mirror of
				https://git.proxmox.com/git/mirror_zfs
				synced 2025-11-04 05:22:48 +00:00 
			
		
		
		
	Sponsored-by: https://despairlabs.com/sponsor/ Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de> Signed-off-by: Rob Norris <robn@despairlabs.com> Closes #16479
		
			
				
	
	
		
			1974 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1974 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * CDDL HEADER START
 | 
						|
 *
 | 
						|
 * The contents of this file are subject to the terms of the
 | 
						|
 * Common Development and Distribution License (the "License").
 | 
						|
 * You may not use this file except in compliance with the License.
 | 
						|
 *
 | 
						|
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | 
						|
 * or https://opensource.org/licenses/CDDL-1.0.
 | 
						|
 * See the License for the specific language governing permissions
 | 
						|
 * and limitations under the License.
 | 
						|
 *
 | 
						|
 * When distributing Covered Code, include this CDDL HEADER in each
 | 
						|
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | 
						|
 * If applicable, add the following below this CDDL HEADER, with the
 | 
						|
 * fields enclosed by brackets "[]" replaced with your own identifying
 | 
						|
 * information: Portions Copyright [yyyy] [name of copyright owner]
 | 
						|
 *
 | 
						|
 * CDDL HEADER END
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
 | 
						|
 * Copyright (c) 2024, Rob Norris <robn@despairlabs.com>
 | 
						|
 * Copyright (c) 2024, Klara, Inc.
 | 
						|
 */
 | 
						|
 | 
						|
#include <sys/dataset_kstats.h>
 | 
						|
#include <sys/dbuf.h>
 | 
						|
#include <sys/dmu_traverse.h>
 | 
						|
#include <sys/dsl_dataset.h>
 | 
						|
#include <sys/dsl_prop.h>
 | 
						|
#include <sys/dsl_dir.h>
 | 
						|
#include <sys/zap.h>
 | 
						|
#include <sys/zfeature.h>
 | 
						|
#include <sys/zil_impl.h>
 | 
						|
#include <sys/dmu_tx.h>
 | 
						|
#include <sys/zio.h>
 | 
						|
#include <sys/zfs_rlock.h>
 | 
						|
#include <sys/spa_impl.h>
 | 
						|
#include <sys/zvol.h>
 | 
						|
#include <sys/zvol_impl.h>
 | 
						|
#include <cityhash.h>
 | 
						|
 | 
						|
#include <linux/blkdev_compat.h>
 | 
						|
#include <linux/task_io_accounting_ops.h>
 | 
						|
#include <linux/workqueue.h>
 | 
						|
 | 
						|
#ifdef HAVE_BLK_MQ
 | 
						|
#include <linux/blk-mq.h>
 | 
						|
#endif
 | 
						|
 | 
						|
static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
 | 
						|
    struct request *rq, boolean_t force_sync);
 | 
						|
 | 
						|
static unsigned int zvol_major = ZVOL_MAJOR;
 | 
						|
static unsigned int zvol_request_sync = 0;
 | 
						|
static unsigned int zvol_prefetch_bytes = (128 * 1024);
 | 
						|
static unsigned long zvol_max_discard_blocks = 16384;
 | 
						|
 | 
						|
/*
 | 
						|
 * Switch taskq at multiple of 512 MB offset. This can be set to a lower value
 | 
						|
 * to utilize more threads for small files but may affect prefetch hits.
 | 
						|
 */
 | 
						|
#define	ZVOL_TASKQ_OFFSET_SHIFT 29
 | 
						|
 | 
						|
#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
 | 
						|
static unsigned int zvol_open_timeout_ms = 1000;
 | 
						|
#endif
 | 
						|
 | 
						|
static unsigned int zvol_threads = 0;
 | 
						|
#ifdef HAVE_BLK_MQ
 | 
						|
static unsigned int zvol_blk_mq_threads = 0;
 | 
						|
static unsigned int zvol_blk_mq_actual_threads;
 | 
						|
static boolean_t zvol_use_blk_mq = B_FALSE;
 | 
						|
 | 
						|
/*
 | 
						|
 * The maximum number of volblocksize blocks to process per thread.  Typically,
 | 
						|
 * write heavy workloads preform better with higher values here, and read
 | 
						|
 * heavy workloads preform better with lower values, but that's not a hard
 | 
						|
 * and fast rule.  It's basically a knob to tune between "less overhead with
 | 
						|
 * less parallelism" and "more overhead, but more parallelism".
 | 
						|
 *
 | 
						|
 * '8' was chosen as a reasonable, balanced, default based off of sequential
 | 
						|
 * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
 | 
						|
 */
 | 
						|
static unsigned int zvol_blk_mq_blocks_per_thread = 8;
 | 
						|
#endif
 | 
						|
 | 
						|
static unsigned int zvol_num_taskqs = 0;
 | 
						|
 | 
						|
#ifndef	BLKDEV_DEFAULT_RQ
 | 
						|
/* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
 | 
						|
#define	BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Finalize our BIO or request.
 | 
						|
 */
 | 
						|
#ifdef	HAVE_BLK_MQ
 | 
						|
#define	END_IO(zv, bio, rq, error)  do { \
 | 
						|
	if (bio) { \
 | 
						|
		bio->bi_status = errno_to_bi_status(-error); \
 | 
						|
		bio_endio(bio); \
 | 
						|
	} else { \
 | 
						|
		blk_mq_end_request(rq, errno_to_bi_status(error)); \
 | 
						|
	} \
 | 
						|
} while (0)
 | 
						|
#else
 | 
						|
#define	END_IO(zv, bio, rq, error)  do { \
 | 
						|
	bio->bi_status = errno_to_bi_status(-error); \
 | 
						|
	bio_endio(bio); \
 | 
						|
} while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef HAVE_BLK_MQ
 | 
						|
static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
 | 
						|
static unsigned int zvol_actual_blk_mq_queue_depth;
 | 
						|
#endif
 | 
						|
 | 
						|
struct zvol_state_os {
 | 
						|
	struct gendisk		*zvo_disk;	/* generic disk */
 | 
						|
	struct request_queue	*zvo_queue;	/* request queue */
 | 
						|
	dev_t			zvo_dev;	/* device id */
 | 
						|
 | 
						|
#ifdef HAVE_BLK_MQ
 | 
						|
	struct blk_mq_tag_set tag_set;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Set from the global 'zvol_use_blk_mq' at zvol load */
 | 
						|
	boolean_t use_blk_mq;
 | 
						|
};
 | 
						|
 | 
						|
typedef struct zv_taskq {
 | 
						|
	uint_t tqs_cnt;
 | 
						|
	taskq_t **tqs_taskq;
 | 
						|
} zv_taskq_t;
 | 
						|
static zv_taskq_t zvol_taskqs;
 | 
						|
static struct ida zvol_ida;
 | 
						|
 | 
						|
typedef struct zv_request_stack {
 | 
						|
	zvol_state_t	*zv;
 | 
						|
	struct bio	*bio;
 | 
						|
	struct request *rq;
 | 
						|
} zv_request_t;
 | 
						|
 | 
						|
typedef struct zv_work {
 | 
						|
	struct request  *rq;
 | 
						|
	struct work_struct work;
 | 
						|
} zv_work_t;
 | 
						|
 | 
						|
typedef struct zv_request_task {
 | 
						|
	zv_request_t zvr;
 | 
						|
	taskq_ent_t	ent;
 | 
						|
} zv_request_task_t;
 | 
						|
 | 
						|
static zv_request_task_t *
 | 
						|
zv_request_task_create(zv_request_t zvr)
 | 
						|
{
 | 
						|
	zv_request_task_t *task;
 | 
						|
	task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
 | 
						|
	taskq_init_ent(&task->ent);
 | 
						|
	task->zvr = zvr;
 | 
						|
	return (task);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
zv_request_task_free(zv_request_task_t *task)
 | 
						|
{
 | 
						|
	kmem_free(task, sizeof (*task));
 | 
						|
}
 | 
						|
 | 
						|
#ifdef HAVE_BLK_MQ
 | 
						|
 | 
						|
/*
 | 
						|
 * This is called when a new block multiqueue request comes in.  A request
 | 
						|
 * contains one or more BIOs.
 | 
						|
 */
 | 
						|
static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
 | 
						|
    const struct blk_mq_queue_data *bd)
 | 
						|
{
 | 
						|
	struct request *rq = bd->rq;
 | 
						|
	zvol_state_t *zv = rq->q->queuedata;
 | 
						|
 | 
						|
	/* Tell the kernel that we are starting to process this request */
 | 
						|
	blk_mq_start_request(rq);
 | 
						|
 | 
						|
	if (blk_rq_is_passthrough(rq)) {
 | 
						|
		/* Skip non filesystem request */
 | 
						|
		blk_mq_end_request(rq, BLK_STS_IOERR);
 | 
						|
		return (BLK_STS_IOERR);
 | 
						|
	}
 | 
						|
 | 
						|
	zvol_request_impl(zv, NULL, rq, 0);
 | 
						|
 | 
						|
	/* Acknowledge to the kernel that we got this request */
 | 
						|
	return (BLK_STS_OK);
 | 
						|
}
 | 
						|
 | 
						|
static struct blk_mq_ops zvol_blk_mq_queue_ops = {
 | 
						|
	.queue_rq = zvol_mq_queue_rq,
 | 
						|
};
 | 
						|
 | 
						|
/* Initialize our blk-mq struct */
 | 
						|
static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
 | 
						|
{
 | 
						|
	struct zvol_state_os *zso = zv->zv_zso;
 | 
						|
 | 
						|
	memset(&zso->tag_set, 0, sizeof (zso->tag_set));
 | 
						|
 | 
						|
	/* Initialize tag set. */
 | 
						|
	zso->tag_set.ops = &zvol_blk_mq_queue_ops;
 | 
						|
	zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
 | 
						|
	zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
 | 
						|
	zso->tag_set.numa_node = NUMA_NO_NODE;
 | 
						|
	zso->tag_set.cmd_size = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
 | 
						|
	 * zvol_request_impl()
 | 
						|
	 */
 | 
						|
	zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
 | 
						|
	zso->tag_set.driver_data = zv;
 | 
						|
 | 
						|
	return (blk_mq_alloc_tag_set(&zso->tag_set));
 | 
						|
}
 | 
						|
#endif /* HAVE_BLK_MQ */
 | 
						|
 | 
						|
/*
 | 
						|
 * Given a path, return TRUE if path is a ZVOL.
