_UINT64 },
 | 
						|
	{ "c_min",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "c_max",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "size",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "hdr_size",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "data_size",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "metadata_size",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "other_size",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "anon_size",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "mru_size",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 | 
						|
	{ "mfu_size",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_hits",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_misses",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_feeds",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_writes_skip_toobig",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_io_error",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_size",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_asize",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "memory_direct_count",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "memory_indirect_count",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "arc_no_grow",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "arc_tempreserve",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "arc_loaned_bytes",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "arc_prune",			KSTAT_DATA_UINT64 },
 | 
						|
	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
 | 
						|
	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
 | 
						|
	{ "arc_need_free",		KSTAT_DATA_UINT64 },
 | 
						|
	{ "arc_sys_free",		KSTAT_DATA_UINT64 }
 | 
						|
};
 | 
						|
 | 
						|
#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
 | 
						|
 | 
						|
#define	ARCSTAT_INCR(stat, val) \
 | 
						|
	atomic_add_64(&arc_stats.stat.value.ui64, (val))
 | 
						|
 | 
						|
#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
 | 
						|
#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
 | 
						|
 | 
						|
#define	ARCSTAT_MAX(stat, val) {					\
 | 
						|
	uint64_t m;							\
 | 
						|
	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
 | 
						|
	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
 | 
						|
		continue;						\
 | 
						|
}
 | 
						|
 | 
						|
#define	ARCSTAT_MAXSTAT(stat) \
 | 
						|
	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
 | 
						|
 | 
						|
/*
 | 
						|
 * We define a macro to allow ARC hits/misses to be easily broken down by
 | 
						|
 * two separate conditions, giving a total of four different subtypes for
 | 
						|
 * each of hits and misses (so eight statistics total).
 | 
						|
 */
 | 
						|
#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
 | 
						|
	if (cond1) {							\
 | 
						|
		if (cond2) {						\
 | 
						|
			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
 | 
						|
		} else {						\
 | 
						|
			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
 | 
						|
		}							\
 | 
						|
	} else {							\
 | 
						|
		if (cond2) {						\
 | 
						|
			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
 | 
						|
		} else {						\
 | 
						|
			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
 | 
						|
		}							\
 | 
						|
	}
 | 
						|
 | 
						|
kstat_t			*arc_ksp;
 | 
						|
static arc_state_t	*arc_anon;
 | 
						|
static arc_state_t	*arc_mru;
 | 
						|
static arc_state_t	*arc_mru_ghost;
 | 
						|
static arc_state_t	*arc_mfu;
 | 
						|
static arc_state_t	*arc_mfu_ghost;
 | 
						|
static arc_state_t	*arc_l2c_only;
 | 
						|
 | 
						|
/*
 | 
						|
 * There are several ARC variables that are critical to export as kstats --
 | 
						|
 * but we don't want to have to grovel around in the kstat whenever we wish to
 | 
						|
 * manipulate them.  For these variables, we therefore define them to be in
 | 
						|
 * terms of the statistic variable.  This assures that we are not introducing
 | 
						|
 * the possibility of inconsistency by having shadow copies of the variables,
 | 
						|
 * while still allowing the code to be readable.
 | 
						|
 */
 | 
						|
#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
 | 
						|
#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
 | 
						|
#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
 | 
						|
#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
 | 
						|
#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
 | 
						|
#define	arc_no_grow	ARCSTAT(arcstat_no_grow)
 | 
						|
#define	arc_tempreserve	ARCSTAT(arcstat_tempreserve)
 | 
						|
#define	arc_loaned_bytes	ARCSTAT(arcstat_loaned_bytes)
 | 
						|
#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
 | 
						|
#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
 | 
						|
#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
 | 
						|
#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
 | 
						|
#define	arc_need_free	ARCSTAT(arcstat_need_free) /* bytes to be freed */
 | 
						|
#define	arc_sys_free	ARCSTAT(arcstat_sys_free) /* target system free bytes */
 | 
						|
 | 
						|
#define	L2ARC_IS_VALID_COMPRESS(_c_) \
 | 
						|
	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
 | 
						|
 | 
						|
static list_t arc_prune_list;
 | 
						|
static kmutex_t arc_prune_mtx;
 | 
						|
static taskq_t *arc_prune_taskq;
 | 
						|
static arc_buf_t *arc_eviction_list;
 | 
						|
static arc_buf_hdr_t arc_eviction_hdr;
 | 
						|
 | 
						|
#define	GHOST_STATE(state)	\
 | 
						|
	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
 | 
						|
	(state) == arc_l2c_only)
 | 
						|
 | 
						|
#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
 | 
						|
#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
 | 
						|
#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
 | 
						|
#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
 | 
						|
#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
 | 
						|
#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
 | 
						|
 | 
						|
#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
 | 
						|
#define	HDR_L2COMPRESS(hdr)	((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
 | 
						|
#define	HDR_L2_READING(hdr)	\
 | 
						|
	    (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
 | 
						|
	    ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
 | 
						|
#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
 | 
						|
#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
 | 
						|
#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
 | 
						|
 | 
						|
#define	HDR_ISTYPE_METADATA(hdr)	\
 | 
						|
	    ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
 | 
						|
#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
 | 
						|
 | 
						|
#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
 | 
						|
#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
 | 
						|
 | 
						|
/*
 | 
						|
 * Other sizes
 | 
						|
 */
 | 
						|
 | 
						|
#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
 | 
						|
#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
 | 
						|
 | 
						|
/*
 | 
						|
 * Hash table routines
 | 
						|
 */
 | 
						|
 | 
						|
#define	HT_LOCK_ALIGN	64
 | 
						|
#define	HT_LOCK_PAD	(P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
 | 
						|
 | 
						|
struct ht_lock {
 | 
						|
	kmutex_t	ht_lock;
 | 
						|
#ifdef _KERNEL
 | 
						|
	unsigned char	pad[HT_LOCK_PAD];
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
#define	BUF_LOCKS 8192
 | 
						|
typedef struct buf_hash_table {
 | 
						|
	uint64_t ht_mask;
 | 
						|
	arc_buf_hdr_t **ht_table;
 | 
						|
	struct ht_lock ht_locks[BUF_LOCKS];
 | 
						|
} buf_hash_table_t;
 | 
						|
 | 
						|
static buf_hash_table_t buf_hash_table;
 | 
						|
 | 
						|
#define	BUF_HASH_INDEX(spa, dva, birth) \
 | 
						|
	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
 | 
						|
#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
 | 
						|
#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
 | 
						|
#define	HDR_LOCK(hdr) \
 | 
						|
	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
 | 
						|
 | 
						|
uint64_t zfs_crc64_table[256];
 | 
						|
 | 
						|
/*
 | 
						|
 * Level 2 ARC
 | 
						|
 */
 | 
						|
 | 
						|
#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
 | 
						|
#define	L2ARC_HEADROOM		2			/* num of writes */
 | 
						|
#define	L2ARC_MAX_BLOCK_SIZE	(16 * 1024 * 1024)	/* max compress size */
 | 
						|
 | 
						|
/*
 | 
						|
 * If we discover during ARC scan any buffers to be compressed, we boost
 | 
						|
 * our headroom for the next scanning cycle by this percentage multiple.
 | 
						|
 */
 | 
						|
#define	L2ARC_HEADROOM_BOOST	200
 | 
						|
#define	L2ARC_FEED_SECS		1		/* caching interval secs */
 | 
						|
#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Used to distinguish headers that are being process by
 | 
						|
 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
 | 
						|
 * address. This can happen when the header is added to the l2arc's list
 | 
						|
 * of buffers to write in the first stage of l2arc_write_buffers(), but
 | 
						|
 * has not yet been written out which happens in the second stage of
 | 
						|
 * l2arc_write_buffers().
 | 
						|
 */
 | 
						|
#define	L2ARC_ADDR_UNSET	((uint64_t)(-1))
 | 
						|
 | 
						|
#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
 | 
						|
#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
 | 
						|
 | 
						|
/* L2ARC Performance Tunables */
 | 
						|
unsigned long l2arc_write_max = L2ARC_WRITE_SIZE;	/* def max write size */
 | 
						|
unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra warmup write */
 | 
						|
unsigned long l2arc_headroom = L2ARC_HEADROOM;		/* # of dev writes */
 | 
						|
unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
 | 
						|
unsigned long l2arc_max_block_size = L2ARC_MAX_BLOCK_SIZE;
 | 
						|
unsigned long l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
 | 
						|
unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval msecs */
 | 
						|
int l2arc_noprefetch = B_TRUE;			/* don't cache prefetch bufs */
 | 
						|
int l2arc_nocompress = B_FALSE;			/* don't compress bufs */
 | 
						|
int l2arc_feed_again = B_TRUE;			/* turbo warmup */
 | 
						|
int l2arc_norw = B_FALSE;			/* no reads during writes */
 | 
						|
 | 
						|
/*
 | 
						|
 * L2ARC Internals
 | 
						|
 */
 | 
						|
static list_t L2ARC_dev_list;			/* device list */
 | 
						|
static list_t *l2arc_dev_list;			/* device list pointer */
 | 
						|
static kmutex_t l2arc_dev_mtx;			/* device list mutex */
 | 
						|
static l2arc_dev_t *l2arc_dev_last;		/* last device used */
 | 
						|
static list_t L2ARC_free_on_write;		/* free after write buf list */
 | 
						|
static list_t *l2arc_free_on_write;		/* free after write list ptr */
 | 
						|
static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
 | 
						|
static uint64_t l2arc_ndev;			/* number of devices */
 | 
						|
 | 
						|
typedef struct l2arc_read_callback {
 | 
						|
	arc_buf_t		*l2rcb_buf;		/* read buffer */
 | 
						|
	spa_t			*l2rcb_spa;		/* spa */
 | 
						|
	blkptr_t		l2rcb_bp;		/* original blkptr */
 | 
						|
	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
 | 
						|
	int			l2rcb_flags;		/* original flags */
 | 
						|
	enum zio_compress	l2rcb_compress;		/* applied compress */
 | 
						|
} l2arc_read_callback_t;
 | 
						|
 | 
						|
typedef struct l2arc_data_free {
 | 
						|
	/* protected by l2arc_free_on_write_mtx */
 | 
						|
	void		*l2df_data;
 | 
						|
	size_t		l2df_size;
 | 
						|
	void		(*l2df_func)(void *, size_t);
 | 
						|
	list_node_t	l2df_list_node;
 | 
						|
} l2arc_data_free_t;
 | 
						|
 | 
						|
static kmutex_t l2arc_feed_thr_lock;
 | 
						|
static kcondvar_t l2arc_feed_thr_cv;
 | 
						|
static uint8_t l2arc_thread_exit;
 | 
						|
 | 
						|
static void arc_get_data_buf(arc_buf_t *);
 | 
						|
static void arc_access(arc_buf_hdr_t *, kmutex_t *);
 | 
						|
static boolean_t arc_is_overflowing(void);
 | 
						|
static void arc_buf_watch(arc_buf_t *);
 | 
						|
static void arc_tuning_update(void);
 | 
						|
 | 
						|
static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
 | 
						|
static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
 | 
						|
 | 
						|
static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
 | 
						|
static void l2arc_read_done(zio_t *);
 | 
						|
 | 
						|
static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
 | 
						|
static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
 | 
						|
static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
 | 
						|
 | 
						|
static uint64_t
 | 
						|
buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
 | 
						|
{
 | 
						|
	uint8_t *vdva = (uint8_t *)dva;
 | 
						|
	uint64_t crc = -1ULL;
 | 
						|
	int i;
 | 
						|
 | 
						|
	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
 | 
						|
 | 
						|
	for (i = 0; i < sizeof (dva_t); i++)
 | 
						|
		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
 | 
						|
 | 
						|
	crc ^= (spa>>8) ^ birth;
 | 
						|
 | 
						|
	return (crc);
 | 
						|
}
 | 
						|
 | 
						|
#define	BUF_EMPTY(buf)						\
 | 
						|
	((buf)->b_dva.dva_word[0] == 0 &&			\
 | 
						|
	(buf)->b_dva.dva_word[1] == 0)
 | 
						|
 | 
						|
#define	BUF_EQUAL(spa, dva, birth, buf)				\
 | 
						|
	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
 | 
						|
	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
 | 
						|
	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
 | 
						|
 | 
						|
static void
 | 
						|
buf_discard_identity(arc_buf_hdr_t *hdr)
 | 
						|
{
 | 
						|
	hdr->b_dva.dva_word[0] = 0;
 | 
						|
	hdr->b_dva.dva_word[1] = 0;
 | 
						|
	hdr->b_birth = 0;
 | 
						|
}
 | 
						|
 | 
						|
static arc_buf_hdr_t *
 | 
						|
buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
 | 
						|
{
 | 
						|
	const dva_t *dva = BP_IDENTITY(bp);
 | 
						|
	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
 | 
						|
	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
 | 
						|
	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 | 
						|
	arc_buf_hdr_t *hdr;
 | 
						|
 | 
						|
	mutex_enter(hash_lock);
 | 
						|
	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
 | 
						|
	    hdr = hdr->b_hash_next) {
 | 
						|
		if (BUF_EQUAL(spa, dva, birth, hdr)) {
 | 
						|
			*lockp = hash_lock;
 | 
						|
			return (hdr);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	mutex_exit(hash_lock);
 | 
						|
	*lockp = NULL;
 | 
						|
	return (NULL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Insert an entry into the hash table.  If there is already an element
 | 
						|
 * equal to elem in the hash table, then the already existing element
 | 
						|
 * will be returned and the new element will not be inserted.
 | 
						|
 * Otherwise returns NULL.
 | 
						|
 * If lockp == NULL, the caller is assumed to already hold the hash lock.
 | 
						|
 */
 | 
						|
static arc_buf_hdr_t *
 | 
						|
buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
 | 
						|
{
 | 
						|
	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
 | 
						|
	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 | 
						|
	arc_buf_hdr_t *fhdr;
 | 
						|
	uint32_t i;
 | 
						|
 | 
						|
	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
 | 
						|
	ASSERT(hdr->b_birth != 0);
 | 
						|
	ASSERT(!HDR_IN_HASH_TABLE(hdr));
 | 
						|
 | 
						|
	if (lockp != NULL) {
 | 
						|
		*lockp = hash_lock;
 | 
						|
		mutex_enter(hash_lock);
 | 
						|
	} else {
 | 
						|
		ASSERT(MUTEX_HELD(hash_lock));
 | 
						|
	}
 | 
						|
 | 
						|
	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
 | 
						|
	    fhdr = fhdr->b_hash_next, i++) {
 | 
						|
		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
 | 
						|
			return (fhdr);
 | 
						|
	}
 | 
						|
 | 
						|
	hdr->b_hash_next = buf_hash_table.ht_table[idx];
 | 
						|
	buf_hash_table.ht_table[idx] = hdr;
 | 
						|
	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
 | 
						|
 | 
						|
	/* collect some hash table performance data */
 | 
						|
	if (i > 0) {
 | 
						|
		ARCSTAT_BUMP(arcstat_hash_collisions);
 | 
						|
		if (i == 1)
 | 
						|
			ARCSTAT_BUMP(arcstat_hash_chains);
 | 
						|
 | 
						|
		ARCSTAT_MAX(arcstat_hash_chain_max, i);
 | 
						|
	}
 | 
						|
 | 
						|
	ARCSTAT_BUMP(arcstat_hash_elements);
 | 
						|
	ARCSTAT_MAXSTAT(arcstat_hash_elements);
 | 
						|
 | 
						|
	return (NULL);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
buf_hash_remove(arc_buf_hdr_t *hdr)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *fhdr, **hdrp;
 | 
						|
	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
 | 
						|
	ASSERT(HDR_IN_HASH_TABLE(hdr));
 | 
						|
 | 
						|
	hdrp = &buf_hash_table.ht_table[idx];
 | 
						|
	while ((fhdr = *hdrp) != hdr) {
 | 
						|
		ASSERT(fhdr != NULL);
 | 
						|
		hdrp = &fhdr->b_hash_next;
 | 
						|
	}
 | 
						|
	*hdrp = hdr->b_hash_next;
 | 
						|
	hdr->b_hash_next = NULL;
 | 
						|
	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
 | 
						|
 | 
						|
	/* collect some hash table performance data */
 | 
						|
	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
 | 
						|
 | 
						|
	if (buf_hash_table.ht_table[idx] &&
 | 
						|
	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
 | 
						|
		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Global data structures and functions for the buf kmem cache.
 | 
						|
 */
 | 
						|
static kmem_cache_t *hdr_full_cache;
 | 
						|
static kmem_cache_t *hdr_l2only_cache;
 | 
						|
static kmem_cache_t *buf_cache;
 | 
						|
 | 
						|
static void
 | 
						|
buf_fini(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
#if defined(_KERNEL) && defined(HAVE_SPL)
 | 
						|
	/*
 | 
						|
	 * Large allocations which do not require contiguous pages
 | 
						|
	 * should be using vmem_free() in the linux kernel\
 | 
						|
	 */
 | 
						|
	vmem_free(buf_hash_table.ht_table,
 | 
						|
	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
 | 
						|
#else
 | 
						|
	kmem_free(buf_hash_table.ht_table,
 | 
						|
	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
 | 
						|
#endif
 | 
						|
	for (i = 0; i < BUF_LOCKS; i++)
 | 
						|
		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
 | 
						|
	kmem_cache_destroy(hdr_full_cache);
 | 
						|
	kmem_cache_destroy(hdr_l2only_cache);
 | 
						|
	kmem_cache_destroy(buf_cache);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Constructor callback - called when the cache is empty
 | 
						|
 * and a new buf is requested.
 | 
						|
 */
 | 
						|
/* ARGSUSED */
 | 
						|
static int
 | 
						|
hdr_full_cons(void *vbuf, void *unused, int kmflag)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr = vbuf;
 | 
						|
 | 
						|
	bzero(hdr, HDR_FULL_SIZE);
 | 
						|
	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
	refcount_create(&hdr->b_l1hdr.b_refcnt);
 | 
						|
	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	list_link_init(&hdr->b_l1hdr.b_arc_node);
 | 
						|
	list_link_init(&hdr->b_l2hdr.b_l2node);
 | 
						|
	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
 | 
						|
	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/* ARGSUSED */
 | 
						|
static int
 | 
						|
hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr = vbuf;
 | 
						|
 | 
						|
	bzero(hdr, HDR_L2ONLY_SIZE);
 | 
						|
	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/* ARGSUSED */
 | 
						|
static int
 | 
						|
buf_cons(void *vbuf, void *unused, int kmflag)
 | 
						|
{
 | 
						|
	arc_buf_t *buf = vbuf;
 | 
						|
 | 
						|
	bzero(buf, sizeof (arc_buf_t));
 | 
						|
	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Destructor callback - called when a cached buf is
 | 
						|
 * no longer required.
 | 
						|
 */
 | 
						|
/* ARGSUSED */
 | 
						|
static void
 | 
						|
hdr_full_dest(void *vbuf, void *unused)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr = vbuf;
 | 
						|
 | 
						|
	ASSERT(BUF_EMPTY(hdr));
 | 
						|
	cv_destroy(&hdr->b_l1hdr.b_cv);
 | 
						|
	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
 | 
						|
	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
 | 
						|
	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
 | 
						|
	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
 | 
						|
}
 | 
						|
 | 
						|
/* ARGSUSED */
 | 
						|
static void
 | 
						|
hdr_l2only_dest(void *vbuf, void *unused)
 | 
						|
{
 | 
						|
	ASSERTV(arc_buf_hdr_t *hdr = vbuf);
 | 
						|
 | 
						|
	ASSERT(BUF_EMPTY(hdr));
 | 
						|
	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
 | 
						|
}
 | 
						|
 | 
						|
/* ARGSUSED */
 | 
						|
static void
 | 
						|
buf_dest(void *vbuf, void *unused)
 | 
						|
{
 | 
						|
	arc_buf_t *buf = vbuf;
 | 
						|
 | 
						|
	mutex_destroy(&buf->b_evict_lock);
 | 
						|
	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reclaim callback -- invoked when memory is low.
 | 
						|
 */
 | 
						|
/* ARGSUSED */
 | 
						|
static void
 | 
						|
hdr_recl(void *unused)
 | 
						|
{
 | 
						|
	dprintf("hdr_recl called\n");
 | 
						|
	/*
 | 
						|
	 * umem calls the reclaim func when we destroy the buf cache,
 | 
						|
	 * which is after we do arc_fini().
 | 
						|
	 */
 | 
						|
	if (!arc_dead)
 | 
						|
		cv_signal(&arc_reclaim_thread_cv);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
buf_init(void)
 | 
						|
{
 | 
						|
	uint64_t *ct;
 | 
						|
	uint64_t hsize = 1ULL << 12;
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The hash table is big enough to fill all of physical memory
 | 
						|
	 * with an average block size of zfs_arc_average_blocksize (default 8K).
 | 
						|
	 * By default, the table will take up
 | 
						|
	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
 | 
						|
	 */
 | 
						|
	while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
 | 
						|
		hsize <<= 1;
 | 
						|
retry:
 | 
						|
	buf_hash_table.ht_mask = hsize - 1;
 | 
						|
#if defined(_KERNEL) && defined(HAVE_SPL)
 | 
						|
	/*
 | 
						|
	 * Large allocations which do not require contiguous pages
 | 
						|
	 * should be using vmem_alloc() in the linux kernel
 | 
						|
	 */
 | 
						|
	buf_hash_table.ht_table =
 | 
						|
	    vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
 | 
						|
#else
 | 
						|
	buf_hash_table.ht_table =
 | 
						|
	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
 | 
						|
#endif
 | 
						|
	if (buf_hash_table.ht_table == NULL) {
 | 
						|
		ASSERT(hsize > (1ULL << 8));
 | 
						|
		hsize >>= 1;
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
 | 
						|
	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
 | 
						|
	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
 | 
						|
	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
 | 
						|
	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
 | 
						|
	    NULL, NULL, 0);
 | 
						|
	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
 | 
						|
	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
 | 
						|
 | 
						|
	for (i = 0; i < 256; i++)
 | 
						|
		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
 | 
						|
			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
 | 
						|
 | 
						|
	for (i = 0; i < BUF_LOCKS; i++) {
 | 
						|
		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
 | 
						|
		    NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Transition between the two allocation states for the arc_buf_hdr struct.
 | 
						|
 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
 | 
						|
 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
 | 
						|
 * version is used when a cache buffer is only in the L2ARC in order to reduce
 | 
						|
 * memory usage.
 | 
						|
 */
 | 
						|
static arc_buf_hdr_t *
 | 
						|
arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *nhdr;
 | 
						|
	l2arc_dev_t *dev;
 | 
						|
 | 
						|
	ASSERT(HDR_HAS_L2HDR(hdr));
 | 
						|
	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
 | 
						|
	    (old == hdr_l2only_cache && new == hdr_full_cache));
 | 
						|
 | 
						|
	dev = hdr->b_l2hdr.b_dev;
 | 
						|
	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
 | 
						|
	buf_hash_remove(hdr);
 | 
						|
 | 
						|
	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
 | 
						|
 | 
						|
	if (new == hdr_full_cache) {
 | 
						|
		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
 | 
						|
		/*
 | 
						|
		 * arc_access and arc_change_state need to be aware that a
 | 
						|
		 * header has just come out of L2ARC, so we set its state to
 | 
						|
		 * l2c_only even though it's about to change.
 | 
						|
		 */
 | 
						|
		nhdr->b_l1hdr.b_state = arc_l2c_only;
 | 
						|
 | 
						|
		/* Verify previous threads set to NULL before freeing */
 | 
						|
		ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
 | 
						|
	} else {
 | 
						|
		ASSERT(hdr->b_l1hdr.b_buf == NULL);
 | 
						|
		ASSERT0(hdr->b_l1hdr.b_datacnt);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we've reached here, We must have been called from
 | 
						|
		 * arc_evict_hdr(), as such we should have already been
 | 
						|
		 * removed from any ghost list we were previously on
 | 
						|
		 * (which protects us from racing with arc_evict_state),
 | 
						|
		 * thus no locking is needed during this check.
 | 
						|
		 */
 | 
						|
		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * A buffer must not be moved into the arc_l2c_only
 | 
						|
		 * state if it's not finished being written out to the
 | 
						|
		 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
 | 
						|
		 * might try to be accessed, even though it was removed.
 | 
						|
		 */
 | 
						|
		VERIFY(!HDR_L2_WRITING(hdr));
 | 
						|
		VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
 | 
						|
 | 
						|
		nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * The header has been reallocated so we need to re-insert it into any
 | 
						|
	 * lists it was on.
 | 
						|
	 */
 | 
						|
	(void) buf_hash_insert(nhdr, NULL);
 | 
						|
 | 
						|
	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
 | 
						|
 | 
						|
	mutex_enter(&dev->l2ad_mtx);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We must place the realloc'ed header back into the list at
 | 
						|
	 * the same spot. Otherwise, if it's placed earlier in the list,
 | 
						|
	 * l2arc_write_buffers() could find it during the function's
 | 
						|
	 * write phase, and try to write it out to the l2arc.
 | 
						|
	 */
 | 
						|
	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
 | 
						|
	list_remove(&dev->l2ad_buflist, hdr);
 | 
						|
 | 
						|
	mutex_exit(&dev->l2ad_mtx);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since we're using the pointer address as the tag when
 | 
						|
	 * incrementing and decrementing the l2ad_alloc refcount, we
 | 
						|
	 * must remove the old pointer (that we're about to destroy) and
 | 
						|
	 * add the new pointer to the refcount. Otherwise we'd remove
 | 
						|
	 * the wrong pointer address when calling arc_hdr_destroy() later.
 | 
						|
	 */
 | 
						|
 | 
						|
	(void) refcount_remove_many(&dev->l2ad_alloc,
 | 
						|
	    hdr->b_l2hdr.b_asize, hdr);
 | 
						|
 | 
						|
	(void) refcount_add_many(&dev->l2ad_alloc,
 | 
						|
	    nhdr->b_l2hdr.b_asize, nhdr);
 | 
						|
 | 
						|
	buf_discard_identity(hdr);
 | 
						|
	hdr->b_freeze_cksum = NULL;
 | 
						|
	kmem_cache_free(old, hdr);
 | 
						|
 | 
						|
	return (nhdr);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define	ARC_MINTIME	(hz>>4) /* 62 ms */
 | 
						|
 | 
						|
static void
 | 
						|
arc_cksum_verify(arc_buf_t *buf)
 | 
						|
{
 | 
						|
	zio_cksum_t zc;
 | 
						|
 | 
						|
	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
 | 
						|
		return;
 | 
						|
 | 
						|
	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
 | 
						|
	if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
 | 
						|
		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
 | 
						|
	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
 | 
						|
		panic("buffer modified while frozen!");
 | 
						|
	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
arc_cksum_equal(arc_buf_t *buf)
 | 
						|
{
 | 
						|
	zio_cksum_t zc;
 | 
						|
	int equal;
 | 
						|
 | 
						|
	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
 | 
						|
	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
 | 
						|
	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
 | 
						|
	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
 | 
						|
 | 
						|
	return (equal);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
arc_cksum_compute(arc_buf_t *buf, boolean_t force)
 | 
						|
{
 | 
						|
	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
 | 
						|
		return;
 | 
						|
 | 
						|
	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
 | 
						|
	if (buf->b_hdr->b_freeze_cksum != NULL) {
 | 
						|
		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
 | 
						|
	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
 | 
						|
	    buf->b_hdr->b_freeze_cksum);
 | 
						|
	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
 | 
						|
	arc_buf_watch(buf);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef _KERNEL
 | 
						|
void
 | 
						|
arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
 | 
						|
{
 | 
						|
	panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* ARGSUSED */
 | 
						|
static void
 | 
						|
arc_buf_unwatch(arc_buf_t *buf)
 | 
						|
{
 | 
						|
#ifndef _KERNEL
 | 
						|
	if (arc_watch) {
 | 
						|
		ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size,
 | 
						|
		    PROT_READ | PROT_WRITE));
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* ARGSUSED */
 | 
						|
static void
 | 
						|
arc_buf_watch(arc_buf_t *buf)
 | 
						|
{
 | 
						|
#ifndef _KERNEL
 | 
						|
	if (arc_watch)
 | 
						|
		ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static arc_buf_contents_t
 | 
						|
arc_buf_type(arc_buf_hdr_t *hdr)
 | 
						|
{
 | 
						|
	if (HDR_ISTYPE_METADATA(hdr)) {
 | 
						|
		return (ARC_BUFC_METADATA);
 | 
						|
	} else {
 | 
						|
		return (ARC_BUFC_DATA);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t
 | 
						|
arc_bufc_to_flags(arc_buf_contents_t type)
 | 
						|
{
 | 
						|
	switch (type) {
 | 
						|
	case ARC_BUFC_DATA:
 | 
						|
		/* metadata field is 0 if buffer contains normal data */
 | 
						|
		return (0);
 | 
						|
	case ARC_BUFC_METADATA:
 | 
						|
		return (ARC_FLAG_BUFC_METADATA);
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	panic("undefined ARC buffer type!");
 | 
						|
	return ((uint32_t)-1);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
arc_buf_thaw(arc_buf_t *buf)
 | 
						|
{
 | 
						|
	if (zfs_flags & ZFS_DEBUG_MODIFY) {
 | 
						|
		if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
 | 
						|
			panic("modifying non-anon buffer!");
 | 
						|
		if (HDR_IO_IN_PROGRESS(buf->b_hdr))
 | 
						|
			panic("modifying buffer while i/o in progress!");
 | 
						|
		arc_cksum_verify(buf);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
 | 
						|
	if (buf->b_hdr->b_freeze_cksum != NULL) {
 | 
						|
		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
 | 
						|
		buf->b_hdr->b_freeze_cksum = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
 | 
						|
 | 
						|
	arc_buf_unwatch(buf);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
arc_buf_freeze(arc_buf_t *buf)
 | 
						|
{
 | 
						|
	kmutex_t *hash_lock;
 | 
						|
 | 
						|
	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
 | 
						|
		return;
 | 
						|
 | 
						|
	hash_lock = HDR_LOCK(buf->b_hdr);
 | 
						|
	mutex_enter(hash_lock);
 | 
						|
 | 
						|
	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
 | 
						|
	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
 | 
						|
	arc_cksum_compute(buf, B_FALSE);
 | 
						|
	mutex_exit(hash_lock);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
 | 
						|
{
 | 
						|
	arc_state_t *state;
 | 
						|
 | 
						|
	ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
	ASSERT(MUTEX_HELD(hash_lock));
 | 
						|
 | 
						|
	state = hdr->b_l1hdr.b_state;
 | 
						|
 | 
						|
	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
 | 
						|
	    (state != arc_anon)) {
 | 
						|
		/* We don't use the L2-only state list. */
 | 
						|
		if (state != arc_l2c_only) {
 | 
						|
			arc_buf_contents_t type = arc_buf_type(hdr);
 | 
						|
			uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
 | 
						|
			multilist_t *list = &state->arcs_list[type];
 | 
						|
			uint64_t *size = &state->arcs_lsize[type];
 | 
						|
 | 
						|
			multilist_remove(list, hdr);
 | 
						|
 | 
						|
			if (GHOST_STATE(state)) {
 | 
						|
				ASSERT0(hdr->b_l1hdr.b_datacnt);
 | 
						|
				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
 | 
						|
				delta = hdr->b_size;
 | 
						|
			}
 | 
						|
			ASSERT(delta > 0);
 | 
						|
			ASSERT3U(*size, >=, delta);
 | 
						|
			atomic_add_64(size, -delta);
 | 
						|
		}
 | 
						|
		/* remove the prefetch flag if we get a reference */
 | 
						|
		hdr->b_flags &= ~ARC_FLAG_PREFETCH;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
 | 
						|
{
 | 
						|
	int cnt;
 | 
						|
	arc_state_t *state = hdr->b_l1hdr.b_state;
 | 
						|
 | 
						|
	ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
 | 
						|
	ASSERT(!GHOST_STATE(state));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
 | 
						|
	 * check to prevent usage of the arc_l2c_only list.
 | 
						|
	 */
 | 
						|
	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
 | 
						|
	    (state != arc_anon)) {
 | 
						|
		arc_buf_contents_t type = arc_buf_type(hdr);
 | 
						|
		multilist_t *list = &state->arcs_list[type];
 | 
						|
		uint64_t *size = &state->arcs_lsize[type];
 | 
						|
 | 
						|
		multilist_insert(list, hdr);
 | 
						|
 | 
						|
		ASSERT(hdr->b_l1hdr.b_datacnt > 0);
 | 
						|
		atomic_add_64(size, hdr->b_size *
 | 
						|
		    hdr->b_l1hdr.b_datacnt);
 | 
						|
	}
 | 
						|
	return (cnt);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns detailed information about a specific arc buffer.  When the
 | 
						|
 * state_index argument is set the function will calculate the arc header
 | 
						|
 * list position for its arc state.  Since this requires a linear traversal
 | 
						|
 * callers are strongly encourage not to do this.  However, it can be helpful
 | 
						|
 * for targeted analysis so the functionality is provided.
