mirror_ubuntu-kernels/drivers/gpu/drm/panfrost/panfrost_drv.c
Linus Torvalds ecae0bd517 Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
 
 - Kemeng Shi has contributed some compation maintenance work in the
   series "Fixes and cleanups to compaction".
 
 - Joel Fernandes has a patchset ("Optimize mremap during mutual
   alignment within PMD") which fixes an obscure issue with mremap()'s
   pagetable handling during a subsequent exec(), based upon an
   implementation which Linus suggested.
 
 - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the
   following patch series:
 
 	mm/damon: misc fixups for documents, comments and its tracepoint
 	mm/damon: add a tracepoint for damos apply target regions
 	mm/damon: provide pseudo-moving sum based access rate
 	mm/damon: implement DAMOS apply intervals
 	mm/damon/core-test: Fix memory leaks in core-test
 	mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
 
 - In the series "Do not try to access unaccepted memory" Adrian Hunter
   provides some fixups for the recently-added "unaccepted memory' feature.
   To increase the feature's checking coverage.  "Plug a few gaps where
   RAM is exposed without checking if it is unaccepted memory".
 
 - In the series "cleanups for lockless slab shrink" Qi Zheng has done
   some maintenance work which is preparation for the lockless slab
   shrinking code.
 
 - Qi Zheng has redone the earlier (and reverted) attempt to make slab
   shrinking lockless in the series "use refcount+RCU method to implement
   lockless slab shrink".
 
 - David Hildenbrand contributes some maintenance work for the rmap code
   in the series "Anon rmap cleanups".
 
 - Kefeng Wang does more folio conversions and some maintenance work in
   the migration code.  Series "mm: migrate: more folio conversion and
   unification".
 
 - Matthew Wilcox has fixed an issue in the buffer_head code which was
   causing long stalls under some heavy memory/IO loads.  Some cleanups
   were added on the way.  Series "Add and use bdev_getblk()".
 
 - In the series "Use nth_page() in place of direct struct page
   manipulation" Zi Yan has fixed a potential issue with the direct
   manipulation of hugetlb page frames.
 
 - In the series "mm: hugetlb: Skip initialization of gigantic tail
   struct pages if freed by HVO" has improved our handling of gigantic
   pages in the hugetlb vmmemmep optimizaton code.  This provides
   significant boot time improvements when significant amounts of gigantic
   pages are in use.
 
 - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code
   rationalization and folio conversions in the hugetlb code.
 
 - Yin Fengwei has improved mlock()'s handling of large folios in the
   series "support large folio for mlock"
 
 - In the series "Expose swapcache stat for memcg v1" Liu Shixin has
   added statistics for memcg v1 users which are available (and useful)
   under memcg v2.
 
 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
   prctl so that userspace may direct the kernel to not automatically
   propagate the denial to child processes.  The series is named "MDWE
   without inheritance".
 
 - Kefeng Wang has provided the series "mm: convert numa balancing
   functions to use a folio" which does what it says.
 
 - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch
   makes is possible for a process to propagate KSM treatment across
   exec().
 
 - Huang Ying has enhanced memory tiering's calculation of memory
   distances.  This is used to permit the dax/kmem driver to use "high
   bandwidth memory" in addition to Optane Data Center Persistent Memory
   Modules (DCPMM).  The series is named "memory tiering: calculate
   abstract distance based on ACPI HMAT"
 
 - In the series "Smart scanning mode for KSM" Stefan Roesch has
   optimized KSM by teaching it to retain and use some historical
   information from previous scans.
 
 - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the
   series "mm: memcg: fix tracking of pending stats updates values".
 
 - In the series "Implement IOCTL to get and optionally clear info about
   PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits
   us to atomically read-then-clear page softdirty state.  This is mainly
   used by CRIU.
 
 - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance"
   - a bunch of relatively minor maintenance tweaks to this code.
 
 - Matthew Wilcox has increased the use of the VMA lock over file-backed
   page faults in the series "Handle more faults under the VMA lock".  Some
   rationalizations of the fault path became possible as a result.
 
 - In the series "mm/rmap: convert page_move_anon_rmap() to
   folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups
   and folio conversions.
 
 - In the series "various improvements to the GUP interface" Lorenzo
   Stoakes has simplified and improved the GUP interface with an eye to
   providing groundwork for future improvements.
 
 - Andrey Konovalov has sent along the series "kasan: assorted fixes and
   improvements" which does those things.
 
 - Some page allocator maintenance work from Kemeng Shi in the series
   "Two minor cleanups to break_down_buddy_pages".
 
 - In thes series "New selftest for mm" Breno Leitao has developed
   another MM self test which tickles a race we had between madvise() and
   page faults.
 
 - In the series "Add folio_end_read" Matthew Wilcox provides cleanups
   and an optimization to the core pagecache code.
 
 - Nhat Pham has added memcg accounting for hugetlb memory in the series
   "hugetlb memcg accounting".
 