 | 
						|
 */
 | 
						|
boolean_t
 | 
						|
zvol_os_is_zvol(const char *path)
 | 
						|
{
 | 
						|
	dev_t dev = 0;
 | 
						|
 | 
						|
	if (vdev_lookup_bdev(path, &dev) != 0)
 | 
						|
		return (B_FALSE);
 | 
						|
 | 
						|
	if (MAJOR(dev) == zvol_major)
 | 
						|
		return (B_TRUE);
 | 
						|
 | 
						|
	return (B_FALSE);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
zvol_write(zv_request_t *zvr)
 | 
						|
{
 | 
						|
	struct bio *bio = zvr->bio;
 | 
						|
	struct request *rq = zvr->rq;
 | 
						|
	int error = 0;
 | 
						|
	zfs_uio_t uio;
 | 
						|
	zvol_state_t *zv = zvr->zv;
 | 
						|
	struct request_queue *q;
 | 
						|
	struct gendisk *disk;
 | 
						|
	unsigned long start_time = 0;
 | 
						|
	boolean_t acct = B_FALSE;
 | 
						|
 | 
						|
	ASSERT3P(zv, !=, NULL);
 | 
						|
	ASSERT3U(zv->zv_open_count, >, 0);
 | 
						|
	ASSERT3P(zv->zv_zilog, !=, NULL);
 | 
						|
 | 
						|
	q = zv->zv_zso->zvo_queue;
 | 
						|
	disk = zv->zv_zso->zvo_disk;
 | 
						|
 | 
						|
	/* bio marked as FLUSH need to flush before write */
 | 
						|
	if (io_is_flush(bio, rq))
 | 
						|
		zil_commit(zv->zv_zilog, ZVOL_OBJ);
 | 
						|
 | 
						|
	/* Some requests are just for flush and nothing else. */
 | 
						|
	if (io_size(bio, rq) == 0) {
 | 
						|
		rw_exit(&zv->zv_suspend_lock);
 | 
						|
		END_IO(zv, bio, rq, 0);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	zfs_uio_bvec_init(&uio, bio, rq);
 | 
						|
 | 
						|
	ssize_t start_resid = uio.uio_resid;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * With use_blk_mq, accounting is done by blk_mq_start_request()
 | 
						|
	 * and blk_mq_end_request(), so we can skip it here.
 | 
						|
	 */
 | 
						|
	if (bio) {
 | 
						|
		acct = blk_queue_io_stat(q);
 | 
						|
		if (acct) {
 | 
						|
			start_time = blk_generic_start_io_acct(q, disk, WRITE,
 | 
						|
			    bio);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	boolean_t sync =
 | 
						|
	    io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
 | 
						|
 | 
						|
	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
 | 
						|
	    uio.uio_loffset, uio.uio_resid, RL_WRITER);
 | 
						|
 | 
						|
	uint64_t volsize = zv->zv_volsize;
 | 
						|
	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
 | 
						|
		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
 | 
						|
		uint64_t off = uio.uio_loffset;
 | 
						|
		dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
 | 
						|
 | 
						|
		if (bytes > volsize - off)	/* don't write past the end */
 | 
						|
			bytes = volsize - off;
 | 
						|
 | 
						|
		dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
 | 
						|
 | 
						|
		/* This will only fail for ENOSPC */
 | 
						|
		error = dmu_tx_assign(tx, TXG_WAIT);
 | 
						|
		if (error) {
 | 
						|
			dmu_tx_abort(tx);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
 | 
						|
		if (error == 0) {
 | 
						|
			zvol_log_write(zv, tx, off, bytes, sync);
 | 
						|
		}
 | 
						|
		dmu_tx_commit(tx);
 | 
						|
 | 
						|
		if (error)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	zfs_rangelock_exit(lr);
 | 
						|
 | 
						|
	int64_t nwritten = start_resid - uio.uio_resid;
 | 
						|
	dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
 | 
						|
	task_io_account_write(nwritten);
 | 
						|
 | 
						|
	if (sync)
 | 
						|
		zil_commit(zv->zv_zilog, ZVOL_OBJ);
 | 
						|
 | 
						|
	rw_exit(&zv->zv_suspend_lock);
 | 
						|
 | 
						|
	if (bio && acct) {
 | 
						|
		blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
 | 
						|
	}
 | 
						|
 | 
						|
	END_IO(zv, bio, rq, -error);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
zvol_write_task(void *arg)
 | 
						|
{
 | 
						|
	zv_request_task_t *task = arg;
 | 
						|
	zvol_write(&task->zvr);
 | 
						|
	zv_request_task_free(task);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
zvol_discard(zv_request_t *zvr)
 | 
						|
{
 | 
						|
	struct bio *bio = zvr->bio;
 | 
						|
	struct request *rq = zvr->rq;
 | 
						|
	zvol_state_t *zv = zvr->zv;
 | 
						|
	uint64_t start = io_offset(bio, rq);
 | 
						|
	uint64_t size = io_size(bio, rq);
 | 
						|
	uint64_t end = start + size;
 | 
						|
	boolean_t sync;
 | 
						|
	int error = 0;
 | 
						|
	dmu_tx_t *tx;
 | 
						|
	struct request_queue *q = zv->zv_zso->zvo_queue;
 | 
						|
	struct gendisk *disk = zv->zv_zso->zvo_disk;
 | 
						|
	unsigned long start_time = 0;
 | 
						|
	boolean_t acct = B_FALSE;
 | 
						|
 | 
						|
	ASSERT3P(zv, !=, NULL);
 | 
						|
	ASSERT3U(zv->zv_open_count, >, 0);
 | 
						|
	ASSERT3P(zv->zv_zilog, !=, NULL);
 | 
						|
 | 
						|
	if (bio) {
 | 
						|
		acct = blk_queue_io_stat(q);
 | 
						|
		if (acct) {
 | 
						|
			start_time = blk_generic_start_io_acct(q, disk, WRITE,
 | 
						|
			    bio);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
 | 
						|
 | 
						|
	if (end > zv->zv_volsize) {
 | 
						|
		error = SET_ERROR(EIO);
 | 
						|
		goto unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Align the request to volume block boundaries when a secure erase is
 | 
						|
	 * not required.  This will prevent dnode_free_range() from zeroing out
 | 
						|
	 * the unaligned parts which is slow (read-modify-write) and useless
 | 
						|
	 * since we are not freeing any space by doing so.
 | 
						|
	 */
 | 
						|
	if (!io_is_secure_erase(bio, rq)) {
 | 
						|
		start = P2ROUNDUP(start, zv->zv_volblocksize);
 | 
						|
		end = P2ALIGN_TYPED(end, zv->zv_volblocksize, uint64_t);
 | 
						|
		size = end - start;
 | 
						|
	}
 | 
						|
 | 
						|
	if (start >= end)
 | 
						|
		goto unlock;
 | 
						|
 | 
						|
	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
 | 
						|
	    start, size, RL_WRITER);
 | 
						|
 | 
						|
	tx = dmu_tx_create(zv->zv_objset);
 | 
						|
	dmu_tx_mark_netfree(tx);
 | 
						|
	error = dmu_tx_assign(tx, TXG_WAIT);
 | 
						|
	if (error != 0) {
 | 
						|
		dmu_tx_abort(tx);
 | 
						|
	} else {
 | 
						|
		zvol_log_truncate(zv, tx, start, size);
 | 
						|
		dmu_tx_commit(tx);
 | 
						|
		error = dmu_free_long_range(zv->zv_objset,
 | 
						|
		    ZVOL_OBJ, start, size);
 | 
						|
	}
 | 
						|
	zfs_rangelock_exit(lr);
 | 
						|
 | 
						|
	if (error == 0 && sync)
 | 
						|
		zil_commit(zv->zv_zilog, ZVOL_OBJ);
 | 
						|
 | 
						|
unlock:
 | 
						|
	rw_exit(&zv->zv_suspend_lock);
 | 
						|
 | 
						|
	if (bio && acct) {
 | 
						|
		blk_generic_end_io_acct(q, disk, WRITE, bio,
 | 
						|
		    start_time);
 | 
						|
	}
 | 
						|
 | 
						|
	END_IO(zv, bio, rq, -error);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
zvol_discard_task(void *arg)
 | 
						|
{
 | 
						|
	zv_request_task_t *task = arg;
 | 
						|
	zvol_discard(&task->zvr);
 | 
						|
	zv_request_task_free(task);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
zvol_read(zv_request_t *zvr)
 | 
						|
{
 | 
						|
	struct bio *bio = zvr->bio;
 | 
						|
	struct request *rq = zvr->rq;
 | 
						|
	int error = 0;
 | 
						|
	zfs_uio_t uio;
 | 
						|
	boolean_t acct = B_FALSE;
 | 
						|
	zvol_state_t *zv = zvr->zv;
 | 
						|
	struct request_queue *q;
 | 
						|
	struct gendisk *disk;
 | 
						|
	unsigned long start_time = 0;
 | 
						|
 | 
						|
	ASSERT3P(zv, !=, NULL);
 | 
						|
	ASSERT3U(zv->zv_open_count, >, 0);
 | 
						|
 | 
						|
	zfs_uio_bvec_init(&uio, bio, rq);
 | 
						|
 | 
						|
	q = zv->zv_zso->zvo_queue;
 | 
						|
	disk = zv->zv_zso->zvo_disk;
 | 
						|
 | 
						|
	ssize_t start_resid = uio.uio_resid;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When blk-mq is being used, accounting is done by
 | 
						|
	 * blk_mq_start_request() and blk_mq_end_request().
 | 
						|
	 */
 | 
						|
	if (bio) {
 | 
						|
		acct = blk_queue_io_stat(q);
 | 
						|
		if (acct)
 | 
						|
			start_time = blk_generic_start_io_acct(q, disk, READ,
 | 
						|
			    bio);
 | 
						|
	}
 | 
						|
 | 
						|
	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
 | 
						|
	    uio.uio_loffset, uio.uio_resid, RL_READER);
 | 
						|
 | 
						|
	uint64_t volsize = zv->zv_volsize;
 | 
						|
 | 
						|
	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
 | 
						|
		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
 | 
						|
 | 
						|
		/* don't read past the end */
 | 
						|
		if (bytes > volsize - uio.uio_loffset)
 | 
						|
			bytes = volsize - uio.uio_loffset;
 | 
						|
 | 
						|
		error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
 | 
						|
		if (error) {
 | 
						|
			/* convert checksum errors into IO errors */
 | 
						|
			if (error == ECKSUM)
 | 
						|
				error = SET_ERROR(EIO);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	zfs_rangelock_exit(lr);
 | 
						|
 | 
						|
	int64_t nread = start_resid - uio.uio_resid;
 | 
						|
	dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
 | 
						|
	task_io_account_read(nread);
 | 
						|
 | 
						|
	rw_exit(&zv->zv_suspend_lock);
 | 
						|
 | 
						|
	if (bio && acct) {
 | 
						|
		blk_generic_end_io_acct(q, disk, READ, bio, start_time);
 | 
						|
	}
 | 
						|
 | 
						|
	END_IO(zv, bio, rq, -error);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
zvol_read_task(void *arg)
 | 
						|
{
 | 
						|
	zv_request_task_t *task = arg;
 | 
						|
	zvol_read(&task->zvr);
 | 
						|
	zv_request_task_free(task);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Process a BIO or request
 | 
						|
 *
 | 
						|
 * Either 'bio' or 'rq' should be set depending on if we are processing a
 | 
						|
 * bio or a request (both should not be set).