 | 
						|
 */
 | 
						|
void
 | 
						|
arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr = ab->b_hdr;
 | 
						|
	l1arc_buf_hdr_t *l1hdr = NULL;
 | 
						|
	l2arc_buf_hdr_t *l2hdr = NULL;
 | 
						|
	arc_state_t *state = NULL;
 | 
						|
 | 
						|
	if (HDR_HAS_L1HDR(hdr)) {
 | 
						|
		l1hdr = &hdr->b_l1hdr;
 | 
						|
		state = l1hdr->b_state;
 | 
						|
	}
 | 
						|
	if (HDR_HAS_L2HDR(hdr))
 | 
						|
		l2hdr = &hdr->b_l2hdr;
 | 
						|
 | 
						|
	memset(abi, 0, sizeof (arc_buf_info_t));
 | 
						|
	abi->abi_flags = hdr->b_flags;
 | 
						|
 | 
						|
	if (l1hdr) {
 | 
						|
		abi->abi_datacnt = l1hdr->b_datacnt;
 | 
						|
		abi->abi_access = l1hdr->b_arc_access;
 | 
						|
		abi->abi_mru_hits = l1hdr->b_mru_hits;
 | 
						|
		abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
 | 
						|
		abi->abi_mfu_hits = l1hdr->b_mfu_hits;
 | 
						|
		abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
 | 
						|
		abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
 | 
						|
	}
 | 
						|
 | 
						|
	if (l2hdr) {
 | 
						|
		abi->abi_l2arc_dattr = l2hdr->b_daddr;
 | 
						|
		abi->abi_l2arc_asize = l2hdr->b_asize;
 | 
						|
		abi->abi_l2arc_compress = l2hdr->b_compress;
 | 
						|
		abi->abi_l2arc_hits = l2hdr->b_hits;
 | 
						|
	}
 | 
						|
 | 
						|
	abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
 | 
						|
	abi->abi_state_contents = arc_buf_type(hdr);
 | 
						|
	abi->abi_size = hdr->b_size;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Move the supplied buffer to the indicated state. The hash lock
 | 
						|
 * for the buffer must be held by the caller.
 | 
						|
 */
 | 
						|
static void
 | 
						|
arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
 | 
						|
    kmutex_t *hash_lock)
 | 
						|
{
 | 
						|
	arc_state_t *old_state;
 | 
						|
	int64_t refcnt;
 | 
						|
	uint32_t datacnt;
 | 
						|
	uint64_t from_delta, to_delta;
 | 
						|
	arc_buf_contents_t buftype = arc_buf_type(hdr);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
 | 
						|
	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
 | 
						|
	 * L1 hdr doesn't always exist when we change state to arc_anon before
 | 
						|
	 * destroying a header, in which case reallocating to add the L1 hdr is
 | 
						|
	 * pointless.
 | 
						|
	 */
 | 
						|
	if (HDR_HAS_L1HDR(hdr)) {
 | 
						|
		old_state = hdr->b_l1hdr.b_state;
 | 
						|
		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
 | 
						|
		datacnt = hdr->b_l1hdr.b_datacnt;
 | 
						|
	} else {
 | 
						|
		old_state = arc_l2c_only;
 | 
						|
		refcnt = 0;
 | 
						|
		datacnt = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(hash_lock));
 | 
						|
	ASSERT3P(new_state, !=, old_state);
 | 
						|
	ASSERT(refcnt == 0 || datacnt > 0);
 | 
						|
	ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
 | 
						|
	ASSERT(old_state != arc_anon || datacnt <= 1);
 | 
						|
 | 
						|
	from_delta = to_delta = datacnt * hdr->b_size;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this buffer is evictable, transfer it from the
 | 
						|
	 * old state list to the new state list.
 | 
						|
	 */
 | 
						|
	if (refcnt == 0) {
 | 
						|
		if (old_state != arc_anon && old_state != arc_l2c_only) {
 | 
						|
			uint64_t *size = &old_state->arcs_lsize[buftype];
 | 
						|
 | 
						|
			ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
			multilist_remove(&old_state->arcs_list[buftype], hdr);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If prefetching out of the ghost cache,
 | 
						|
			 * we will have a non-zero datacnt.
 | 
						|
			 */
 | 
						|
			if (GHOST_STATE(old_state) && datacnt == 0) {
 | 
						|
				/* ghost elements have a ghost size */
 | 
						|
				ASSERT(hdr->b_l1hdr.b_buf == NULL);
 | 
						|
				from_delta = hdr->b_size;
 | 
						|
			}
 | 
						|
			ASSERT3U(*size, >=, from_delta);
 | 
						|
			atomic_add_64(size, -from_delta);
 | 
						|
		}
 | 
						|
		if (new_state != arc_anon && new_state != arc_l2c_only) {
 | 
						|
			uint64_t *size = &new_state->arcs_lsize[buftype];
 | 
						|
 | 
						|
			/*
 | 
						|
			 * An L1 header always exists here, since if we're
 | 
						|
			 * moving to some L1-cached state (i.e. not l2c_only or
 | 
						|
			 * anonymous), we realloc the header to add an L1hdr
 | 
						|
			 * beforehand.
 | 
						|
			 */
 | 
						|
			ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
			multilist_insert(&new_state->arcs_list[buftype], hdr);
 | 
						|
 | 
						|
			/* ghost elements have a ghost size */
 | 
						|
			if (GHOST_STATE(new_state)) {
 | 
						|
				ASSERT0(datacnt);
 | 
						|
				ASSERT(hdr->b_l1hdr.b_buf == NULL);
 | 
						|
				to_delta = hdr->b_size;
 | 
						|
			}
 | 
						|
			atomic_add_64(size, to_delta);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(!BUF_EMPTY(hdr));
 | 
						|
	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
 | 
						|
		buf_hash_remove(hdr);
 | 
						|
 | 
						|
	/* adjust state sizes (ignore arc_l2c_only) */
 | 
						|
 | 
						|
	if (to_delta && new_state != arc_l2c_only) {
 | 
						|
		ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
		if (GHOST_STATE(new_state)) {
 | 
						|
			ASSERT0(datacnt);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * We moving a header to a ghost state, we first
 | 
						|
			 * remove all arc buffers. Thus, we'll have a
 | 
						|
			 * datacnt of zero, and no arc buffer to use for
 | 
						|
			 * the reference. As a result, we use the arc
 | 
						|
			 * header pointer for the reference.
 | 
						|
			 */
 | 
						|
			(void) refcount_add_many(&new_state->arcs_size,
 | 
						|
			    hdr->b_size, hdr);
 | 
						|
		} else {
 | 
						|
			arc_buf_t *buf;
 | 
						|
			ASSERT3U(datacnt, !=, 0);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Each individual buffer holds a unique reference,
 | 
						|
			 * thus we must remove each of these references one
 | 
						|
			 * at a time.
 | 
						|
			 */
 | 
						|
			for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
 | 
						|
			    buf = buf->b_next) {
 | 
						|
				(void) refcount_add_many(&new_state->arcs_size,
 | 
						|
				    hdr->b_size, buf);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (from_delta && old_state != arc_l2c_only) {
 | 
						|
		ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
		if (GHOST_STATE(old_state)) {
 | 
						|
			/*
 | 
						|
			 * When moving a header off of a ghost state,
 | 
						|
			 * there's the possibility for datacnt to be
 | 
						|
			 * non-zero. This is because we first add the
 | 
						|
			 * arc buffer to the header prior to changing
 | 
						|
			 * the header's state. Since we used the header
 | 
						|
			 * for the reference when putting the header on
 | 
						|
			 * the ghost state, we must balance that and use
 | 
						|
			 * the header when removing off the ghost state
 | 
						|
			 * (even though datacnt is non zero).
 | 
						|
			 */
 | 
						|
 | 
						|
			IMPLY(datacnt == 0, new_state == arc_anon ||
 | 
						|
			    new_state == arc_l2c_only);
 | 
						|
 | 
						|
			(void) refcount_remove_many(&old_state->arcs_size,
 | 
						|
			    hdr->b_size, hdr);
 | 
						|
		} else {
 | 
						|
			arc_buf_t *buf;
 | 
						|
			ASSERT3U(datacnt, !=, 0);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Each individual buffer holds a unique reference,
 | 
						|
			 * thus we must remove each of these references one
 | 
						|
			 * at a time.
 | 
						|
			 */
 | 
						|
			for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
 | 
						|
			    buf = buf->b_next) {
 | 
						|
				(void) refcount_remove_many(
 | 
						|
				    &old_state->arcs_size, hdr->b_size, buf);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (HDR_HAS_L1HDR(hdr))
 | 
						|
		hdr->b_l1hdr.b_state = new_state;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * L2 headers should never be on the L2 state list since they don't
 | 
						|
	 * have L1 headers allocated.
 | 
						|
	 */
 | 
						|
	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
 | 
						|
	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
arc_space_consume(uint64_t space, arc_space_type_t type)
 | 
						|
{
 | 
						|
	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
 | 
						|
 | 
						|
	switch (type) {
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	case ARC_SPACE_DATA:
 | 
						|
		ARCSTAT_INCR(arcstat_data_size, space);
 | 
						|
		break;
 | 
						|
	case ARC_SPACE_META:
 | 
						|
		ARCSTAT_INCR(arcstat_metadata_size, space);
 | 
						|
		break;
 | 
						|
	case ARC_SPACE_OTHER:
 | 
						|
		ARCSTAT_INCR(arcstat_other_size, space);
 | 
						|
		break;
 | 
						|
	case ARC_SPACE_HDRS:
 | 
						|
		ARCSTAT_INCR(arcstat_hdr_size, space);
 | 
						|
		break;
 | 
						|
	case ARC_SPACE_L2HDRS:
 | 
						|
		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (type != ARC_SPACE_DATA)
 | 
						|
		ARCSTAT_INCR(arcstat_meta_used, space);
 | 
						|
 | 
						|
	atomic_add_64(&arc_size, space);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
arc_space_return(uint64_t space, arc_space_type_t type)
 | 
						|
{
 | 
						|
	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
 | 
						|
 | 
						|
	switch (type) {
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	case ARC_SPACE_DATA:
 | 
						|
		ARCSTAT_INCR(arcstat_data_size, -space);
 | 
						|
		break;
 | 
						|
	case ARC_SPACE_META:
 | 
						|
		ARCSTAT_INCR(arcstat_metadata_size, -space);
 | 
						|
		break;
 | 
						|
	case ARC_SPACE_OTHER:
 | 
						|
		ARCSTAT_INCR(arcstat_other_size, -space);
 | 
						|
		break;
 | 
						|
	case ARC_SPACE_HDRS:
 | 
						|
		ARCSTAT_INCR(arcstat_hdr_size, -space);
 | 
						|
		break;
 | 
						|
	case ARC_SPACE_L2HDRS:
 | 
						|
		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (type != ARC_SPACE_DATA) {
 | 
						|
		ASSERT(arc_meta_used >= space);
 | 
						|
		if (arc_meta_max < arc_meta_used)
 | 
						|
			arc_meta_max = arc_meta_used;
 | 
						|
		ARCSTAT_INCR(arcstat_meta_used, -space);
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(arc_size >= space);
 | 
						|
	atomic_add_64(&arc_size, -space);
 | 
						|
}
 | 
						|
 | 
						|
arc_buf_t *
 | 
						|
arc_buf_alloc(spa_t *spa, uint64_t size, void *tag, arc_buf_contents_t type)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr;
 | 
						|
	arc_buf_t *buf;
 | 
						|
 | 
						|
	VERIFY3U(size, <=, spa_maxblocksize(spa));
 | 
						|
	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
 | 
						|
	ASSERT(BUF_EMPTY(hdr));
 | 
						|
	ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
 | 
						|
	hdr->b_size = size;
 | 
						|
	hdr->b_spa = spa_load_guid(spa);
 | 
						|
	hdr->b_l1hdr.b_mru_hits = 0;
 | 
						|
	hdr->b_l1hdr.b_mru_ghost_hits = 0;
 | 
						|
	hdr->b_l1hdr.b_mfu_hits = 0;
 | 
						|
	hdr->b_l1hdr.b_mfu_ghost_hits = 0;
 | 
						|
	hdr->b_l1hdr.b_l2_hits = 0;
 | 
						|
 | 
						|
	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
 | 
						|
	buf->b_hdr = hdr;
 | 
						|
	buf->b_data = NULL;
 | 
						|
	buf->b_efunc = NULL;
 | 
						|
	buf->b_private = NULL;
 | 
						|
	buf->b_next = NULL;
 | 
						|
 | 
						|
	hdr->b_flags = arc_bufc_to_flags(type);
 | 
						|
	hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
 | 
						|
 | 
						|
	hdr->b_l1hdr.b_buf = buf;
 | 
						|
	hdr->b_l1hdr.b_state = arc_anon;
 | 
						|
	hdr->b_l1hdr.b_arc_access = 0;
 | 
						|
	hdr->b_l1hdr.b_datacnt = 1;
 | 
						|
	hdr->b_l1hdr.b_tmp_cdata = NULL;
 | 
						|
 | 
						|
	arc_get_data_buf(buf);
 | 
						|
	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
 | 
						|
	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
 | 
						|
 | 
						|
	return (buf);
 | 
						|
}
 | 
						|
 | 
						|
static char *arc_onloan_tag = "onloan";
 | 
						|
 | 
						|
/*
 | 
						|
 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
 | 
						|
 * flight data by arc_tempreserve_space() until they are "returned". Loaned
 | 
						|
 * buffers must be returned to the arc before they can be used by the DMU or
 | 
						|
 * freed.
 | 
						|
 */
 | 
						|
arc_buf_t *
 | 
						|
arc_loan_buf(spa_t *spa, uint64_t size)
 | 
						|
{
 | 
						|
	arc_buf_t *buf;
 | 
						|
 | 
						|
	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
 | 
						|
 | 
						|
	atomic_add_64(&arc_loaned_bytes, size);
 | 
						|
	return (buf);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return a loaned arc buffer to the arc.
 | 
						|
 */
 | 
						|
void
 | 
						|
arc_return_buf(arc_buf_t *buf, void *tag)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr = buf->b_hdr;
 | 
						|
 | 
						|
	ASSERT(buf->b_data != NULL);
 | 
						|
	ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
 | 
						|
	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
 | 
						|
 | 
						|
	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
 | 
						|
}
 | 
						|
 | 
						|
/* Detach an arc_buf from a dbuf (tag) */
 | 
						|
void
 | 
						|
arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr = buf->b_hdr;
 | 
						|
 | 
						|
	ASSERT(buf->b_data != NULL);
 | 
						|
	ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
 | 
						|
	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
 | 
						|
	buf->b_efunc = NULL;
 | 
						|
	buf->b_private = NULL;
 | 
						|
 | 
						|
	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
 | 
						|
}
 | 
						|
 | 
						|
static arc_buf_t *
 | 
						|
arc_buf_clone(arc_buf_t *from)
 | 
						|
{
 | 
						|
	arc_buf_t *buf;
 | 
						|
	arc_buf_hdr_t *hdr = from->b_hdr;
 | 
						|
	uint64_t size = hdr->b_size;
 | 
						|
 | 
						|
	ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
 | 
						|
 | 
						|
	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
 | 
						|
	buf->b_hdr = hdr;
 | 
						|
	buf->b_data = NULL;
 | 
						|
	buf->b_efunc = NULL;
 | 
						|
	buf->b_private = NULL;
 | 
						|
	buf->b_next = hdr->b_l1hdr.b_buf;
 | 
						|
	hdr->b_l1hdr.b_buf = buf;
 | 
						|
	arc_get_data_buf(buf);
 | 
						|
	bcopy(from->b_data, buf->b_data, size);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This buffer already exists in the arc so create a duplicate
 | 
						|
	 * copy for the caller.  If the buffer is associated with user data
 | 
						|
	 * then track the size and number of duplicates.  These stats will be
 | 
						|
	 * updated as duplicate buffers are created and destroyed.
 | 
						|
	 */
 | 
						|
	if (HDR_ISTYPE_DATA(hdr)) {
 | 
						|
		ARCSTAT_BUMP(arcstat_duplicate_buffers);
 | 
						|
		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
 | 
						|
	}
 | 
						|
	hdr->b_l1hdr.b_datacnt += 1;
 | 
						|
	return (buf);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
arc_buf_add_ref(arc_buf_t *buf, void* tag)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr;
 | 
						|
	kmutex_t *hash_lock;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check to see if this buffer is evicted.  Callers
 | 
						|
	 * must verify b_data != NULL to know if the add_ref
 | 
						|
	 * was successful.
 | 
						|
	 */
 | 
						|
	mutex_enter(&buf->b_evict_lock);
 | 
						|
	if (buf->b_data == NULL) {
 | 
						|
		mutex_exit(&buf->b_evict_lock);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	hash_lock = HDR_LOCK(buf->b_hdr);
 | 
						|
	mutex_enter(hash_lock);
 | 
						|
	hdr = buf->b_hdr;
 | 
						|
	ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
 | 
						|
	mutex_exit(&buf->b_evict_lock);
 | 
						|
 | 
						|
	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
 | 
						|
	    hdr->b_l1hdr.b_state == arc_mfu);
 | 
						|
 | 
						|
	add_reference(hdr, hash_lock, tag);
 | 
						|
	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
 | 
						|
	arc_access(hdr, hash_lock);
 | 
						|
	mutex_exit(hash_lock);
 | 
						|
	ARCSTAT_BUMP(arcstat_hits);
 | 
						|
	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
 | 
						|
	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
 | 
						|
	    data, metadata, hits);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
arc_buf_free_on_write(void *data, size_t size,
 | 
						|
    void (*free_func)(void *, size_t))
 | 
						|
{
 | 
						|
	l2arc_data_free_t *df;
 | 
						|
 | 
						|
	df = kmem_alloc(sizeof (*df), KM_SLEEP);
 | 
						|
	df->l2df_data = data;
 | 
						|
	df->l2df_size = size;
 | 
						|
	df->l2df_func = free_func;
 | 
						|
	mutex_enter(&l2arc_free_on_write_mtx);
 | 
						|
	list_insert_head(l2arc_free_on_write, df);
 | 
						|
	mutex_exit(&l2arc_free_on_write_mtx);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free the arc data buffer.  If it is an l2arc write in progress,
 | 
						|
 * the buffer is placed on l2arc_free_on_write to be freed later.
 | 
						|
 */
 | 
						|
static void
 | 
						|
arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr = buf->b_hdr;
 | 
						|
 | 
						|
	if (HDR_L2_WRITING(hdr)) {
 | 
						|
		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
 | 
						|
		ARCSTAT_BUMP(arcstat_l2_free_on_write);
 | 
						|
	} else {
 | 
						|
		free_func(buf->b_data, hdr->b_size);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
 | 
						|
{
 | 
						|
	ASSERT(HDR_HAS_L2HDR(hdr));
 | 
						|
	ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
 | 
						|
	 * that doesn't exist, the header is in the arc_l2c_only state,
 | 
						|
	 * and there isn't anything to free (it's already been freed).
 | 
						|
	 */
 | 
						|
	if (!HDR_HAS_L1HDR(hdr))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The header isn't being written to the l2arc device, thus it
 | 
						|
	 * shouldn't have a b_tmp_cdata to free.
 | 
						|
	 */
 | 
						|
	if (!HDR_L2_WRITING(hdr)) {
 | 
						|
		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The header does not have compression enabled. This can be due
 | 
						|
	 * to the buffer not being compressible, or because we're
 | 
						|
	 * freeing the buffer before the second phase of
 | 
						|
	 * l2arc_write_buffer() has started (which does the compression
 | 
						|
	 * step). In either case, b_tmp_cdata does not point to a
 | 
						|
	 * separately compressed buffer, so there's nothing to free (it
 | 
						|
	 * points to the same buffer as the arc_buf_t's b_data field).
 | 
						|
	 */
 | 
						|
	if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_OFF) {
 | 
						|
		hdr->b_l1hdr.b_tmp_cdata = NULL;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * There's nothing to free since the buffer was all zero's and
 | 
						|
	 * compressed to a zero length buffer.
 | 
						|
	 */
 | 
						|
	if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
 | 
						|
		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(L2ARC_IS_VALID_COMPRESS(hdr->b_l2hdr.b_compress));
 | 
						|
 | 
						|
	arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
 | 
						|
	    hdr->b_size, zio_data_buf_free);
 | 
						|
 | 
						|
	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
 | 
						|
	hdr->b_l1hdr.b_tmp_cdata = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free up buf->b_data and if 'remove' is set, then pull the
 | 
						|
 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
 | 
						|
 */
 | 
						|
static void
 | 
						|
arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
 | 
						|
{
 | 
						|
	arc_buf_t **bufp;
 | 
						|
 | 
						|
	/* free up data associated with the buf */
 | 
						|
	if (buf->b_data != NULL) {
 | 
						|
		arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
 | 
						|
		uint64_t size = buf->b_hdr->b_size;
 | 
						|
		arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
 | 
						|
 | 
						|
		arc_cksum_verify(buf);
 | 
						|
		arc_buf_unwatch(buf);
 | 
						|
 | 
						|
		if (type == ARC_BUFC_METADATA) {
 | 
						|
			arc_buf_data_free(buf, zio_buf_free);
 | 
						|
			arc_space_return(size, ARC_SPACE_META);
 | 
						|
		} else {
 | 
						|
			ASSERT(type == ARC_BUFC_DATA);
 | 
						|
			arc_buf_data_free(buf, zio_data_buf_free);
 | 
						|
			arc_space_return(size, ARC_SPACE_DATA);
 | 
						|
		}
 | 
						|
 | 
						|
		/* protected by hash lock, if in the hash table */
 | 
						|
		if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
 | 
						|
			uint64_t *cnt = &state->arcs_lsize[type];
 | 
						|
 | 
						|
			ASSERT(refcount_is_zero(
 | 
						|
			    &buf->b_hdr->b_l1hdr.b_refcnt));
 | 
						|
			ASSERT(state != arc_anon && state != arc_l2c_only);
 | 
						|
 | 
						|
			ASSERT3U(*cnt, >=, size);
 | 
						|
			atomic_add_64(cnt, -size);
 | 
						|
		}
 | 
						|
 | 
						|
		(void) refcount_remove_many(&state->arcs_size, size, buf);
 | 
						|
		buf->b_data = NULL;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we're destroying a duplicate buffer make sure
 | 
						|
		 * that the appropriate statistics are updated.
 | 
						|
		 */
 | 
						|
		if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
 | 
						|
		    HDR_ISTYPE_DATA(buf->b_hdr)) {
 | 
						|
			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
 | 
						|
			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
 | 
						|
		}
 | 
						|
		ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
 | 
						|
		buf->b_hdr->b_l1hdr.b_datacnt -= 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* only remove the buf if requested */
 | 
						|
	if (!remove)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* remove the buf from the hdr list */
 | 
						|
	for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
 | 
						|
	    bufp = &(*bufp)->b_next)
 | 
						|
		continue;
 | 
						|
	*bufp = buf->b_next;
 | 
						|
	buf->b_next = NULL;
 | 
						|
 | 
						|
	ASSERT(buf->b_efunc == NULL);
 | 
						|
 | 
						|
	/* clean up the buf */
 | 
						|
	buf->b_hdr = NULL;
 | 
						|
	kmem_cache_free(buf_cache, buf);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
 | 
						|
{
 | 
						|
	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
 | 
						|
	l2arc_dev_t *dev = l2hdr->b_dev;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
 | 
						|
	ASSERT(HDR_HAS_L2HDR(hdr));
 | 
						|
 | 
						|
	list_remove(&dev->l2ad_buflist, hdr);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't want to leak the b_tmp_cdata buffer that was
 | 
						|
	 * allocated in l2arc_write_buffers()
 | 
						|
	 */
 | 
						|
	arc_buf_l2_cdata_free(hdr);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
 | 
						|
	 * this header is being processed by l2arc_write_buffers() (i.e.
 | 
						|
	 * it's in the first stage of l2arc_write_buffers()).
 | 
						|
	 * Re-affirming that truth here, just to serve as a reminder. If
 | 
						|
	 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
 | 
						|
	 * may not have its HDR_L2_WRITING flag set. (the write may have
 | 
						|
	 * completed, in which case HDR_L2_WRITING will be false and the
 | 
						|
	 * b_daddr field will point to the address of the buffer on disk).
 | 
						|
	 */
 | 
						|
	IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
 | 
						|
	 * l2arc_write_buffers(). Since we've just removed this header
 | 
						|
	 * from the l2arc buffer list, this header will never reach the
 | 
						|
	 * second stage of l2arc_write_buffers(), which increments the
 | 
						|
	 * accounting stats for this header. Thus, we must be careful
 | 
						|
	 * not to decrement them for this header either.
 | 
						|
	 */
 | 
						|
	if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
 | 
						|
		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
 | 
						|
		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
 | 
						|
 | 
						|
		vdev_space_update(dev->l2ad_vdev,
 | 
						|
		    -l2hdr->b_asize, 0, 0);
 | 
						|
 | 
						|
		(void) refcount_remove_many(&dev->l2ad_alloc,
 | 
						|
		    l2hdr->b_asize, hdr);
 | 
						|
	}
 | 
						|
 | 
						|
	hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
arc_hdr_destroy(arc_buf_hdr_t *hdr)
 | 
						|
{
 | 
						|
	if (HDR_HAS_L1HDR(hdr)) {
 | 
						|
		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
 | 
						|
		    hdr->b_l1hdr.b_datacnt > 0);
 | 
						|
		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
 | 
						|
		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
 | 
						|
	}
 | 
						|
	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
 | 
						|
	ASSERT(!HDR_IN_HASH_TABLE(hdr));
 | 
						|
 | 
						|
	if (HDR_HAS_L2HDR(hdr)) {
 | 
						|
		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
 | 
						|
		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
 | 
						|
 | 
						|
		if (!buflist_held)
 | 
						|
			mutex_enter(&dev->l2ad_mtx);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Even though we checked this conditional above, we
 | 
						|
		 * need to check this again now that we have the
 | 
						|
		 * l2ad_mtx. This is because we could be racing with
 | 
						|
		 * another thread calling l2arc_evict() which might have
 | 
						|
		 * destroyed this header's L2 portion as we were waiting
 | 
						|
		 * to acquire the l2ad_mtx. If that happens, we don't
 | 
						|
		 * want to re-destroy the header's L2 portion.
 | 
						|
		 */
 | 
						|
		if (HDR_HAS_L2HDR(hdr))
 | 
						|
			arc_hdr_l2hdr_destroy(hdr);
 | 
						|
 | 
						|
		if (!buflist_held)
 | 
						|
			mutex_exit(&dev->l2ad_mtx);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!BUF_EMPTY(hdr))
 | 
						|
		buf_discard_identity(hdr);
 | 
						|
 | 
						|
	if (hdr->b_freeze_cksum != NULL) {
 | 
						|
		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
 | 
						|
		hdr->b_freeze_cksum = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (HDR_HAS_L1HDR(hdr)) {
 | 
						|
		while (hdr->b_l1hdr.b_buf) {
 | 
						|
			arc_buf_t *buf = hdr->b_l1hdr.b_buf;
 | 
						|
 | 
						|
			if (buf->b_efunc != NULL) {
 | 
						|
				mutex_enter(&arc_user_evicts_lock);
 | 
						|
				mutex_enter(&buf->b_evict_lock);
 | 
						|
				ASSERT(buf->b_hdr != NULL);
 | 
						|
				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
 | 
						|
				hdr->b_l1hdr.b_buf = buf->b_next;
 | 
						|
				buf->b_hdr = &arc_eviction_hdr;
 | 
						|
				buf->b_next = arc_eviction_list;
 | 
						|
				arc_eviction_list = buf;
 | 
						|
				mutex_exit(&buf->b_evict_lock);
 | 
						|
				cv_signal(&arc_user_evicts_cv);
 | 
						|
				mutex_exit(&arc_user_evicts_lock);
 | 
						|
			} else {
 | 
						|
				arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT3P(hdr->b_hash_next, ==, NULL);
 | 
						|
	if (HDR_HAS_L1HDR(hdr)) {
 | 
						|
		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
 | 
						|
		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
 | 
						|
		kmem_cache_free(hdr_full_cache, hdr);
 | 
						|
	} else {
 | 
						|
		kmem_cache_free(hdr_l2only_cache, hdr);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
arc_buf_free(arc_buf_t *buf, void *tag)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr = buf->b_hdr;
 | 
						|
	int hashed = hdr->b_l1hdr.b_state != arc_anon;
 | 
						|
 | 
						|
	ASSERT(buf->b_efunc == NULL);
 | 
						|
	ASSERT(buf->b_data != NULL);
 | 
						|
 | 
						|
	if (hashed) {
 | 
						|
		kmutex_t *hash_lock = HDR_LOCK(hdr);
 | 
						|
 | 
						|
		mutex_enter(hash_lock);
 | 
						|
		hdr = buf->b_hdr;
 | 
						|
		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
 | 
						|
 | 
						|
		(void) remove_reference(hdr, hash_lock, tag);
 | 
						|
		if (hdr->b_l1hdr.b_datacnt > 1) {
 | 
						|
			arc_buf_destroy(buf, TRUE);
 | 
						|
		} else {
 | 
						|
			ASSERT(buf == hdr->b_l1hdr.b_buf);
 | 
						|
			ASSERT(buf->b_efunc == NULL);
 | 
						|
			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
 | 
						|
		}
 | 
						|
		mutex_exit(hash_lock);
 | 
						|
	} else if (HDR_IO_IN_PROGRESS(hdr)) {
 | 
						|
		int destroy_hdr;
 | 
						|
		/*
 | 
						|
		 * We are in the middle of an async write.  Don't destroy
 | 
						|
		 * this buffer unless the write completes before we finish
 | 
						|
		 * decrementing the reference count.
 | 
						|
		 */
 | 
						|
		mutex_enter(&arc_user_evicts_lock);
 | 
						|
		(void) remove_reference(hdr, NULL, tag);
 | 
						|
		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
 | 
						|
		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
 | 
						|
		mutex_exit(&arc_user_evicts_lock);
 | 
						|
		if (destroy_hdr)
 | 
						|
			arc_hdr_destroy(hdr);
 | 
						|
	} else {
 | 
						|
		if (remove_reference(hdr, NULL, tag) > 0)
 | 
						|
			arc_buf_destroy(buf, TRUE);
 | 
						|
		else
 | 
						|
			arc_hdr_destroy(hdr);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
arc_buf_remove_ref(arc_buf_t *buf, void* tag)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr = buf->b_hdr;
 | 
						|
	kmutex_t *hash_lock = HDR_LOCK(hdr);
 | 
						|
	boolean_t no_callback = (buf->b_efunc == NULL);
 | 
						|
 | 
						|
	if (hdr->b_l1hdr.b_state == arc_anon) {
 | 
						|
		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
 | 
						|
		arc_buf_free(buf, tag);
 | 
						|
		return (no_callback);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_enter(hash_lock);
 | 
						|
	hdr = buf->b_hdr;
 | 
						|
	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
 | 
						|
	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
 | 
						|
	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
 | 
						|
	ASSERT(buf->b_data != NULL);
 | 
						|
 | 
						|
	(void) remove_reference(hdr, hash_lock, tag);
 | 
						|
	if (hdr->b_l1hdr.b_datacnt > 1) {
 | 
						|
		if (no_callback)
 | 
						|
			arc_buf_destroy(buf, TRUE);
 | 
						|
	} else if (no_callback) {
 | 
						|
		ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
 | 
						|
		ASSERT(buf->b_efunc == NULL);
 | 
						|
		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
 | 
						|
	}
 | 
						|
	ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
 | 
						|
	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
 | 
						|
	mutex_exit(hash_lock);
 | 
						|
	return (no_callback);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t
 | 
						|
arc_buf_size(arc_buf_t *buf)
 | 
						|
{
 | 
						|
	return (buf->b_hdr->b_size);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called from the DMU to determine if the current buffer should be
 | 
						|
 * evicted. In order to ensure proper locking, the eviction must be initiated
 | 
						|
 * from the DMU. Return true if the buffer is associated with user data and
 | 
						|
 * duplicate buffers still exist.
 | 
						|
 */
 | 
						|
boolean_t
 | 
						|
arc_buf_eviction_needed(arc_buf_t *buf)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr;
 | 
						|
	boolean_t evict_needed = B_FALSE;
 | 
						|
 | 
						|
	if (zfs_disable_dup_eviction)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	mutex_enter(&buf->b_evict_lock);
 | 
						|
	hdr = buf->b_hdr;
 | 
						|
	if (hdr == NULL) {
 | 
						|
		/*
 | 
						|
		 * We are in arc_do_user_evicts(); let that function
 | 
						|
		 * perform the eviction.
 | 
						|
		 */
 | 
						|
		ASSERT(buf->b_data == NULL);
 | 
						|
		mutex_exit(&buf->b_evict_lock);
 | 
						|
		return (B_FALSE);
 | 
						|
	} else if (buf->b_data == NULL) {
 | 
						|
		/*
 | 
						|
		 * We have already been added to the arc eviction list;
 | 
						|
		 * recommend eviction.