 | 
						|
 *
 | 
						|
 * force_sync:	Set to 0 to defer processing to a background taskq
 | 
						|
 *			Set to 1 to process data synchronously
 | 
						|
 */
 | 
						|
static void
 | 
						|
zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
 | 
						|
    boolean_t force_sync)
 | 
						|
{
 | 
						|
	fstrans_cookie_t cookie = spl_fstrans_mark();
 | 
						|
	uint64_t offset = io_offset(bio, rq);
 | 
						|
	uint64_t size = io_size(bio, rq);
 | 
						|
	int rw = io_data_dir(bio, rq);
 | 
						|
 | 
						|
	if (unlikely(zv->zv_flags & ZVOL_REMOVING)) {
 | 
						|
		END_IO(zv, bio, rq, -SET_ERROR(ENXIO));
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (zvol_request_sync || zv->zv_threading == B_FALSE)
 | 
						|
		force_sync = 1;
 | 
						|
 | 
						|
	zv_request_t zvr = {
 | 
						|
		.zv = zv,
 | 
						|
		.bio = bio,
 | 
						|
		.rq = rq,
 | 
						|
	};
 | 
						|
 | 
						|
	if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
 | 
						|
		printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
 | 
						|
		    zv->zv_zso->zvo_disk->disk_name,
 | 
						|
		    (long long unsigned)offset,
 | 
						|
		    (long unsigned)size);
 | 
						|
 | 
						|
		END_IO(zv, bio, rq, -SET_ERROR(EIO));
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	zv_request_task_t *task;
 | 
						|
	zv_taskq_t *ztqs = &zvol_taskqs;
 | 
						|
	uint_t blk_mq_hw_queue = 0;
 | 
						|
	uint_t tq_idx;
 | 
						|
	uint_t taskq_hash;
 | 
						|
#ifdef HAVE_BLK_MQ
 | 
						|
	if (rq)
 | 
						|
#ifdef HAVE_BLK_MQ_RQ_HCTX
 | 
						|
		blk_mq_hw_queue = rq->mq_hctx->queue_num;
 | 
						|
#else
 | 
						|
		blk_mq_hw_queue =
 | 
						|
		    rq->q->queue_hw_ctx[rq->q->mq_map[rq->cpu]]->queue_num;
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
	taskq_hash = cityhash4((uintptr_t)zv, offset >> ZVOL_TASKQ_OFFSET_SHIFT,
 | 
						|
	    blk_mq_hw_queue, 0);
 | 
						|
	tq_idx = taskq_hash % ztqs->tqs_cnt;
 | 
						|
 | 
						|
	if (rw == WRITE) {
 | 
						|
		if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
 | 
						|
			END_IO(zv, bio, rq, -SET_ERROR(EROFS));
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Prevents the zvol from being suspended, or the ZIL being
 | 
						|
		 * concurrently opened.  Will be released after the i/o
 | 
						|
		 * completes.
 | 
						|
		 */
 | 
						|
		rw_enter(&zv->zv_suspend_lock, RW_READER);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Open a ZIL if this is the first time we have written to this
 | 
						|
		 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
 | 
						|
		 * than zv_state_lock so that we don't need to acquire an
 | 
						|
		 * additional lock in this path.
 | 
						|
		 */
 | 
						|
		if (zv->zv_zilog == NULL) {
 | 
						|
			rw_exit(&zv->zv_suspend_lock);
 | 
						|
			rw_enter(&zv->zv_suspend_lock, RW_WRITER);
 | 
						|
			if (zv->zv_zilog == NULL) {
 | 
						|
				zv->zv_zilog = zil_open(zv->zv_objset,
 | 
						|
				    zvol_get_data, &zv->zv_kstat.dk_zil_sums);
 | 
						|
				zv->zv_flags |= ZVOL_WRITTEN_TO;
 | 
						|
				/* replay / destroy done in zvol_create_minor */
 | 
						|
				VERIFY0((zv->zv_zilog->zl_header->zh_flags &
 | 
						|
				    ZIL_REPLAY_NEEDED));
 | 
						|
			}
 | 
						|
			rw_downgrade(&zv->zv_suspend_lock);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We don't want this thread to be blocked waiting for i/o to
 | 
						|
		 * complete, so we instead wait from a taskq callback. The
 | 
						|
		 * i/o may be a ZIL write (via zil_commit()), or a read of an
 | 
						|
		 * indirect block, or a read of a data block (if this is a
 | 
						|
		 * partial-block write).  We will indicate that the i/o is
 | 
						|
		 * complete by calling END_IO() from the taskq callback.
 | 
						|
		 *
 | 
						|
		 * This design allows the calling thread to continue and
 | 
						|
		 * initiate more concurrent operations by calling
 | 
						|
		 * zvol_request() again. There are typically only a small
 | 
						|
		 * number of threads available to call zvol_request() (e.g.
 | 
						|
		 * one per iSCSI target), so keeping the latency of
 | 
						|
		 * zvol_request() low is important for performance.
 | 
						|
		 *
 | 
						|
		 * The zvol_request_sync module parameter allows this
 | 
						|
		 * behavior to be altered, for performance evaluation
 | 
						|
		 * purposes.  If the callback blocks, setting
 | 
						|
		 * zvol_request_sync=1 will result in much worse performance.
 | 
						|
		 *
 | 
						|
		 * We can have up to zvol_threads concurrent i/o's being
 | 
						|
		 * processed for all zvols on the system.  This is typically
 | 
						|
		 * a vast improvement over the zvol_request_sync=1 behavior
 | 
						|
		 * of one i/o at a time per zvol.  However, an even better
 | 
						|
		 * design would be for zvol_request() to initiate the zio
 | 
						|
		 * directly, and then be notified by the zio_done callback,
 | 
						|
		 * which would call END_IO().  Unfortunately, the DMU/ZIL
 | 
						|
		 * interfaces lack this functionality (they block waiting for
 | 
						|
		 * the i/o to complete).
 | 
						|
		 */
 | 
						|
		if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
 | 
						|
			if (force_sync) {
 | 
						|
				zvol_discard(&zvr);
 | 
						|
			} else {
 | 
						|
				task = zv_request_task_create(zvr);
 | 
						|
				taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
 | 
						|
				    zvol_discard_task, task, 0, &task->ent);
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			if (force_sync) {
 | 
						|
				zvol_write(&zvr);
 | 
						|
			} else {
 | 
						|
				task = zv_request_task_create(zvr);
 | 
						|
				taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
 | 
						|
				    zvol_write_task, task, 0, &task->ent);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * The SCST driver, and possibly others, may issue READ I/Os
 | 
						|
		 * with a length of zero bytes.  These empty I/Os contain no
 | 
						|
		 * data and require no additional handling.
 | 
						|
		 */
 | 
						|
		if (size == 0) {
 | 
						|
			END_IO(zv, bio, rq, 0);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		rw_enter(&zv->zv_suspend_lock, RW_READER);
 | 
						|
 | 
						|
		/* See comment in WRITE case above. */
 | 
						|
		if (force_sync) {
 | 
						|
			zvol_read(&zvr);
 | 
						|
		} else {
 | 
						|
			task = zv_request_task_create(zvr);
 | 
						|
			taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
 | 
						|
			    zvol_read_task, task, 0, &task->ent);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	spl_fstrans_unmark(cookie);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
 | 
						|
#ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
 | 
						|
static void
 | 
						|
zvol_submit_bio(struct bio *bio)
 | 
						|
#else
 | 
						|
static blk_qc_t
 | 
						|
zvol_submit_bio(struct bio *bio)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
static MAKE_REQUEST_FN_RET
 | 
						|
zvol_request(struct request_queue *q, struct bio *bio)
 | 
						|
#endif
 | 
						|
{
 | 
						|
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
 | 
						|
#if defined(HAVE_BIO_BDEV_DISK)
 | 
						|
	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
 | 
						|
#else
 | 
						|
	struct request_queue *q = bio->bi_disk->queue;
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
	zvol_state_t *zv = q->queuedata;
 | 
						|
 | 
						|
	zvol_request_impl(zv, bio, NULL, 0);
 | 
						|
#if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
 | 
						|
	defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
 | 
						|
	!defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
 | 
						|
	return (BLK_QC_T_NONE);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
#ifdef HAVE_BLK_MODE_T
 | 
						|
zvol_open(struct gendisk *disk, blk_mode_t flag)
 | 
						|
#else
 | 
						|
zvol_open(struct block_device *bdev, fmode_t flag)
 | 
						|
#endif
 | 
						|
{
 | 
						|
	zvol_state_t *zv;
 | 
						|
	int error = 0;
 | 
						|
	boolean_t drop_suspend = B_FALSE;
 | 
						|
#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
 | 
						|
	hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
 | 
						|
	hrtime_t start = gethrtime();
 | 
						|
 | 
						|
retry:
 | 
						|
#endif
 | 
						|
	rw_enter(&zvol_state_lock, RW_READER);
 | 
						|
	/*
 | 
						|
	 * Obtain a copy of private_data under the zvol_state_lock to make
 | 
						|
	 * sure that either the result of zvol free code path setting
 | 
						|
	 * disk->private_data to NULL is observed, or zvol_os_free()
 | 
						|
	 * is not called on this zv because of the positive zv_open_count.
 | 
						|
	 */
 | 
						|
#ifdef HAVE_BLK_MODE_T
 | 
						|
	zv = disk->private_data;
 | 
						|
#else
 | 
						|
	zv = bdev->bd_disk->private_data;
 | 
						|
#endif
 | 
						|
	if (zv == NULL) {
 | 
						|
		rw_exit(&zvol_state_lock);
 | 
						|
		return (-SET_ERROR(ENXIO));
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_enter(&zv->zv_state_lock);
 | 
						|
 | 
						|
	if (unlikely(zv->zv_flags & ZVOL_REMOVING)) {
 | 
						|
		mutex_exit(&zv->zv_state_lock);
 | 
						|
		rw_exit(&zvol_state_lock);
 | 
						|
		return (-SET_ERROR(ENXIO));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure zvol is not suspended during first open
 | 
						|
	 * (hold zv_suspend_lock) and respect proper lock acquisition
 | 
						|
	 * ordering - zv_suspend_lock before zv_state_lock
 | 
						|
	 */
 | 
						|
	if (zv->zv_open_count == 0) {
 | 
						|
		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
 | 
						|
			mutex_exit(&zv->zv_state_lock);
 | 
						|
			rw_enter(&zv->zv_suspend_lock, RW_READER);
 | 
						|
			mutex_enter(&zv->zv_state_lock);
 | 
						|
			/* check to see if zv_suspend_lock is needed */
 | 
						|
			if (zv->zv_open_count != 0) {
 | 
						|
				rw_exit(&zv->zv_suspend_lock);
 | 
						|
			} else {
 | 
						|
				drop_suspend = B_TRUE;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			drop_suspend = B_TRUE;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	rw_exit(&zvol_state_lock);
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 | 
						|
 | 
						|
	if (zv->zv_open_count == 0) {
 | 
						|
		boolean_t drop_namespace = B_FALSE;
 | 
						|
 | 
						|
		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * In all other call paths the spa_namespace_lock is taken
 | 
						|
		 * before the bdev->bd_mutex lock.  However, on open(2)
 | 
						|
		 * the __blkdev_get() function calls fops->open() with the
 | 
						|
		 * bdev->bd_mutex lock held.  This can result in a deadlock
 | 
						|
		 * when zvols from one pool are used as vdevs in another.
 | 
						|
		 *
 | 
						|
		 * To prevent a lock inversion deadlock we preemptively
 | 
						|
		 * take the spa_namespace_lock.  Normally the lock will not
 | 
						|
		 * be contended and this is safe because spa_open_common()
 | 
						|
		 * handles the case where the caller already holds the
 | 
						|
		 * spa_namespace_lock.
 | 
						|
		 *
 | 
						|
		 * When the lock cannot be aquired after multiple retries
 | 
						|
		 * this must be the vdev on zvol deadlock case and we have
 | 
						|
		 * no choice but to return an error.  For 5.12 and older
 | 
						|
		 * kernels returning -ERESTARTSYS will result in the
 | 
						|
		 * bdev->bd_mutex being dropped, then reacquired, and
 | 
						|
		 * fops->open() being called again.  This process can be
 | 
						|
		 * repeated safely until both locks are acquired.  For 5.13
 | 
						|
		 * and newer the -ERESTARTSYS retry logic was removed from
 | 
						|
		 * the kernel so the only option is to return the error for
 | 
						|
		 * the caller to handle it.
 | 
						|
		 */
 | 
						|
		if (!mutex_owned(&spa_namespace_lock)) {
 | 
						|
			if (!mutex_tryenter(&spa_namespace_lock)) {
 | 
						|
				mutex_exit(&zv->zv_state_lock);
 | 
						|
				rw_exit(&zv->zv_suspend_lock);
 | 
						|
				drop_suspend = B_FALSE;
 | 
						|
 | 
						|
#ifdef HAVE_BLKDEV_GET_ERESTARTSYS
 | 
						|
				schedule();
 | 
						|
				return (-SET_ERROR(ERESTARTSYS));
 | 
						|
#else
 | 
						|
				if ((gethrtime() - start) > timeout)
 | 
						|
					return (-SET_ERROR(ERESTARTSYS));
 | 
						|
 | 
						|
				schedule_timeout_interruptible(
 | 
						|
					MSEC_TO_TICK(10));
 | 
						|
				goto retry;
 | 
						|
#endif
 | 
						|
			} else {
 | 
						|
				drop_namespace = B_TRUE;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag)));
 | 
						|
 | 
						|
		if (drop_namespace)
 | 
						|
			mutex_exit(&spa_namespace_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	if (error == 0) {
 | 
						|
		if ((blk_mode_is_open_write(flag)) &&
 | 
						|
		    (zv->zv_flags & ZVOL_RDONLY)) {
 | 
						|
			if (zv->zv_open_count == 0)
 | 
						|
				zvol_last_close(zv);
 | 
						|
 | 
						|
			error = -SET_ERROR(EROFS);
 | 
						|
		} else {
 | 
						|
			zv->zv_open_count++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_exit(&zv->zv_state_lock);
 | 
						|
	if (drop_suspend)
 | 
						|
		rw_exit(&zv->zv_suspend_lock);
 | 
						|
 | 
						|
	if (error == 0)
 | 
						|
#ifdef HAVE_BLK_MODE_T
 | 
						|
		disk_check_media_change(disk);
 | 
						|
#else
 | 
						|
		zfs_check_media_change(bdev);
 | 
						|
#endif
 | 
						|
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG
 | 
						|
zvol_release(struct gendisk *disk)
 | 
						|
#else
 | 
						|
zvol_release(struct gendisk *disk, fmode_t unused)
 | 
						|
#endif
 | 
						|
{
 | 
						|
#if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG)
 | 
						|
	(void) unused;
 | 
						|
#endif
 | 
						|
	zvol_state_t *zv;
 | 
						|
	boolean_t drop_suspend = B_TRUE;
 | 
						|
 | 
						|
	rw_enter(&zvol_state_lock, RW_READER);
 | 
						|
	zv = disk->private_data;
 | 
						|
 | 
						|
	mutex_enter(&zv->zv_state_lock);
 | 
						|
	ASSERT3U(zv->zv_open_count, >, 0);
 | 
						|
	/*
 | 
						|
	 * make sure zvol is not suspended during last close
 | 
						|
	 * (hold zv_suspend_lock) and respect proper lock acquisition
 | 
						|
	 * ordering - zv_suspend_lock before zv_state_lock
 | 
						|
	 */
 | 
						|
	if (zv->zv_open_count == 1) {
 | 
						|
		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
 | 
						|
			mutex_exit(&zv->zv_state_lock);
 | 
						|
			rw_enter(&zv->zv_suspend_lock, RW_READER);
 | 
						|
			mutex_enter(&zv->zv_state_lock);
 | 
						|
			/* check to see if zv_suspend_lock is needed */
 | 
						|
			if (zv->zv_open_count != 1) {
 | 
						|
				rw_exit(&zv->zv_suspend_lock);
 | 
						|
				drop_suspend = B_FALSE;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		drop_suspend = B_FALSE;
 | 
						|
	}
 | 
						|
	rw_exit(&zvol_state_lock);
 | 
						|
 | 
						|
	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 | 
						|
 | 
						|
	zv->zv_open_count--;
 | 
						|
	if (zv->zv_open_count == 0) {
 | 
						|
		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
 | 
						|
		zvol_last_close(zv);
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_exit(&zv->zv_state_lock);
 | 
						|
 | 
						|
	if (drop_suspend)
 | 
						|
		rw_exit(&zv->zv_suspend_lock);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zvol_ioctl(struct block_device *bdev, fmode_t mode,
 | 
						|
    unsigned int cmd, unsigned long arg)
 | 
						|
{
 | 
						|
	zvol_state_t *zv = bdev->bd_disk->private_data;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	ASSERT3U(zv->zv_open_count, >, 0);
 | 
						|
 | 
						|
	switch (cmd) {
 | 
						|
	case BLKFLSBUF:
 | 
						|
#ifdef HAVE_FSYNC_BDEV
 | 
						|
		fsync_bdev(bdev);
 | 
						|
#elif defined(HAVE_SYNC_BLOCKDEV)
 | 
						|
		sync_blockdev(bdev);
 | 
						|
#else
 | 
						|
#error "Neither fsync_bdev() nor sync_blockdev() found"
 | 
						|
#endif
 | 
						|
		invalidate_bdev(bdev);
 | 
						|
		rw_enter(&zv->zv_suspend_lock, RW_READER);
 | 
						|
 | 
						|
		if (!(zv->zv_flags & ZVOL_RDONLY))
 | 
						|
			txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
 | 
						|
 | 
						|
		rw_exit(&zv->zv_suspend_lock);
 | 
						|
		break;
 | 
						|
 | 
						|
	case BLKZNAME:
 | 
						|
		mutex_enter(&zv->zv_state_lock);
 | 
						|
		error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
 | 
						|
		mutex_exit(&zv->zv_state_lock);
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		error = -ENOTTY;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return (SET_ERROR(error));
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT
 | 
						|
static int
 | 
						|
zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
 | 
						|
    unsigned cmd, unsigned long arg)
 | 
						|
{
 | 
						|
	return (zvol_ioctl(bdev, mode, cmd, arg));
 | 
						|
}
 | 
						|
#else
 | 
						|
#define	zvol_compat_ioctl	NULL
 | 
						|
#endif
 | 
						|
 | 
						|
static unsigned int
 | 
						|
zvol_check_events(struct gendisk *disk, unsigned int clearing)
 | 
						|
{
 | 
						|
	unsigned int mask = 0;
 | 
						|
 | 
						|
	rw_enter(&zvol_state_lock, RW_READER);
 | 
						|
 | 
						|
	zvol_state_t *zv = disk->private_data;
 | 
						|
	if (zv != NULL) {
 | 
						|
		mutex_enter(&zv->zv_state_lock);
 | 
						|
		mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
 | 
						|
		zv->zv_changed = 0;
 | 
						|
		mutex_exit(&zv->zv_state_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	rw_exit(&zvol_state_lock);
 | 
						|
 | 
						|
	return (mask);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zvol_revalidate_disk(struct gendisk *disk)
 | 
						|
{
 | 
						|
	rw_enter(&zvol_state_lock, RW_READER);
 | 
						|
 | 
						|
	zvol_state_t *zv = disk->private_data;
 | 
						|
	if (zv != NULL) {
 | 
						|
		mutex_enter(&zv->zv_state_lock);
 | 
						|
		set_capacity(zv->zv_zso->zvo_disk,
 | 
						|
		    zv->zv_volsize >> SECTOR_BITS);
 | 
						|
		mutex_exit(&zv->zv_state_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	rw_exit(&zvol_state_lock);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
 | 
						|
{
 | 
						|
	struct gendisk *disk = zv->zv_zso->zvo_disk;
 | 
						|
 | 
						|
#if defined(HAVE_REVALIDATE_DISK_SIZE)
 | 
						|
	revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
 | 
						|
#elif defined(HAVE_REVALIDATE_DISK)
 | 
						|
	revalidate_disk(disk);
 | 
						|
#else
 | 
						|
	zvol_revalidate_disk(disk);
 | 
						|
#endif
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
zvol_os_clear_private(zvol_state_t *zv)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Cleared while holding zvol_state_lock as a writer
 | 
						|
	 * which will prevent zvol_open() from opening it.