 | 
						|
		 */
 | 
						|
		ASSERT3P(hdr, ==, &arc_eviction_hdr);
 | 
						|
		mutex_exit(&buf->b_evict_lock);
 | 
						|
		return (B_TRUE);
 | 
						|
	}
 | 
						|
 | 
						|
	if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
 | 
						|
		evict_needed = B_TRUE;
 | 
						|
 | 
						|
	mutex_exit(&buf->b_evict_lock);
 | 
						|
	return (evict_needed);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
 | 
						|
 * state of the header is dependent on its state prior to entering this
 | 
						|
 * function. The following transitions are possible:
 | 
						|
 *
 | 
						|
 *    - arc_mru -> arc_mru_ghost
 | 
						|
 *    - arc_mfu -> arc_mfu_ghost
 | 
						|
 *    - arc_mru_ghost -> arc_l2c_only
 | 
						|
 *    - arc_mru_ghost -> deleted
 | 
						|
 *    - arc_mfu_ghost -> arc_l2c_only
 | 
						|
 *    - arc_mfu_ghost -> deleted
 | 
						|
 */
 | 
						|
static int64_t
 | 
						|
arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
 | 
						|
{
 | 
						|
	arc_state_t *evicted_state, *state;
 | 
						|
	int64_t bytes_evicted = 0;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(hash_lock));
 | 
						|
	ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
 | 
						|
	state = hdr->b_l1hdr.b_state;
 | 
						|
	if (GHOST_STATE(state)) {
 | 
						|
		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
 | 
						|
		ASSERT(hdr->b_l1hdr.b_buf == NULL);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * l2arc_write_buffers() relies on a header's L1 portion
 | 
						|
		 * (i.e. its b_tmp_cdata field) during its write phase.
 | 
						|
		 * Thus, we cannot push a header onto the arc_l2c_only
 | 
						|
		 * state (removing its L1 piece) until the header is
 | 
						|
		 * done being written to the l2arc.
 | 
						|
		 */
 | 
						|
		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
 | 
						|
			ARCSTAT_BUMP(arcstat_evict_l2_skip);
 | 
						|
			return (bytes_evicted);
 | 
						|
		}
 | 
						|
 | 
						|
		ARCSTAT_BUMP(arcstat_deleted);
 | 
						|
		bytes_evicted += hdr->b_size;
 | 
						|
 | 
						|
		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
 | 
						|
 | 
						|
		if (HDR_HAS_L2HDR(hdr)) {
 | 
						|
			/*
 | 
						|
			 * This buffer is cached on the 2nd Level ARC;
 | 
						|
			 * don't destroy the header.
 | 
						|
			 */
 | 
						|
			arc_change_state(arc_l2c_only, hdr, hash_lock);
 | 
						|
			/*
 | 
						|
			 * dropping from L1+L2 cached to L2-only,
 | 
						|
			 * realloc to remove the L1 header.
 | 
						|
			 */
 | 
						|
			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
 | 
						|
			    hdr_l2only_cache);
 | 
						|
		} else {
 | 
						|
			arc_change_state(arc_anon, hdr, hash_lock);
 | 
						|
			arc_hdr_destroy(hdr);
 | 
						|
		}
 | 
						|
		return (bytes_evicted);
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(state == arc_mru || state == arc_mfu);
 | 
						|
	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
 | 
						|
 | 
						|
	/* prefetch buffers have a minimum lifespan */
 | 
						|
	if (HDR_IO_IN_PROGRESS(hdr) ||
 | 
						|
	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
 | 
						|
	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
 | 
						|
	    arc_min_prefetch_lifespan)) {
 | 
						|
		ARCSTAT_BUMP(arcstat_evict_skip);
 | 
						|
		return (bytes_evicted);
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
 | 
						|
	ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
 | 
						|
	while (hdr->b_l1hdr.b_buf) {
 | 
						|
		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
 | 
						|
		if (!mutex_tryenter(&buf->b_evict_lock)) {
 | 
						|
			ARCSTAT_BUMP(arcstat_mutex_miss);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (buf->b_data != NULL)
 | 
						|
			bytes_evicted += hdr->b_size;
 | 
						|
		if (buf->b_efunc != NULL) {
 | 
						|
			mutex_enter(&arc_user_evicts_lock);
 | 
						|
			arc_buf_destroy(buf, FALSE);
 | 
						|
			hdr->b_l1hdr.b_buf = buf->b_next;
 | 
						|
			buf->b_hdr = &arc_eviction_hdr;
 | 
						|
			buf->b_next = arc_eviction_list;
 | 
						|
			arc_eviction_list = buf;
 | 
						|
			cv_signal(&arc_user_evicts_cv);
 | 
						|
			mutex_exit(&arc_user_evicts_lock);
 | 
						|
			mutex_exit(&buf->b_evict_lock);
 | 
						|
		} else {
 | 
						|
			mutex_exit(&buf->b_evict_lock);
 | 
						|
			arc_buf_destroy(buf, TRUE);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (HDR_HAS_L2HDR(hdr)) {
 | 
						|
		ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
 | 
						|
	} else {
 | 
						|
		if (l2arc_write_eligible(hdr->b_spa, hdr))
 | 
						|
			ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
 | 
						|
		else
 | 
						|
			ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
 | 
						|
	}
 | 
						|
 | 
						|
	if (hdr->b_l1hdr.b_datacnt == 0) {
 | 
						|
		arc_change_state(evicted_state, hdr, hash_lock);
 | 
						|
		ASSERT(HDR_IN_HASH_TABLE(hdr));
 | 
						|
		hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
 | 
						|
		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
 | 
						|
		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
 | 
						|
	}
 | 
						|
 | 
						|
	return (bytes_evicted);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t
 | 
						|
arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
 | 
						|
    uint64_t spa, int64_t bytes)
 | 
						|
{
 | 
						|
	multilist_sublist_t *mls;
 | 
						|
	uint64_t bytes_evicted = 0;
 | 
						|
	arc_buf_hdr_t *hdr;
 | 
						|
	kmutex_t *hash_lock;
 | 
						|
	int evict_count = 0;
 | 
						|
 | 
						|
	ASSERT3P(marker, !=, NULL);
 | 
						|
	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
 | 
						|
 | 
						|
	mls = multilist_sublist_lock(ml, idx);
 | 
						|
 | 
						|
	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
 | 
						|
	    hdr = multilist_sublist_prev(mls, marker)) {
 | 
						|
		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
 | 
						|
		    (evict_count >= zfs_arc_evict_batch_limit))
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * To keep our iteration location, move the marker
 | 
						|
		 * forward. Since we're not holding hdr's hash lock, we
 | 
						|
		 * must be very careful and not remove 'hdr' from the
 | 
						|
		 * sublist. Otherwise, other consumers might mistake the
 | 
						|
		 * 'hdr' as not being on a sublist when they call the
 | 
						|
		 * multilist_link_active() function (they all rely on
 | 
						|
		 * the hash lock protecting concurrent insertions and
 | 
						|
		 * removals). multilist_sublist_move_forward() was
 | 
						|
		 * specifically implemented to ensure this is the case
 | 
						|
		 * (only 'marker' will be removed and re-inserted).
 | 
						|
		 */
 | 
						|
		multilist_sublist_move_forward(mls, marker);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The only case where the b_spa field should ever be
 | 
						|
		 * zero, is the marker headers inserted by
 | 
						|
		 * arc_evict_state(). It's possible for multiple threads
 | 
						|
		 * to be calling arc_evict_state() concurrently (e.g.
 | 
						|
		 * dsl_pool_close() and zio_inject_fault()), so we must
 | 
						|
		 * skip any markers we see from these other threads.
 | 
						|
		 */
 | 
						|
		if (hdr->b_spa == 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* we're only interested in evicting buffers of a certain spa */
 | 
						|
		if (spa != 0 && hdr->b_spa != spa) {
 | 
						|
			ARCSTAT_BUMP(arcstat_evict_skip);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		hash_lock = HDR_LOCK(hdr);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We aren't calling this function from any code path
 | 
						|
		 * that would already be holding a hash lock, so we're
 | 
						|
		 * asserting on this assumption to be defensive in case
 | 
						|
		 * this ever changes. Without this check, it would be
 | 
						|
		 * possible to incorrectly increment arcstat_mutex_miss
 | 
						|
		 * below (e.g. if the code changed such that we called
 | 
						|
		 * this function with a hash lock held).
 | 
						|
		 */
 | 
						|
		ASSERT(!MUTEX_HELD(hash_lock));
 | 
						|
 | 
						|
		if (mutex_tryenter(hash_lock)) {
 | 
						|
			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
 | 
						|
			mutex_exit(hash_lock);
 | 
						|
 | 
						|
			bytes_evicted += evicted;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If evicted is zero, arc_evict_hdr() must have
 | 
						|
			 * decided to skip this header, don't increment
 | 
						|
			 * evict_count in this case.
 | 
						|
			 */
 | 
						|
			if (evicted != 0)
 | 
						|
				evict_count++;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If arc_size isn't overflowing, signal any
 | 
						|
			 * threads that might happen to be waiting.
 | 
						|
			 *
 | 
						|
			 * For each header evicted, we wake up a single
 | 
						|
			 * thread. If we used cv_broadcast, we could
 | 
						|
			 * wake up "too many" threads causing arc_size
 | 
						|
			 * to significantly overflow arc_c; since
 | 
						|
			 * arc_get_data_buf() doesn't check for overflow
 | 
						|
			 * when it's woken up (it doesn't because it's
 | 
						|
			 * possible for the ARC to be overflowing while
 | 
						|
			 * full of un-evictable buffers, and the
 | 
						|
			 * function should proceed in this case).
 | 
						|
			 *
 | 
						|
			 * If threads are left sleeping, due to not
 | 
						|
			 * using cv_broadcast, they will be woken up
 | 
						|
			 * just before arc_reclaim_thread() sleeps.
 | 
						|
			 */
 | 
						|
			mutex_enter(&arc_reclaim_lock);
 | 
						|
			if (!arc_is_overflowing())
 | 
						|
				cv_signal(&arc_reclaim_waiters_cv);
 | 
						|
			mutex_exit(&arc_reclaim_lock);
 | 
						|
		} else {
 | 
						|
			ARCSTAT_BUMP(arcstat_mutex_miss);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	multilist_sublist_unlock(mls);
 | 
						|
 | 
						|
	return (bytes_evicted);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Evict buffers from the given arc state, until we've removed the
 | 
						|
 * specified number of bytes. Move the removed buffers to the
 | 
						|
 * appropriate evict state.
 | 
						|
 *
 | 
						|
 * This function makes a "best effort". It skips over any buffers
 | 
						|
 * it can't get a hash_lock on, and so, may not catch all candidates.
 | 
						|
 * It may also return without evicting as much space as requested.
 | 
						|
 *
 | 
						|
 * If bytes is specified using the special value ARC_EVICT_ALL, this
 | 
						|
 * will evict all available (i.e. unlocked and evictable) buffers from
 | 
						|
 * the given arc state; which is used by arc_flush().
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
 | 
						|
    arc_buf_contents_t type)
 | 
						|
{
 | 
						|
	uint64_t total_evicted = 0;
 | 
						|
	multilist_t *ml = &state->arcs_list[type];
 | 
						|
	int num_sublists;
 | 
						|
	arc_buf_hdr_t **markers;
 | 
						|
	int i;
 | 
						|
 | 
						|
	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
 | 
						|
 | 
						|
	num_sublists = multilist_get_num_sublists(ml);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we've tried to evict from each sublist, made some
 | 
						|
	 * progress, but still have not hit the target number of bytes
 | 
						|
	 * to evict, we want to keep trying. The markers allow us to
 | 
						|
	 * pick up where we left off for each individual sublist, rather
 | 
						|
	 * than starting from the tail each time.
 | 
						|
	 */
 | 
						|
	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
 | 
						|
	for (i = 0; i < num_sublists; i++) {
 | 
						|
		multilist_sublist_t *mls;
 | 
						|
 | 
						|
		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * A b_spa of 0 is used to indicate that this header is
 | 
						|
		 * a marker. This fact is used in arc_adjust_type() and
 | 
						|
		 * arc_evict_state_impl().
 | 
						|
		 */
 | 
						|
		markers[i]->b_spa = 0;
 | 
						|
 | 
						|
		mls = multilist_sublist_lock(ml, i);
 | 
						|
		multilist_sublist_insert_tail(mls, markers[i]);
 | 
						|
		multilist_sublist_unlock(mls);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * While we haven't hit our target number of bytes to evict, or
 | 
						|
	 * we're evicting all available buffers.
 | 
						|
	 */
 | 
						|
	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
 | 
						|
		/*
 | 
						|
		 * Start eviction using a randomly selected sublist,
 | 
						|
		 * this is to try and evenly balance eviction across all
 | 
						|
		 * sublists. Always starting at the same sublist
 | 
						|
		 * (e.g. index 0) would cause evictions to favor certain
 | 
						|
		 * sublists over others.
 | 
						|
		 */
 | 
						|
		int sublist_idx = multilist_get_random_index(ml);
 | 
						|
		uint64_t scan_evicted = 0;
 | 
						|
 | 
						|
		for (i = 0; i < num_sublists; i++) {
 | 
						|
			uint64_t bytes_remaining;
 | 
						|
			uint64_t bytes_evicted;
 | 
						|
 | 
						|
			if (bytes == ARC_EVICT_ALL)
 | 
						|
				bytes_remaining = ARC_EVICT_ALL;
 | 
						|
			else if (total_evicted < bytes)
 | 
						|
				bytes_remaining = bytes - total_evicted;
 | 
						|
			else
 | 
						|
				break;
 | 
						|
 | 
						|
			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
 | 
						|
			    markers[sublist_idx], spa, bytes_remaining);
 | 
						|
 | 
						|
			scan_evicted += bytes_evicted;
 | 
						|
			total_evicted += bytes_evicted;
 | 
						|
 | 
						|
			/* we've reached the end, wrap to the beginning */
 | 
						|
			if (++sublist_idx >= num_sublists)
 | 
						|
				sublist_idx = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we didn't evict anything during this scan, we have
 | 
						|
		 * no reason to believe we'll evict more during another
 | 
						|
		 * scan, so break the loop.
 | 
						|
		 */
 | 
						|
		if (scan_evicted == 0) {
 | 
						|
			/* This isn't possible, let's make that obvious */
 | 
						|
			ASSERT3S(bytes, !=, 0);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * When bytes is ARC_EVICT_ALL, the only way to
 | 
						|
			 * break the loop is when scan_evicted is zero.
 | 
						|
			 * In that case, we actually have evicted enough,
 | 
						|
			 * so we don't want to increment the kstat.
 | 
						|
			 */
 | 
						|
			if (bytes != ARC_EVICT_ALL) {
 | 
						|
				ASSERT3S(total_evicted, <, bytes);
 | 
						|
				ARCSTAT_BUMP(arcstat_evict_not_enough);
 | 
						|
			}
 | 
						|
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < num_sublists; i++) {
 | 
						|
		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
 | 
						|
		multilist_sublist_remove(mls, markers[i]);
 | 
						|
		multilist_sublist_unlock(mls);
 | 
						|
 | 
						|
		kmem_cache_free(hdr_full_cache, markers[i]);
 | 
						|
	}
 | 
						|
	kmem_free(markers, sizeof (*markers) * num_sublists);
 | 
						|
 | 
						|
	return (total_evicted);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Flush all "evictable" data of the given type from the arc state
 | 
						|
 * specified. This will not evict any "active" buffers (i.e. referenced).
 | 
						|
 *
 | 
						|
 * When 'retry' is set to FALSE, the function will make a single pass
 | 
						|
 * over the state and evict any buffers that it can. Since it doesn't
 | 
						|
 * continually retry the eviction, it might end up leaving some buffers
 | 
						|
 * in the ARC due to lock misses.
 | 
						|
 *
 | 
						|
 * When 'retry' is set to TRUE, the function will continually retry the
 | 
						|
 * eviction until *all* evictable buffers have been removed from the
 | 
						|
 * state. As a result, if concurrent insertions into the state are
 | 
						|
 * allowed (e.g. if the ARC isn't shutting down), this function might
 | 
						|
 * wind up in an infinite loop, continually trying to evict buffers.
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
 | 
						|
    boolean_t retry)
 | 
						|
{
 | 
						|
	uint64_t evicted = 0;
 | 
						|
 | 
						|
	while (state->arcs_lsize[type] != 0) {
 | 
						|
		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
 | 
						|
 | 
						|
		if (!retry)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return (evicted);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper function for arc_prune_async() it is responsible for safely
 | 
						|
 * handling the execution of a registered arc_prune_func_t.
 | 
						|
 */
 | 
						|
static void
 | 
						|
arc_prune_task(void *ptr)
 | 
						|
{
 | 
						|
	arc_prune_t *ap = (arc_prune_t *)ptr;
 | 
						|
	arc_prune_func_t *func = ap->p_pfunc;
 | 
						|
 | 
						|
	if (func != NULL)
 | 
						|
		func(ap->p_adjust, ap->p_private);
 | 
						|
 | 
						|
	refcount_remove(&ap->p_refcnt, func);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Notify registered consumers they must drop holds on a portion of the ARC
 | 
						|
 * buffered they reference.  This provides a mechanism to ensure the ARC can
 | 
						|
 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers.  This
 | 
						|
 * is analogous to dnlc_reduce_cache() but more generic.
 | 
						|
 *
 | 
						|
 * This operation is performed asynchronously so it may be safely called
 | 
						|
 * in the context of the arc_reclaim_thread().  A reference is taken here
 | 
						|
 * for each registered arc_prune_t and the arc_prune_task() is responsible
 | 
						|
 * for releasing it once the registered arc_prune_func_t has completed.
 | 
						|
 */
 | 
						|
static void
 | 
						|
arc_prune_async(int64_t adjust)
 | 
						|
{
 | 
						|
	arc_prune_t *ap;
 | 
						|
 | 
						|
	mutex_enter(&arc_prune_mtx);
 | 
						|
	for (ap = list_head(&arc_prune_list); ap != NULL;
 | 
						|
	    ap = list_next(&arc_prune_list, ap)) {
 | 
						|
 | 
						|
		if (refcount_count(&ap->p_refcnt) >= 2)
 | 
						|
			continue;
 | 
						|
 | 
						|
		refcount_add(&ap->p_refcnt, ap->p_pfunc);
 | 
						|
		ap->p_adjust = adjust;
 | 
						|
		taskq_dispatch(arc_prune_taskq, arc_prune_task, ap, TQ_SLEEP);
 | 
						|
		ARCSTAT_BUMP(arcstat_prune);
 | 
						|
	}
 | 
						|
	mutex_exit(&arc_prune_mtx);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Evict the specified number of bytes from the state specified,
 | 
						|
 * restricting eviction to the spa and type given. This function
 | 
						|
 * prevents us from trying to evict more from a state's list than
 | 
						|
 * is "evictable", and to skip evicting altogether when passed a
 | 
						|
 * negative value for "bytes". In contrast, arc_evict_state() will
 | 
						|
 * evict everything it can, when passed a negative value for "bytes".
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
 | 
						|
    arc_buf_contents_t type)
 | 
						|
{
 | 
						|
	int64_t delta;
 | 
						|
 | 
						|
	if (bytes > 0 && state->arcs_lsize[type] > 0) {
 | 
						|
		delta = MIN(state->arcs_lsize[type], bytes);
 | 
						|
		return (arc_evict_state(state, spa, delta, type));
 | 
						|
	}
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The goal of this function is to evict enough meta data buffers from the
 | 
						|
 * ARC in order to enforce the arc_meta_limit.  Achieving this is slightly
 | 
						|
 * more complicated than it appears because it is common for data buffers
 | 
						|
 * to have holds on meta data buffers.  In addition, dnode meta data buffers
 | 
						|
 * will be held by the dnodes in the block preventing them from being freed.
 | 
						|
 * This means we can't simply traverse the ARC and expect to always find
 | 
						|
 * enough unheld meta data buffer to release.
 | 
						|
 *
 | 
						|
 * Therefore, this function has been updated to make alternating passes
 | 
						|
 * over the ARC releasing data buffers and then newly unheld meta data
 | 
						|
 * buffers.  This ensures forward progress is maintained and arc_meta_used
 | 
						|
 * will decrease.  Normally this is sufficient, but if required the ARC
 | 
						|
 * will call the registered prune callbacks causing dentry and inodes to
 | 
						|
 * be dropped from the VFS cache.  This will make dnode meta data buffers
 | 
						|
 * available for reclaim.
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
arc_adjust_meta_balanced(void)
 | 
						|
{
 | 
						|
	int64_t adjustmnt, delta, prune = 0;
 | 
						|
	uint64_t total_evicted = 0;
 | 
						|
	arc_buf_contents_t type = ARC_BUFC_DATA;
 | 
						|
	int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
 | 
						|
 | 
						|
restart:
 | 
						|
	/*
 | 
						|
	 * This slightly differs than the way we evict from the mru in
 | 
						|
	 * arc_adjust because we don't have a "target" value (i.e. no
 | 
						|
	 * "meta" arc_p). As a result, I think we can completely
 | 
						|
	 * cannibalize the metadata in the MRU before we evict the
 | 
						|
	 * metadata from the MFU. I think we probably need to implement a
 | 
						|
	 * "metadata arc_p" value to do this properly.
 | 
						|
	 */
 | 
						|
	adjustmnt = arc_meta_used - arc_meta_limit;
 | 
						|
 | 
						|
	if (adjustmnt > 0 && arc_mru->arcs_lsize[type] > 0) {
 | 
						|
		delta = MIN(arc_mru->arcs_lsize[type], adjustmnt);
 | 
						|
		total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
 | 
						|
		adjustmnt -= delta;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can't afford to recalculate adjustmnt here. If we do,
 | 
						|
	 * new metadata buffers can sneak into the MRU or ANON lists,
 | 
						|
	 * thus penalize the MFU metadata. Although the fudge factor is
 | 
						|
	 * small, it has been empirically shown to be significant for
 | 
						|
	 * certain workloads (e.g. creating many empty directories). As
 | 
						|
	 * such, we use the original calculation for adjustmnt, and
 | 
						|
	 * simply decrement the amount of data evicted from the MRU.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (adjustmnt > 0 && arc_mfu->arcs_lsize[type] > 0) {
 | 
						|
		delta = MIN(arc_mfu->arcs_lsize[type], adjustmnt);
 | 
						|
		total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
 | 
						|
	}
 | 
						|
 | 
						|
	adjustmnt = arc_meta_used - arc_meta_limit;
 | 
						|
 | 
						|
	if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
 | 
						|
		delta = MIN(adjustmnt,
 | 
						|
		    arc_mru_ghost->arcs_lsize[type]);
 | 
						|
		total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
 | 
						|
		adjustmnt -= delta;
 | 
						|
	}
 | 
						|
 | 
						|
	if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[type] > 0) {
 | 
						|
		delta = MIN(adjustmnt,
 | 
						|
		    arc_mfu_ghost->arcs_lsize[type]);
 | 
						|
		total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If after attempting to make the requested adjustment to the ARC
 | 
						|
	 * the meta limit is still being exceeded then request that the
 | 
						|
	 * higher layers drop some cached objects which have holds on ARC
 | 
						|
	 * meta buffers.  Requests to the upper layers will be made with
 | 
						|
	 * increasingly large scan sizes until the ARC is below the limit.
 | 
						|
	 */
 | 
						|
	if (arc_meta_used > arc_meta_limit) {
 | 
						|
		if (type == ARC_BUFC_DATA) {
 | 
						|
			type = ARC_BUFC_METADATA;
 | 
						|
		} else {
 | 
						|
			type = ARC_BUFC_DATA;
 | 
						|
 | 
						|
			if (zfs_arc_meta_prune) {
 | 
						|
				prune += zfs_arc_meta_prune;
 | 
						|
				arc_prune_async(prune);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (restarts > 0) {
 | 
						|
			restarts--;
 | 
						|
			goto restart;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (total_evicted);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Evict metadata buffers from the cache, such that arc_meta_used is
 | 
						|
 * capped by the arc_meta_limit tunable.
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
arc_adjust_meta_only(void)
 | 
						|
{
 | 
						|
	uint64_t total_evicted = 0;
 | 
						|
	int64_t target;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we're over the meta limit, we want to evict enough
 | 
						|
	 * metadata to get back under the meta limit. We don't want to
 | 
						|
	 * evict so much that we drop the MRU below arc_p, though. If
 | 
						|
	 * we're over the meta limit more than we're over arc_p, we
 | 
						|
	 * evict some from the MRU here, and some from the MFU below.
 | 
						|
	 */
 | 
						|
	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
 | 
						|
	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
 | 
						|
	    refcount_count(&arc_mru->arcs_size) - arc_p));
 | 
						|
 | 
						|
	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Similar to the above, we want to evict enough bytes to get us
 | 
						|
	 * below the meta limit, but not so much as to drop us below the
 | 
						|
	 * space alloted to the MFU (which is defined as arc_c - arc_p).
 | 
						|
	 */
 | 
						|
	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
 | 
						|
	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
 | 
						|
 | 
						|
	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
 | 
						|
 | 
						|
	return (total_evicted);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t
 | 
						|
arc_adjust_meta(void)
 | 
						|
{
 | 
						|
	if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
 | 
						|
		return (arc_adjust_meta_only());
 | 
						|
	else
 | 
						|
		return (arc_adjust_meta_balanced());
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the type of the oldest buffer in the given arc state
 | 
						|
 *
 | 
						|
 * This function will select a random sublist of type ARC_BUFC_DATA and
 | 
						|
 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
 | 
						|
 * is compared, and the type which contains the "older" buffer will be
 | 
						|
 * returned.
 | 
						|
 */
 | 
						|
static arc_buf_contents_t
 | 
						|
arc_adjust_type(arc_state_t *state)
 | 
						|
{
 | 
						|
	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
 | 
						|
	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
 | 
						|
	int data_idx = multilist_get_random_index(data_ml);
 | 
						|
	int meta_idx = multilist_get_random_index(meta_ml);
 | 
						|
	multilist_sublist_t *data_mls;
 | 
						|
	multilist_sublist_t *meta_mls;
 | 
						|
	arc_buf_contents_t type;
 | 
						|
	arc_buf_hdr_t *data_hdr;
 | 
						|
	arc_buf_hdr_t *meta_hdr;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We keep the sublist lock until we're finished, to prevent
 | 
						|
	 * the headers from being destroyed via arc_evict_state().
 | 
						|
	 */
 | 
						|
	data_mls = multilist_sublist_lock(data_ml, data_idx);
 | 
						|
	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * These two loops are to ensure we skip any markers that
 | 
						|
	 * might be at the tail of the lists due to arc_evict_state().
 | 
						|
	 */
 | 
						|
 | 
						|
	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
 | 
						|
	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
 | 
						|
		if (data_hdr->b_spa != 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
 | 
						|
	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
 | 
						|
		if (meta_hdr->b_spa != 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (data_hdr == NULL && meta_hdr == NULL) {
 | 
						|
		type = ARC_BUFC_DATA;
 | 
						|
	} else if (data_hdr == NULL) {
 | 
						|
		ASSERT3P(meta_hdr, !=, NULL);
 | 
						|
		type = ARC_BUFC_METADATA;
 | 
						|
	} else if (meta_hdr == NULL) {
 | 
						|
		ASSERT3P(data_hdr, !=, NULL);
 | 
						|
		type = ARC_BUFC_DATA;
 | 
						|
	} else {
 | 
						|
		ASSERT3P(data_hdr, !=, NULL);
 | 
						|
		ASSERT3P(meta_hdr, !=, NULL);
 | 
						|
 | 
						|
		/* The headers can't be on the sublist without an L1 header */
 | 
						|
		ASSERT(HDR_HAS_L1HDR(data_hdr));
 | 
						|
		ASSERT(HDR_HAS_L1HDR(meta_hdr));
 | 
						|
 | 
						|
		if (data_hdr->b_l1hdr.b_arc_access <
 | 
						|
		    meta_hdr->b_l1hdr.b_arc_access) {
 | 
						|
			type = ARC_BUFC_DATA;
 | 
						|
		} else {
 | 
						|
			type = ARC_BUFC_METADATA;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	multilist_sublist_unlock(meta_mls);
 | 
						|
	multilist_sublist_unlock(data_mls);
 | 
						|
 | 
						|
	return (type);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Evict buffers from the cache, such that arc_size is capped by arc_c.
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
arc_adjust(void)
 | 
						|
{
 | 
						|
	uint64_t total_evicted = 0;
 | 
						|
	uint64_t bytes;
 | 
						|
	int64_t target;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we're over arc_meta_limit, we want to correct that before
 | 
						|
	 * potentially evicting data buffers below.
 | 
						|
	 */
 | 
						|
	total_evicted += arc_adjust_meta();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Adjust MRU size
 | 
						|
	 *
 | 
						|
	 * If we're over the target cache size, we want to evict enough
 | 
						|
	 * from the list to get back to our target size. We don't want
 | 
						|
	 * to evict too much from the MRU, such that it drops below
 | 
						|
	 * arc_p. So, if we're over our target cache size more than
 | 
						|
	 * the MRU is over arc_p, we'll evict enough to get back to
 | 
						|
	 * arc_p here, and then evict more from the MFU below.
 | 
						|
	 */
 | 
						|
	target = MIN((int64_t)(arc_size - arc_c),
 | 
						|
	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
 | 
						|
	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we're below arc_meta_min, always prefer to evict data.
 | 
						|
	 * Otherwise, try to satisfy the requested number of bytes to
 | 
						|
	 * evict from the type which contains older buffers; in an
 | 
						|
	 * effort to keep newer buffers in the cache regardless of their
 | 
						|
	 * type. If we cannot satisfy the number of bytes from this
 | 
						|
	 * type, spill over into the next type.
 | 
						|
	 */
 | 
						|
	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
 | 
						|
	    arc_meta_used > arc_meta_min) {
 | 
						|
		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
 | 
						|
		total_evicted += bytes;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we couldn't evict our target number of bytes from
 | 
						|
		 * metadata, we try to get the rest from data.
 | 
						|
		 */
 | 
						|
		target -= bytes;
 | 
						|
 | 
						|
		total_evicted +=
 | 
						|
		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
 | 
						|
	} else {
 | 
						|
		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
 | 
						|
		total_evicted += bytes;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we couldn't evict our target number of bytes from
 | 
						|
		 * data, we try to get the rest from metadata.
 | 
						|
		 */
 | 
						|
		target -= bytes;
 | 
						|
 | 
						|
		total_evicted +=
 | 
						|
		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Adjust MFU size
 | 
						|
	 *
 | 
						|
	 * Now that we've tried to evict enough from the MRU to get its
 | 
						|
	 * size back to arc_p, if we're still above the target cache
 | 
						|
	 * size, we evict the rest from the MFU.
 | 
						|
	 */
 | 
						|
	target = arc_size - arc_c;
 | 
						|
 | 
						|
	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
 | 
						|
	    arc_meta_used > arc_meta_min) {
 | 
						|
		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
 | 
						|
		total_evicted += bytes;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we couldn't evict our target number of bytes from
 | 
						|
		 * metadata, we try to get the rest from data.
 | 
						|
		 */
 | 
						|
		target -= bytes;
 | 
						|
 | 
						|
		total_evicted +=
 | 
						|
		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
 | 
						|
	} else {
 | 
						|
		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
 | 
						|
		total_evicted += bytes;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we couldn't evict our target number of bytes from
 | 
						|
		 * data, we try to get the rest from data.
 | 
						|
		 */
 | 
						|
		target -= bytes;
 | 
						|
 | 
						|
		total_evicted +=
 | 
						|
		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Adjust ghost lists
 | 
						|
	 *
 | 
						|
	 * In addition to the above, the ARC also defines target values
 | 
						|
	 * for the ghost lists. The sum of the mru list and mru ghost
 | 
						|
	 * list should never exceed the target size of the cache, and
 | 
						|
	 * the sum of the mru list, mfu list, mru ghost list, and mfu
 | 
						|
	 * ghost list should never exceed twice the target size of the
 | 
						|
	 * cache. The following logic enforces these limits on the ghost
 | 
						|
	 * caches, and evicts from them as needed.
 | 
						|
	 */
 | 
						|
	target = refcount_count(&arc_mru->arcs_size) +
 | 
						|
	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
 | 
						|
 | 
						|
	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
 | 
						|
	total_evicted += bytes;
 | 
						|
 | 
						|
	target -= bytes;
 | 
						|
 | 
						|
	total_evicted +=
 | 
						|
	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We assume the sum of the mru list and mfu list is less than
 | 
						|
	 * or equal to arc_c (we enforced this above), which means we
 | 
						|
	 * can use the simpler of the two equations below:
 | 
						|
	 *
 | 
						|
	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
 | 
						|
	 *		    mru ghost + mfu ghost <= arc_c
 | 
						|
	 */
 | 
						|
	target = refcount_count(&arc_mru_ghost->arcs_size) +
 | 
						|
	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
 | 
						|
 | 
						|
	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
 | 
						|
	total_evicted += bytes;
 | 
						|
 | 
						|
	target -= bytes;
 | 
						|
 | 
						|
	total_evicted +=
 | 
						|
	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
 | 
						|
 | 
						|
	return (total_evicted);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
arc_do_user_evicts(void)
 | 
						|
{
 | 
						|
	mutex_enter(&arc_user_evicts_lock);
 | 
						|
	while (arc_eviction_list != NULL) {
 | 
						|
		arc_buf_t *buf = arc_eviction_list;
 | 
						|
		arc_eviction_list = buf->b_next;
 | 
						|
		mutex_enter(&buf->b_evict_lock);
 | 
						|
		buf->b_hdr = NULL;
 | 
						|
		mutex_exit(&buf->b_evict_lock);
 | 
						|
		mutex_exit(&arc_user_evicts_lock);
 | 
						|
 | 
						|
		if (buf->b_efunc != NULL)
 | 
						|
			VERIFY0(buf->b_efunc(buf->b_private));
 | 
						|
 | 
						|
		buf->b_efunc = NULL;
 | 
						|
		buf->b_private = NULL;
 | 
						|
		kmem_cache_free(buf_cache, buf);
 | 
						|
		mutex_enter(&arc_user_evicts_lock);
 | 
						|
	}
 | 
						|
	mutex_exit(&arc_user_evicts_lock);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
arc_flush(spa_t *spa, boolean_t retry)
 | 
						|
{
 | 
						|
	uint64_t guid = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If retry is TRUE, a spa must not be specified since we have
 | 
						|
	 * no good way to determine if all of a spa's buffers have been
 | 
						|
	 * evicted from an arc state.
 | 
						|
	 */
 | 
						|
	ASSERT(!retry || spa == 0);
 | 
						|
 | 
						|
	if (spa != NULL)
 | 
						|
		guid = spa_load_guid(spa);
 | 
						|
 | 
						|
	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
 | 
						|
	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
 | 
						|
 | 
						|
	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
 | 
						|
	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
 | 
						|
 | 
						|
	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
 | 
						|
	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
 | 
						|
 | 
						|
	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
 | 
						|
	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
 | 
						|
 | 
						|
	arc_do_user_evicts();
 | 
						|
	ASSERT(spa || arc_eviction_list == NULL);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
arc_shrink(int64_t to_free)
 | 
						|
{
 | 
						|
	uint64_t c = arc_c;
 | 
						|
 | 
						|
	if (c > to_free && c - to_free > arc_c_min) {
 | 
						|
		arc_c = c - to_free;
 | 
						|
		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
 | 
						|
		if (arc_c > arc_size)
 | 
						|
			arc_c = MAX(arc_size, arc_c_min);
 | 
						|
		if (arc_p > arc_c)
 | 
						|
			arc_p = (arc_c >> 1);
 | 
						|
		ASSERT(arc_c >= arc_c_min);
 | 
						|
		ASSERT((int64_t)arc_p >= 0);
 | 
						|
	} else {
 | 
						|
		arc_c = arc_c_min;
 | 
						|
	}
 | 
						|
 | 
						|
	if (arc_size > arc_c)
 | 
						|
		(void) arc_adjust();
 | 
						|
}
 | 
						|
 | 
						|
typedef enum free_memory_reason_t {
 | 
						|
	FMR_UNKNOWN,
 | 
						|
	FMR_NEEDFREE,
 | 
						|
	FMR_LOTSFREE,
 | 
						|
	FMR_SWAPFS_MINFREE,
 | 
						|
	FMR_PAGES_PP_MAXIMUM,
 | 
						|
	FMR_HEAP_ARENA,
 | 
						|
	FMR_ZIO_ARENA,
 | 
						|
} free_memory_reason_t;
 | 
						|
 | 
						|
int64_t last_free_memory;
 | 
						|
free_memory_reason_t last_free_reason;
 | 
						|
 | 
						|
#ifdef _KERNEL
 | 
						|
/*
 | 
						|
 * Additional reserve of pages for pp_reserve.
 | 
						|
 */
 | 
						|
int64_t arc_pages_pp_reserve = 64;
 | 
						|
 | 
						|
/*
 | 
						|
 * Additional reserve of pages for swapfs.
 | 
						|
 */
 | 
						|
int64_t arc_swapfs_reserve = 64;
 | 
						|
#endif /* _KERNEL */
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the amount of memory that can be consumed before reclaim will be
 | 
						|
 * needed.  Positive if there is sufficient free memory, negative indicates
 | 
						|
 * the amount of memory that needs to be freed up.
 | 
						|
 */
 | 
						|
static int64_t
 | 
						|
arc_available_memory(void)
 | 
						|
{
 | 
						|
	int64_t lowest = INT64_MAX;
 | 
						|
	free_memory_reason_t r = FMR_UNKNOWN;
 | 
						|
#ifdef _KERNEL
 | 
						|
	int64_t n;
 | 
						|
#ifdef __linux__
 | 
						|
	pgcnt_t needfree = btop(arc_need_free);
 | 
						|
	pgcnt_t lotsfree = btop(arc_sys_free);
 | 
						|
	pgcnt_t desfree = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
	if (needfree > 0) {
 | 
						|
		n = PAGESIZE * (-needfree);
 | 
						|
		if (n < lowest) {
 | 
						|
			lowest = n;
 | 
						|
			r = FMR_NEEDFREE;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * check that we're out of range of the pageout scanner.  It starts to
 | 
						|
	 * schedule paging if freemem is less than lotsfree and needfree.
 | 
						|
	 * lotsfree is the high-water mark for pageout, and needfree is the
 | 
						|
	 * number of needed free pages.  We add extra pages here to make sure
 | 
						|
	 * the scanner doesn't start up while we're freeing memory.
 | 
						|
	 */
 | 
						|
	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
 | 
						|
	if (n < lowest) {
 | 
						|
		lowest = n;
 | 
						|
		r = FMR_LOTSFREE;
 | 
						|
	}
 | 
						|
 | 
						|
#ifndef __linux__
 | 
						|
	/*
 | 
						|
	 * check to make sure that swapfs has enough space so that anon
 | 
						|
	 * reservations can still succeed. anon_resvmem() checks that the
 | 
						|
	 * availrmem is greater than swapfs_minfree, and the number of reserved
 | 
						|
	 * swap pages.  We also add a bit of extra here just to prevent
 | 
						|
	 * circumstances from getting really dire.
 | 
						|
	 */
 | 
						|
	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
 | 
						|
	    desfree - arc_swapfs_reserve);
 | 
						|
	if (n < lowest) {
 | 
						|
		lowest = n;
 | 
						|
		r = FMR_SWAPFS_MINFREE;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check that we have enough availrmem that memory locking (e.g., via
 | 
						|
	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
 | 
						|
	 * stores the number of pages that cannot be locked; when availrmem
 | 
						|
	 * drops below pages_pp_maximum, page locking mechanisms such as
 | 
						|
	 * page_pp_lock() will fail.)
 | 
						|
	 */
 | 
						|
	n = PAGESIZE * (availrmem - pages_pp_maximum -
 | 
						|
	    arc_pages_pp_reserve);
 | 
						|
	if (n < lowest) {
 | 
						|
		lowest = n;
 | 
						|
		r = FMR_PAGES_PP_MAXIMUM;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(__i386)
 | 
						|
	/*
 | 
						|
	 * If we're on an i386 platform, it's possible that we'll exhaust the
 | 
						|
	 * kernel heap space before we ever run out of available physical
 | 
						|
	 * memory.  Most checks of the size of the heap_area compare against
 | 
						|
	 * tune.t_minarmem, which is the minimum available real memory that we
 | 
						|
	 * can have in the system.  However, this is generally fixed at 25 pages
 | 
						|
	 * which is so low that it's useless.  In this comparison, we seek to
 | 
						|
	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
 | 
						|
	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
 | 
						|
	 * free)
 | 
						|
	 */
 | 
						|
	n = vmem_size(heap_arena, VMEM_FREE) -
 | 
						|
	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
 | 
						|
	if (n < lowest) {
 | 
						|
		lowest = n;
 | 
						|
		r = FMR_HEAP_ARENA;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If zio data pages are being allocated out of a separate heap segment,
 | 
						|
	 * then enforce that the size of available vmem for this arena remains
 | 
						|
	 * above about 1/16th free.
 | 
						|
	 *
 | 
						|
	 * Note: The 1/16th arena free requirement was put in place
 | 
						|
	 * to aggressively evict memory from the arc in order to avoid
 | 
						|
	 * memory fragmentation issues.
 | 
						|
	 */
 | 
						|
	if (zio_arena != NULL) {
 | 
						|
		n = vmem_size(zio_arena, VMEM_FREE) -
 | 
						|
		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
 | 
						|
		if (n < lowest) {
 | 
						|
			lowest = n;
 | 
						|
			r = FMR_ZIO_ARENA;
 | 
						|
		}
 | 
						|
	}
 | 
						|
#else /* _KERNEL */
 | 
						|
	/* Every 100 calls, free a small amount */
 | 
						|
	if (spa_get_random(100) == 0)
 | 
						|
		lowest = -1024;
 | 
						|
#endif /* _KERNEL */
 | 
						|
 | 
						|
	last_free_memory = lowest;
 | 
						|
	last_free_reason = r;
 | 
						|
 | 
						|
	return (lowest);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine if the system is under memory pressure and is asking
 | 
						|
 * to reclaim memory. A return value of TRUE indicates that the system
 | 
						|
 * is under memory pressure and that the arc should adjust accordingly.
 | 
						|
 */
 | 
						|
static boolean_t
 | 
						|
arc_reclaim_needed(void)
 | 
						|
{
 | 
						|
	return (arc_available_memory() < 0);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
arc_kmem_reap_now(void)
 | 
						|
{
 | 
						|
	size_t			i;
 | 
						|
	kmem_cache_t		*prev_cache = NULL;
 | 
						|
	kmem_cache_t		*prev_data_cache = NULL;
 | 
						|
	extern kmem_cache_t	*zio_buf_cache[];
 | 
						|
	extern kmem_cache_t	*zio_data_buf_cache[];
 | 
						|
	extern kmem_cache_t	*range_seg_cache;
 | 
						|
 | 
						|
	if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
 | 
						|
		/*
 | 
						|
		 * We are exceeding our meta-data cache limit.
 | 
						|
		 * Prune some entries to release holds on meta-data.
 | 
						|
		 */
 | 
						|
		arc_prune_async(zfs_arc_meta_prune);
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
 | 
						|
#ifdef _ILP32
 | 
						|
		/* reach upper limit of cache size on 32-bit */
 | 
						|
		if (zio_buf_cache[i] == NULL)
 | 
						|
			break;
 | 
						|
#endif
 | 
						|
		if (zio_buf_cache[i] != prev_cache) {
 | 
						|
			prev_cache = zio_buf_cache[i];
 | 
						|
			kmem_cache_reap_now(zio_buf_cache[i]);
 | 
						|
		}
 | 
						|
		if (zio_data_buf_cache[i] != prev_data_cache) {
 | 
						|
			prev_data_cache = zio_data_buf_cache[i];
 | 
						|
			kmem_cache_reap_now(zio_data_buf_cache[i]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	kmem_cache_reap_now(buf_cache);
 | 
						|
	kmem_cache_reap_now(hdr_full_cache);
 | 
						|
	kmem_cache_reap_now(hdr_l2only_cache);
 | 
						|
	kmem_cache_reap_now(range_seg_cache);
 | 
						|
 | 
						|
	if (zio_arena != NULL) {
 | 
						|
		/*
 | 
						|
		 * Ask the vmem arena to reclaim unused memory from its
 | 
						|
		 * quantum caches.
 | 
						|
		 */
 | 
						|
		vmem_qcache_reap(zio_arena);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Threads can block in arc_get_data_buf() waiting for this thread to evict
 | 
						|
 * enough data and signal them to proceed. When this happens, the threads in
 | 
						|
 * arc_get_data_buf() are sleeping while holding the hash lock for their
 | 
						|
 * particular arc header. Thus, we must be careful to never sleep on a
 | 
						|
 * hash lock in this thread. This is to prevent the following deadlock:
 | 
						|
 *
 | 
						|
 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
 | 
						|
 *    waiting for the reclaim thread to signal it.
 | 
						|
 *
 | 
						|
 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
 | 
						|
 *    fails, and goes to sleep forever.
 | 
						|
 *
 | 
						|
 * This possible deadlock is avoided by always acquiring a hash lock
 | 
						|
 * using mutex_tryenter() from arc_reclaim_thread().
 | 
						|
 */
 | 
						|
static void
 | 
						|
arc_reclaim_thread(void)
 | 
						|
{
 | 
						|
	fstrans_cookie_t	cookie = spl_fstrans_mark();
 | 
						|
	hrtime_t		growtime = 0;
 | 
						|
	callb_cpr_t		cpr;
 | 
						|
 | 
						|
	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
 | 
						|
 | 
						|
	mutex_enter(&arc_reclaim_lock);
 | 
						|
	while (!arc_reclaim_thread_exit) {
 | 
						|
		int64_t to_free;
 | 
						|
		int64_t free_memory = arc_available_memory();
 | 
						|
		uint64_t evicted = 0;
 | 
						|
 | 
						|
		arc_tuning_update();
 | 
						|
 | 
						|
		mutex_exit(&arc_reclaim_lock);
 | 
						|
 | 
						|
		if (free_memory < 0) {
 | 
						|
 | 
						|
			arc_no_grow = B_TRUE;
 | 
						|
			arc_warm = B_TRUE;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Wait at least zfs_grow_retry (default 5) seconds
 | 
						|
			 * before considering growing.
 | 
						|
			 */
 | 
						|
			growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
 | 
						|
 | 
						|
			arc_kmem_reap_now();
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If we are still low on memory, shrink the ARC
 | 
						|
			 * so that we have arc_shrink_min free space.
 | 
						|
			 */
 | 
						|
			free_memory = arc_available_memory();
 | 
						|
 | 
						|
			to_free = (arc_c >> arc_shrink_shift) - free_memory;
 | 
						|
			if (to_free > 0) {
 | 
						|
#ifdef _KERNEL
 | 
						|
				to_free = MAX(to_free, arc_need_free);
 | 
						|
#endif
 | 
						|
				arc_shrink(to_free);
 | 
						|
			}
 | 
						|
		} else if (free_memory < arc_c >> arc_no_grow_shift) {
 | 
						|
			arc_no_grow = B_TRUE;
 | 
						|
		} else if (gethrtime() >= growtime) {
 | 
						|
			arc_no_grow = B_FALSE;
 | 
						|
		}
 | 
						|
 | 
						|
		evicted = arc_adjust();
 | 
						|
 | 
						|
		mutex_enter(&arc_reclaim_lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If evicted is zero, we couldn't evict anything via
 | 
						|
		 * arc_adjust(). This could be due to hash lock
 | 
						|
		 * collisions, but more likely due to the majority of
 | 
						|
		 * arc buffers being unevictable. Therefore, even if
 | 
						|
		 * arc_size is above arc_c, another pass is unlikely to
 | 
						|
		 * be helpful and could potentially cause us to enter an
 | 
						|
		 * infinite loop.
 | 
						|
		 */
 | 
						|
		if (arc_size <= arc_c || evicted == 0) {
 | 
						|
			/*
 | 
						|
			 * We're either no longer overflowing, or we
 | 
						|
			 * can't evict anything more, so we should wake
 | 
						|
			 * up any threads before we go to sleep and clear
 | 
						|
			 * arc_need_free since nothing more can be done.
 | 
						|
			 */
 | 
						|
			cv_broadcast(&arc_reclaim_waiters_cv);
 | 
						|
			arc_need_free = 0;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Block until signaled, or after one second (we
 | 
						|
			 * might need to perform arc_kmem_reap_now()
 | 
						|
			 * even if we aren't being signalled)
 | 
						|
			 */
 | 
						|
			CALLB_CPR_SAFE_BEGIN(&cpr);
 | 
						|
			(void) cv_timedwait_sig_hires(&arc_reclaim_thread_cv,
 | 
						|
			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
 | 
						|
			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	arc_reclaim_thread_exit = FALSE;
 | 
						|
	cv_broadcast(&arc_reclaim_thread_cv);
 | 
						|
	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
 | 
						|
	spl_fstrans_unmark(cookie);
 | 
						|
	thread_exit();
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
arc_user_evicts_thread(void)
 | 
						|
{
 | 
						|
	fstrans_cookie_t	cookie = spl_fstrans_mark();
 | 
						|
	callb_cpr_t cpr;
 | 
						|
 | 
						|
	CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
 | 
						|
 | 
						|
	mutex_enter(&arc_user_evicts_lock);
 | 
						|
	while (!arc_user_evicts_thread_exit) {
 | 
						|
		mutex_exit(&arc_user_evicts_lock);
 | 
						|
 | 
						|
		arc_do_user_evicts();
 | 
						|
 | 
						|
		/*
 | 
						|
		 * This is necessary in order for the mdb ::arc dcmd to
 | 
						|
		 * show up to date information. Since the ::arc command
 | 
						|
		 * does not call the kstat's update function, without
 | 
						|
		 * this call, the command may show stale stats for the
 | 
						|
		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
 | 
						|
		 * with this change, the data might be up to 1 second
 | 
						|
		 * out of date; but that should suffice. The arc_state_t
 | 
						|
		 * structures can be queried directly if more accurate
 | 
						|
		 * information is needed.
 | 
						|
		 */
 | 
						|
		if (arc_ksp != NULL)
 | 
						|
			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
 | 
						|
 | 
						|
		mutex_enter(&arc_user_evicts_lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Block until signaled, or after one second (we need to
 | 
						|
		 * call the arc's kstat update function regularly).
 | 
						|
		 */
 | 
						|
		CALLB_CPR_SAFE_BEGIN(&cpr);
 | 
						|
		(void) cv_timedwait_sig(&arc_user_evicts_cv,
 | 
						|
		    &arc_user_evicts_lock, ddi_get_lbolt() + hz);
 | 
						|
		CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	arc_user_evicts_thread_exit = FALSE;
 | 
						|
	cv_broadcast(&arc_user_evicts_cv);
 | 
						|
	CALLB_CPR_EXIT(&cpr);		/* drops arc_user_evicts_lock */
 | 
						|
	spl_fstrans_unmark(cookie);
 | 
						|
	thread_exit();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef _KERNEL
 | 
						|
/*
 | 
						|
 * Determine the amount of memory eligible for eviction contained in the
 | 
						|
 * ARC. All clean data reported by the ghost lists can always be safely
 | 
						|
 * evicted. Due to arc_c_min, the same does not hold for all clean data
 | 
						|
 * contained by the regular mru and mfu lists.
 | 
						|
 *
 | 
						|
 * In the case of the regular mru and mfu lists, we need to report as
 | 
						|
 * much clean data as possible, such that evicting that same reported
 | 
						|
 * data will not bring arc_size below arc_c_min. Thus, in certain
 | 
						|
 * circumstances, the total amount of clean data in the mru and mfu
 | 
						|
 * lists might not actually be evictable.
 | 
						|
 *
 | 
						|
 * The following two distinct cases are accounted for:
 | 
						|
 *
 | 
						|
 * 1. The sum of the amount of dirty data contained by both the mru and
 | 
						|
 *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
 | 
						|
 *    is greater than or equal to arc_c_min.
 | 
						|
 *    (i.e. amount of dirty data >= arc_c_min)
 | 
						|
 *
 | 
						|
 *    This is the easy case; all clean data contained by the mru and mfu
 | 
						|
 *    lists is evictable. Evicting all clean data can only drop arc_size
 | 
						|
 *    to the amount of dirty data, which is greater than arc_c_min.
 | 
						|
 *
 | 
						|
 * 2. The sum of the amount of dirty data contained by both the mru and
 | 
						|
 *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
 | 
						|
 *    is less than arc_c_min.
 | 
						|
 *    (i.e. arc_c_min > amount of dirty data)
 | 
						|
 *
 | 
						|
 *    2.1. arc_size is greater than or equal arc_c_min.
 | 
						|
 *         (i.e. arc_size >= arc_c_min > amount of dirty data)
 | 
						|
 *
 | 
						|
 *         In this case, not all clean data from the regular mru and mfu
 | 
						|
 *         lists is actually evictable; we must leave enough clean data
 | 
						|
 *         to keep arc_size above arc_c_min. Thus, the maximum amount of
 | 
						|
 *         evictable data from the two lists combined, is exactly the
 | 
						|
 *         difference between arc_size and arc_c_min.
 | 
						|
 *
 | 
						|
 *    2.2. arc_size is less than arc_c_min
 | 
						|
 *         (i.e. arc_c_min > arc_size > amount of dirty data)
 | 
						|
 *
 | 
						|
 *         In this case, none of the data contained in the mru and mfu
 | 
						|
 *         lists is evictable, even if it's clean. Since arc_size is
 | 
						|
 *         already below arc_c_min, evicting any more would only
 | 
						|
 *         increase this negative difference.
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
arc_evictable_memory(void) {
 | 
						|
	uint64_t arc_clean =
 | 
						|
	    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
 | 
						|
	    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
 | 
						|
	    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
 | 
						|
	    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
 | 
						|
	uint64_t ghost_clean =
 | 
						|
	    arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
 | 
						|
	    arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
 | 
						|
	    arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
 | 
						|
	    arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
 | 
						|
	uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
 | 
						|
 | 
						|
	if (arc_dirty >= arc_c_min)
 | 
						|
		return (ghost_clean + arc_clean);
 | 
						|
 | 
						|
	return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If sc->nr_to_scan is zero, the caller is requesting a query of the
 | 
						|
 * number of objects which can potentially be freed.  If it is nonzero,
 | 
						|
 * the request is to free that many objects.
 | 
						|
 *
 | 
						|
 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
 | 
						|
 * in struct shrinker and also require the shrinker to return the number
 | 
						|
 * of objects freed.
 | 
						|
 *
 | 
						|
 * Older kernels require the shrinker to return the number of freeable
 | 
						|
 * objects following the freeing of nr_to_free.
 | 
						|
 */
 | 
						|
static spl_shrinker_t
 | 
						|
__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
 | 
						|
{
 | 
						|
	int64_t pages;
 | 
						|
 | 
						|
	/* The arc is considered warm once reclaim has occurred */
 | 
						|
	if (unlikely(arc_warm == B_FALSE))
 | 
						|
		arc_warm = B_TRUE;
 | 
						|
 | 
						|
	/* Return the potential number of reclaimable pages */
 | 
						|
	pages = btop((int64_t)arc_evictable_memory());
 | 
						|
	if (sc->nr_to_scan == 0)
 | 
						|
		return (pages);
 | 
						|
 | 
						|
	/* Not allowed to perform filesystem reclaim */
 | 
						|
	if (!(sc->gfp_mask & __GFP_FS))
 | 
						|
		return (SHRINK_STOP);
 | 
						|
 | 
						|
	/* Reclaim in progress */
 | 
						|
	if (mutex_tryenter(&arc_reclaim_lock) == 0)
 | 
						|
		return (SHRINK_STOP);
 | 
						|
 | 
						|
	mutex_exit(&arc_reclaim_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Evict the requested number of pages by shrinking arc_c the
 | 
						|
	 * requested amount.  If there is nothing left to evict just
 | 
						|
	 * reap whatever we can from the various arc slabs.
 | 
						|
	 */
 | 
						|
	if (pages > 0) {
 | 
						|
		arc_shrink(ptob(sc->nr_to_scan));
 | 
						|
		arc_kmem_reap_now();
 | 
						|
#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
 | 
						|
		pages = MAX(pages - btop(arc_evictable_memory()), 0);
 | 
						|
#else
 | 
						|
		pages = btop(arc_evictable_memory());
 | 
						|
#endif
 | 
						|
	} else {
 | 
						|
		arc_kmem_reap_now();
 | 
						|
		pages = SHRINK_STOP;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We've reaped what we can, wake up threads.
 | 
						|
	 */
 | 
						|
	cv_broadcast(&arc_reclaim_waiters_cv);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When direct reclaim is observed it usually indicates a rapid
 | 
						|
	 * increase in memory pressure.  This occurs because the kswapd
 | 
						|
	 * threads were unable to asynchronously keep enough free memory
 | 
						|
	 * available.  In this case set arc_no_grow to briefly pause arc
 | 
						|
	 * growth to avoid compounding the memory pressure.
 | 
						|
	 */
 | 
						|
	if (current_is_kswapd()) {
 | 
						|
		ARCSTAT_BUMP(arcstat_memory_indirect_count);
 | 
						|
	} else {
 | 
						|
		arc_no_grow = B_TRUE;
 | 
						|
		arc_need_free = ptob(sc->nr_to_scan);
 | 
						|
		ARCSTAT_BUMP(arcstat_memory_direct_count);
 | 
						|
	}
 | 
						|
 | 
						|
	return (pages);
 | 
						|
}
 | 
						|
SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
 | 
						|
 | 
						|
SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
 | 
						|
#endif /* _KERNEL */
 | 
						|
 | 
						|
/*
 | 
						|
 * Adapt arc info given the number of bytes we are trying to add and
 | 
						|
 * the state that we are comming from.  This function is only called
 | 
						|
 * when we are adding new content to the cache.
 | 
						|
 */
 | 
						|
static void
 | 
						|
arc_adapt(int bytes, arc_state_t *state)
 | 
						|
{
 | 
						|
	int mult;
 | 
						|
	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
 | 
						|
	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
 | 
						|
	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
 | 
						|
 | 
						|
	if (state == arc_l2c_only)
 | 
						|
		return;
 | 
						|
 | 
						|
	ASSERT(bytes > 0);
 | 
						|
	/*
 | 
						|
	 * Adapt the target size of the MRU list:
 | 
						|
	 *	- if we just hit in the MRU ghost list, then increase
 | 
						|
	 *	  the target size of the MRU list.
 | 
						|
	 *	- if we just hit in the MFU ghost list, then increase
 | 
						|
	 *	  the target size of the MFU list by decreasing the
 | 
						|
	 *	  target size of the MRU list.
 | 
						|
	 */
 | 
						|
	if (state == arc_mru_ghost) {
 | 
						|
		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
 | 
						|
		if (!zfs_arc_p_dampener_disable)
 | 
						|
			mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
 | 
						|
 | 
						|
		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
 | 
						|
	} else if (state == arc_mfu_ghost) {
 | 
						|
		uint64_t delta;
 | 
						|
 | 
						|
		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
 | 
						|
		if (!zfs_arc_p_dampener_disable)
 | 
						|
			mult = MIN(mult, 10);
 | 
						|
 | 
						|
		delta = MIN(bytes * mult, arc_p);
 | 
						|
		arc_p = MAX(arc_p_min, arc_p - delta);
 | 
						|
	}
 | 
						|
	ASSERT((int64_t)arc_p >= 0);
 | 
						|
 | 
						|
	if (arc_reclaim_needed()) {
 | 
						|
		cv_signal(&arc_reclaim_thread_cv);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (arc_no_grow)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (arc_c >= arc_c_max)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we're within (2 * maxblocksize) bytes of the target
 | 
						|
	 * cache size, increment the target cache size
 | 
						|
	 */
 | 
						|
	ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
 | 
						|
	if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
 | 
						|
		atomic_add_64(&arc_c, (int64_t)bytes);
 | 
						|
		if (arc_c > arc_c_max)
 | 
						|
			arc_c = arc_c_max;
 | 
						|
		else if (state == arc_anon)
 | 
						|
			atomic_add_64(&arc_p, (int64_t)bytes);
 | 
						|
		if (arc_p > arc_c)
 | 
						|
			arc_p = arc_c;
 | 
						|
	}
 | 
						|
	ASSERT((int64_t)arc_p >= 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if arc_size has grown past our upper threshold, determined by
 | 
						|
 * zfs_arc_overflow_shift.
 | 
						|
 */
 | 
						|
static boolean_t
 | 
						|
arc_is_overflowing(void)
 | 
						|
{
 | 
						|
	/* Always allow at least one block of overflow */
 | 
						|
	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
 | 
						|
	    arc_c >> zfs_arc_overflow_shift);
 | 
						|
 | 
						|
	return (arc_size >= arc_c + overflow);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The buffer, supplied as the first argument, needs a data block. If we
 | 
						|
 * are hitting the hard limit for the cache size, we must sleep, waiting
 | 
						|
 * for the eviction thread to catch up. If we're past the target size
 | 
						|
 * but below the hard limit, we'll only signal the reclaim thread and
 | 
						|
 * continue on.
 | 
						|
 */
 | 
						|
static void
 | 
						|
arc_get_data_buf(arc_buf_t *buf)
 | 
						|
{
 | 
						|
	arc_state_t		*state = buf->b_hdr->b_l1hdr.b_state;
 | 
						|
	uint64_t		size = buf->b_hdr->b_size;
 | 
						|
	arc_buf_contents_t	type = arc_buf_type(buf->b_hdr);
 | 
						|
 | 
						|
	arc_adapt(size, state);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If arc_size is currently overflowing, and has grown past our
 | 
						|
	 * upper limit, we must be adding data faster than the evict
 | 
						|
	 * thread can evict. Thus, to ensure we don't compound the
 | 
						|
	 * problem by adding more data and forcing arc_size to grow even
 | 
						|
	 * further past it's target size, we halt and wait for the
 | 
						|
	 * eviction thread to catch up.
 | 
						|
	 *
 | 
						|
	 * It's also possible that the reclaim thread is unable to evict
 | 
						|
	 * enough buffers to get arc_size below the overflow limit (e.g.
 | 
						|
	 * due to buffers being un-evictable, or hash lock collisions).
 | 
						|
	 * In this case, we want to proceed regardless if we're
 | 
						|
	 * overflowing; thus we don't use a while loop here.
 | 
						|
	 */
 | 
						|
	if (arc_is_overflowing()) {
 | 
						|
		mutex_enter(&arc_reclaim_lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Now that we've acquired the lock, we may no longer be
 | 
						|
		 * over the overflow limit, lets check.
 | 
						|
		 *
 | 
						|
		 * We're ignoring the case of spurious wake ups. If that
 | 
						|
		 * were to happen, it'd let this thread consume an ARC
 | 
						|
		 * buffer before it should have (i.e. before we're under
 | 
						|
		 * the overflow limit and were signalled by the reclaim
 | 
						|
		 * thread). As long as that is a rare occurrence, it
 | 
						|
		 * shouldn't cause any harm.
 | 
						|
		 */
 | 
						|
		if (arc_is_overflowing()) {
 | 
						|
			cv_signal(&arc_reclaim_thread_cv);
 | 
						|
			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
 | 
						|
		}
 | 
						|
 | 
						|
		mutex_exit(&arc_reclaim_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	if (type == ARC_BUFC_METADATA) {
 | 
						|
		buf->b_data = zio_buf_alloc(size);
 | 
						|
		arc_space_consume(size, ARC_SPACE_META);
 | 
						|
	} else {
 | 
						|
		ASSERT(type == ARC_BUFC_DATA);
 | 
						|
		buf->b_data = zio_data_buf_alloc(size);
 | 
						|
		arc_space_consume(size, ARC_SPACE_DATA);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Update the state size.  Note that ghost states have a
 | 
						|
	 * "ghost size" and so don't need to be updated.
 | 
						|
	 */
 | 
						|
	if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
 | 
						|
		arc_buf_hdr_t *hdr = buf->b_hdr;
 | 
						|
		arc_state_t *state = hdr->b_l1hdr.b_state;
 | 
						|
 | 
						|
		(void) refcount_add_many(&state->arcs_size, size, buf);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If this is reached via arc_read, the link is
 | 
						|
		 * protected by the hash lock. If reached via
 | 
						|
		 * arc_buf_alloc, the header should not be accessed by
 | 
						|
		 * any other thread. And, if reached via arc_read_done,
 | 
						|
		 * the hash lock will protect it if it's found in the
 | 
						|
		 * hash table; otherwise no other thread should be
 | 
						|
		 * trying to [add|remove]_reference it.
 | 
						|
		 */
 | 
						|
		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
 | 
						|
			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
 | 
						|
			atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
 | 
						|
			    size);
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * If we are growing the cache, and we are adding anonymous
 | 
						|
		 * data, and we have outgrown arc_p, update arc_p
 | 
						|
		 */
 | 
						|
		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
 | 
						|
		    (refcount_count(&arc_anon->arcs_size) +
 | 
						|
		    refcount_count(&arc_mru->arcs_size) > arc_p))
 | 
						|
			arc_p = MIN(arc_c, arc_p + size);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine is called whenever a buffer is accessed.
 | 
						|
 * NOTE: the hash lock is dropped in this function.
 | 
						|
 */
 | 
						|
static void
 | 
						|
arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
 | 
						|
{
 | 
						|
	clock_t now;
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(hash_lock));
 | 
						|
	ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
 | 
						|
	if (hdr->b_l1hdr.b_state == arc_anon) {
 | 
						|
		/*
 | 
						|
		 * This buffer is not in the cache, and does not
 | 
						|
		 * appear in our "ghost" list.  Add the new buffer
 | 
						|
		 * to the MRU state.
 | 
						|
		 */
 | 
						|
 | 
						|
		ASSERT0(hdr->b_l1hdr.b_arc_access);
 | 
						|
		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
 | 
						|
		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
 | 
						|
		arc_change_state(arc_mru, hdr, hash_lock);
 | 
						|
 | 
						|
	} else if (hdr->b_l1hdr.b_state == arc_mru) {
 | 
						|
		now = ddi_get_lbolt();
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If this buffer is here because of a prefetch, then either:
 | 
						|
		 * - clear the flag if this is a "referencing" read
 | 
						|
		 *   (any subsequent access will bump this into the MFU state).
 | 
						|
		 * or
 | 
						|
		 * - move the buffer to the head of the list if this is
 | 
						|
		 *   another prefetch (to make it less likely to be evicted).
 | 
						|
		 */
 | 
						|
		if (HDR_PREFETCH(hdr)) {
 | 
						|
			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
 | 
						|
				/* link protected by hash lock */
 | 
						|
				ASSERT(multilist_link_active(
 | 
						|
				    &hdr->b_l1hdr.b_arc_node));
 | 
						|
			} else {
 | 
						|
				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
 | 
						|
				atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
 | 
						|
				ARCSTAT_BUMP(arcstat_mru_hits);
 | 
						|
			}
 | 
						|
			hdr->b_l1hdr.b_arc_access = now;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * This buffer has been "accessed" only once so far,
 | 
						|
		 * but it is still in the cache. Move it to the MFU
 | 
						|
		 * state.