 | 
						|
	 */
 | 
						|
	zv->zv_zso->zvo_disk->private_data = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Provide a simple virtual geometry for legacy compatibility.  For devices
 | 
						|
 * smaller than 1 MiB a small head and sector count is used to allow very
 | 
						|
 * tiny devices.  For devices over 1 Mib a standard head and sector count
 | 
						|
 * is used to keep the cylinders count reasonable.
 | 
						|
 */
 | 
						|
static int
 | 
						|
zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 | 
						|
{
 | 
						|
	zvol_state_t *zv = bdev->bd_disk->private_data;
 | 
						|
	sector_t sectors;
 | 
						|
 | 
						|
	ASSERT3U(zv->zv_open_count, >, 0);
 | 
						|
 | 
						|
	sectors = get_capacity(zv->zv_zso->zvo_disk);
 | 
						|
 | 
						|
	if (sectors > 2048) {
 | 
						|
		geo->heads = 16;
 | 
						|
		geo->sectors = 63;
 | 
						|
	} else {
 | 
						|
		geo->heads = 2;
 | 
						|
		geo->sectors = 4;
 | 
						|
	}
 | 
						|
 | 
						|
	geo->start = 0;
 | 
						|
	geo->cylinders = sectors / (geo->heads * geo->sectors);
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Why have two separate block_device_operations structs?
 | 
						|
 *
 | 
						|
 * Normally we'd just have one, and assign 'submit_bio' as needed.  However,
 | 
						|
 * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
 | 
						|
 * can't just change submit_bio dynamically at runtime.  So just create two
 | 
						|
 * separate structs to get around this.
 | 
						|
 */
 | 
						|
static const struct block_device_operations zvol_ops_blk_mq = {
 | 
						|
	.open			= zvol_open,
 | 
						|
	.release		= zvol_release,
 | 
						|
	.ioctl			= zvol_ioctl,
 | 
						|
	.compat_ioctl		= zvol_compat_ioctl,
 | 
						|
	.check_events		= zvol_check_events,
 | 
						|
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
 | 
						|
	.revalidate_disk	= zvol_revalidate_disk,
 | 
						|
#endif
 | 
						|
	.getgeo			= zvol_getgeo,
 | 
						|
	.owner			= THIS_MODULE,
 | 
						|
};
 | 
						|
 | 
						|
static const struct block_device_operations zvol_ops = {
 | 
						|
	.open			= zvol_open,
 | 
						|
	.release		= zvol_release,
 | 
						|
	.ioctl			= zvol_ioctl,
 | 
						|
	.compat_ioctl		= zvol_compat_ioctl,
 | 
						|
	.check_events		= zvol_check_events,
 | 
						|
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
 | 
						|
	.revalidate_disk	= zvol_revalidate_disk,
 | 
						|
#endif
 | 
						|
	.getgeo			= zvol_getgeo,
 | 
						|
	.owner			= THIS_MODULE,
 | 
						|
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
 | 
						|
	.submit_bio		= zvol_submit_bio,
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Since 6.9, Linux has been removing queue limit setters in favour of an
 | 
						|
 * initial queue_limits struct applied when the device is open. Since 6.11,
 | 
						|
 * queue_limits is being extended to allow more things to be applied when the
 | 
						|
 * device is open. Setters are also being removed for this.
 | 
						|
 *
 | 
						|
 * For OpenZFS, this means that depending on kernel version, some options may
 | 
						|
 * be set up before the device is open, and some applied to an open device
 | 
						|
 * (queue) after the fact.
 | 
						|
 *
 | 
						|
 * We manage this complexity by having our own limits struct,
 | 
						|
 * zvol_queue_limits_t, in which we carry any queue config that we're
 | 
						|
 * interested in setting. This structure is the same on all kernels.
 | 
						|
 *
 | 
						|
 * These limits are then applied to the queue at device open time by the most
 | 
						|
 * appropriate method for the kernel.
 | 
						|
 *
 | 
						|
 * zvol_queue_limits_convert() is used on 6.9+ (where the two-arg form of
 | 
						|
 * blk_alloc_disk() exists). This converts our limits struct to a proper Linux
 | 
						|
 * struct queue_limits, and passes it in. Any fields added in later kernels are
 | 
						|
 * (obviously) not set up here.
 | 
						|
 *
 | 
						|
 * zvol_queue_limits_apply() is called on all kernel versions after the queue
 | 
						|
 * is created, and applies any remaining config. Before 6.9 that will be
 | 
						|
 * everything, via setter methods. After 6.9 that will be whatever couldn't be
 | 
						|
 * put into struct queue_limits. (This implies that zvol_queue_limits_apply()
 | 
						|
 * will always be a no-op on the latest kernel we support).
 | 
						|
 */
 | 
						|
typedef struct zvol_queue_limits {
 | 
						|
	unsigned int	zql_max_hw_sectors;
 | 
						|
	unsigned short	zql_max_segments;
 | 
						|
	unsigned int	zql_max_segment_size;
 | 
						|
	unsigned int	zql_io_opt;
 | 
						|
	unsigned int	zql_physical_block_size;
 | 
						|
	unsigned int	zql_max_discard_sectors;
 | 
						|
	unsigned int	zql_discard_granularity;
 | 
						|
} zvol_queue_limits_t;
 | 
						|
 | 
						|
static void
 | 
						|
zvol_queue_limits_init(zvol_queue_limits_t *limits, zvol_state_t *zv,
 | 
						|
    boolean_t use_blk_mq)
 | 
						|
{
 | 
						|
	limits->zql_max_hw_sectors = (DMU_MAX_ACCESS / 4) >> 9;
 | 
						|
 | 
						|
	if (use_blk_mq) {
 | 
						|
		/*
 | 
						|
		 * IO requests can be really big (1MB).  When an IO request
 | 
						|
		 * comes in, it is passed off to zvol_read() or zvol_write()
 | 
						|
		 * in a new thread, where it is chunked up into 'volblocksize'
 | 
						|
		 * sized pieces and processed.  So for example, if the request
 | 
						|
		 * is a 1MB write and your volblocksize is 128k, one zvol_write
 | 
						|
		 * thread will take that request and sequentially do ten 128k
 | 
						|
		 * IOs.  This is due to the fact that the thread needs to lock
 | 
						|
		 * each volblocksize sized block.  So you might be wondering:
 | 
						|
		 * "instead of passing the whole 1MB request to one thread,
 | 
						|
		 * why not pass ten individual 128k chunks to ten threads and
 | 
						|
		 * process the whole write in parallel?"  The short answer is
 | 
						|
		 * that there's a sweet spot number of chunks that balances
 | 
						|
		 * the greater parallelism with the added overhead of more
 | 
						|
		 * threads. The sweet spot can be different depending on if you
 | 
						|
		 * have a read or write  heavy workload.  Writes typically want
 | 
						|
		 * high chunk counts while reads typically want lower ones.  On
 | 
						|
		 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
 | 
						|
		 * configuration, with volblocksize=8k, the sweet spot for good
 | 
						|
		 * sequential reads and writes was at 8 chunks.
 | 
						|
		 */
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Below we tell the kernel how big we want our requests
 | 
						|
		 * to be.  You would think that blk_queue_io_opt() would be
 | 
						|
		 * used to do this since it is used to "set optimal request
 | 
						|
		 * size for the queue", but that doesn't seem to do
 | 
						|
		 * anything - the kernel still gives you huge requests
 | 
						|
		 * with tons of little PAGE_SIZE segments contained within it.
 | 
						|
		 *
 | 
						|
		 * Knowing that the kernel will just give you PAGE_SIZE segments
 | 
						|
		 * no matter what, you can say "ok, I want PAGE_SIZE byte
 | 
						|
		 * segments, and I want 'N' of them per request", where N is
 | 
						|
		 * the correct number of segments for the volblocksize and
 | 
						|
		 * number of chunks you want.
 | 
						|
		 */
 | 
						|
#ifdef HAVE_BLK_MQ
 | 
						|
		if (zvol_blk_mq_blocks_per_thread != 0) {
 | 
						|
			unsigned int chunks;
 | 
						|
			chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
 | 
						|
 | 
						|
			limits->zql_max_segment_size = PAGE_SIZE;
 | 
						|
			limits->zql_max_segments =
 | 
						|
			    (zv->zv_volblocksize * chunks) / PAGE_SIZE;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * Special case: zvol_blk_mq_blocks_per_thread = 0
 | 
						|
			 * Max everything out.