 | 
						|
		 */
 | 
						|
		if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
 | 
						|
		    ARC_MINTIME)) {
 | 
						|
			/*
 | 
						|
			 * More than 125ms have passed since we
 | 
						|
			 * instantiated this buffer.  Move it to the
 | 
						|
			 * most frequently used state.
 | 
						|
			 */
 | 
						|
			hdr->b_l1hdr.b_arc_access = now;
 | 
						|
			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
 | 
						|
			arc_change_state(arc_mfu, hdr, hash_lock);
 | 
						|
		}
 | 
						|
		atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
 | 
						|
		ARCSTAT_BUMP(arcstat_mru_hits);
 | 
						|
	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
 | 
						|
		arc_state_t	*new_state;
 | 
						|
		/*
 | 
						|
		 * This buffer has been "accessed" recently, but
 | 
						|
		 * was evicted from the cache.  Move it to the
 | 
						|
		 * MFU state.
 | 
						|
		 */
 | 
						|
 | 
						|
		if (HDR_PREFETCH(hdr)) {
 | 
						|
			new_state = arc_mru;
 | 
						|
			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
 | 
						|
				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
 | 
						|
			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
 | 
						|
		} else {
 | 
						|
			new_state = arc_mfu;
 | 
						|
			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
 | 
						|
		}
 | 
						|
 | 
						|
		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
 | 
						|
		arc_change_state(new_state, hdr, hash_lock);
 | 
						|
 | 
						|
		atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
 | 
						|
		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
 | 
						|
	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
 | 
						|
		/*
 | 
						|
		 * This buffer has been accessed more than once and is
 | 
						|
		 * still in the cache.  Keep it in the MFU state.
 | 
						|
		 *
 | 
						|
		 * NOTE: an add_reference() that occurred when we did
 | 
						|
		 * the arc_read() will have kicked this off the list.
 | 
						|
		 * If it was a prefetch, we will explicitly move it to
 | 
						|
		 * the head of the list now.
 | 
						|
		 */
 | 
						|
		if ((HDR_PREFETCH(hdr)) != 0) {
 | 
						|
			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
 | 
						|
			/* link protected by hash_lock */
 | 
						|
			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
 | 
						|
		}
 | 
						|
		atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
 | 
						|
		ARCSTAT_BUMP(arcstat_mfu_hits);
 | 
						|
		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
 | 
						|
	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
 | 
						|
		arc_state_t	*new_state = arc_mfu;
 | 
						|
		/*
 | 
						|
		 * This buffer has been accessed more than once but has
 | 
						|
		 * been evicted from the cache.  Move it back to the
 | 
						|
		 * MFU state.
 | 
						|
		 */
 | 
						|
 | 
						|
		if (HDR_PREFETCH(hdr)) {
 | 
						|
			/*
 | 
						|
			 * This is a prefetch access...
 | 
						|
			 * move this block back to the MRU state.
 | 
						|
			 */
 | 
						|
			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
 | 
						|
			new_state = arc_mru;
 | 
						|
		}
 | 
						|
 | 
						|
		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
 | 
						|
		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
 | 
						|
		arc_change_state(new_state, hdr, hash_lock);
 | 
						|
 | 
						|
		atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
 | 
						|
		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
 | 
						|
	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
 | 
						|
		/*
 | 
						|
		 * This buffer is on the 2nd Level ARC.
 | 
						|
		 */
 | 
						|
 | 
						|
		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
 | 
						|
		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
 | 
						|
		arc_change_state(arc_mfu, hdr, hash_lock);
 | 
						|
	} else {
 | 
						|
		cmn_err(CE_PANIC, "invalid arc state 0x%p",
 | 
						|
		    hdr->b_l1hdr.b_state);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* a generic arc_done_func_t which you can use */
 | 
						|
/* ARGSUSED */
 | 
						|
void
 | 
						|
arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
 | 
						|
{
 | 
						|
	if (zio == NULL || zio->io_error == 0)
 | 
						|
		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
 | 
						|
	VERIFY(arc_buf_remove_ref(buf, arg));
 | 
						|
}
 | 
						|
 | 
						|
/* a generic arc_done_func_t */
 | 
						|
void
 | 
						|
arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
 | 
						|
{
 | 
						|
	arc_buf_t **bufp = arg;
 | 
						|
	if (zio && zio->io_error) {
 | 
						|
		VERIFY(arc_buf_remove_ref(buf, arg));
 | 
						|
		*bufp = NULL;
 | 
						|
	} else {
 | 
						|
		*bufp = buf;
 | 
						|
		ASSERT(buf->b_data);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
arc_read_done(zio_t *zio)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t	*hdr;
 | 
						|
	arc_buf_t	*buf;
 | 
						|
	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
 | 
						|
	kmutex_t	*hash_lock = NULL;
 | 
						|
	arc_callback_t	*callback_list, *acb;
 | 
						|
	int		freeable = FALSE;
 | 
						|
 | 
						|
	buf = zio->io_private;
 | 
						|
	hdr = buf->b_hdr;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The hdr was inserted into hash-table and removed from lists
 | 
						|
	 * prior to starting I/O.  We should find this header, since
 | 
						|
	 * it's in the hash table, and it should be legit since it's
 | 
						|
	 * not possible to evict it during the I/O.  The only possible
 | 
						|
	 * reason for it not to be found is if we were freed during the
 | 
						|
	 * read.
 | 
						|
	 */
 | 
						|
	if (HDR_IN_HASH_TABLE(hdr)) {
 | 
						|
		arc_buf_hdr_t *found;
 | 
						|
 | 
						|
		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
 | 
						|
		ASSERT3U(hdr->b_dva.dva_word[0], ==,
 | 
						|
		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
 | 
						|
		ASSERT3U(hdr->b_dva.dva_word[1], ==,
 | 
						|
		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
 | 
						|
 | 
						|
		found = buf_hash_find(hdr->b_spa, zio->io_bp,
 | 
						|
		    &hash_lock);
 | 
						|
 | 
						|
		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
 | 
						|
		    hash_lock == NULL) ||
 | 
						|
		    (found == hdr &&
 | 
						|
		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
 | 
						|
		    (found == hdr && HDR_L2_READING(hdr)));
 | 
						|
	}
 | 
						|
 | 
						|
	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
 | 
						|
	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
 | 
						|
		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
 | 
						|
 | 
						|
	/* byteswap if necessary */
 | 
						|
	callback_list = hdr->b_l1hdr.b_acb;
 | 
						|
	ASSERT(callback_list != NULL);
 | 
						|
	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
 | 
						|
		dmu_object_byteswap_t bswap =
 | 
						|
		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
 | 
						|
		if (BP_GET_LEVEL(zio->io_bp) > 0)
 | 
						|
		    byteswap_uint64_array(buf->b_data, hdr->b_size);
 | 
						|
		else
 | 
						|
		    dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
 | 
						|
	}
 | 
						|
 | 
						|
	arc_cksum_compute(buf, B_FALSE);
 | 
						|
	arc_buf_watch(buf);
 | 
						|
 | 
						|
	if (hash_lock && zio->io_error == 0 &&
 | 
						|
	    hdr->b_l1hdr.b_state == arc_anon) {
 | 
						|
		/*
 | 
						|
		 * Only call arc_access on anonymous buffers.  This is because
 | 
						|
		 * if we've issued an I/O for an evicted buffer, we've already
 | 
						|
		 * called arc_access (to prevent any simultaneous readers from
 | 
						|
		 * getting confused).
 | 
						|
		 */
 | 
						|
		arc_access(hdr, hash_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	/* create copies of the data buffer for the callers */
 | 
						|
	abuf = buf;
 | 
						|
	for (acb = callback_list; acb; acb = acb->acb_next) {
 | 
						|
		if (acb->acb_done) {
 | 
						|
			if (abuf == NULL) {
 | 
						|
				ARCSTAT_BUMP(arcstat_duplicate_reads);
 | 
						|
				abuf = arc_buf_clone(buf);
 | 
						|
			}
 | 
						|
			acb->acb_buf = abuf;
 | 
						|
			abuf = NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	hdr->b_l1hdr.b_acb = NULL;
 | 
						|
	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
 | 
						|
	ASSERT(!HDR_BUF_AVAILABLE(hdr));
 | 
						|
	if (abuf == buf) {
 | 
						|
		ASSERT(buf->b_efunc == NULL);
 | 
						|
		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
 | 
						|
		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
 | 
						|
	    callback_list != NULL);
 | 
						|
 | 
						|
	if (zio->io_error != 0) {
 | 
						|
		hdr->b_flags |= ARC_FLAG_IO_ERROR;
 | 
						|
		if (hdr->b_l1hdr.b_state != arc_anon)
 | 
						|
			arc_change_state(arc_anon, hdr, hash_lock);
 | 
						|
		if (HDR_IN_HASH_TABLE(hdr))
 | 
						|
			buf_hash_remove(hdr);
 | 
						|
		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Broadcast before we drop the hash_lock to avoid the possibility
 | 
						|
	 * that the hdr (and hence the cv) might be freed before we get to
 | 
						|
	 * the cv_broadcast().
 | 
						|
	 */
 | 
						|
	cv_broadcast(&hdr->b_l1hdr.b_cv);
 | 
						|
 | 
						|
	if (hash_lock != NULL) {
 | 
						|
		mutex_exit(hash_lock);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * This block was freed while we waited for the read to
 | 
						|
		 * complete.  It has been removed from the hash table and
 | 
						|
		 * moved to the anonymous state (so that it won't show up
 | 
						|
		 * in the cache).
 | 
						|
		 */
 | 
						|
		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
 | 
						|
		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
 | 
						|
	}
 | 
						|
 | 
						|
	/* execute each callback and free its structure */
 | 
						|
	while ((acb = callback_list) != NULL) {
 | 
						|
		if (acb->acb_done)
 | 
						|
			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
 | 
						|
 | 
						|
		if (acb->acb_zio_dummy != NULL) {
 | 
						|
			acb->acb_zio_dummy->io_error = zio->io_error;
 | 
						|
			zio_nowait(acb->acb_zio_dummy);
 | 
						|
		}
 | 
						|
 | 
						|
		callback_list = acb->acb_next;
 | 
						|
		kmem_free(acb, sizeof (arc_callback_t));
 | 
						|
	}
 | 
						|
 | 
						|
	if (freeable)
 | 
						|
		arc_hdr_destroy(hdr);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * "Read" the block at the specified DVA (in bp) via the
 | 
						|
 * cache.  If the block is found in the cache, invoke the provided
 | 
						|
 * callback immediately and return.  Note that the `zio' parameter
 | 
						|
 * in the callback will be NULL in this case, since no IO was
 | 
						|
 * required.  If the block is not in the cache pass the read request
 | 
						|
 * on to the spa with a substitute callback function, so that the
 | 
						|
 * requested block will be added to the cache.
 | 
						|
 *
 | 
						|
 * If a read request arrives for a block that has a read in-progress,
 | 
						|
 * either wait for the in-progress read to complete (and return the
 | 
						|
 * results); or, if this is a read with a "done" func, add a record
 | 
						|
 * to the read to invoke the "done" func when the read completes,
 | 
						|
 * and return; or just return.
 | 
						|
 *
 | 
						|
 * arc_read_done() will invoke all the requested "done" functions
 | 
						|
 * for readers of this block.
 | 
						|
 */
 | 
						|
int
 | 
						|
arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
 | 
						|
    void *private, zio_priority_t priority, int zio_flags,
 | 
						|
    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr = NULL;
 | 
						|
	arc_buf_t *buf = NULL;
 | 
						|
	kmutex_t *hash_lock = NULL;
 | 
						|
	zio_t *rzio;
 | 
						|
	uint64_t guid = spa_load_guid(spa);
 | 
						|
	int rc = 0;
 | 
						|
 | 
						|
	ASSERT(!BP_IS_EMBEDDED(bp) ||
 | 
						|
	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
 | 
						|
 | 
						|
top:
 | 
						|
	if (!BP_IS_EMBEDDED(bp)) {
 | 
						|
		/*
 | 
						|
		 * Embedded BP's have no DVA and require no I/O to "read".
 | 
						|
		 * Create an anonymous arc buf to back it.
 | 
						|
		 */
 | 
						|
		hdr = buf_hash_find(guid, bp, &hash_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
 | 
						|
 | 
						|
		*arc_flags |= ARC_FLAG_CACHED;
 | 
						|
 | 
						|
		if (HDR_IO_IN_PROGRESS(hdr)) {
 | 
						|
 | 
						|
			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
 | 
						|
			    priority == ZIO_PRIORITY_SYNC_READ) {
 | 
						|
				/*
 | 
						|
				 * This sync read must wait for an
 | 
						|
				 * in-progress async read (e.g. a predictive
 | 
						|
				 * prefetch).  Async reads are queued
 | 
						|
				 * separately at the vdev_queue layer, so
 | 
						|
				 * this is a form of priority inversion.
 | 
						|
				 * Ideally, we would "inherit" the demand
 | 
						|
				 * i/o's priority by moving the i/o from
 | 
						|
				 * the async queue to the synchronous queue,
 | 
						|
				 * but there is currently no mechanism to do
 | 
						|
				 * so.  Track this so that we can evaluate
 | 
						|
				 * the magnitude of this potential performance
 | 
						|
				 * problem.
 | 
						|
				 *
 | 
						|
				 * Note that if the prefetch i/o is already
 | 
						|
				 * active (has been issued to the device),
 | 
						|
				 * the prefetch improved performance, because
 | 
						|
				 * we issued it sooner than we would have
 | 
						|
				 * without the prefetch.
 | 
						|
				 */
 | 
						|
				DTRACE_PROBE1(arc__sync__wait__for__async,
 | 
						|
				    arc_buf_hdr_t *, hdr);
 | 
						|
				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
 | 
						|
			}
 | 
						|
			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
 | 
						|
				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
 | 
						|
			}
 | 
						|
 | 
						|
			if (*arc_flags & ARC_FLAG_WAIT) {
 | 
						|
				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
 | 
						|
				mutex_exit(hash_lock);
 | 
						|
				goto top;
 | 
						|
			}
 | 
						|
			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
 | 
						|
 | 
						|
			if (done) {
 | 
						|
				arc_callback_t *acb = NULL;
 | 
						|
 | 
						|
				acb = kmem_zalloc(sizeof (arc_callback_t),
 | 
						|
				    KM_SLEEP);
 | 
						|
				acb->acb_done = done;
 | 
						|
				acb->acb_private = private;
 | 
						|
				if (pio != NULL)
 | 
						|
					acb->acb_zio_dummy = zio_null(pio,
 | 
						|
					    spa, NULL, NULL, NULL, zio_flags);
 | 
						|
 | 
						|
				ASSERT(acb->acb_done != NULL);
 | 
						|
				acb->acb_next = hdr->b_l1hdr.b_acb;
 | 
						|
				hdr->b_l1hdr.b_acb = acb;
 | 
						|
				add_reference(hdr, hash_lock, private);
 | 
						|
				mutex_exit(hash_lock);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
			mutex_exit(hash_lock);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
 | 
						|
		    hdr->b_l1hdr.b_state == arc_mfu);
 | 
						|
 | 
						|
		if (done) {
 | 
						|
			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
 | 
						|
				/*
 | 
						|
				 * This is a demand read which does not have to
 | 
						|
				 * wait for i/o because we did a predictive
 | 
						|
				 * prefetch i/o for it, which has completed.
 | 
						|
				 */
 | 
						|
				DTRACE_PROBE1(
 | 
						|
				    arc__demand__hit__predictive__prefetch,
 | 
						|
				    arc_buf_hdr_t *, hdr);
 | 
						|
				ARCSTAT_BUMP(
 | 
						|
				    arcstat_demand_hit_predictive_prefetch);
 | 
						|
				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
 | 
						|
			}
 | 
						|
			add_reference(hdr, hash_lock, private);
 | 
						|
			/*
 | 
						|
			 * If this block is already in use, create a new
 | 
						|
			 * copy of the data so that we will be guaranteed
 | 
						|
			 * that arc_release() will always succeed.
 | 
						|
			 */
 | 
						|
			buf = hdr->b_l1hdr.b_buf;
 | 
						|
			ASSERT(buf);
 | 
						|
			ASSERT(buf->b_data);
 | 
						|
			if (HDR_BUF_AVAILABLE(hdr)) {
 | 
						|
				ASSERT(buf->b_efunc == NULL);
 | 
						|
				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
 | 
						|
			} else {
 | 
						|
				buf = arc_buf_clone(buf);
 | 
						|
			}
 | 
						|
 | 
						|
		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
 | 
						|
		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
 | 
						|
			hdr->b_flags |= ARC_FLAG_PREFETCH;
 | 
						|
		}
 | 
						|
		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
 | 
						|
		arc_access(hdr, hash_lock);
 | 
						|
		if (*arc_flags & ARC_FLAG_L2CACHE)
 | 
						|
			hdr->b_flags |= ARC_FLAG_L2CACHE;
 | 
						|
		if (*arc_flags & ARC_FLAG_L2COMPRESS)
 | 
						|
			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
 | 
						|
		mutex_exit(hash_lock);
 | 
						|
		ARCSTAT_BUMP(arcstat_hits);
 | 
						|
		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
 | 
						|
		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
 | 
						|
		    data, metadata, hits);
 | 
						|
 | 
						|
		if (done)
 | 
						|
			done(NULL, buf, private);
 | 
						|
	} else {
 | 
						|
		uint64_t size = BP_GET_LSIZE(bp);
 | 
						|
		arc_callback_t *acb;
 | 
						|
		vdev_t *vd = NULL;
 | 
						|
		uint64_t addr = 0;
 | 
						|
		boolean_t devw = B_FALSE;
 | 
						|
		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
 | 
						|
		int32_t b_asize = 0;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Gracefully handle a damaged logical block size as a
 | 
						|
		 * checksum error.
 | 
						|
		 */
 | 
						|
		if (size > spa_maxblocksize(spa)) {
 | 
						|
			ASSERT3P(buf, ==, NULL);
 | 
						|
			rc = SET_ERROR(ECKSUM);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		if (hdr == NULL) {
 | 
						|
			/* this block is not in the cache */
 | 
						|
			arc_buf_hdr_t *exists = NULL;
 | 
						|
			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
 | 
						|
			buf = arc_buf_alloc(spa, size, private, type);
 | 
						|
			hdr = buf->b_hdr;
 | 
						|
			if (!BP_IS_EMBEDDED(bp)) {
 | 
						|
				hdr->b_dva = *BP_IDENTITY(bp);
 | 
						|
				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
 | 
						|
				exists = buf_hash_insert(hdr, &hash_lock);
 | 
						|
			}
 | 
						|
			if (exists != NULL) {
 | 
						|
				/* somebody beat us to the hash insert */
 | 
						|
				mutex_exit(hash_lock);
 | 
						|
				buf_discard_identity(hdr);
 | 
						|
				(void) arc_buf_remove_ref(buf, private);
 | 
						|
				goto top; /* restart the IO request */
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If there is a callback, we pass our reference to
 | 
						|
			 * it; otherwise we remove our reference.
 | 
						|
			 */
 | 
						|
			if (done == NULL) {
 | 
						|
				(void) remove_reference(hdr, hash_lock,
 | 
						|
				    private);
 | 
						|
			}
 | 
						|
			if (*arc_flags & ARC_FLAG_PREFETCH)
 | 
						|
				hdr->b_flags |= ARC_FLAG_PREFETCH;
 | 
						|
			if (*arc_flags & ARC_FLAG_L2CACHE)
 | 
						|
				hdr->b_flags |= ARC_FLAG_L2CACHE;
 | 
						|
			if (*arc_flags & ARC_FLAG_L2COMPRESS)
 | 
						|
				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
 | 
						|
			if (BP_GET_LEVEL(bp) > 0)
 | 
						|
				hdr->b_flags |= ARC_FLAG_INDIRECT;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * This block is in the ghost cache. If it was L2-only
 | 
						|
			 * (and thus didn't have an L1 hdr), we realloc the
 | 
						|
			 * header to add an L1 hdr.
 | 
						|
			 */
 | 
						|
			if (!HDR_HAS_L1HDR(hdr)) {
 | 
						|
				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
 | 
						|
				    hdr_full_cache);
 | 
						|
			}
 | 
						|
 | 
						|
			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
 | 
						|
			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
 | 
						|
			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
 | 
						|
			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If there is a callback, we pass a reference to it.
 | 
						|
			 */
 | 
						|
			if (done != NULL)
 | 
						|
				add_reference(hdr, hash_lock, private);
 | 
						|
			if (*arc_flags & ARC_FLAG_PREFETCH)
 | 
						|
				hdr->b_flags |= ARC_FLAG_PREFETCH;
 | 
						|
			if (*arc_flags & ARC_FLAG_L2CACHE)
 | 
						|
				hdr->b_flags |= ARC_FLAG_L2CACHE;
 | 
						|
			if (*arc_flags & ARC_FLAG_L2COMPRESS)
 | 
						|
				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
 | 
						|
			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
 | 
						|
			buf->b_hdr = hdr;
 | 
						|
			buf->b_data = NULL;
 | 
						|
			buf->b_efunc = NULL;
 | 
						|
			buf->b_private = NULL;
 | 
						|
			buf->b_next = NULL;
 | 
						|
			hdr->b_l1hdr.b_buf = buf;
 | 
						|
			ASSERT0(hdr->b_l1hdr.b_datacnt);
 | 
						|
			hdr->b_l1hdr.b_datacnt = 1;
 | 
						|
			arc_get_data_buf(buf);
 | 
						|
			arc_access(hdr, hash_lock);
 | 
						|
		}
 | 
						|
 | 
						|
		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
 | 
						|
			hdr->b_flags |= ARC_FLAG_PREDICTIVE_PREFETCH;
 | 
						|
		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
 | 
						|
 | 
						|
		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
 | 
						|
		acb->acb_done = done;
 | 
						|
		acb->acb_private = private;
 | 
						|
 | 
						|
		ASSERT(hdr->b_l1hdr.b_acb == NULL);
 | 
						|
		hdr->b_l1hdr.b_acb = acb;
 | 
						|
		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
 | 
						|
 | 
						|
		if (HDR_HAS_L2HDR(hdr) &&
 | 
						|
		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
 | 
						|
			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
 | 
						|
			addr = hdr->b_l2hdr.b_daddr;
 | 
						|
			b_compress = hdr->b_l2hdr.b_compress;
 | 
						|
			b_asize = hdr->b_l2hdr.b_asize;
 | 
						|
			/*
 | 
						|
			 * Lock out device removal.
 | 
						|
			 */
 | 
						|
			if (vdev_is_dead(vd) ||
 | 
						|
			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
 | 
						|
				vd = NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		if (hash_lock != NULL)
 | 
						|
			mutex_exit(hash_lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * At this point, we have a level 1 cache miss.  Try again in
 | 
						|
		 * L2ARC if possible.
 | 
						|
		 */
 | 
						|
		ASSERT3U(hdr->b_size, ==, size);
 | 
						|
		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
 | 
						|
		    uint64_t, size, zbookmark_phys_t *, zb);
 | 
						|
		ARCSTAT_BUMP(arcstat_misses);
 | 
						|
		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
 | 
						|
		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
 | 
						|
		    data, metadata, misses);
 | 
						|
 | 
						|
		if (priority == ZIO_PRIORITY_ASYNC_READ)
 | 
						|
			hdr->b_flags |= ARC_FLAG_PRIO_ASYNC_READ;
 | 
						|
		else
 | 
						|
			hdr->b_flags &= ~ARC_FLAG_PRIO_ASYNC_READ;
 | 
						|
 | 
						|
		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
 | 
						|
			/*
 | 
						|
			 * Read from the L2ARC if the following are true:
 | 
						|
			 * 1. The L2ARC vdev was previously cached.
 | 
						|
			 * 2. This buffer still has L2ARC metadata.
 | 
						|
			 * 3. This buffer isn't currently writing to the L2ARC.
 | 
						|
			 * 4. The L2ARC entry wasn't evicted, which may
 | 
						|
			 *    also have invalidated the vdev.
 | 
						|
			 * 5. This isn't prefetch and l2arc_noprefetch is set.
 | 
						|
			 */
 | 
						|
			if (HDR_HAS_L2HDR(hdr) &&
 | 
						|
			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
 | 
						|
			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
 | 
						|
				l2arc_read_callback_t *cb;
 | 
						|
 | 
						|
				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
 | 
						|
				ARCSTAT_BUMP(arcstat_l2_hits);
 | 
						|
				atomic_inc_32(&hdr->b_l2hdr.b_hits);
 | 
						|
 | 
						|
				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
 | 
						|
				    KM_SLEEP);
 | 
						|
				cb->l2rcb_buf = buf;
 | 
						|
				cb->l2rcb_spa = spa;
 | 
						|
				cb->l2rcb_bp = *bp;
 | 
						|
				cb->l2rcb_zb = *zb;
 | 
						|
				cb->l2rcb_flags = zio_flags;
 | 
						|
				cb->l2rcb_compress = b_compress;
 | 
						|
 | 
						|
				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
 | 
						|
				    addr + size < vd->vdev_psize -
 | 
						|
				    VDEV_LABEL_END_SIZE);
 | 
						|
 | 
						|
				/*
 | 
						|
				 * l2arc read.  The SCL_L2ARC lock will be
 | 
						|
				 * released by l2arc_read_done().
 | 
						|
				 * Issue a null zio if the underlying buffer
 | 
						|
				 * was squashed to zero size by compression.
 | 
						|
				 */
 | 
						|
				if (b_compress == ZIO_COMPRESS_EMPTY) {
 | 
						|
					rzio = zio_null(pio, spa, vd,
 | 
						|
					    l2arc_read_done, cb,
 | 
						|
					    zio_flags | ZIO_FLAG_DONT_CACHE |
 | 
						|
					    ZIO_FLAG_CANFAIL |
 | 
						|
					    ZIO_FLAG_DONT_PROPAGATE |
 | 
						|
					    ZIO_FLAG_DONT_RETRY);
 | 
						|
				} else {
 | 
						|
					rzio = zio_read_phys(pio, vd, addr,
 | 
						|
					    b_asize, buf->b_data,
 | 
						|
					    ZIO_CHECKSUM_OFF,
 | 
						|
					    l2arc_read_done, cb, priority,
 | 
						|
					    zio_flags | ZIO_FLAG_DONT_CACHE |
 | 
						|
					    ZIO_FLAG_CANFAIL |
 | 
						|
					    ZIO_FLAG_DONT_PROPAGATE |
 | 
						|
					    ZIO_FLAG_DONT_RETRY, B_FALSE);
 | 
						|
				}
 | 
						|
				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
 | 
						|
				    zio_t *, rzio);
 | 
						|
				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
 | 
						|
 | 
						|
				if (*arc_flags & ARC_FLAG_NOWAIT) {
 | 
						|
					zio_nowait(rzio);
 | 
						|
					goto out;
 | 
						|
				}
 | 
						|
 | 
						|
				ASSERT(*arc_flags & ARC_FLAG_WAIT);
 | 
						|
				if (zio_wait(rzio) == 0)
 | 
						|
					goto out;
 | 
						|
 | 
						|
				/* l2arc read error; goto zio_read() */
 | 
						|
			} else {
 | 
						|
				DTRACE_PROBE1(l2arc__miss,
 | 
						|
				    arc_buf_hdr_t *, hdr);
 | 
						|
				ARCSTAT_BUMP(arcstat_l2_misses);
 | 
						|
				if (HDR_L2_WRITING(hdr))
 | 
						|
					ARCSTAT_BUMP(arcstat_l2_rw_clash);
 | 
						|
				spa_config_exit(spa, SCL_L2ARC, vd);
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			if (vd != NULL)
 | 
						|
				spa_config_exit(spa, SCL_L2ARC, vd);
 | 
						|
			if (l2arc_ndev != 0) {
 | 
						|
				DTRACE_PROBE1(l2arc__miss,
 | 
						|
				    arc_buf_hdr_t *, hdr);
 | 
						|
				ARCSTAT_BUMP(arcstat_l2_misses);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		rzio = zio_read(pio, spa, bp, buf->b_data, size,
 | 
						|
		    arc_read_done, buf, priority, zio_flags, zb);
 | 
						|
 | 
						|
		if (*arc_flags & ARC_FLAG_WAIT) {
 | 
						|
			rc = zio_wait(rzio);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
 | 
						|
		zio_nowait(rzio);
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	spa_read_history_add(spa, zb, *arc_flags);
 | 
						|
	return (rc);
 | 
						|
}
 | 
						|
 | 
						|
arc_prune_t *
 | 
						|
arc_add_prune_callback(arc_prune_func_t *func, void *private)
 | 
						|
{
 | 
						|
	arc_prune_t *p;
 | 
						|
 | 
						|
	p = kmem_alloc(sizeof (*p), KM_SLEEP);
 | 
						|
	p->p_pfunc = func;
 | 
						|
	p->p_private = private;
 | 
						|
	list_link_init(&p->p_node);
 | 
						|
	refcount_create(&p->p_refcnt);
 | 
						|
 | 
						|
	mutex_enter(&arc_prune_mtx);
 | 
						|
	refcount_add(&p->p_refcnt, &arc_prune_list);
 | 
						|
	list_insert_head(&arc_prune_list, p);
 | 
						|
	mutex_exit(&arc_prune_mtx);
 | 
						|
 | 
						|
	return (p);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
arc_remove_prune_callback(arc_prune_t *p)
 | 
						|
{
 | 
						|
	boolean_t wait = B_FALSE;
 | 
						|
	mutex_enter(&arc_prune_mtx);
 | 
						|
	list_remove(&arc_prune_list, p);
 | 
						|
	if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
 | 
						|
		wait = B_TRUE;
 | 
						|
	mutex_exit(&arc_prune_mtx);
 | 
						|
 | 
						|
	/* wait for arc_prune_task to finish */
 | 
						|
	if (wait)
 | 
						|
		taskq_wait_outstanding(arc_prune_taskq, 0);
 | 
						|
	ASSERT0(refcount_count(&p->p_refcnt));
 | 
						|
	refcount_destroy(&p->p_refcnt);
 | 
						|
	kmem_free(p, sizeof (*p));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
 | 
						|
{
 | 
						|
	ASSERT(buf->b_hdr != NULL);
 | 
						|
	ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
 | 
						|
	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
 | 
						|
	    func == NULL);
 | 
						|
	ASSERT(buf->b_efunc == NULL);
 | 
						|
	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
 | 
						|
 | 
						|
	buf->b_efunc = func;
 | 
						|
	buf->b_private = private;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Notify the arc that a block was freed, and thus will never be used again.
 | 
						|
 */
 | 
						|
void
 | 
						|
arc_freed(spa_t *spa, const blkptr_t *bp)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr;
 | 
						|
	kmutex_t *hash_lock;
 | 
						|
	uint64_t guid = spa_load_guid(spa);
 | 
						|
 | 
						|
	ASSERT(!BP_IS_EMBEDDED(bp));
 | 
						|
 | 
						|
	hdr = buf_hash_find(guid, bp, &hash_lock);
 | 
						|
	if (hdr == NULL)
 | 
						|
		return;
 | 
						|
	if (HDR_BUF_AVAILABLE(hdr)) {
 | 
						|
		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
 | 
						|
		add_reference(hdr, hash_lock, FTAG);
 | 
						|
		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
 | 
						|
		mutex_exit(hash_lock);
 | 
						|
 | 
						|
		arc_release(buf, FTAG);
 | 
						|
		(void) arc_buf_remove_ref(buf, FTAG);
 | 
						|
	} else {
 | 
						|
		mutex_exit(hash_lock);
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clear the user eviction callback set by arc_set_callback(), first calling
 | 
						|
 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
 | 
						|
 * clearing the callback may result in the arc_buf being destroyed.  However,
 | 
						|
 * it will not result in the *last* arc_buf being destroyed, hence the data
 | 
						|
 * will remain cached in the ARC. We make a copy of the arc buffer here so
 | 
						|
 * that we can process the callback without holding any locks.
 | 
						|
 *
 | 
						|
 * It's possible that the callback is already in the process of being cleared
 | 
						|
 * by another thread.  In this case we can not clear the callback.
 | 
						|
 *
 | 
						|
 * Returns B_TRUE if the callback was successfully called and cleared.
 | 
						|
 */
 | 
						|
boolean_t
 | 
						|
arc_clear_callback(arc_buf_t *buf)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr;
 | 
						|
	kmutex_t *hash_lock;
 | 
						|
	arc_evict_func_t *efunc = buf->b_efunc;
 | 
						|
	void *private = buf->b_private;
 | 
						|
 | 
						|
	mutex_enter(&buf->b_evict_lock);
 | 
						|
	hdr = buf->b_hdr;
 | 
						|
	if (hdr == NULL) {
 | 
						|
		/*
 | 
						|
		 * We are in arc_do_user_evicts().
 | 
						|
		 */
 | 
						|
		ASSERT(buf->b_data == NULL);
 | 
						|
		mutex_exit(&buf->b_evict_lock);
 | 
						|
		return (B_FALSE);
 | 
						|
	} else if (buf->b_data == NULL) {
 | 
						|
		/*
 | 
						|
		 * We are on the eviction list; process this buffer now
 | 
						|
		 * but let arc_do_user_evicts() do the reaping.
 | 
						|
		 */
 | 
						|
		buf->b_efunc = NULL;
 | 
						|
		mutex_exit(&buf->b_evict_lock);
 | 
						|
		VERIFY0(efunc(private));
 | 
						|
		return (B_TRUE);
 | 
						|
	}
 | 
						|
	hash_lock = HDR_LOCK(hdr);
 | 
						|
	mutex_enter(hash_lock);
 | 
						|
	hdr = buf->b_hdr;
 | 
						|
	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
 | 
						|
 | 
						|
	ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
 | 
						|
	    hdr->b_l1hdr.b_datacnt);
 | 
						|
	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
 | 
						|
	    hdr->b_l1hdr.b_state == arc_mfu);
 | 
						|
 | 
						|
	buf->b_efunc = NULL;
 | 
						|
	buf->b_private = NULL;
 | 
						|
 | 
						|
	if (hdr->b_l1hdr.b_datacnt > 1) {
 | 
						|
		mutex_exit(&buf->b_evict_lock);
 | 
						|
		arc_buf_destroy(buf, TRUE);
 | 
						|
	} else {
 | 
						|
		ASSERT(buf == hdr->b_l1hdr.b_buf);
 | 
						|
		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
 | 
						|
		mutex_exit(&buf->b_evict_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_exit(hash_lock);
 | 
						|
	VERIFY0(efunc(private));
 | 
						|
	return (B_TRUE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Release this buffer from the cache, making it an anonymous buffer.  This
 | 
						|
 * must be done after a read and prior to modifying the buffer contents.
 | 
						|
 * If the buffer has more than one reference, we must make
 | 
						|
 * a new hdr for the buffer.
 | 
						|
 */
 | 
						|
void
 | 
						|
arc_release(arc_buf_t *buf, void *tag)
 | 
						|
{
 | 
						|
	kmutex_t *hash_lock;
 | 
						|
	arc_state_t *state;
 | 
						|
	arc_buf_hdr_t *hdr = buf->b_hdr;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It would be nice to assert that if its DMU metadata (level >
 | 
						|
	 * 0 || it's the dnode file), then it must be syncing context.
 | 
						|
	 * But we don't know that information at this level.
 | 
						|
	 */
 | 
						|
 | 
						|
	mutex_enter(&buf->b_evict_lock);
 | 
						|
 | 
						|
	ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't grab the hash lock prior to this check, because if
 | 
						|
	 * the buffer's header is in the arc_anon state, it won't be
 | 
						|
	 * linked into the hash table.
 | 
						|
	 */
 | 
						|
	if (hdr->b_l1hdr.b_state == arc_anon) {
 | 
						|
		mutex_exit(&buf->b_evict_lock);
 | 
						|
		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
 | 
						|
		ASSERT(!HDR_IN_HASH_TABLE(hdr));
 | 
						|
		ASSERT(!HDR_HAS_L2HDR(hdr));
 | 
						|
		ASSERT(BUF_EMPTY(hdr));
 | 
						|
 | 
						|
		ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
 | 
						|
		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
 | 
						|
		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
 | 
						|
 | 
						|
		ASSERT3P(buf->b_efunc, ==, NULL);
 | 
						|
		ASSERT3P(buf->b_private, ==, NULL);
 | 
						|
 | 
						|
		hdr->b_l1hdr.b_arc_access = 0;
 | 
						|
		arc_buf_thaw(buf);
 | 
						|
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	hash_lock = HDR_LOCK(hdr);
 | 
						|
	mutex_enter(hash_lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This assignment is only valid as long as the hash_lock is
 | 
						|
	 * held, we must be careful not to reference state or the
 | 
						|
	 * b_state field after dropping the lock.
 | 
						|
	 */
 | 
						|
	state = hdr->b_l1hdr.b_state;
 | 
						|
	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
 | 
						|
	ASSERT3P(state, !=, arc_anon);
 | 
						|
 | 
						|
	/* this buffer is not on any list */
 | 
						|
	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
 | 
						|
 | 
						|
	if (HDR_HAS_L2HDR(hdr)) {
 | 
						|
		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We have to recheck this conditional again now that
 | 
						|
		 * we're holding the l2ad_mtx to prevent a race with
 | 
						|
		 * another thread which might be concurrently calling
 | 
						|
		 * l2arc_evict(). In that case, l2arc_evict() might have
 | 
						|
		 * destroyed the header's L2 portion as we were waiting
 | 
						|
		 * to acquire the l2ad_mtx.
 | 
						|
		 */
 | 
						|
		if (HDR_HAS_L2HDR(hdr))
 | 
						|
			arc_hdr_l2hdr_destroy(hdr);
 | 
						|
 | 
						|
		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Do we have more than one buf?
 | 
						|
	 */
 | 
						|
	if (hdr->b_l1hdr.b_datacnt > 1) {
 | 
						|
		arc_buf_hdr_t *nhdr;
 | 
						|
		arc_buf_t **bufp;
 | 
						|
		uint64_t blksz = hdr->b_size;
 | 
						|
		uint64_t spa = hdr->b_spa;
 | 
						|
		arc_buf_contents_t type = arc_buf_type(hdr);
 | 
						|
		uint32_t flags = hdr->b_flags;
 | 
						|
 | 
						|
		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
 | 
						|
		/*
 | 
						|
		 * Pull the data off of this hdr and attach it to
 | 
						|
		 * a new anonymous hdr.
 | 
						|
		 */
 | 
						|
		(void) remove_reference(hdr, hash_lock, tag);
 | 
						|
		bufp = &hdr->b_l1hdr.b_buf;
 | 
						|
		while (*bufp != buf)
 | 
						|
			bufp = &(*bufp)->b_next;
 | 
						|
		*bufp = buf->b_next;
 | 
						|
		buf->b_next = NULL;
 | 
						|
 | 
						|
		ASSERT3P(state, !=, arc_l2c_only);
 | 
						|
 | 
						|
		(void) refcount_remove_many(
 | 
						|
		    &state->arcs_size, hdr->b_size, buf);
 | 
						|
 | 
						|
		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
 | 
						|
			uint64_t *size;
 | 
						|
 | 
						|
			ASSERT3P(state, !=, arc_l2c_only);
 | 
						|
			size = &state->arcs_lsize[type];
 | 
						|
			ASSERT3U(*size, >=, hdr->b_size);
 | 
						|
			atomic_add_64(size, -hdr->b_size);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We're releasing a duplicate user data buffer, update
 | 
						|
		 * our statistics accordingly.
 | 
						|
		 */
 | 
						|
		if (HDR_ISTYPE_DATA(hdr)) {
 | 
						|
			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
 | 
						|
			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
 | 
						|
			    -hdr->b_size);
 | 
						|
		}
 | 
						|
		hdr->b_l1hdr.b_datacnt -= 1;
 | 
						|
		arc_cksum_verify(buf);
 | 
						|
		arc_buf_unwatch(buf);
 | 
						|
 | 
						|
		mutex_exit(hash_lock);
 | 
						|
 | 
						|
		nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
 | 
						|
		nhdr->b_size = blksz;
 | 
						|
		nhdr->b_spa = spa;
 | 
						|
 | 
						|
		nhdr->b_l1hdr.b_mru_hits = 0;
 | 
						|
		nhdr->b_l1hdr.b_mru_ghost_hits = 0;
 | 
						|
		nhdr->b_l1hdr.b_mfu_hits = 0;
 | 
						|
		nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
 | 
						|
		nhdr->b_l1hdr.b_l2_hits = 0;
 | 
						|
		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
 | 
						|
		nhdr->b_flags |= arc_bufc_to_flags(type);
 | 
						|
		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
 | 
						|
 | 
						|
		nhdr->b_l1hdr.b_buf = buf;
 | 
						|
		nhdr->b_l1hdr.b_datacnt = 1;
 | 
						|
		nhdr->b_l1hdr.b_state = arc_anon;
 | 
						|
		nhdr->b_l1hdr.b_arc_access = 0;
 | 
						|
		nhdr->b_l1hdr.b_tmp_cdata = NULL;
 | 
						|
		nhdr->b_freeze_cksum = NULL;
 | 
						|
 | 
						|
		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
 | 
						|
		buf->b_hdr = nhdr;
 | 
						|
		mutex_exit(&buf->b_evict_lock);
 | 
						|
		(void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
 | 
						|
	} else {
 | 
						|
		mutex_exit(&buf->b_evict_lock);
 | 
						|
		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
 | 
						|
		/* protected by hash lock, or hdr is on arc_anon */
 | 
						|
		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
 | 
						|
		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
 | 
						|
		hdr->b_l1hdr.b_mru_hits = 0;
 | 
						|
		hdr->b_l1hdr.b_mru_ghost_hits = 0;
 | 
						|
		hdr->b_l1hdr.b_mfu_hits = 0;
 | 
						|
		hdr->b_l1hdr.b_mfu_ghost_hits = 0;
 | 
						|
		hdr->b_l1hdr.b_l2_hits = 0;
 | 
						|
		arc_change_state(arc_anon, hdr, hash_lock);
 | 
						|
		hdr->b_l1hdr.b_arc_access = 0;
 | 
						|
		mutex_exit(hash_lock);
 | 
						|
 | 
						|
		buf_discard_identity(hdr);
 | 
						|
		arc_buf_thaw(buf);
 | 
						|
	}
 | 
						|
	buf->b_efunc = NULL;
 | 
						|
	buf->b_private = NULL;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
arc_released(arc_buf_t *buf)
 | 
						|
{
 | 
						|
	int released;
 | 
						|
 | 
						|
	mutex_enter(&buf->b_evict_lock);
 | 
						|
	released = (buf->b_data != NULL &&
 | 
						|
	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
 | 
						|
	mutex_exit(&buf->b_evict_lock);
 | 
						|
	return (released);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef ZFS_DEBUG
 | 
						|
int
 | 
						|
arc_referenced(arc_buf_t *buf)
 | 
						|
{
 | 
						|
	int referenced;
 | 
						|
 | 
						|
	mutex_enter(&buf->b_evict_lock);
 | 
						|
	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
 | 
						|
	mutex_exit(&buf->b_evict_lock);
 | 
						|
	return (referenced);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void
 | 
						|
arc_write_ready(zio_t *zio)
 | 
						|
{
 | 
						|
	arc_write_callback_t *callback = zio->io_private;
 | 
						|
	arc_buf_t *buf = callback->awcb_buf;
 | 
						|
	arc_buf_hdr_t *hdr = buf->b_hdr;
 | 
						|
 | 
						|
	ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
 | 
						|
	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
 | 
						|
	callback->awcb_ready(zio, buf, callback->awcb_private);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the IO is already in progress, then this is a re-write
 | 
						|
	 * attempt, so we need to thaw and re-compute the cksum.
 | 
						|
	 * It is the responsibility of the callback to handle the
 | 
						|
	 * accounting for any re-write attempt.
 | 
						|
	 */
 | 
						|
	if (HDR_IO_IN_PROGRESS(hdr)) {
 | 
						|
		mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
 | 
						|
		if (hdr->b_freeze_cksum != NULL) {
 | 
						|
			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
 | 
						|
			hdr->b_freeze_cksum = NULL;
 | 
						|
		}
 | 
						|
		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
 | 
						|
	}
 | 
						|
	arc_cksum_compute(buf, B_FALSE);
 | 
						|
	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The SPA calls this callback for each physical write that happens on behalf
 | 
						|
 * of a logical write.  See the comment in dbuf_write_physdone() for details.
 | 
						|
 */
 | 
						|
static void
 | 
						|
arc_write_physdone(zio_t *zio)
 | 
						|
{
 | 
						|
	arc_write_callback_t *cb = zio->io_private;
 | 
						|
	if (cb->awcb_physdone != NULL)
 | 
						|
		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
arc_write_done(zio_t *zio)
 | 
						|
{
 | 
						|
	arc_write_callback_t *callback = zio->io_private;
 | 
						|
	arc_buf_t *buf = callback->awcb_buf;
 | 
						|
	arc_buf_hdr_t *hdr = buf->b_hdr;
 | 
						|
 | 
						|
	ASSERT(hdr->b_l1hdr.b_acb == NULL);
 | 
						|
 | 
						|
	if (zio->io_error == 0) {
 | 
						|
		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
 | 
						|
			buf_discard_identity(hdr);
 | 
						|
		} else {
 | 
						|
			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
 | 
						|
			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		ASSERT(BUF_EMPTY(hdr));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the block to be written was all-zero or compressed enough to be
 | 
						|
	 * embedded in the BP, no write was performed so there will be no
 | 
						|
	 * dva/birth/checksum.  The buffer must therefore remain anonymous
 | 
						|
	 * (and uncached).
 | 
						|
	 */
 | 
						|
	if (!BUF_EMPTY(hdr)) {
 | 
						|
		arc_buf_hdr_t *exists;
 | 
						|
		kmutex_t *hash_lock;
 | 
						|
 | 
						|
		ASSERT(zio->io_error == 0);
 | 
						|
 | 
						|
		arc_cksum_verify(buf);
 | 
						|
 | 
						|
		exists = buf_hash_insert(hdr, &hash_lock);
 | 
						|
		if (exists != NULL) {
 | 
						|
			/*
 | 
						|
			 * This can only happen if we overwrite for
 | 
						|
			 * sync-to-convergence, because we remove
 | 
						|
			 * buffers from the hash table when we arc_free().
 | 
						|
			 */
 | 
						|
			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
 | 
						|
				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
 | 
						|
					panic("bad overwrite, hdr=%p exists=%p",
 | 
						|
					    (void *)hdr, (void *)exists);
 | 
						|
				ASSERT(refcount_is_zero(
 | 
						|
				    &exists->b_l1hdr.b_refcnt));
 | 
						|
				arc_change_state(arc_anon, exists, hash_lock);
 | 
						|
				mutex_exit(hash_lock);
 | 
						|
				arc_hdr_destroy(exists);
 | 
						|
				exists = buf_hash_insert(hdr, &hash_lock);
 | 
						|
				ASSERT3P(exists, ==, NULL);
 | 
						|
			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
 | 
						|
				/* nopwrite */
 | 
						|
				ASSERT(zio->io_prop.zp_nopwrite);
 | 
						|
				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
 | 
						|
					panic("bad nopwrite, hdr=%p exists=%p",
 | 
						|
					    (void *)hdr, (void *)exists);
 | 
						|
			} else {
 | 
						|
				/* Dedup */
 | 
						|
				ASSERT(hdr->b_l1hdr.b_datacnt == 1);
 | 
						|
				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
 | 
						|
				ASSERT(BP_GET_DEDUP(zio->io_bp));
 | 
						|
				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
 | 
						|
		/* if it's not anon, we are doing a scrub */
 | 
						|
		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
 | 
						|
			arc_access(hdr, hash_lock);
 | 
						|
		mutex_exit(hash_lock);
 | 
						|
	} else {
 | 
						|
		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
 | 
						|
	}
 | 
						|
 | 
						|
	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
 | 
						|
	callback->awcb_done(zio, buf, callback->awcb_private);
 | 
						|
 | 
						|
	kmem_free(callback, sizeof (arc_write_callback_t));
 | 
						|
}
 | 
						|
 | 
						|
zio_t *
 | 
						|
arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
 | 
						|
    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
 | 
						|
    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
 | 
						|
    arc_done_func_t *done, void *private, zio_priority_t priority,
 | 
						|
    int zio_flags, const zbookmark_phys_t *zb)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr = buf->b_hdr;
 | 
						|
	arc_write_callback_t *callback;
 | 
						|
	zio_t *zio;
 | 
						|
 | 
						|
	ASSERT(ready != NULL);
 | 
						|
	ASSERT(done != NULL);
 | 
						|
	ASSERT(!HDR_IO_ERROR(hdr));
 | 
						|
	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
 | 
						|
	ASSERT(hdr->b_l1hdr.b_acb == NULL);
 | 
						|
	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
 | 
						|
	if (l2arc)
 | 
						|
		hdr->b_flags |= ARC_FLAG_L2CACHE;
 | 
						|
	if (l2arc_compress)
 | 
						|
		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
 | 
						|
	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
 | 
						|
	callback->awcb_ready = ready;
 | 
						|
	callback->awcb_physdone = physdone;
 | 
						|
	callback->awcb_done = done;
 | 
						|
	callback->awcb_private = private;
 | 
						|
	callback->awcb_buf = buf;
 | 
						|
 | 
						|
	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
 | 
						|
	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
 | 
						|
	    priority, zio_flags, zb);
 | 
						|
 | 
						|
	return (zio);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
arc_memory_throttle(uint64_t reserve, uint64_t txg)
 | 
						|
{
 | 
						|
#ifdef _KERNEL
 | 
						|
	uint64_t available_memory = ptob(freemem);
 | 
						|
	static uint64_t page_load = 0;
 | 
						|
	static uint64_t last_txg = 0;
 | 
						|
#ifdef __linux__
 | 
						|
	pgcnt_t minfree = btop(arc_sys_free / 4);
 | 
						|
#endif
 | 
						|
 | 
						|
	if (freemem > physmem * arc_lotsfree_percent / 100)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	if (txg > last_txg) {
 | 
						|
		last_txg = txg;
 | 
						|
		page_load = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are in pageout, we know that memory is already tight,
 | 
						|
	 * the arc is already going to be evicting, so we just want to
 | 
						|
	 * continue to let page writes occur as quickly as possible.
 | 
						|
	 */
 | 
						|
	if (current_is_kswapd()) {
 | 
						|
		if (page_load > MAX(ptob(minfree), available_memory) / 4) {
 | 
						|
			DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
 | 
						|
			return (SET_ERROR(ERESTART));
 | 
						|
		}
 | 
						|
		/* Note: reserve is inflated, so we deflate */
 | 
						|
		page_load += reserve / 8;
 | 
						|
		return (0);
 | 
						|
	} else if (page_load > 0 && arc_reclaim_needed()) {
 | 
						|
		/* memory is low, delay before restarting */
 | 
						|
		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
 | 
						|
		DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
 | 
						|
		return (SET_ERROR(EAGAIN));
 | 
						|
	}
 | 
						|
	page_load = 0;
 | 
						|
#endif
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
arc_tempreserve_clear(uint64_t reserve)
 | 
						|
{
 | 
						|
	atomic_add_64(&arc_tempreserve, -reserve);
 | 
						|
	ASSERT((int64_t)arc_tempreserve >= 0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
arc_tempreserve_space(uint64_t reserve, uint64_t txg)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
	uint64_t anon_size;
 | 
						|
 | 
						|
	if (!arc_no_grow &&
 | 
						|
	    reserve > arc_c/4 &&
 | 
						|
	    reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
 | 
						|
		arc_c = MIN(arc_c_max, reserve * 4);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Throttle when the calculated memory footprint for the TXG
 | 
						|
	 * exceeds the target ARC size.
 | 
						|
	 */
 | 
						|
	if (reserve > arc_c) {
 | 
						|
		DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
 | 
						|
		return (SET_ERROR(ERESTART));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Don't count loaned bufs as in flight dirty data to prevent long
 | 
						|
	 * network delays from blocking transactions that are ready to be
 | 
						|
	 * assigned to a txg.
 | 
						|
	 */
 | 
						|
	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
 | 
						|
	    arc_loaned_bytes), 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Writes will, almost always, require additional memory allocations
 | 
						|
	 * in order to compress/encrypt/etc the data.  We therefore need to
 | 
						|
	 * make sure that there is sufficient available memory for this.
 | 
						|
	 */
 | 
						|
	error = arc_memory_throttle(reserve, txg);
 | 
						|
	if (error != 0)
 | 
						|
		return (error);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Throttle writes when the amount of dirty data in the cache
 | 
						|
	 * gets too large.  We try to keep the cache less than half full
 | 
						|
	 * of dirty blocks so that our sync times don't grow too large.
 | 
						|
	 * Note: if two requests come in concurrently, we might let them
 | 
						|
	 * both succeed, when one of them should fail.  Not a huge deal.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
 | 
						|
	    anon_size > arc_c / 4) {
 | 
						|
		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
 | 
						|
		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
 | 
						|
		    arc_tempreserve>>10,
 | 
						|
		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
 | 
						|
		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
 | 
						|
		    reserve>>10, arc_c>>10);
 | 
						|
		DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
 | 
						|
		return (SET_ERROR(ERESTART));
 | 
						|
	}
 | 
						|
	atomic_add_64(&arc_tempreserve, reserve);
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
 | 
						|
    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
 | 
						|
{
 | 
						|
	size->value.ui64 = refcount_count(&state->arcs_size);
 | 
						|
	evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
 | 
						|
	evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
arc_kstat_update(kstat_t *ksp, int rw)
 | 
						|
{
 | 
						|
	arc_stats_t *as = ksp->ks_data;
 | 
						|
 | 
						|
	if (rw == KSTAT_WRITE) {
 | 
						|
		return (EACCES);
 | 
						|
	} else {
 | 
						|
		arc_kstat_update_state(arc_anon,
 | 
						|
		    &as->arcstat_anon_size,
 | 
						|
		    &as->arcstat_anon_evictable_data,
 | 
						|
		    &as->arcstat_anon_evictable_metadata);
 | 
						|
		arc_kstat_update_state(arc_mru,
 | 
						|
		    &as->arcstat_mru_size,
 | 
						|
		    &as->arcstat_mru_evictable_data,
 | 
						|
		    &as->arcstat_mru_evictable_metadata);
 | 
						|
		arc_kstat_update_state(arc_mru_ghost,
 | 
						|
		    &as->arcstat_mru_ghost_size,
 | 
						|
		    &as->arcstat_mru_ghost_evictable_data,
 | 
						|
		    &as->arcstat_mru_ghost_evictable_metadata);
 | 
						|
		arc_kstat_update_state(arc_mfu,
 | 
						|
		    &as->arcstat_mfu_size,
 | 
						|
		    &as->arcstat_mfu_evictable_data,
 | 
						|
		    &as->arcstat_mfu_evictable_metadata);
 | 
						|
		arc_kstat_update_state(arc_mfu_ghost,
 | 
						|
		    &as->arcstat_mfu_ghost_size,
 | 
						|
		    &as->arcstat_mfu_ghost_evictable_data,
 | 
						|
		    &as->arcstat_mfu_ghost_evictable_metadata);
 | 
						|
	}
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function *must* return indices evenly distributed between all
 | 
						|
 * sublists of the multilist. This is needed due to how the ARC eviction
 | 
						|
 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
 | 
						|
 * distributed between all sublists and uses this assumption when
 | 
						|
 * deciding which sublist to evict from and how much to evict from it.
 | 
						|
 */
 | 
						|
unsigned int
 | 
						|
arc_state_multilist_index_func(multilist_t *ml, void *obj)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr = obj;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We rely on b_dva to generate evenly distributed index
 | 
						|
	 * numbers using buf_hash below. So, as an added precaution,
 | 
						|
	 * let's make sure we never add empty buffers to the arc lists.
 | 
						|
	 */
 | 
						|
	ASSERT(!BUF_EMPTY(hdr));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The assumption here, is the hash value for a given
 | 
						|
	 * arc_buf_hdr_t will remain constant throughout its lifetime
 | 
						|
	 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
 | 
						|
	 * Thus, we don't need to store the header's sublist index
 | 
						|
	 * on insertion, as this index can be recalculated on removal.
 | 
						|
	 *
 | 
						|
	 * Also, the low order bits of the hash value are thought to be
 | 
						|
	 * distributed evenly. Otherwise, in the case that the multilist
 | 
						|
	 * has a power of two number of sublists, each sublists' usage
 | 
						|
	 * would not be evenly distributed.
 | 
						|
	 */
 | 
						|
	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
 | 
						|
	    multilist_get_num_sublists(ml));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called during module initialization and periodically thereafter to
 | 
						|
 * apply reasonable changes to the exposed performance tunings.  Non-zero
 | 
						|
 * zfs_* values which differ from the currently set values will be applied.
 | 
						|
 */
 | 
						|
static void
 | 
						|
arc_tuning_update(void)
 | 
						|
{
 | 
						|
	/* Valid range: 64M - <all physical memory> */
 | 
						|
	if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
 | 
						|
	    (zfs_arc_max > 64 << 20) && (zfs_arc_max < ptob(physmem)) &&
 | 
						|
	    (zfs_arc_max > arc_c_min)) {
 | 
						|
		arc_c_max = zfs_arc_max;
 | 
						|
		arc_c = arc_c_max;
 | 
						|
		arc_p = (arc_c >> 1);
 | 
						|
		arc_meta_limit = MIN(arc_meta_limit, (3 * arc_c_max) / 4);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Valid range: 32M - <arc_c_max> */
 | 
						|
	if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
 | 
						|
	    (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
 | 
						|
	    (zfs_arc_min <= arc_c_max)) {
 | 
						|
		arc_c_min = zfs_arc_min;
 | 
						|
		arc_c = MAX(arc_c, arc_c_min);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Valid range: 16M - <arc_c_max> */
 | 
						|
	if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
 | 
						|
	    (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
 | 
						|
	    (zfs_arc_meta_min <= arc_c_max)) {
 | 
						|
		arc_meta_min = zfs_arc_meta_min;
 | 
						|
		arc_meta_limit = MAX(arc_meta_limit, arc_meta_min);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Valid range: <arc_meta_min> - <arc_c_max> */
 | 
						|
	if ((zfs_arc_meta_limit) && (zfs_arc_meta_limit != arc_meta_limit) &&
 | 
						|
	    (zfs_arc_meta_limit >= zfs_arc_meta_min) &&
 | 
						|
	    (zfs_arc_meta_limit <= arc_c_max))
 | 
						|
		arc_meta_limit = zfs_arc_meta_limit;
 | 
						|
 | 
						|
	/* Valid range: 1 - N */
 | 
						|
	if (zfs_arc_grow_retry)
 | 
						|
		arc_grow_retry = zfs_arc_grow_retry;
 | 
						|
 | 
						|
	/* Valid range: 1 - N */
 | 
						|
	if (zfs_arc_shrink_shift) {
 | 
						|
		arc_shrink_shift = zfs_arc_shrink_shift;
 | 
						|
		arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Valid range: 1 - N */
 | 
						|
	if (zfs_arc_p_min_shift)
 | 
						|
		arc_p_min_shift = zfs_arc_p_min_shift;
 | 
						|
 | 
						|
	/* Valid range: 1 - N ticks */
 | 
						|
	if (zfs_arc_min_prefetch_lifespan)
 | 
						|
		arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
 | 
						|
 | 
						|
	/* Valid range: 0 - 100 */
 | 
						|
	if ((zfs_arc_lotsfree_percent >= 0) &&
 | 
						|
	    (zfs_arc_lotsfree_percent <= 100))
 | 
						|
		arc_lotsfree_percent = zfs_arc_lotsfree_percent;
 | 
						|
 | 
						|
	/* Valid range: 0 - <all physical memory> */
 | 
						|
	if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
 | 
						|
		arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), ptob(physmem));
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
arc_init(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * allmem is "all memory that we could possibly use".
 | 
						|
	 */
 | 
						|
#ifdef _KERNEL
 | 
						|
	uint64_t allmem = ptob(physmem);
 | 
						|
#else
 | 
						|
	uint64_t allmem = (physmem * PAGESIZE) / 2;
 | 
						|
#endif
 | 
						|
 | 
						|
	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
 | 
						|
	mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
 | 
						|
	/* Convert seconds to clock ticks */
 | 
						|
	arc_min_prefetch_lifespan = 1 * hz;
 | 
						|
 | 
						|
	/* Start out with 1/8 of all memory */
 | 
						|
	arc_c = allmem / 8;
 | 
						|
 | 
						|
#ifdef _KERNEL
 | 
						|
	/*
 | 
						|
	 * On architectures where the physical memory can be larger
 | 
						|
	 * than the addressable space (intel in 32-bit mode), we may
 | 
						|
	 * need to limit the cache to 1/8 of VM size.
 | 
						|
	 */
 | 
						|
	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Register a shrinker to support synchronous (direct) memory
 | 
						|
	 * reclaim from the arc.  This is done to prevent kswapd from
 | 
						|
	 * swapping out pages when it is preferable to shrink the arc.
 | 
						|
	 */
 | 
						|
	spl_register_shrinker(&arc_shrinker);
 | 
						|
 | 
						|
	/* Set to 1/64 of all memory or a minimum of 512K */
 | 
						|
	arc_sys_free = MAX(ptob(physmem / 64), (512 * 1024));
 | 
						|
	arc_need_free = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Set max to 1/2 of all memory */
 | 
						|
	arc_c_max = allmem / 2;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In userland, there's only the memory pressure that we artificially
 | 
						|
	 * create (see arc_available_memory()).  Don't let arc_c get too
 | 
						|
	 * small, because it can cause transactions to be larger than
 | 
						|
	 * arc_c, causing arc_tempreserve_space() to fail.
 | 
						|
	 */
 | 
						|
#ifndef	_KERNEL
 | 
						|
	arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
 | 
						|
#else
 | 
						|
	arc_c_min = 2ULL << SPA_MAXBLOCKSHIFT;
 | 
						|
#endif
 | 
						|
 | 
						|
	arc_c = arc_c_max;
 | 
						|
	arc_p = (arc_c >> 1);
 | 
						|
 | 
						|
	/* Set min to 1/2 of arc_c_min */
 | 
						|
	arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
 | 
						|
	/* Initialize maximum observed usage to zero */
 | 
						|
	arc_meta_max = 0;
 | 
						|
	/* Set limit to 3/4 of arc_c_max with a floor of arc_meta_min */
 | 
						|
	arc_meta_limit = MAX((3 * arc_c_max) / 4, arc_meta_min);
 | 
						|
 | 
						|
	/* Apply user specified tunings */
 | 
						|
	arc_tuning_update();
 | 
						|
 | 
						|
	if (zfs_arc_num_sublists_per_state < 1)
 | 
						|
		zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1);
 | 
						|
 | 
						|
	/* if kmem_flags are set, lets try to use less memory */
 | 
						|
	if (kmem_debugging())
 | 
						|
		arc_c = arc_c / 2;
 | 
						|
	if (arc_c < arc_c_min)
 | 
						|
		arc_c = arc_c_min;
 | 
						|
 | 
						|
	arc_anon = &ARC_anon;
 | 
						|
	arc_mru = &ARC_mru;
 | 
						|
	arc_mru_ghost = &ARC_mru_ghost;
 | 
						|
	arc_mfu = &ARC_mfu;
 | 
						|
	arc_mfu_ghost = &ARC_mfu_ghost;
 | 
						|
	arc_l2c_only = &ARC_l2c_only;
 | 
						|
	arc_size = 0;
 | 
						|
 | 
						|
	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
 | 
						|
	    sizeof (arc_buf_hdr_t),
 | 
						|
	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
 | 
						|
	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
 | 
						|
	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
 | 
						|
	    sizeof (arc_buf_hdr_t),
 | 
						|
	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
 | 
						|
	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
 | 
						|
	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
 | 
						|
	    sizeof (arc_buf_hdr_t),
 | 
						|
	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
 | 
						|
	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
 | 
						|
	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
 | 
						|
	    sizeof (arc_buf_hdr_t),
 | 
						|
	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
 | 
						|
	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
 | 
						|
	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
 | 
						|
	    sizeof (arc_buf_hdr_t),
 | 
						|
	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
 | 
						|
	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
 | 
						|
	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
 | 
						|
	    sizeof (arc_buf_hdr_t),
 | 
						|
	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
 | 
						|
	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
 | 
						|
	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
 | 
						|
	    sizeof (arc_buf_hdr_t),
 | 
						|
	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
 | 
						|
	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
 | 
						|
	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
 | 
						|
	    sizeof (arc_buf_hdr_t),
 | 
						|
	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
 | 
						|
	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
 | 
						|
	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
 | 
						|
	    sizeof (arc_buf_hdr_t),
 | 
						|
	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
 | 
						|
	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
 | 
						|
	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
 | 
						|
	    sizeof (arc_buf_hdr_t),
 | 
						|
	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
 | 
						|
	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
 | 
						|
 | 
						|
	arc_anon->arcs_state = ARC_STATE_ANON;
 | 
						|
	arc_mru->arcs_state = ARC_STATE_MRU;
 | 
						|
	arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
 | 
						|
	arc_mfu->arcs_state = ARC_STATE_MFU;
 | 
						|
	arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
 | 
						|
	arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
 | 
						|
 | 
						|
	refcount_create(&arc_anon->arcs_size);
 | 
						|
	refcount_create(&arc_mru->arcs_size);
 | 
						|
	refcount_create(&arc_mru_ghost->arcs_size);
 | 
						|
	refcount_create(&arc_mfu->arcs_size);
 | 
						|
	refcount_create(&arc_mfu_ghost->arcs_size);
 | 
						|
	refcount_create(&arc_l2c_only->arcs_size);
 | 
						|
 | 
						|
	buf_init();
 | 
						|
 | 
						|
	arc_reclaim_thread_exit = FALSE;
 | 
						|
	arc_user_evicts_thread_exit = FALSE;
 | 
						|
	list_create(&arc_prune_list, sizeof (arc_prune_t),
 | 
						|
	    offsetof(arc_prune_t, p_node));
 | 
						|
	arc_eviction_list = NULL;
 | 
						|
	mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
 | 
						|
 | 
						|
	arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
 | 
						|
	    max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
 | 
						|
 | 
						|
	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
 | 
						|
	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
 | 
						|
 | 
						|
	if (arc_ksp != NULL) {
 | 
						|
		arc_ksp->ks_data = &arc_stats;
 | 
						|
		arc_ksp->ks_update = arc_kstat_update;
 | 
						|
		kstat_install(arc_ksp);
 | 
						|
	}
 | 
						|
 | 
						|
	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
 | 
						|
	    TS_RUN, defclsyspri);
 | 
						|
 | 
						|
	(void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
 | 
						|
	    TS_RUN, defclsyspri);
 | 
						|
 | 
						|
	arc_dead = FALSE;
 | 
						|
	arc_warm = B_FALSE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Calculate maximum amount of dirty data per pool.