 | 
						|
			 */
 | 
						|
			limits->zql_max_segments = UINT16_MAX;
 | 
						|
			limits->zql_max_segment_size = UINT_MAX;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
#endif
 | 
						|
		limits->zql_max_segments = UINT16_MAX;
 | 
						|
		limits->zql_max_segment_size = UINT_MAX;
 | 
						|
	}
 | 
						|
 | 
						|
	limits->zql_io_opt = zv->zv_volblocksize;
 | 
						|
 | 
						|
	limits->zql_physical_block_size = zv->zv_volblocksize;
 | 
						|
	limits->zql_max_discard_sectors =
 | 
						|
	    (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9;
 | 
						|
	limits->zql_discard_granularity = zv->zv_volblocksize;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef HAVE_BLK_ALLOC_DISK_2ARG
 | 
						|
static void
 | 
						|
zvol_queue_limits_convert(zvol_queue_limits_t *limits,
 | 
						|
    struct queue_limits *qlimits)
 | 
						|
{
 | 
						|
	memset(qlimits, 0, sizeof (struct queue_limits));
 | 
						|
	qlimits->max_hw_sectors = limits->zql_max_hw_sectors;
 | 
						|
	qlimits->max_segments = limits->zql_max_segments;
 | 
						|
	qlimits->max_segment_size = limits->zql_max_segment_size;
 | 
						|
	qlimits->io_opt = limits->zql_io_opt;
 | 
						|
	qlimits->physical_block_size = limits->zql_physical_block_size;
 | 
						|
	qlimits->max_discard_sectors = limits->zql_max_discard_sectors;
 | 
						|
	qlimits->max_hw_discard_sectors = limits->zql_max_discard_sectors;
 | 
						|
	qlimits->discard_granularity = limits->zql_discard_granularity;
 | 
						|
#ifdef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES
 | 
						|
	qlimits->features =
 | 
						|
	    BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_IO_STAT;
 | 
						|
#endif
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void
 | 
						|
zvol_queue_limits_apply(zvol_queue_limits_t *limits,
 | 
						|
    struct request_queue *queue)
 | 
						|
{
 | 
						|
#ifndef HAVE_BLK_ALLOC_DISK_2ARG
 | 
						|
	blk_queue_max_hw_sectors(queue, limits->zql_max_hw_sectors);
 | 
						|
	blk_queue_max_segments(queue, limits->zql_max_segments);
 | 
						|
	blk_queue_max_segment_size(queue, limits->zql_max_segment_size);
 | 
						|
	blk_queue_io_opt(queue, limits->zql_io_opt);
 | 
						|
	blk_queue_physical_block_size(queue, limits->zql_physical_block_size);
 | 
						|
	blk_queue_max_discard_sectors(queue, limits->zql_max_discard_sectors);
 | 
						|
	blk_queue_discard_granularity(queue, limits->zql_discard_granularity);
 | 
						|
#endif
 | 
						|
#ifndef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES
 | 
						|
	blk_queue_set_write_cache(queue, B_TRUE);
 | 
						|
	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, queue);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zvol_alloc_non_blk_mq(struct zvol_state_os *zso, zvol_queue_limits_t *limits)
 | 
						|
{
 | 
						|
#if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
 | 
						|
#if defined(HAVE_BLK_ALLOC_DISK)
 | 
						|
	zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
 | 
						|
	if (zso->zvo_disk == NULL)
 | 
						|
		return (1);
 | 
						|
 | 
						|
	zso->zvo_disk->minors = ZVOL_MINORS;
 | 
						|
	zso->zvo_queue = zso->zvo_disk->queue;
 | 
						|
#elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
 | 
						|
	struct queue_limits qlimits;
 | 
						|
	zvol_queue_limits_convert(limits, &qlimits);
 | 
						|
	struct gendisk *disk = blk_alloc_disk(&qlimits, NUMA_NO_NODE);
 | 
						|
	if (IS_ERR(disk)) {
 | 
						|
		zso->zvo_disk = NULL;
 | 
						|
		return (1);
 | 
						|
	}
 | 
						|
 | 
						|
	zso->zvo_disk = disk;
 | 
						|
	zso->zvo_disk->minors = ZVOL_MINORS;
 | 
						|
	zso->zvo_queue = zso->zvo_disk->queue;
 | 
						|
 | 
						|
#else
 | 
						|
	zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
 | 
						|
	if (zso->zvo_queue == NULL)
 | 
						|
		return (1);
 | 
						|
 | 
						|
	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
 | 
						|
	if (zso->zvo_disk == NULL) {
 | 
						|
		blk_cleanup_queue(zso->zvo_queue);
 | 
						|
		return (1);
 | 
						|
	}
 | 
						|
 | 
						|
	zso->zvo_disk->queue = zso->zvo_queue;
 | 
						|
#endif /* HAVE_BLK_ALLOC_DISK */
 | 
						|
#else
 | 
						|
	zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
 | 
						|
	if (zso->zvo_queue == NULL)
 | 
						|
		return (1);
 | 
						|
 | 
						|
	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
 | 
						|
	if (zso->zvo_disk == NULL) {
 | 
						|
		blk_cleanup_queue(zso->zvo_queue);
 | 
						|
		return (1);
 | 
						|
	}
 | 
						|
 | 
						|
	zso->zvo_disk->queue = zso->zvo_queue;
 | 
						|
#endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
 | 
						|
 | 
						|
	zvol_queue_limits_apply(limits, zso->zvo_queue);
 | 
						|
 | 
						|
	return (0);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
zvol_alloc_blk_mq(zvol_state_t *zv, zvol_queue_limits_t *limits)
 | 
						|
{
 | 
						|
#ifdef HAVE_BLK_MQ
 | 
						|
	struct zvol_state_os *zso = zv->zv_zso;
 | 
						|
 | 
						|
	/* Allocate our blk-mq tag_set */
 | 
						|
	if (zvol_blk_mq_alloc_tag_set(zv) != 0)
 | 
						|
		return (1);
 | 
						|
 | 
						|
#if defined(HAVE_BLK_ALLOC_DISK)
 | 
						|
	zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
 | 
						|
	if (zso->zvo_disk == NULL) {
 | 
						|
		blk_mq_free_tag_set(&zso->tag_set);
 | 
						|
		return (1);
 | 
						|
	}
 | 
						|
	zso->zvo_queue = zso->zvo_disk->queue;
 | 
						|
	zso->zvo_disk->minors = ZVOL_MINORS;
 | 
						|
#elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
 | 
						|
	struct queue_limits qlimits;
 | 
						|
	zvol_queue_limits_convert(limits, &qlimits);
 | 
						|
	struct gendisk *disk = blk_mq_alloc_disk(&zso->tag_set, &qlimits, zv);
 | 
						|
	if (IS_ERR(disk)) {
 | 
						|
		zso->zvo_disk = NULL;
 | 
						|
		blk_mq_free_tag_set(&zso->tag_set);
 | 
						|
		return (1);
 | 
						|
	}
 | 
						|
 | 
						|
	zso->zvo_disk = disk;
 | 
						|
	zso->zvo_queue = zso->zvo_disk->queue;
 | 
						|
	zso->zvo_disk->minors = ZVOL_MINORS;
 | 
						|
#else
 | 
						|
	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
 | 
						|
	if (zso->zvo_disk == NULL) {
 | 
						|
		blk_cleanup_queue(zso->zvo_queue);
 | 
						|
		blk_mq_free_tag_set(&zso->tag_set);
 | 
						|
		return (1);
 | 
						|
	}
 | 
						|
	/* Allocate queue */
 | 
						|
	zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
 | 
						|
	if (IS_ERR(zso->zvo_queue)) {
 | 
						|
		blk_mq_free_tag_set(&zso->tag_set);
 | 
						|
		return (1);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Our queue is now created, assign it to our disk */
 | 
						|
	zso->zvo_disk->queue = zso->zvo_queue;
 | 
						|
#endif
 | 
						|
 | 
						|
	zvol_queue_limits_apply(limits, zso->zvo_queue);
 | 
						|
#endif
 | 
						|
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate memory for a new zvol_state_t and setup the required
 | 
						|
 * request queue and generic disk structures for the block device.
 | 
						|
 */
 | 
						|
static zvol_state_t *
 | 
						|
zvol_alloc(dev_t dev, const char *name, uint64_t volblocksize)
 | 
						|
{
 | 
						|
	zvol_state_t *zv;
 | 
						|
	struct zvol_state_os *zso;
 | 
						|
	uint64_t volmode;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
 | 
						|
		return (NULL);
 | 
						|
 | 
						|
	if (volmode == ZFS_VOLMODE_DEFAULT)
 | 
						|
		volmode = zvol_volmode;
 | 
						|
 | 
						|
	if (volmode == ZFS_VOLMODE_NONE)
 | 
						|
		return (NULL);
 | 
						|
 | 
						|
	zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
 | 
						|
	zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
 | 
						|
	zv->zv_zso = zso;
 | 
						|
	zv->zv_volmode = volmode;
 | 
						|
	zv->zv_volblocksize = volblocksize;
 | 
						|
 | 
						|
	list_link_init(&zv->zv_next);
 | 
						|
	mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
 | 
						|
	cv_init(&zv->zv_removing_cv, NULL, CV_DEFAULT, NULL);
 | 
						|
 | 
						|
#ifdef HAVE_BLK_MQ
 | 
						|
	zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
 | 
						|
#endif
 | 
						|
 | 
						|
	zvol_queue_limits_t limits;
 | 
						|
	zvol_queue_limits_init(&limits, zv, zv->zv_zso->use_blk_mq);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The block layer has 3 interfaces for getting BIOs:
 | 
						|
	 *
 | 
						|
	 * 1. blk-mq request queues (new)
 | 
						|
	 * 2. submit_bio() (oldest)
 | 
						|
	 * 3. regular request queues (old).
 | 
						|
	 *
 | 
						|
	 * Each of those interfaces has two permutations:
 | 
						|
	 *
 | 
						|
	 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
 | 
						|
	 *    both the disk and its queue (5.14 kernel or newer)
 | 
						|
	 *
 | 
						|
	 * b) We don't have blk_*alloc_disk(), and have to allocate the
 | 
						|
	 *    disk and the queue separately. (5.13 kernel or older)
 | 
						|
	 */
 | 
						|
	if (zv->zv_zso->use_blk_mq) {
 | 
						|
		ret = zvol_alloc_blk_mq(zv, &limits);
 | 
						|
		zso->zvo_disk->fops = &zvol_ops_blk_mq;
 | 
						|
	} else {
 | 
						|
		ret = zvol_alloc_non_blk_mq(zso, &limits);
 | 
						|
		zso->zvo_disk->fops = &zvol_ops;
 | 
						|
	}
 | 
						|
	if (ret != 0)
 | 
						|
		goto out_kmem;
 | 
						|
 | 
						|
	/* Limit read-ahead to a single page to prevent over-prefetching. */
 | 
						|
	blk_queue_set_read_ahead(zso->zvo_queue, 1);
 | 
						|
 | 
						|
	if (!zv->zv_zso->use_blk_mq) {
 | 
						|
		/* Disable write merging in favor of the ZIO pipeline. */
 | 
						|
		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
 | 
						|
	}
 | 
						|
 | 
						|
	zso->zvo_queue->queuedata = zv;
 | 
						|
	zso->zvo_dev = dev;
 | 
						|
	zv->zv_open_count = 0;
 | 
						|
	strlcpy(zv->zv_name, name, sizeof (zv->zv_name));
 | 
						|
 | 
						|
	zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
 | 
						|
	rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
 | 
						|
 | 
						|
	zso->zvo_disk->major = zvol_major;
 | 
						|
	zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
 | 
						|
	 * This is accomplished by limiting the number of minors for the
 | 
						|
	 * device to one and explicitly disabling partition scanning.
 | 
						|
	 */
 | 
						|
	if (volmode == ZFS_VOLMODE_DEV) {
 | 
						|
		zso->zvo_disk->minors = 1;
 | 
						|
		zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
 | 
						|
		zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
 | 
						|
	}
 | 
						|
 | 
						|
	zso->zvo_disk->first_minor = (dev & MINORMASK);
 | 
						|
	zso->zvo_disk->private_data = zv;
 | 
						|
	snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
 | 
						|
	    ZVOL_DEV_NAME, (dev & MINORMASK));
 | 
						|
 | 
						|
	return (zv);
 | 
						|
 | 
						|
out_kmem:
 | 
						|
	kmem_free(zso, sizeof (struct zvol_state_os));
 | 
						|
	kmem_free(zv, sizeof (zvol_state_t));
 | 
						|
	return (NULL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
 | 
						|
 * At this time, the structure is not opened by anyone, is taken off
 | 
						|
 * the zvol_state_list, and has its private data set to NULL.
 | 
						|
 * The zvol_state_lock is dropped.