 | 
						|
	 *
 | 
						|
	 * If it has been set by a module parameter, take that.
 | 
						|
	 * Otherwise, use a percentage of physical memory defined by
 | 
						|
	 * zfs_dirty_data_max_percent (default 10%) with a cap at
 | 
						|
	 * zfs_dirty_data_max_max (default 25% of physical memory).
 | 
						|
	 */
 | 
						|
	if (zfs_dirty_data_max_max == 0)
 | 
						|
		zfs_dirty_data_max_max = (uint64_t)physmem * PAGESIZE *
 | 
						|
		    zfs_dirty_data_max_max_percent / 100;
 | 
						|
 | 
						|
	if (zfs_dirty_data_max == 0) {
 | 
						|
		zfs_dirty_data_max = (uint64_t)physmem * PAGESIZE *
 | 
						|
		    zfs_dirty_data_max_percent / 100;
 | 
						|
		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
 | 
						|
		    zfs_dirty_data_max_max);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
arc_fini(void)
 | 
						|
{
 | 
						|
	arc_prune_t *p;
 | 
						|
 | 
						|
#ifdef _KERNEL
 | 
						|
	spl_unregister_shrinker(&arc_shrinker);
 | 
						|
#endif /* _KERNEL */
 | 
						|
 | 
						|
	mutex_enter(&arc_reclaim_lock);
 | 
						|
	arc_reclaim_thread_exit = TRUE;
 | 
						|
	/*
 | 
						|
	 * The reclaim thread will set arc_reclaim_thread_exit back to
 | 
						|
	 * FALSE when it is finished exiting; we're waiting for that.
 | 
						|
	 */
 | 
						|
	while (arc_reclaim_thread_exit) {
 | 
						|
		cv_signal(&arc_reclaim_thread_cv);
 | 
						|
		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
 | 
						|
	}
 | 
						|
	mutex_exit(&arc_reclaim_lock);
 | 
						|
 | 
						|
	mutex_enter(&arc_user_evicts_lock);
 | 
						|
	arc_user_evicts_thread_exit = TRUE;
 | 
						|
	/*
 | 
						|
	 * The user evicts thread will set arc_user_evicts_thread_exit
 | 
						|
	 * to FALSE when it is finished exiting; we're waiting for that.
 | 
						|
	 */
 | 
						|
	while (arc_user_evicts_thread_exit) {
 | 
						|
		cv_signal(&arc_user_evicts_cv);
 | 
						|
		cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
 | 
						|
	}
 | 
						|
	mutex_exit(&arc_user_evicts_lock);
 | 
						|
 | 
						|
	/* Use TRUE to ensure *all* buffers are evicted */
 | 
						|
	arc_flush(NULL, TRUE);
 | 
						|
 | 
						|
	arc_dead = TRUE;
 | 
						|
 | 
						|
	if (arc_ksp != NULL) {
 | 
						|
		kstat_delete(arc_ksp);
 | 
						|
		arc_ksp = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	taskq_wait(arc_prune_taskq);
 | 
						|
	taskq_destroy(arc_prune_taskq);
 | 
						|
 | 
						|
	mutex_enter(&arc_prune_mtx);
 | 
						|
	while ((p = list_head(&arc_prune_list)) != NULL) {
 | 
						|
		list_remove(&arc_prune_list, p);
 | 
						|
		refcount_remove(&p->p_refcnt, &arc_prune_list);
 | 
						|
		refcount_destroy(&p->p_refcnt);
 | 
						|
		kmem_free(p, sizeof (*p));
 | 
						|
	}
 | 
						|
	mutex_exit(&arc_prune_mtx);
 | 
						|
 | 
						|
	list_destroy(&arc_prune_list);
 | 
						|
	mutex_destroy(&arc_prune_mtx);
 | 
						|
	mutex_destroy(&arc_reclaim_lock);
 | 
						|
	cv_destroy(&arc_reclaim_thread_cv);
 | 
						|
	cv_destroy(&arc_reclaim_waiters_cv);
 | 
						|
 | 
						|
	mutex_destroy(&arc_user_evicts_lock);
 | 
						|
	cv_destroy(&arc_user_evicts_cv);
 | 
						|
 | 
						|
	refcount_destroy(&arc_anon->arcs_size);
 | 
						|
	refcount_destroy(&arc_mru->arcs_size);
 | 
						|
	refcount_destroy(&arc_mru_ghost->arcs_size);
 | 
						|
	refcount_destroy(&arc_mfu->arcs_size);
 | 
						|
	refcount_destroy(&arc_mfu_ghost->arcs_size);
 | 
						|
	refcount_destroy(&arc_l2c_only->arcs_size);
 | 
						|
 | 
						|
	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
 | 
						|
	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
 | 
						|
	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
 | 
						|
	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
 | 
						|
	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
 | 
						|
	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
 | 
						|
	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
 | 
						|
	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
 | 
						|
	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
 | 
						|
	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
 | 
						|
 | 
						|
	buf_fini();
 | 
						|
 | 
						|
	ASSERT0(arc_loaned_bytes);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Level 2 ARC
 | 
						|
 *
 | 
						|
 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
 | 
						|
 * It uses dedicated storage devices to hold cached data, which are populated
 | 
						|
 * using large infrequent writes.  The main role of this cache is to boost
 | 
						|
 * the performance of random read workloads.  The intended L2ARC devices
 | 
						|
 * include short-stroked disks, solid state disks, and other media with
 | 
						|
 * substantially faster read latency than disk.
 | 
						|
 *
 | 
						|
 *                 +-----------------------+
 | 
						|
 *                 |         ARC           |
 | 
						|
 *                 +-----------------------+
 | 
						|
 *                    |         ^     ^
 | 
						|
 *                    |         |     |
 | 
						|
 *      l2arc_feed_thread()    arc_read()
 | 
						|
 *                    |         |     |
 | 
						|
 *                    |  l2arc read   |
 | 
						|
 *                    V         |     |
 | 
						|
 *               +---------------+    |
 | 
						|
 *               |     L2ARC     |    |
 | 
						|
 *               +---------------+    |
 | 
						|
 *                   |    ^           |
 | 
						|
 *          l2arc_write() |           |
 | 
						|
 *                   |    |           |
 | 
						|
 *                   V    |           |
 | 
						|
 *                 +-------+      +-------+
 | 
						|
 *                 | vdev  |      | vdev  |
 | 
						|
 *                 | cache |      | cache |
 | 
						|
 *                 +-------+      +-------+
 | 
						|
 *                 +=========+     .-----.
 | 
						|
 *                 :  L2ARC  :    |-_____-|
 | 
						|
 *                 : devices :    | Disks |
 | 
						|
 *                 +=========+    `-_____-'
 | 
						|
 *
 | 
						|
 * Read requests are satisfied from the following sources, in order:
 | 
						|
 *
 | 
						|
 *	1) ARC
 | 
						|
 *	2) vdev cache of L2ARC devices
 | 
						|
 *	3) L2ARC devices
 | 
						|
 *	4) vdev cache of disks
 | 
						|
 *	5) disks
 | 
						|
 *
 | 
						|
 * Some L2ARC device types exhibit extremely slow write performance.
 | 
						|
 * To accommodate for this there are some significant differences between
 | 
						|
 * the L2ARC and traditional cache design:
 | 
						|
 *
 | 
						|
 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
 | 
						|
 * the ARC behave as usual, freeing buffers and placing headers on ghost
 | 
						|
 * lists.  The ARC does not send buffers to the L2ARC during eviction as
 | 
						|
 * this would add inflated write latencies for all ARC memory pressure.
 | 
						|
 *
 | 
						|
 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
 | 
						|
 * It does this by periodically scanning buffers from the eviction-end of
 | 
						|
 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
 | 
						|
 * not already there. It scans until a headroom of buffers is satisfied,
 | 
						|
 * which itself is a buffer for ARC eviction. If a compressible buffer is
 | 
						|
 * found during scanning and selected for writing to an L2ARC device, we
 | 
						|
 * temporarily boost scanning headroom during the next scan cycle to make
 | 
						|
 * sure we adapt to compression effects (which might significantly reduce
 | 
						|
 * the data volume we write to L2ARC). The thread that does this is
 | 
						|
 * l2arc_feed_thread(), illustrated below; example sizes are included to
 | 
						|
 * provide a better sense of ratio than this diagram:
 | 
						|
 *
 | 
						|
 *	       head -->                        tail
 | 
						|
 *	        +---------------------+----------+
 | 
						|
 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
 | 
						|
 *	        +---------------------+----------+   |   o L2ARC eligible
 | 
						|
 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
 | 
						|
 *	        +---------------------+----------+   |
 | 
						|
 *	             15.9 Gbytes      ^ 32 Mbytes    |
 | 
						|
 *	                           headroom          |
 | 
						|
 *	                                      l2arc_feed_thread()
 | 
						|
 *	                                             |
 | 
						|
 *	                 l2arc write hand <--[oooo]--'
 | 
						|
 *	                         |           8 Mbyte
 | 
						|
 *	                         |          write max
 | 
						|
 *	                         V
 | 
						|
 *		  +==============================+
 | 
						|
 *	L2ARC dev |####|#|###|###|    |####| ... |
 | 
						|
 *	          +==============================+
 | 
						|
 *	                     32 Gbytes
 | 
						|
 *
 | 
						|
 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
 | 
						|
 * evicted, then the L2ARC has cached a buffer much sooner than it probably
 | 
						|
 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
 | 
						|
 * safe to say that this is an uncommon case, since buffers at the end of
 | 
						|
 * the ARC lists have moved there due to inactivity.
 | 
						|
 *
 | 
						|
 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
 | 
						|
 * then the L2ARC simply misses copying some buffers.  This serves as a
 | 
						|
 * pressure valve to prevent heavy read workloads from both stalling the ARC
 | 
						|
 * with waits and clogging the L2ARC with writes.  This also helps prevent
 | 
						|
 * the potential for the L2ARC to churn if it attempts to cache content too
 | 
						|
 * quickly, such as during backups of the entire pool.
 | 
						|
 *
 | 
						|
 * 5. After system boot and before the ARC has filled main memory, there are
 | 
						|
 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
 | 
						|
 * lists can remain mostly static.  Instead of searching from tail of these
 | 
						|
 * lists as pictured, the l2arc_feed_thread() will search from the list heads
 | 
						|
 * for eligible buffers, greatly increasing its chance of finding them.
 | 
						|
 *
 | 
						|
 * The L2ARC device write speed is also boosted during this time so that
 | 
						|
 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
 | 
						|
 * there are no L2ARC reads, and no fear of degrading read performance
 | 
						|
 * through increased writes.
 | 
						|
 *
 | 
						|
 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
 | 
						|
 * the vdev queue can aggregate them into larger and fewer writes.  Each
 | 
						|
 * device is written to in a rotor fashion, sweeping writes through
 | 
						|
 * available space then repeating.
 | 
						|
 *
 | 
						|
 * 7. The L2ARC does not store dirty content.  It never needs to flush
 | 
						|
 * write buffers back to disk based storage.
 | 
						|
 *
 | 
						|
 * 8. If an ARC buffer is written (and dirtied) which also exists in the
 | 
						|
 * L2ARC, the now stale L2ARC buffer is immediately dropped.
 | 
						|
 *
 | 
						|
 * The performance of the L2ARC can be tweaked by a number of tunables, which
 | 
						|
 * may be necessary for different workloads:
 | 
						|
 *
 | 
						|
 *	l2arc_write_max		max write bytes per interval
 | 
						|
 *	l2arc_write_boost	extra write bytes during device warmup
 | 
						|
 *	l2arc_noprefetch	skip caching prefetched buffers
 | 
						|
 *	l2arc_nocompress	skip compressing buffers
 | 
						|
 *	l2arc_headroom		number of max device writes to precache
 | 
						|
 *	l2arc_headroom_boost	when we find compressed buffers during ARC
 | 
						|
 *				scanning, we multiply headroom by this
 | 
						|
 *				percentage factor for the next scan cycle,
 | 
						|
 *				since more compressed buffers are likely to
 | 
						|
 *				be present
 | 
						|
 *	l2arc_feed_secs		seconds between L2ARC writing
 | 
						|
 *
 | 
						|
 * Tunables may be removed or added as future performance improvements are
 | 
						|
 * integrated, and also may become zpool properties.
 | 
						|
 *
 | 
						|
 * There are three key functions that control how the L2ARC warms up:
 | 
						|
 *
 | 
						|
 *	l2arc_write_eligible()	check if a buffer is eligible to cache
 | 
						|
 *	l2arc_write_size()	calculate how much to write
 | 
						|
 *	l2arc_write_interval()	calculate sleep delay between writes
 | 
						|
 *
 | 
						|
 * These three functions determine what to write, how much, and how quickly
 | 
						|
 * to send writes.
 | 
						|
 */
 | 
						|
 | 
						|
static boolean_t
 | 
						|
l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * A buffer is *not* eligible for the L2ARC if it:
 | 
						|
	 * 1. belongs to a different spa.
 | 
						|
	 * 2. is already cached on the L2ARC.
 | 
						|
	 * 3. has an I/O in progress (it may be an incomplete read).
 | 
						|
	 * 4. is flagged not eligible (zfs property).
 | 
						|
	 */
 | 
						|
	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
 | 
						|
	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	return (B_TRUE);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t
 | 
						|
l2arc_write_size(void)
 | 
						|
{
 | 
						|
	uint64_t size;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure our globals have meaningful values in case the user
 | 
						|
	 * altered them.
 | 
						|
	 */
 | 
						|
	size = l2arc_write_max;
 | 
						|
	if (size == 0) {
 | 
						|
		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
 | 
						|
		    "be greater than zero, resetting it to the default (%d)",
 | 
						|
		    L2ARC_WRITE_SIZE);
 | 
						|
		size = l2arc_write_max = L2ARC_WRITE_SIZE;
 | 
						|
	}
 | 
						|
 | 
						|
	if (arc_warm == B_FALSE)
 | 
						|
		size += l2arc_write_boost;
 | 
						|
 | 
						|
	return (size);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static clock_t
 | 
						|
l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
 | 
						|
{
 | 
						|
	clock_t interval, next, now;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the ARC lists are busy, increase our write rate; if the
 | 
						|
	 * lists are stale, idle back.  This is achieved by checking
 | 
						|
	 * how much we previously wrote - if it was more than half of
 | 
						|
	 * what we wanted, schedule the next write much sooner.
 | 
						|
	 */
 | 
						|
	if (l2arc_feed_again && wrote > (wanted / 2))
 | 
						|
		interval = (hz * l2arc_feed_min_ms) / 1000;
 | 
						|
	else
 | 
						|
		interval = hz * l2arc_feed_secs;
 | 
						|
 | 
						|
	now = ddi_get_lbolt();
 | 
						|
	next = MAX(now, MIN(now + interval, began + interval));
 | 
						|
 | 
						|
	return (next);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Cycle through L2ARC devices.  This is how L2ARC load balances.
 | 
						|
 * If a device is returned, this also returns holding the spa config lock.
 | 
						|
 */
 | 
						|
static l2arc_dev_t *
 | 
						|
l2arc_dev_get_next(void)
 | 
						|
{
 | 
						|
	l2arc_dev_t *first, *next = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Lock out the removal of spas (spa_namespace_lock), then removal
 | 
						|
	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
 | 
						|
	 * both locks will be dropped and a spa config lock held instead.
 | 
						|
	 */
 | 
						|
	mutex_enter(&spa_namespace_lock);
 | 
						|
	mutex_enter(&l2arc_dev_mtx);
 | 
						|
 | 
						|
	/* if there are no vdevs, there is nothing to do */
 | 
						|
	if (l2arc_ndev == 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	first = NULL;
 | 
						|
	next = l2arc_dev_last;
 | 
						|
	do {
 | 
						|
		/* loop around the list looking for a non-faulted vdev */
 | 
						|
		if (next == NULL) {
 | 
						|
			next = list_head(l2arc_dev_list);
 | 
						|
		} else {
 | 
						|
			next = list_next(l2arc_dev_list, next);
 | 
						|
			if (next == NULL)
 | 
						|
				next = list_head(l2arc_dev_list);
 | 
						|
		}
 | 
						|
 | 
						|
		/* if we have come back to the start, bail out */
 | 
						|
		if (first == NULL)
 | 
						|
			first = next;
 | 
						|
		else if (next == first)
 | 
						|
			break;
 | 
						|
 | 
						|
	} while (vdev_is_dead(next->l2ad_vdev));
 | 
						|
 | 
						|
	/* if we were unable to find any usable vdevs, return NULL */
 | 
						|
	if (vdev_is_dead(next->l2ad_vdev))
 | 
						|
		next = NULL;
 | 
						|
 | 
						|
	l2arc_dev_last = next;
 | 
						|
 | 
						|
out:
 | 
						|
	mutex_exit(&l2arc_dev_mtx);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Grab the config lock to prevent the 'next' device from being
 | 
						|
	 * removed while we are writing to it.
 | 
						|
	 */
 | 
						|
	if (next != NULL)
 | 
						|
		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
 | 
						|
	mutex_exit(&spa_namespace_lock);
 | 
						|
 | 
						|
	return (next);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free buffers that were tagged for destruction.
 | 
						|
 */
 | 
						|
static void
 | 
						|
l2arc_do_free_on_write(void)
 | 
						|
{
 | 
						|
	list_t *buflist;
 | 
						|
	l2arc_data_free_t *df, *df_prev;
 | 
						|
 | 
						|
	mutex_enter(&l2arc_free_on_write_mtx);
 | 
						|
	buflist = l2arc_free_on_write;
 | 
						|
 | 
						|
	for (df = list_tail(buflist); df; df = df_prev) {
 | 
						|
		df_prev = list_prev(buflist, df);
 | 
						|
		ASSERT(df->l2df_data != NULL);
 | 
						|
		ASSERT(df->l2df_func != NULL);
 | 
						|
		df->l2df_func(df->l2df_data, df->l2df_size);
 | 
						|
		list_remove(buflist, df);
 | 
						|
		kmem_free(df, sizeof (l2arc_data_free_t));
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_exit(&l2arc_free_on_write_mtx);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A write to a cache device has completed.  Update all headers to allow
 | 
						|
 * reads from these buffers to begin.
 | 
						|
 */
 | 
						|
static void
 | 
						|
l2arc_write_done(zio_t *zio)
 | 
						|
{
 | 
						|
	l2arc_write_callback_t *cb;
 | 
						|
	l2arc_dev_t *dev;
 | 
						|
	list_t *buflist;
 | 
						|
	arc_buf_hdr_t *head, *hdr, *hdr_prev;
 | 
						|
	kmutex_t *hash_lock;
 | 
						|
	int64_t bytes_dropped = 0;
 | 
						|
 | 
						|
	cb = zio->io_private;
 | 
						|
	ASSERT(cb != NULL);
 | 
						|
	dev = cb->l2wcb_dev;
 | 
						|
	ASSERT(dev != NULL);
 | 
						|
	head = cb->l2wcb_head;
 | 
						|
	ASSERT(head != NULL);
 | 
						|
	buflist = &dev->l2ad_buflist;
 | 
						|
	ASSERT(buflist != NULL);
 | 
						|
	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
 | 
						|
	    l2arc_write_callback_t *, cb);
 | 
						|
 | 
						|
	if (zio->io_error != 0)
 | 
						|
		ARCSTAT_BUMP(arcstat_l2_writes_error);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * All writes completed, or an error was hit.
 | 
						|
	 */
 | 
						|
top:
 | 
						|
	mutex_enter(&dev->l2ad_mtx);
 | 
						|
	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
 | 
						|
		hdr_prev = list_prev(buflist, hdr);
 | 
						|
 | 
						|
		hash_lock = HDR_LOCK(hdr);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We cannot use mutex_enter or else we can deadlock
 | 
						|
		 * with l2arc_write_buffers (due to swapping the order
 | 
						|
		 * the hash lock and l2ad_mtx are taken).
 | 
						|
		 */
 | 
						|
		if (!mutex_tryenter(hash_lock)) {
 | 
						|
			/*
 | 
						|
			 * Missed the hash lock. We must retry so we
 | 
						|
			 * don't leave the ARC_FLAG_L2_WRITING bit set.
 | 
						|
			 */
 | 
						|
			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * We don't want to rescan the headers we've
 | 
						|
			 * already marked as having been written out, so
 | 
						|
			 * we reinsert the head node so we can pick up
 | 
						|
			 * where we left off.
 | 
						|
			 */
 | 
						|
			list_remove(buflist, head);
 | 
						|
			list_insert_after(buflist, hdr, head);
 | 
						|
 | 
						|
			mutex_exit(&dev->l2ad_mtx);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * We wait for the hash lock to become available
 | 
						|
			 * to try and prevent busy waiting, and increase
 | 
						|
			 * the chance we'll be able to acquire the lock
 | 
						|
			 * the next time around.
 | 
						|
			 */
 | 
						|
			mutex_enter(hash_lock);
 | 
						|
			mutex_exit(hash_lock);
 | 
						|
			goto top;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We could not have been moved into the arc_l2c_only
 | 
						|
		 * state while in-flight due to our ARC_FLAG_L2_WRITING
 | 
						|
		 * bit being set. Let's just ensure that's being enforced.
 | 
						|
		 */
 | 
						|
		ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We may have allocated a buffer for L2ARC compression,
 | 
						|
		 * we must release it to avoid leaking this data.
 | 
						|
		 */
 | 
						|
		l2arc_release_cdata_buf(hdr);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Skipped - drop L2ARC entry and mark the header as no
 | 
						|
		 * longer L2 eligibile.
 | 
						|
		 */
 | 
						|
		if (hdr->b_l2hdr.b_daddr == L2ARC_ADDR_UNSET) {
 | 
						|
			list_remove(buflist, hdr);
 | 
						|
			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
 | 
						|
			hdr->b_flags &= ~ARC_FLAG_L2CACHE;
 | 
						|
 | 
						|
			ARCSTAT_BUMP(arcstat_l2_writes_skip_toobig);
 | 
						|
 | 
						|
			(void) refcount_remove_many(&dev->l2ad_alloc,
 | 
						|
			    hdr->b_l2hdr.b_asize, hdr);
 | 
						|
		} else if (zio->io_error != 0) {
 | 
						|
			/*
 | 
						|
			 * Error - drop L2ARC entry.
 | 
						|
			 */
 | 
						|
			list_remove(buflist, hdr);
 | 
						|
			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
 | 
						|
 | 
						|
			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
 | 
						|
			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
 | 
						|
 | 
						|
			bytes_dropped += hdr->b_l2hdr.b_asize;
 | 
						|
			(void) refcount_remove_many(&dev->l2ad_alloc,
 | 
						|
			    hdr->b_l2hdr.b_asize, hdr);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Allow ARC to begin reads and ghost list evictions to
 | 
						|
		 * this L2ARC entry.
 | 
						|
		 */
 | 
						|
		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
 | 
						|
 | 
						|
		mutex_exit(hash_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	atomic_inc_64(&l2arc_writes_done);
 | 
						|
	list_remove(buflist, head);
 | 
						|
	ASSERT(!HDR_HAS_L1HDR(head));
 | 
						|
	kmem_cache_free(hdr_l2only_cache, head);
 | 
						|
	mutex_exit(&dev->l2ad_mtx);
 | 
						|
 | 
						|
	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
 | 
						|
 | 
						|
	l2arc_do_free_on_write();
 | 
						|
 | 
						|
	kmem_free(cb, sizeof (l2arc_write_callback_t));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A read to a cache device completed.  Validate buffer contents before
 | 
						|
 * handing over to the regular ARC routines.
 | 
						|
 */
 | 
						|
static void
 | 
						|
l2arc_read_done(zio_t *zio)
 | 
						|
{
 | 
						|
	l2arc_read_callback_t *cb;
 | 
						|
	arc_buf_hdr_t *hdr;
 | 
						|
	arc_buf_t *buf;
 | 
						|
	kmutex_t *hash_lock;
 | 
						|
	int equal;
 | 
						|
 | 
						|
	ASSERT(zio->io_vd != NULL);
 | 
						|
	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
 | 
						|
 | 
						|
	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
 | 
						|
 | 
						|
	cb = zio->io_private;
 | 
						|
	ASSERT(cb != NULL);
 | 
						|
	buf = cb->l2rcb_buf;
 | 
						|
	ASSERT(buf != NULL);
 | 
						|
 | 
						|
	hash_lock = HDR_LOCK(buf->b_hdr);
 | 
						|
	mutex_enter(hash_lock);
 | 
						|
	hdr = buf->b_hdr;
 | 
						|
	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the buffer was compressed, decompress it first.
 | 
						|
	 */
 | 
						|
	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
 | 
						|
		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
 | 
						|
	ASSERT(zio->io_data != NULL);
 | 
						|
	ASSERT3U(zio->io_size, ==, hdr->b_size);
 | 
						|
	ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check this survived the L2ARC journey.
 | 
						|
	 */
 | 
						|
	equal = arc_cksum_equal(buf);
 | 
						|
	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
 | 
						|
		mutex_exit(hash_lock);
 | 
						|
		zio->io_private = buf;
 | 
						|
		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
 | 
						|
		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
 | 
						|
		arc_read_done(zio);
 | 
						|
	} else {
 | 
						|
		mutex_exit(hash_lock);
 | 
						|
		/*
 | 
						|
		 * Buffer didn't survive caching.  Increment stats and
 | 
						|
		 * reissue to the original storage device.
 | 
						|
		 */
 | 
						|
		if (zio->io_error != 0) {
 | 
						|
			ARCSTAT_BUMP(arcstat_l2_io_error);
 | 
						|
		} else {
 | 
						|
			zio->io_error = SET_ERROR(EIO);
 | 
						|
		}
 | 
						|
		if (!equal)
 | 
						|
			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If there's no waiter, issue an async i/o to the primary
 | 
						|
		 * storage now.  If there *is* a waiter, the caller must
 | 
						|
		 * issue the i/o in a context where it's OK to block.
 | 
						|
		 */
 | 
						|
		if (zio->io_waiter == NULL) {
 | 
						|
			zio_t *pio = zio_unique_parent(zio);
 | 
						|
 | 
						|
			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
 | 
						|
 | 
						|
			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
 | 
						|
			    buf->b_data, hdr->b_size, arc_read_done, buf,
 | 
						|
			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	kmem_free(cb, sizeof (l2arc_read_callback_t));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is the list priority from which the L2ARC will search for pages to
 | 
						|
 * cache.  This is used within loops (0..3) to cycle through lists in the
 | 
						|
 * desired order.  This order can have a significant effect on cache
 | 
						|
 * performance.
 | 
						|
 *
 | 
						|
 * Currently the metadata lists are hit first, MFU then MRU, followed by
 | 
						|
 * the data lists.  This function returns a locked list, and also returns
 | 
						|
 * the lock pointer.
 | 
						|
 */
 | 
						|
static multilist_sublist_t *
 | 
						|
l2arc_sublist_lock(int list_num)
 | 
						|
{
 | 
						|
	multilist_t *ml = NULL;
 | 
						|
	unsigned int idx;
 | 
						|
 | 
						|
	ASSERT(list_num >= 0 && list_num <= 3);
 | 
						|
 | 
						|
	switch (list_num) {
 | 
						|
	case 0:
 | 
						|
		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
 | 
						|
		break;
 | 
						|
	case 1:
 | 
						|
		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
 | 
						|
		break;
 | 
						|
	case 2:
 | 
						|
		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
 | 
						|
		break;
 | 
						|
	case 3:
 | 
						|
		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Return a randomly-selected sublist. This is acceptable
 | 
						|
	 * because the caller feeds only a little bit of data for each
 | 
						|
	 * call (8MB). Subsequent calls will result in different
 | 
						|
	 * sublists being selected.
 | 
						|
	 */
 | 
						|
	idx = multilist_get_random_index(ml);
 | 
						|
	return (multilist_sublist_lock(ml, idx));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Evict buffers from the device write hand to the distance specified in
 | 
						|
 * bytes.  This distance may span populated buffers, it may span nothing.
 | 
						|
 * This is clearing a region on the L2ARC device ready for writing.
 | 
						|
 * If the 'all' boolean is set, every buffer is evicted.
 | 
						|
 */
 | 
						|
static void
 | 
						|
l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
 | 
						|
{
 | 
						|
	list_t *buflist;
 | 
						|
	arc_buf_hdr_t *hdr, *hdr_prev;
 | 
						|
	kmutex_t *hash_lock;
 | 
						|
	uint64_t taddr;
 | 
						|
 | 
						|
	buflist = &dev->l2ad_buflist;
 | 
						|
 | 
						|
	if (!all && dev->l2ad_first) {
 | 
						|
		/*
 | 
						|
		 * This is the first sweep through the device.  There is
 | 
						|
		 * nothing to evict.
 | 
						|
		 */
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
 | 
						|
		/*
 | 
						|
		 * When nearing the end of the device, evict to the end
 | 
						|
		 * before the device write hand jumps to the start.
 | 
						|
		 */
 | 
						|
		taddr = dev->l2ad_end;
 | 
						|
	} else {
 | 
						|
		taddr = dev->l2ad_hand + distance;
 | 
						|
	}
 | 
						|
	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
 | 
						|
	    uint64_t, taddr, boolean_t, all);
 | 
						|
 | 
						|
top:
 | 
						|
	mutex_enter(&dev->l2ad_mtx);
 | 
						|
	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
 | 
						|
		hdr_prev = list_prev(buflist, hdr);
 | 
						|
 | 
						|
		hash_lock = HDR_LOCK(hdr);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We cannot use mutex_enter or else we can deadlock
 | 
						|
		 * with l2arc_write_buffers (due to swapping the order
 | 
						|
		 * the hash lock and l2ad_mtx are taken).
 | 
						|
		 */
 | 
						|
		if (!mutex_tryenter(hash_lock)) {
 | 
						|
			/*
 | 
						|
			 * Missed the hash lock.  Retry.
 | 
						|
			 */
 | 
						|
			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
 | 
						|
			mutex_exit(&dev->l2ad_mtx);
 | 
						|
			mutex_enter(hash_lock);
 | 
						|
			mutex_exit(hash_lock);
 | 
						|
			goto top;
 | 
						|
		}
 | 
						|
 | 
						|
		if (HDR_L2_WRITE_HEAD(hdr)) {
 | 
						|
			/*
 | 
						|
			 * We hit a write head node.  Leave it for
 | 
						|
			 * l2arc_write_done().
 | 
						|
			 */
 | 
						|
			list_remove(buflist, hdr);
 | 
						|
			mutex_exit(hash_lock);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!all && HDR_HAS_L2HDR(hdr) &&
 | 
						|
		    (hdr->b_l2hdr.b_daddr > taddr ||
 | 
						|
		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
 | 
						|
			/*
 | 
						|
			 * We've evicted to the target address,
 | 
						|
			 * or the end of the device.
 | 
						|
			 */
 | 
						|
			mutex_exit(hash_lock);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		ASSERT(HDR_HAS_L2HDR(hdr));
 | 
						|
		if (!HDR_HAS_L1HDR(hdr)) {
 | 
						|
			ASSERT(!HDR_L2_READING(hdr));
 | 
						|
			/*
 | 
						|
			 * This doesn't exist in the ARC.  Destroy.
 | 
						|
			 * arc_hdr_destroy() will call list_remove()
 | 
						|
			 * and decrement arcstat_l2_size.
 | 
						|
			 */
 | 
						|
			arc_change_state(arc_anon, hdr, hash_lock);
 | 
						|
			arc_hdr_destroy(hdr);
 | 
						|
		} else {
 | 
						|
			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
 | 
						|
			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
 | 
						|
			/*
 | 
						|
			 * Invalidate issued or about to be issued
 | 
						|
			 * reads, since we may be about to write
 | 
						|
			 * over this location.
 | 
						|
			 */
 | 
						|
			if (HDR_L2_READING(hdr)) {
 | 
						|
				ARCSTAT_BUMP(arcstat_l2_evict_reading);
 | 
						|
				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
 | 
						|
			}
 | 
						|
 | 
						|
			/* Ensure this header has finished being written */
 | 
						|
			ASSERT(!HDR_L2_WRITING(hdr));
 | 
						|
			ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
 | 
						|
 | 
						|
			arc_hdr_l2hdr_destroy(hdr);
 | 
						|
		}
 | 
						|
		mutex_exit(hash_lock);
 | 
						|
	}
 | 
						|
	mutex_exit(&dev->l2ad_mtx);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find and write ARC buffers to the L2ARC device.
 | 
						|
 *
 | 
						|
 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
 | 
						|
 * for reading until they have completed writing.
 | 
						|
 * The headroom_boost is an in-out parameter used to maintain headroom boost
 | 
						|
 * state between calls to this function.
 | 
						|
 *
 | 
						|
 * Returns the number of bytes actually written (which may be smaller than
 | 
						|
 * the delta by which the device hand has changed due to alignment).