 | 
						|
 *
 | 
						|
 * This function may take many milliseconds to complete (e.g. we've seen
 | 
						|
 * it take over 256ms), due to the calls to "blk_cleanup_queue" and
 | 
						|
 * "del_gendisk". Thus, consumers need to be careful to account for this
 | 
						|
 * latency when calling this function.
 | 
						|
 */
 | 
						|
void
 | 
						|
zvol_os_free(zvol_state_t *zv)
 | 
						|
{
 | 
						|
 | 
						|
	ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
 | 
						|
	ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
 | 
						|
	ASSERT0(zv->zv_open_count);
 | 
						|
	ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
 | 
						|
 | 
						|
	rw_destroy(&zv->zv_suspend_lock);
 | 
						|
	zfs_rangelock_fini(&zv->zv_rangelock);
 | 
						|
 | 
						|
	del_gendisk(zv->zv_zso->zvo_disk);
 | 
						|
#if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
 | 
						|
	(defined(HAVE_BLK_ALLOC_DISK) || defined(HAVE_BLK_ALLOC_DISK_2ARG))
 | 
						|
#if defined(HAVE_BLK_CLEANUP_DISK)
 | 
						|
	blk_cleanup_disk(zv->zv_zso->zvo_disk);
 | 
						|
#else
 | 
						|
	put_disk(zv->zv_zso->zvo_disk);
 | 
						|
#endif
 | 
						|
#else
 | 
						|
	blk_cleanup_queue(zv->zv_zso->zvo_queue);
 | 
						|
	put_disk(zv->zv_zso->zvo_disk);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef HAVE_BLK_MQ
 | 
						|
	if (zv->zv_zso->use_blk_mq)
 | 
						|
		blk_mq_free_tag_set(&zv->zv_zso->tag_set);
 | 
						|
#endif
 | 
						|
 | 
						|
	ida_simple_remove(&zvol_ida,
 | 
						|
	    MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
 | 
						|
 | 
						|
	cv_destroy(&zv->zv_removing_cv);
 | 
						|
	mutex_destroy(&zv->zv_state_lock);
 | 
						|
	dataset_kstats_destroy(&zv->zv_kstat);
 | 
						|
 | 
						|
	kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
 | 
						|
	kmem_free(zv, sizeof (zvol_state_t));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
zvol_wait_close(zvol_state_t *zv)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
struct add_disk_work {
 | 
						|
	struct delayed_work work;
 | 
						|
	struct gendisk *disk;
 | 
						|
	int error;
 | 
						|
};
 | 
						|
 | 
						|
static int
 | 
						|
__zvol_os_add_disk(struct gendisk *disk)
 | 
						|
{
 | 
						|
	int error = 0;
 | 
						|
#ifdef HAVE_ADD_DISK_RET
 | 
						|
	error = add_disk(disk);
 | 
						|
#else
 | 
						|
	add_disk(disk);
 | 
						|
#endif
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
 | 
						|
static void
 | 
						|
zvol_os_add_disk_work(struct work_struct *work)
 | 
						|
{
 | 
						|
	struct add_disk_work *add_disk_work;
 | 
						|
	add_disk_work = container_of(work, struct add_disk_work, work.work);
 | 
						|
	add_disk_work->error = __zvol_os_add_disk(add_disk_work->disk);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * SPECIAL CASE:
 | 
						|
 *
 | 
						|
 * This function basically calls add_disk() from a workqueue.   You may be
 | 
						|
 * thinking: why not just call add_disk() directly?
 | 
						|
 *
 | 
						|
 * When you call add_disk(), the zvol appears to the world.  When this happens,
 | 
						|
 * the kernel calls disk_scan_partitions() on the zvol, which behaves
 | 
						|
 * differently on the 6.9+ kernels:
 | 
						|
 *
 | 
						|
 * - 6.8 and older kernels -
 | 
						|
 * disk_scan_partitions()
 | 
						|
 *	handle = bdev_open_by_dev(
 | 
						|
 *		zvol_open()
 | 
						|
 *	bdev_release(handle);
 | 
						|
 *		zvol_release()
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * - 6.9+ kernels -
 | 
						|
 * disk_scan_partitions()
 | 
						|
 * 	file = bdev_file_open_by_dev()
 | 
						|
 *		zvol_open()
 | 
						|
 *	fput(file)
 | 
						|
 *	< wait for return to userspace >
 | 
						|
 *		zvol_release()
 | 
						|
 *
 | 
						|
 * The difference is that the bdev_release() from the 6.8 kernel is synchronous
 | 
						|
 * while the fput() from the 6.9 kernel is async.  Or more specifically it's
 | 
						|
 * async that has to wait until we return to userspace (since it adds the fput
 | 
						|
 * into the caller's work queue with the TWA_RESUME flag set).  This is not the
 | 
						|
 * behavior we want, since we want do things like create+destroy a zvol within
 | 
						|
 * a single ZFS_IOC_CREATE ioctl, and the "create" part needs to release the
 | 
						|
 * reference to the zvol while we're in the IOCTL, which can't wait until we
 | 
						|
 * return to userspace.
 | 
						|
 *
 | 
						|
 * We can get around this since fput() has a special codepath for when it's
 | 
						|
 * running in a kernel thread or interrupt.  In those cases, it just puts the
 | 
						|
 * fput into the system workqueue, which we can force to run with
 | 
						|
 * __flush_workqueue().  That is why we call add_disk() from a workqueue - so it
 | 
						|
 * run from a kernel thread and "tricks" the fput() codepaths.
 | 
						|
 *
 | 
						|
 * Note that __flush_workqueue() is slowly getting deprecated.  This may be ok
 | 
						|
 * though, since our IOCTL will spin on EBUSY waiting for the zvol release (via
 | 
						|
 * fput) to happen, which it eventually, naturally, will from the system_wq
 | 
						|
 * without us explicitly calling __flush_workqueue().
 | 
						|
 */
 | 
						|
static int
 | 
						|
zvol_os_add_disk(struct gendisk *disk)
 | 
						|
{
 | 
						|
#if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)	/* 6.9+ kernel */
 | 
						|
	struct add_disk_work add_disk_work;
 | 
						|
 | 
						|
	INIT_DELAYED_WORK(&add_disk_work.work, zvol_os_add_disk_work);
 | 
						|
	add_disk_work.disk = disk;
 | 
						|
	add_disk_work.error = 0;
 | 
						|
 | 
						|
	/* Use *_delayed_work functions since they're not GPL'd */
 | 
						|
	schedule_delayed_work(&add_disk_work.work, 0);
 | 
						|
	flush_delayed_work(&add_disk_work.work);
 | 
						|
 | 
						|
	__flush_workqueue(system_wq);
 | 
						|
	return (add_disk_work.error);
 | 
						|
#else	/* <= 6.8 kernel */
 | 
						|
	return (__zvol_os_add_disk(disk));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Create a block device minor node and setup the linkage between it
 | 
						|
 * and the specified volume.  Once this function returns the block
 | 
						|
 * device is live and ready for use.
 | 
						|
 */
 | 
						|
int
 | 
						|
zvol_os_create_minor(const char *name)
 | 
						|
{
 | 
						|
	zvol_state_t *zv;
 | 
						|
	objset_t *os;
 | 
						|
	dmu_object_info_t *doi;
 | 
						|
	uint64_t volsize;
 | 
						|
	uint64_t len;
 | 
						|
	unsigned minor = 0;
 | 
						|
	int error = 0;
 | 
						|
	int idx;
 | 
						|
	uint64_t hash = zvol_name_hash(name);
 | 
						|
	uint64_t volthreading;
 | 
						|
	bool replayed_zil = B_FALSE;
 | 
						|
 | 
						|
	if (zvol_inhibit_dev)
 | 
						|
		return (0);
 | 
						|
 | 
						|
	idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
 | 
						|
	if (idx < 0)
 | 
						|
		return (SET_ERROR(-idx));
 | 
						|
	minor = idx << ZVOL_MINOR_BITS;
 | 
						|
	if (MINOR(minor) != minor) {
 | 
						|
		/* too many partitions can cause an overflow */
 | 
						|
		zfs_dbgmsg("zvol: create minor overflow: %s, minor %u/%u",
 | 
						|
		    name, minor, MINOR(minor));
 | 
						|
		ida_simple_remove(&zvol_ida, idx);
 | 
						|
		return (SET_ERROR(EINVAL));
 | 
						|
	}
 | 
						|
 | 
						|
	zv = zvol_find_by_name_hash(name, hash, RW_NONE);
 | 
						|
	if (zv) {
 | 
						|
		ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 | 
						|
		mutex_exit(&zv->zv_state_lock);
 | 
						|
		ida_simple_remove(&zvol_ida, idx);
 | 
						|
		return (SET_ERROR(EEXIST));
 | 
						|
	}
 | 
						|
 | 
						|
	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
 | 
						|
 | 
						|
	error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
 | 
						|
	if (error)
 | 
						|
		goto out_doi;
 | 
						|
 | 
						|
	error = dmu_object_info(os, ZVOL_OBJ, doi);
 | 
						|
	if (error)
 | 
						|
		goto out_dmu_objset_disown;
 | 
						|
 | 
						|
	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
 | 
						|
	if (error)
 | 
						|
		goto out_dmu_objset_disown;
 | 
						|
 | 
						|
	zv = zvol_alloc(MKDEV(zvol_major, minor), name,
 | 
						|
	    doi->doi_data_block_size);
 | 
						|
	if (zv == NULL) {
 | 
						|
		error = SET_ERROR(EAGAIN);
 | 
						|
		goto out_dmu_objset_disown;
 | 
						|
	}
 | 
						|
	zv->zv_hash = hash;
 | 
						|
 | 
						|
	if (dmu_objset_is_snapshot(os))
 | 
						|
		zv->zv_flags |= ZVOL_RDONLY;
 | 
						|
 | 
						|
	zv->zv_volsize = volsize;
 | 
						|
	zv->zv_objset = os;
 | 
						|
 | 
						|
	/* Default */
 | 
						|
	zv->zv_threading = B_TRUE;
 | 
						|
	if (dsl_prop_get_integer(name, "volthreading", &volthreading, NULL)
 | 
						|
	    == 0)
 | 
						|
		zv->zv_threading = volthreading;
 | 
						|
 | 
						|
	set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
 | 
						|
 | 
						|
#ifdef QUEUE_FLAG_DISCARD
 | 
						|
	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
 | 
						|
#endif
 | 
						|
#ifdef QUEUE_FLAG_NONROT
 | 
						|
	blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
 | 
						|
#endif
 | 
						|
#ifdef QUEUE_FLAG_ADD_RANDOM
 | 
						|
	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
 | 
						|
#endif
 | 
						|
	/* This flag was introduced in kernel version 4.12. */
 | 
						|
#ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
 | 
						|
	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
 | 
						|
#endif
 | 
						|
 | 
						|
	ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
 | 
						|
	error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
 | 
						|
	if (error)
 | 
						|
		goto out_dmu_objset_disown;
 | 
						|
	ASSERT3P(zv->zv_zilog, ==, NULL);
 | 
						|
	zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
 | 
						|
	if (spa_writeable(dmu_objset_spa(os))) {
 | 
						|
		if (zil_replay_disable)
 | 
						|
			replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
 | 
						|
		else
 | 
						|
			replayed_zil = zil_replay(os, zv, zvol_replay_vector);
 | 
						|
	}
 | 
						|
	if (replayed_zil)
 | 
						|
		zil_close(zv->zv_zilog);
 | 
						|
	zv->zv_zilog = NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When udev detects the addition of the device it will immediately
 | 
						|
	 * invoke blkid(8) to determine the type of content on the device.
 | 
						|
	 * Prefetching the blocks commonly scanned by blkid(8) will speed
 | 
						|
	 * up this process.
 | 
						|
	 */
 | 
						|
	len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
 | 
						|
	if (len > 0) {
 | 
						|
		dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
 | 
						|
		dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
 | 
						|
		    ZIO_PRIORITY_SYNC_READ);
 | 
						|
	}
 | 
						|
 | 
						|
	zv->zv_objset = NULL;
 | 
						|
out_dmu_objset_disown:
 | 
						|
	dmu_objset_disown(os, B_TRUE, FTAG);
 | 
						|
out_doi:
 | 
						|
	kmem_free(doi, sizeof (dmu_object_info_t));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Keep in mind that once add_disk() is called, the zvol is
 | 
						|
	 * announced to the world, and zvol_open()/zvol_release() can
 | 
						|
	 * be called at any time. Incidentally, add_disk() itself calls
 | 
						|
	 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
 | 
						|
	 * directly as well.
 | 
						|
	 */
 | 
						|
	if (error == 0) {
 | 
						|
		rw_enter(&zvol_state_lock, RW_WRITER);
 | 
						|
		zvol_insert(zv);
 | 
						|
		rw_exit(&zvol_state_lock);
 | 
						|
		error = zvol_os_add_disk(zv->zv_zso->zvo_disk);
 | 
						|
	} else {
 | 
						|
		ida_simple_remove(&zvol_ida, idx);
 | 
						|
	}
 | 
						|
 | 
						|
	return (error);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
 | 
						|
{
 | 
						|
	int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
 | 
						|
 | 
						|
	ASSERT(RW_LOCK_HELD(&zvol_state_lock));
 | 
						|
	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 | 
						|
 | 
						|
	strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
 | 
						|
 | 
						|
	/* move to new hashtable entry  */
 | 
						|
	zv->zv_hash = zvol_name_hash(newname);
 | 
						|
	hlist_del(&zv->zv_hlink);
 | 
						|
	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The block device's read-only state is briefly changed causing
 | 
						|
	 * a KOBJ_CHANGE uevent to be issued.  This ensures udev detects
 | 
						|
	 * the name change and fixes the symlinks.  This does not change
 | 
						|
	 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
 | 
						|
	 * changes.  This would normally be done using kobject_uevent() but
 | 
						|
	 * that is a GPL-only symbol which is why we need this workaround.
 | 
						|
	 */
 | 
						|
	set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
 | 
						|
	set_disk_ro(zv->zv_zso->zvo_disk, readonly);
 | 
						|
 | 
						|
	dataset_kstats_rename(&zv->zv_kstat, newname);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
 | 
						|
{
 | 
						|
 | 
						|
	set_disk_ro(zv->zv_zso->zvo_disk, flags);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
 | 
						|
{
 | 
						|
 | 
						|
	set_capacity(zv->zv_zso->zvo_disk, capacity);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
zvol_init(void)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * zvol_threads is the module param the user passes in.
 | 
						|
	 *
 | 
						|
	 * zvol_actual_threads is what we use internally, since the user can
 | 
						|
	 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
 | 
						|
	 */
 | 
						|
	static unsigned int zvol_actual_threads;
 | 
						|
 | 
						|
	if (zvol_threads == 0) {
 | 
						|
		/*
 | 
						|
		 * See dde9380a1 for why 32 was chosen here.  This should
 | 
						|
		 * probably be refined to be some multiple of the number
 | 
						|
		 * of CPUs.
 | 
						|
		 */
 | 
						|
		zvol_actual_threads = MAX(num_online_cpus(), 32);
 | 
						|
	} else {
 | 
						|
		zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use atleast 32 zvol_threads but for many core system,
 | 
						|
	 * prefer 6 threads per taskq, but no more taskqs
 | 
						|
	 * than threads in them on large systems.
 | 
						|
	 *
 | 
						|
	 *                 taskq   total
 | 
						|
	 * cpus    taskqs  threads threads
 | 
						|
	 * ------- ------- ------- -------
 | 
						|
	 * 1       1       32       32
 | 
						|
	 * 2       1       32       32
 | 
						|
	 * 4       1       32       32
 | 
						|
	 * 8       2       16       32
 | 
						|
	 * 16      3       11       33
 | 
						|
	 * 32      5       7        35
 | 
						|
	 * 64      8       8        64
 | 
						|
	 * 128     11      12       132
 | 
						|
	 * 256     16      16       256
 | 
						|
	 */
 | 
						|
	zv_taskq_t *ztqs = &zvol_taskqs;
 | 
						|
	uint_t num_tqs = MIN(num_online_cpus(), zvol_num_taskqs);
 | 
						|
	if (num_tqs == 0) {
 | 
						|
		num_tqs = 1 + num_online_cpus() / 6;
 | 
						|
		while (num_tqs * num_tqs > zvol_actual_threads)
 | 
						|
			num_tqs--;
 | 
						|
	}
 | 
						|
	uint_t per_tq_thread = zvol_actual_threads / num_tqs;
 | 
						|
	if (per_tq_thread * num_tqs < zvol_actual_threads)
 | 
						|
		per_tq_thread++;
 | 
						|
	ztqs->tqs_cnt = num_tqs;
 | 
						|
	ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP);
 | 
						|
	error = register_blkdev(zvol_major, ZVOL_DRIVER);
 | 
						|
	if (error) {
 | 
						|
		kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * sizeof (taskq_t *));
 | 
						|
		ztqs->tqs_taskq = NULL;
 | 
						|
		printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
 | 
						|
		return (error);
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef HAVE_BLK_MQ
 | 
						|
	if (zvol_blk_mq_queue_depth == 0) {
 | 
						|
		zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
 | 
						|
	} else {
 | 
						|
		zvol_actual_blk_mq_queue_depth =
 | 
						|
		    MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
 | 
						|
	}
 | 
						|
 | 
						|
	if (zvol_blk_mq_threads == 0) {
 | 
						|
		zvol_blk_mq_actual_threads = num_online_cpus();
 | 
						|
	} else {
 | 
						|
		zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
 | 
						|
		    1024);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	for (uint_t i = 0; i < num_tqs; i++) {
 | 
						|
		char name[32];
 | 
						|
		(void) snprintf(name, sizeof (name), "%s_tq-%u",
 | 
						|
		    ZVOL_DRIVER, i);
 | 
						|
		ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread,
 | 
						|
		    maxclsyspri, per_tq_thread, INT_MAX,
 | 
						|
		    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
 | 
						|
		if (ztqs->tqs_taskq[i] == NULL) {
 | 
						|
			for (int j = i - 1; j >= 0; j--)
 | 
						|
				taskq_destroy(ztqs->tqs_taskq[j]);
 | 
						|
			unregister_blkdev(zvol_major, ZVOL_DRIVER);
 | 
						|
			kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
 | 
						|
			    sizeof (taskq_t *));
 | 
						|
			ztqs->tqs_taskq = NULL;
 | 
						|
			return (-ENOMEM);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	zvol_init_impl();
 | 
						|
	ida_init(&zvol_ida);
 | 
						|
	return (0);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
zvol_fini(void)
 | 
						|
{
 | 
						|
	zv_taskq_t *ztqs = &zvol_taskqs;
 | 
						|
	zvol_fini_impl();
 | 
						|
	unregister_blkdev(zvol_major, ZVOL_DRIVER);
 | 
						|
 | 
						|
	if (ztqs->tqs_taskq == NULL) {
 | 
						|
		ASSERT3U(ztqs->tqs_cnt, ==, 0);
 | 
						|
	} else {
 | 
						|
		for (uint_t i = 0; i < ztqs->tqs_cnt; i++) {
 | 
						|
			ASSERT3P(ztqs->tqs_taskq[i], !=, NULL);
 | 
						|
			taskq_destroy(ztqs->tqs_taskq[i]);
 | 
						|
		}
 | 
						|
		kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
 | 
						|
		    sizeof (taskq_t *));
 | 
						|
		ztqs->tqs_taskq = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	ida_destroy(&zvol_ida);
 | 
						|
}
 | 
						|
 | 
						|
/* BEGIN CSTYLED */
 | 
						|
module_param(zvol_inhibit_dev, uint, 0644);
 | 
						|
MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
 | 
						|
 | 
						|
module_param(zvol_major, uint, 0444);
 | 
						|
MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
 | 
						|
 | 
						|
module_param(zvol_threads, uint, 0444);
 | 
						|
MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
 | 
						|
    "to 0 to use all active CPUs");
 | 
						|
 | 
						|
module_param(zvol_request_sync, uint, 0644);
 | 
						|
MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
 | 
						|
 | 
						|
module_param(zvol_max_discard_blocks, ulong, 0444);
 | 
						|
MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
 | 
						|
 | 
						|
module_param(zvol_num_taskqs, uint, 0444);
 | 
						|
MODULE_PARM_DESC(zvol_num_taskqs, "Number of zvol taskqs");
 | 
						|
 | 
						|
module_param(zvol_prefetch_bytes, uint, 0644);
 | 
						|
MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
 | 
						|
 | 
						|
module_param(zvol_volmode, uint, 0644);
 | 
						|
MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
 | 
						|
 | 
						|
#ifdef HAVE_BLK_MQ
 | 
						|
module_param(zvol_blk_mq_queue_depth, uint, 0644);
 | 
						|
MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
 | 
						|
 | 
						|
module_param(zvol_use_blk_mq, uint, 0644);
 | 
						|
MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
 | 
						|
 | 
						|
module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
 | 
						|
MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
 | 
						|
    "Process volblocksize blocks per thread");
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
 | 
						|
module_param(zvol_open_timeout_ms, uint, 0644);
 | 
						|
MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries");
 | 
						|
#endif
 | 
						|
 | 
						|
/* END CSTYLED */
 |