 | 
						|
 */
 | 
						|
static uint64_t
 | 
						|
l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
 | 
						|
    boolean_t *headroom_boost)
 | 
						|
{
 | 
						|
	arc_buf_hdr_t *hdr, *hdr_prev, *head;
 | 
						|
	uint64_t write_asize, write_sz, headroom, buf_compress_minsz,
 | 
						|
	    stats_size;
 | 
						|
	void *buf_data;
 | 
						|
	boolean_t full;
 | 
						|
	l2arc_write_callback_t *cb;
 | 
						|
	zio_t *pio, *wzio;
 | 
						|
	uint64_t guid = spa_load_guid(spa);
 | 
						|
	int try;
 | 
						|
	const boolean_t do_headroom_boost = *headroom_boost;
 | 
						|
 | 
						|
	ASSERT(dev->l2ad_vdev != NULL);
 | 
						|
 | 
						|
	/* Lower the flag now, we might want to raise it again later. */
 | 
						|
	*headroom_boost = B_FALSE;
 | 
						|
 | 
						|
	pio = NULL;
 | 
						|
	write_sz = write_asize = 0;
 | 
						|
	full = B_FALSE;
 | 
						|
	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
 | 
						|
	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
 | 
						|
	head->b_flags |= ARC_FLAG_HAS_L2HDR;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We will want to try to compress buffers that are at least 2x the
 | 
						|
	 * device sector size.
 | 
						|
	 */
 | 
						|
	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Copy buffers for L2ARC writing.
 | 
						|
	 */
 | 
						|
	for (try = 0; try <= 3; try++) {
 | 
						|
		multilist_sublist_t *mls = l2arc_sublist_lock(try);
 | 
						|
		uint64_t passed_sz = 0;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * L2ARC fast warmup.
 | 
						|
		 *
 | 
						|
		 * Until the ARC is warm and starts to evict, read from the
 | 
						|
		 * head of the ARC lists rather than the tail.
 | 
						|
		 */
 | 
						|
		if (arc_warm == B_FALSE)
 | 
						|
			hdr = multilist_sublist_head(mls);
 | 
						|
		else
 | 
						|
			hdr = multilist_sublist_tail(mls);
 | 
						|
 | 
						|
		headroom = target_sz * l2arc_headroom;
 | 
						|
		if (do_headroom_boost)
 | 
						|
			headroom = (headroom * l2arc_headroom_boost) / 100;
 | 
						|
 | 
						|
		for (; hdr; hdr = hdr_prev) {
 | 
						|
			kmutex_t *hash_lock;
 | 
						|
			uint64_t buf_sz;
 | 
						|
			uint64_t buf_a_sz;
 | 
						|
 | 
						|
			if (arc_warm == B_FALSE)
 | 
						|
				hdr_prev = multilist_sublist_next(mls, hdr);
 | 
						|
			else
 | 
						|
				hdr_prev = multilist_sublist_prev(mls, hdr);
 | 
						|
 | 
						|
			hash_lock = HDR_LOCK(hdr);
 | 
						|
			if (!mutex_tryenter(hash_lock)) {
 | 
						|
				/*
 | 
						|
				 * Skip this buffer rather than waiting.
 | 
						|
				 */
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			passed_sz += hdr->b_size;
 | 
						|
			if (passed_sz > headroom) {
 | 
						|
				/*
 | 
						|
				 * Searched too far.
 | 
						|
				 */
 | 
						|
				mutex_exit(hash_lock);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			if (!l2arc_write_eligible(guid, hdr)) {
 | 
						|
				mutex_exit(hash_lock);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Assume that the buffer is not going to be compressed
 | 
						|
			 * and could take more space on disk because of a larger
 | 
						|
			 * disk block size.
 | 
						|
			 */
 | 
						|
			buf_sz = hdr->b_size;
 | 
						|
			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
 | 
						|
 | 
						|
			if ((write_asize + buf_a_sz) > target_sz) {
 | 
						|
				full = B_TRUE;
 | 
						|
				mutex_exit(hash_lock);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			if (pio == NULL) {
 | 
						|
				/*
 | 
						|
				 * Insert a dummy header on the buflist so
 | 
						|
				 * l2arc_write_done() can find where the
 | 
						|
				 * write buffers begin without searching.
 | 
						|
				 */
 | 
						|
				mutex_enter(&dev->l2ad_mtx);
 | 
						|
				list_insert_head(&dev->l2ad_buflist, head);
 | 
						|
				mutex_exit(&dev->l2ad_mtx);
 | 
						|
 | 
						|
				cb = kmem_alloc(
 | 
						|
				    sizeof (l2arc_write_callback_t), KM_SLEEP);
 | 
						|
				cb->l2wcb_dev = dev;
 | 
						|
				cb->l2wcb_head = head;
 | 
						|
				pio = zio_root(spa, l2arc_write_done, cb,
 | 
						|
				    ZIO_FLAG_CANFAIL);
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Create and add a new L2ARC header.
 | 
						|
			 */
 | 
						|
			hdr->b_l2hdr.b_dev = dev;
 | 
						|
			hdr->b_flags |= ARC_FLAG_L2_WRITING;
 | 
						|
			/*
 | 
						|
			 * Temporarily stash the data buffer in b_tmp_cdata.
 | 
						|
			 * The subsequent write step will pick it up from
 | 
						|
			 * there. This is because can't access b_l1hdr.b_buf
 | 
						|
			 * without holding the hash_lock, which we in turn
 | 
						|
			 * can't access without holding the ARC list locks
 | 
						|
			 * (which we want to avoid during compression/writing)
 | 
						|
			 */
 | 
						|
			hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
 | 
						|
			hdr->b_l2hdr.b_asize = hdr->b_size;
 | 
						|
			hdr->b_l2hdr.b_hits = 0;
 | 
						|
			hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Explicitly set the b_daddr field to a known
 | 
						|
			 * value which means "invalid address". This
 | 
						|
			 * enables us to differentiate which stage of
 | 
						|
			 * l2arc_write_buffers() the particular header
 | 
						|
			 * is in (e.g. this loop, or the one below).
 | 
						|
			 * ARC_FLAG_L2_WRITING is not enough to make
 | 
						|
			 * this distinction, and we need to know in
 | 
						|
			 * order to do proper l2arc vdev accounting in
 | 
						|
			 * arc_release() and arc_hdr_destroy().
 | 
						|
			 *
 | 
						|
			 * Note, we can't use a new flag to distinguish
 | 
						|
			 * the two stages because we don't hold the
 | 
						|
			 * header's hash_lock below, in the second stage
 | 
						|
			 * of this function. Thus, we can't simply
 | 
						|
			 * change the b_flags field to denote that the
 | 
						|
			 * IO has been sent. We can change the b_daddr
 | 
						|
			 * field of the L2 portion, though, since we'll
 | 
						|
			 * be holding the l2ad_mtx; which is why we're
 | 
						|
			 * using it to denote the header's state change.
 | 
						|
			 */
 | 
						|
			hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
 | 
						|
			hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
 | 
						|
 | 
						|
			mutex_enter(&dev->l2ad_mtx);
 | 
						|
			list_insert_head(&dev->l2ad_buflist, hdr);
 | 
						|
			mutex_exit(&dev->l2ad_mtx);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Compute and store the buffer cksum before
 | 
						|
			 * writing.  On debug the cksum is verified first.
 | 
						|
			 */
 | 
						|
			arc_cksum_verify(hdr->b_l1hdr.b_buf);
 | 
						|
			arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
 | 
						|
 | 
						|
			mutex_exit(hash_lock);
 | 
						|
 | 
						|
			write_sz += buf_sz;
 | 
						|
			write_asize += buf_a_sz;
 | 
						|
		}
 | 
						|
 | 
						|
		multilist_sublist_unlock(mls);
 | 
						|
 | 
						|
		if (full == B_TRUE)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	/* No buffers selected for writing? */
 | 
						|
	if (pio == NULL) {
 | 
						|
		ASSERT0(write_sz);
 | 
						|
		ASSERT(!HDR_HAS_L1HDR(head));
 | 
						|
		kmem_cache_free(hdr_l2only_cache, head);
 | 
						|
		return (0);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_enter(&dev->l2ad_mtx);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Note that elsewhere in this file arcstat_l2_asize
 | 
						|
	 * and the used space on l2ad_vdev are updated using b_asize,
 | 
						|
	 * which is not necessarily rounded up to the device block size.
 | 
						|
	 * Too keep accounting consistent we do the same here as well:
 | 
						|
	 * stats_size accumulates the sum of b_asize of the written buffers,
 | 
						|
	 * while write_asize accumulates the sum of b_asize rounded up
 | 
						|
	 * to the device block size.
 | 
						|
	 * The latter sum is used only to validate the corectness of the code.
 | 
						|
	 */
 | 
						|
	stats_size = 0;
 | 
						|
	write_asize = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now start writing the buffers. We're starting at the write head
 | 
						|
	 * and work backwards, retracing the course of the buffer selector
 | 
						|
	 * loop above.
 | 
						|
	 */
 | 
						|
	for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
 | 
						|
	    hdr = list_prev(&dev->l2ad_buflist, hdr)) {
 | 
						|
		uint64_t buf_sz;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We rely on the L1 portion of the header below, so
 | 
						|
		 * it's invalid for this header to have been evicted out
 | 
						|
		 * of the ghost cache, prior to being written out. The
 | 
						|
		 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
 | 
						|
		 */
 | 
						|
		ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We shouldn't need to lock the buffer here, since we flagged
 | 
						|
		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
 | 
						|
		 * take care to only access its L2 cache parameters. In
 | 
						|
		 * particular, hdr->l1hdr.b_buf may be invalid by now due to
 | 
						|
		 * ARC eviction.
 | 
						|
		 */
 | 
						|
		hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
 | 
						|
 | 
						|
		if ((!l2arc_nocompress && HDR_L2COMPRESS(hdr)) &&
 | 
						|
		    hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
 | 
						|
			if (l2arc_compress_buf(hdr)) {
 | 
						|
				/*
 | 
						|
				 * If compression succeeded, enable headroom
 | 
						|
				 * boost on the next scan cycle.
 | 
						|
				 */
 | 
						|
				*headroom_boost = B_TRUE;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Pick up the buffer data we had previously stashed away
 | 
						|
		 * (and now potentially also compressed).
 | 
						|
		 */
 | 
						|
		buf_data = hdr->b_l1hdr.b_tmp_cdata;
 | 
						|
		buf_sz = hdr->b_l2hdr.b_asize;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We need to do this regardless if buf_sz is zero or
 | 
						|
		 * not, otherwise, when this l2hdr is evicted we'll
 | 
						|
		 * remove a reference that was never added.
 | 
						|
		 */
 | 
						|
		(void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
 | 
						|
 | 
						|
		/* Compression may have squashed the buffer to zero length. */
 | 
						|
		if (buf_sz != 0) {
 | 
						|
			uint64_t buf_a_sz;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Buffers which are larger than l2arc_max_block_size
 | 
						|
			 * after compression are skipped and removed from L2
 | 
						|
			 * eligibility.
 | 
						|
			 */
 | 
						|
			if (buf_sz > l2arc_max_block_size) {
 | 
						|
				hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			wzio = zio_write_phys(pio, dev->l2ad_vdev,
 | 
						|
			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
 | 
						|
			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
 | 
						|
			    ZIO_FLAG_CANFAIL, B_FALSE);
 | 
						|
 | 
						|
			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
 | 
						|
			    zio_t *, wzio);
 | 
						|
			(void) zio_nowait(wzio);
 | 
						|
 | 
						|
			stats_size += buf_sz;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Keep the clock hand suitably device-aligned.
 | 
						|
			 */
 | 
						|
			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
 | 
						|
			write_asize += buf_a_sz;
 | 
						|
			dev->l2ad_hand += buf_a_sz;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_exit(&dev->l2ad_mtx);
 | 
						|
 | 
						|
	ASSERT3U(write_asize, <=, target_sz);
 | 
						|
	ARCSTAT_BUMP(arcstat_l2_writes_sent);
 | 
						|
	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
 | 
						|
	ARCSTAT_INCR(arcstat_l2_size, write_sz);
 | 
						|
	ARCSTAT_INCR(arcstat_l2_asize, stats_size);
 | 
						|
	vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Bump device hand to the device start if it is approaching the end.
 | 
						|
	 * l2arc_evict() will already have evicted ahead for this case.
 | 
						|
	 */
 | 
						|
	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
 | 
						|
		dev->l2ad_hand = dev->l2ad_start;
 | 
						|
		dev->l2ad_first = B_FALSE;
 | 
						|
	}
 | 
						|
 | 
						|
	dev->l2ad_writing = B_TRUE;
 | 
						|
	(void) zio_wait(pio);
 | 
						|
	dev->l2ad_writing = B_FALSE;
 | 
						|
 | 
						|
	return (write_asize);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compresses an L2ARC buffer.
 | 
						|
 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
 | 
						|
 * size in l2hdr->b_asize. This routine tries to compress the data and
 | 
						|
 * depending on the compression result there are three possible outcomes:
 | 
						|
 * *) The buffer was incompressible. The original l2hdr contents were left
 | 
						|
 *    untouched and are ready for writing to an L2 device.
 | 
						|
 * *) The buffer was all-zeros, so there is no need to write it to an L2
 | 
						|
 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
 | 
						|
 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
 | 
						|
 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
 | 
						|
 *    data buffer which holds the compressed data to be written, and b_asize
 | 
						|
 *    tells us how much data there is. b_compress is set to the appropriate
 | 
						|
 *    compression algorithm. Once writing is done, invoke
 | 
						|
 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
 | 
						|
 *
 | 
						|
 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
 | 
						|
 * buffer was incompressible).
 | 
						|
 */
 | 
						|
static boolean_t
 | 
						|
l2arc_compress_buf(arc_buf_hdr_t *hdr)
 | 
						|
{
 | 
						|
	void *cdata;
 | 
						|
	size_t csize, len, rounded;
 | 
						|
	l2arc_buf_hdr_t *l2hdr;
 | 
						|
 | 
						|
	ASSERT(HDR_HAS_L2HDR(hdr));
 | 
						|
 | 
						|
	l2hdr = &hdr->b_l2hdr;
 | 
						|
 | 
						|
	ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
	ASSERT3U(l2hdr->b_compress, ==, ZIO_COMPRESS_OFF);
 | 
						|
	ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
 | 
						|
 | 
						|
	len = l2hdr->b_asize;
 | 
						|
	cdata = zio_data_buf_alloc(len);
 | 
						|
	ASSERT3P(cdata, !=, NULL);
 | 
						|
	csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
 | 
						|
	    cdata, l2hdr->b_asize);
 | 
						|
 | 
						|
	rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
 | 
						|
	if (rounded > csize) {
 | 
						|
		bzero((char *)cdata + csize, rounded - csize);
 | 
						|
		csize = rounded;
 | 
						|
	}
 | 
						|
 | 
						|
	if (csize == 0) {
 | 
						|
		/* zero block, indicate that there's nothing to write */
 | 
						|
		zio_data_buf_free(cdata, len);
 | 
						|
		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
 | 
						|
		l2hdr->b_asize = 0;
 | 
						|
		hdr->b_l1hdr.b_tmp_cdata = NULL;
 | 
						|
		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
 | 
						|
		return (B_TRUE);
 | 
						|
	} else if (csize > 0 && csize < len) {
 | 
						|
		/*
 | 
						|
		 * Compression succeeded, we'll keep the cdata around for
 | 
						|
		 * writing and release it afterwards.
 | 
						|
		 */
 | 
						|
		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
 | 
						|
		l2hdr->b_asize = csize;
 | 
						|
		hdr->b_l1hdr.b_tmp_cdata = cdata;
 | 
						|
		ARCSTAT_BUMP(arcstat_l2_compress_successes);
 | 
						|
		return (B_TRUE);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Compression failed, release the compressed buffer.
 | 
						|
		 * l2hdr will be left unmodified.
 | 
						|
		 */
 | 
						|
		zio_data_buf_free(cdata, len);
 | 
						|
		ARCSTAT_BUMP(arcstat_l2_compress_failures);
 | 
						|
		return (B_FALSE);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Decompresses a zio read back from an l2arc device. On success, the
 | 
						|
 * underlying zio's io_data buffer is overwritten by the uncompressed
 | 
						|
 * version. On decompression error (corrupt compressed stream), the
 | 
						|
 * zio->io_error value is set to signal an I/O error.
 | 
						|
 *
 | 
						|
 * Please note that the compressed data stream is not checksummed, so
 | 
						|
 * if the underlying device is experiencing data corruption, we may feed
 | 
						|
 * corrupt data to the decompressor, so the decompressor needs to be
 | 
						|
 * able to handle this situation (LZ4 does).
 | 
						|
 */
 | 
						|
static void
 | 
						|
l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
 | 
						|
{
 | 
						|
	uint64_t csize;
 | 
						|
	void *cdata;
 | 
						|
 | 
						|
	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
 | 
						|
 | 
						|
	if (zio->io_error != 0) {
 | 
						|
		/*
 | 
						|
		 * An io error has occured, just restore the original io
 | 
						|
		 * size in preparation for a main pool read.
 | 
						|
		 */
 | 
						|
		zio->io_orig_size = zio->io_size = hdr->b_size;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (c == ZIO_COMPRESS_EMPTY) {
 | 
						|
		/*
 | 
						|
		 * An empty buffer results in a null zio, which means we
 | 
						|
		 * need to fill its io_data after we're done restoring the
 | 
						|
		 * buffer's contents.
 | 
						|
		 */
 | 
						|
		ASSERT(hdr->b_l1hdr.b_buf != NULL);
 | 
						|
		bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
 | 
						|
		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
 | 
						|
	} else {
 | 
						|
		ASSERT(zio->io_data != NULL);
 | 
						|
		/*
 | 
						|
		 * We copy the compressed data from the start of the arc buffer
 | 
						|
		 * (the zio_read will have pulled in only what we need, the
 | 
						|
		 * rest is garbage which we will overwrite at decompression)
 | 
						|
		 * and then decompress back to the ARC data buffer. This way we
 | 
						|
		 * can minimize copying by simply decompressing back over the
 | 
						|
		 * original compressed data (rather than decompressing to an
 | 
						|
		 * aux buffer and then copying back the uncompressed buffer,
 | 
						|
		 * which is likely to be much larger).
 | 
						|
		 */
 | 
						|
		csize = zio->io_size;
 | 
						|
		cdata = zio_data_buf_alloc(csize);
 | 
						|
		bcopy(zio->io_data, cdata, csize);
 | 
						|
		if (zio_decompress_data(c, cdata, zio->io_data, csize,
 | 
						|
		    hdr->b_size) != 0)
 | 
						|
			zio->io_error = EIO;
 | 
						|
		zio_data_buf_free(cdata, csize);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Restore the expected uncompressed IO size. */
 | 
						|
	zio->io_orig_size = zio->io_size = hdr->b_size;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
 | 
						|
 * This buffer serves as a temporary holder of compressed data while
 | 
						|
 * the buffer entry is being written to an l2arc device. Once that is
 | 
						|
 * done, we can dispose of it.
 | 
						|
 */
 | 
						|
static void
 | 
						|
l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
 | 
						|
{
 | 
						|
	enum zio_compress comp;
 | 
						|
 | 
						|
	ASSERT(HDR_HAS_L1HDR(hdr));
 | 
						|
	ASSERT(HDR_HAS_L2HDR(hdr));
 | 
						|
	comp = hdr->b_l2hdr.b_compress;
 | 
						|
	ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
 | 
						|
 | 
						|
	if (comp == ZIO_COMPRESS_OFF) {
 | 
						|
		/*
 | 
						|
		 * In this case, b_tmp_cdata points to the same buffer
 | 
						|
		 * as the arc_buf_t's b_data field. We don't want to
 | 
						|
		 * free it, since the arc_buf_t will handle that.
 | 
						|
		 */
 | 
						|
		hdr->b_l1hdr.b_tmp_cdata = NULL;
 | 
						|
	} else if (comp == ZIO_COMPRESS_EMPTY) {
 | 
						|
		/*
 | 
						|
		 * In this case, b_tmp_cdata was compressed to an empty
 | 
						|
		 * buffer, thus there's nothing to free and b_tmp_cdata
 | 
						|
		 * should have been set to NULL in l2arc_write_buffers().
 | 
						|
		 */
 | 
						|
		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * If the data was compressed, then we've allocated a
 | 
						|
		 * temporary buffer for it, so now we need to release it.
 | 
						|
		 */
 | 
						|
		ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
 | 
						|
		zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
 | 
						|
		    hdr->b_size);
 | 
						|
		hdr->b_l1hdr.b_tmp_cdata = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This thread feeds the L2ARC at regular intervals.  This is the beating
 | 
						|
 * heart of the L2ARC.
 | 
						|
 */
 | 
						|
static void
 | 
						|
l2arc_feed_thread(void)
 | 
						|
{
 | 
						|
	callb_cpr_t cpr;
 | 
						|
	l2arc_dev_t *dev;
 | 
						|
	spa_t *spa;
 | 
						|
	uint64_t size, wrote;
 | 
						|
	clock_t begin, next = ddi_get_lbolt();
 | 
						|
	boolean_t headroom_boost = B_FALSE;
 | 
						|
	fstrans_cookie_t cookie;
 | 
						|
 | 
						|
	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
 | 
						|
 | 
						|
	mutex_enter(&l2arc_feed_thr_lock);
 | 
						|
 | 
						|
	cookie = spl_fstrans_mark();
 | 
						|
	while (l2arc_thread_exit == 0) {
 | 
						|
		CALLB_CPR_SAFE_BEGIN(&cpr);
 | 
						|
		(void) cv_timedwait_sig(&l2arc_feed_thr_cv,
 | 
						|
		    &l2arc_feed_thr_lock, next);
 | 
						|
		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
 | 
						|
		next = ddi_get_lbolt() + hz;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Quick check for L2ARC devices.
 | 
						|
		 */
 | 
						|
		mutex_enter(&l2arc_dev_mtx);
 | 
						|
		if (l2arc_ndev == 0) {
 | 
						|
			mutex_exit(&l2arc_dev_mtx);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		mutex_exit(&l2arc_dev_mtx);
 | 
						|
		begin = ddi_get_lbolt();
 | 
						|
 | 
						|
		/*
 | 
						|
		 * This selects the next l2arc device to write to, and in
 | 
						|
		 * doing so the next spa to feed from: dev->l2ad_spa.   This
 | 
						|
		 * will return NULL if there are now no l2arc devices or if
 | 
						|
		 * they are all faulted.
 | 
						|
		 *
 | 
						|
		 * If a device is returned, its spa's config lock is also
 | 
						|
		 * held to prevent device removal.  l2arc_dev_get_next()
 | 
						|
		 * will grab and release l2arc_dev_mtx.
 | 
						|
		 */
 | 
						|
		if ((dev = l2arc_dev_get_next()) == NULL)
 | 
						|
			continue;
 | 
						|
 | 
						|
		spa = dev->l2ad_spa;
 | 
						|
		ASSERT(spa != NULL);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the pool is read-only then force the feed thread to
 | 
						|
		 * sleep a little longer.
 | 
						|
		 */
 | 
						|
		if (!spa_writeable(spa)) {
 | 
						|
			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
 | 
						|
			spa_config_exit(spa, SCL_L2ARC, dev);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Avoid contributing to memory pressure.
 | 
						|
		 */
 | 
						|
		if (arc_reclaim_needed()) {
 | 
						|
			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
 | 
						|
			spa_config_exit(spa, SCL_L2ARC, dev);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		ARCSTAT_BUMP(arcstat_l2_feeds);
 | 
						|
 | 
						|
		size = l2arc_write_size();
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Evict L2ARC buffers that will be overwritten.
 | 
						|
		 */
 | 
						|
		l2arc_evict(dev, size, B_FALSE);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Write ARC buffers.
 | 
						|
		 */
 | 
						|
		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Calculate interval between writes.
 | 
						|
		 */
 | 
						|
		next = l2arc_write_interval(begin, size, wrote);
 | 
						|
		spa_config_exit(spa, SCL_L2ARC, dev);
 | 
						|
	}
 | 
						|
	spl_fstrans_unmark(cookie);
 | 
						|
 | 
						|
	l2arc_thread_exit = 0;
 | 
						|
	cv_broadcast(&l2arc_feed_thr_cv);
 | 
						|
	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
 | 
						|
	thread_exit();
 | 
						|
}
 | 
						|
 | 
						|
boolean_t
 | 
						|
l2arc_vdev_present(vdev_t *vd)
 | 
						|
{
 | 
						|
	l2arc_dev_t *dev;
 | 
						|
 | 
						|
	mutex_enter(&l2arc_dev_mtx);
 | 
						|
	for (dev = list_head(l2arc_dev_list); dev != NULL;
 | 
						|
	    dev = list_next(l2arc_dev_list, dev)) {
 | 
						|
		if (dev->l2ad_vdev == vd)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	mutex_exit(&l2arc_dev_mtx);
 | 
						|
 | 
						|
	return (dev != NULL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add a vdev for use by the L2ARC.  By this point the spa has already
 | 
						|
 * validated the vdev and opened it.
 | 
						|
 */
 | 
						|
void
 | 
						|
l2arc_add_vdev(spa_t *spa, vdev_t *vd)
 | 
						|
{
 | 
						|
	l2arc_dev_t *adddev;
 | 
						|
 | 
						|
	ASSERT(!l2arc_vdev_present(vd));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Create a new l2arc device entry.
 | 
						|
	 */
 | 
						|
	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
 | 
						|
	adddev->l2ad_spa = spa;
 | 
						|
	adddev->l2ad_vdev = vd;
 | 
						|
	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
 | 
						|
	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
 | 
						|
	adddev->l2ad_hand = adddev->l2ad_start;
 | 
						|
	adddev->l2ad_first = B_TRUE;
 | 
						|
	adddev->l2ad_writing = B_FALSE;
 | 
						|
	list_link_init(&adddev->l2ad_node);
 | 
						|
 | 
						|
	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	/*
 | 
						|
	 * This is a list of all ARC buffers that are still valid on the
 | 
						|
	 * device.
 | 
						|
	 */
 | 
						|
	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
 | 
						|
	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
 | 
						|
 | 
						|
	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
 | 
						|
	refcount_create(&adddev->l2ad_alloc);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Add device to global list
 | 
						|
	 */
 | 
						|
	mutex_enter(&l2arc_dev_mtx);
 | 
						|
	list_insert_head(l2arc_dev_list, adddev);
 | 
						|
	atomic_inc_64(&l2arc_ndev);
 | 
						|
	mutex_exit(&l2arc_dev_mtx);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Remove a vdev from the L2ARC.
 | 
						|
 */
 | 
						|
void
 | 
						|
l2arc_remove_vdev(vdev_t *vd)
 | 
						|
{
 | 
						|
	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find the device by vdev
 | 
						|
	 */
 | 
						|
	mutex_enter(&l2arc_dev_mtx);
 | 
						|
	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
 | 
						|
		nextdev = list_next(l2arc_dev_list, dev);
 | 
						|
		if (vd == dev->l2ad_vdev) {
 | 
						|
			remdev = dev;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	ASSERT(remdev != NULL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Remove device from global list
 | 
						|
	 */
 | 
						|
	list_remove(l2arc_dev_list, remdev);
 | 
						|
	l2arc_dev_last = NULL;		/* may have been invalidated */
 | 
						|
	atomic_dec_64(&l2arc_ndev);
 | 
						|
	mutex_exit(&l2arc_dev_mtx);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Clear all buflists and ARC references.  L2ARC device flush.
 | 
						|
	 */
 | 
						|
	l2arc_evict(remdev, 0, B_TRUE);
 | 
						|
	list_destroy(&remdev->l2ad_buflist);
 | 
						|
	mutex_destroy(&remdev->l2ad_mtx);
 | 
						|
	refcount_destroy(&remdev->l2ad_alloc);
 | 
						|
	kmem_free(remdev, sizeof (l2arc_dev_t));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
l2arc_init(void)
 | 
						|
{
 | 
						|
	l2arc_thread_exit = 0;
 | 
						|
	l2arc_ndev = 0;
 | 
						|
	l2arc_writes_sent = 0;
 | 
						|
	l2arc_writes_done = 0;
 | 
						|
 | 
						|
	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
 | 
						|
	l2arc_dev_list = &L2ARC_dev_list;
 | 
						|
	l2arc_free_on_write = &L2ARC_free_on_write;
 | 
						|
	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
 | 
						|
	    offsetof(l2arc_dev_t, l2ad_node));
 | 
						|
	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
 | 
						|
	    offsetof(l2arc_data_free_t, l2df_list_node));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
l2arc_fini(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * This is called from dmu_fini(), which is called from spa_fini();
 | 
						|
	 * Because of this, we can assume that all l2arc devices have
 | 
						|
	 * already been removed when the pools themselves were removed.
 | 
						|
	 */
 | 
						|
 | 
						|
	l2arc_do_free_on_write();
 | 
						|
 | 
						|
	mutex_destroy(&l2arc_feed_thr_lock);
 | 
						|
	cv_destroy(&l2arc_feed_thr_cv);
 | 
						|
	mutex_destroy(&l2arc_dev_mtx);
 | 
						|
	mutex_destroy(&l2arc_free_on_write_mtx);
 | 
						|
 | 
						|
	list_destroy(l2arc_dev_list);
 | 
						|
	list_destroy(l2arc_free_on_write);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
l2arc_start(void)
 | 
						|
{
 | 
						|
	if (!(spa_mode_global & FWRITE))
 | 
						|
		return;
 | 
						|
 | 
						|
	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
 | 
						|
	    TS_RUN, defclsyspri);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
l2arc_stop(void)
 | 
						|
{
 | 
						|
	if (!(spa_mode_global & FWRITE))
 | 
						|
		return;
 | 
						|
 | 
						|
	mutex_enter(&l2arc_feed_thr_lock);
 | 
						|
	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
 | 
						|
	l2arc_thread_exit = 1;
 | 
						|
	while (l2arc_thread_exit != 0)
 | 
						|
		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
 | 
						|
	mutex_exit(&l2arc_feed_thr_lock);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(_KERNEL) && defined(HAVE_SPL)
 | 
						|
EXPORT_SYMBOL(arc_buf_size);
 | 
						|
EXPORT_SYMBOL(arc_write);
 | 
						|
EXPORT_SYMBOL(arc_read);
 | 
						|
EXPORT_SYMBOL(arc_buf_remove_ref);
 | 
						|
EXPORT_SYMBOL(arc_buf_info);
 | 
						|
EXPORT_SYMBOL(arc_getbuf_func);
 | 
						|
EXPORT_SYMBOL(arc_add_prune_callback);
 | 
						|
EXPORT_SYMBOL(arc_remove_prune_callback);
 | 
						|
 | 
						|
module_param(zfs_arc_min, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
 | 
						|
 | 
						|
module_param(zfs_arc_max, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
 | 
						|
 | 
						|
module_param(zfs_arc_meta_limit, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
 | 
						|
 | 
						|
module_param(zfs_arc_meta_min, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
 | 
						|
 | 
						|
module_param(zfs_arc_meta_prune, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
 | 
						|
 | 
						|
module_param(zfs_arc_meta_adjust_restarts, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
 | 
						|
	"Limit number of restarts in arc_adjust_meta");
 | 
						|
 | 
						|
module_param(zfs_arc_meta_strategy, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
 | 
						|
 | 
						|
module_param(zfs_arc_grow_retry, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
 | 
						|
 | 
						|
module_param(zfs_arc_p_aggressive_disable, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
 | 
						|
 | 
						|
module_param(zfs_arc_p_dampener_disable, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
 | 
						|
 | 
						|
module_param(zfs_arc_shrink_shift, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
 | 
						|
 | 
						|
module_param(zfs_arc_p_min_shift, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
 | 
						|
 | 
						|
module_param(zfs_disable_dup_eviction, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
 | 
						|
 | 
						|
module_param(zfs_arc_average_blocksize, int, 0444);
 | 
						|
MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
 | 
						|
 | 
						|
module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
 | 
						|
 | 
						|
module_param(zfs_arc_num_sublists_per_state, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_num_sublists_per_state,
 | 
						|
	"Number of sublists used in each of the ARC state lists");
 | 
						|
 | 
						|
module_param(l2arc_write_max, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
 | 
						|
 | 
						|
module_param(l2arc_write_boost, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
 | 
						|
 | 
						|
module_param(l2arc_headroom, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
 | 
						|
 | 
						|
module_param(l2arc_headroom_boost, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
 | 
						|
 | 
						|
module_param(l2arc_max_block_size, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(l2arc_max_block_size, "Skip L2ARC buffers larger than N");
 | 
						|
 | 
						|
module_param(l2arc_feed_secs, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
 | 
						|
 | 
						|
module_param(l2arc_feed_min_ms, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
 | 
						|
 | 
						|
module_param(l2arc_noprefetch, int, 0644);
 | 
						|
MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
 | 
						|
 | 
						|
module_param(l2arc_nocompress, int, 0644);
 | 
						|
MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
 | 
						|
 | 
						|
module_param(l2arc_feed_again, int, 0644);
 | 
						|
MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
 | 
						|
 | 
						|
module_param(l2arc_norw, int, 0644);
 | 
						|
MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
 | 
						|
 | 
						|
module_param(zfs_arc_lotsfree_percent, int, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
 | 
						|
	"System free memory I/O throttle in bytes");
 | 
						|
 | 
						|
module_param(zfs_arc_sys_free, ulong, 0644);
 | 
						|
MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
 | 
						|
 | 
						|
#endif
 |