 - Cleanups and rationalizations to the pagemap code from Lorenzo
   Stoakes, in the series "Abstract vma_merge() and split_vma()".
 
 - Audra Mitchell has fixed issues in the procfs page_owner code's new
   timestamping feature which was causing some misbehaviours.  In the
   series "Fix page_owner's use of free timestamps".
 
 - Lorenzo Stoakes has fixed the handling of new mappings of sealed files
   in the series "permit write-sealed memfd read-only shared mappings".
 
 - Mike Kravetz has optimized the hugetlb vmemmap optimization in the
   series "Batch hugetlb vmemmap modification operations".
 
 - Some buffer_head folio conversions and cleanups from Matthew Wilcox in
   the series "Finish the create_empty_buffers() transition".
 
 - As a page allocator performance optimization Huang Ying has added
   automatic tuning to the allocator's per-cpu-pages feature, in the series
   "mm: PCP high auto-tuning".
 
 - Roman Gushchin has contributed the patchset "mm: improve performance
   of accounted kernel memory allocations" which improves their performance
   by ~30% as measured by a micro-benchmark.
 
 - folio conversions from Kefeng Wang in the series "mm: convert page
   cpupid functions to folios".
 
 - Some kmemleak fixups in Liu Shixin's series "Some bugfix about
   kmemleak".
 
 - Qi Zheng has improved our handling of memoryless nodes by keeping them
   off the allocation fallback list.  This is done in the series "handle
   memoryless nodes more appropriately".
 
 - khugepaged conversions from Vishal Moola in the series "Some
   khugepaged folio conversions".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA
 jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y
 FgeUPAD1oasg6CP+INZvCj34waNxwAc=
 =E+Y4
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Many singleton patches against the MM code. The patch series which are
  included in this merge do the following:

   - Kemeng Shi has contributed some compation maintenance work in the
     series 'Fixes and cleanups to compaction'

   - Joel Fernandes has a patchset ('Optimize mremap during mutual
     alignment within PMD') which fixes an obscure issue with mremap()'s
     pagetable handling during a subsequent exec(), based upon an
     implementation which Linus suggested

   - More DAMON/DAMOS maintenance and feature work from SeongJae Park i
     the following patch series:

	mm/damon: misc fixups for documents, comments and its tracepoint
	mm/damon: add a tracepoint for damos apply target regions
	mm/damon: provide pseudo-moving sum based access rate
	mm/damon: implement DAMOS apply intervals
	mm/damon/core-test: Fix memory leaks in core-test
	mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval

   - In the series 'Do not try to access unaccepted memory' Adrian
     Hunter provides some fixups for the recently-added 'unaccepted
     memory' feature. To increase the feature's checking coverage. 'Plug
     a few gaps where RAM is exposed without checking if it is
     unaccepted memory'

   - In the series 'cleanups for lockless slab shrink' Qi Zheng has done
     some maintenance work which is preparation for the lockless slab
     shrinking code

   - Qi Zheng has redone the earlier (and reverted) attempt to make slab
     shrinking lockless in the series 'use refcount+RCU method to
     implement lockless slab shrink'

   - David Hildenbrand contributes some maintenance work for the rmap
     code in the series 'Anon rmap cleanups'

   - Kefeng Wang does more folio conversions and some maintenance work
     in the migration code. Series 'mm: migrate: more folio conversion
     and unification'

   - Matthew Wilcox has fixed an issue in the buffer_head code which was
     causing long stalls under some heavy memory/IO loads. Some cleanups
     were added on the way. Series 'Add and use bdev_getblk()'

   - In the series 'Use nth_page() in place of direct struct page
     manipulation' Zi Yan has fixed a potential issue with the direct
     manipulation of hugetlb page frames

   - In the series 'mm: hugetlb: Skip initialization of gigantic tail
     struct pages if freed by HVO' has improved our handling of gigantic
     pages in the hugetlb vmmemmep optimizaton code. This provides
     significant boot time improvements when significant amounts of
     gigantic pages are in use

   - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
     rationalization and folio conversions in the hugetlb code

   - Yin Fengwei has improved mlock()'s handling of large folios in the
     series 'support large folio for mlock'

   - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
     added statistics for memcg v1 users which are available (and
     useful) under memcg v2

   - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
     prctl so that userspace may direct the kernel to not automatically
     propagate the denial to child processes. The series is named 'MDWE
     without inheritance'

   - Kefeng Wang has provided the series 'mm: convert numa balancing
     functions to use a folio' which does what it says

   - In the series 'mm/ksm: add fork-exec support for prctl' Stefan
     Roesch makes is possible for a process to propagate KSM treatment
     across exec()

   - Huang Ying has enhanced memory tiering's calculation of memory
     distances. This is used to permit the dax/kmem driver to use 'high
     bandwidth memory' in addition to Optane Data Center Persistent
     Memory Modules (DCPMM). The series is named 'memory tiering:
     calculate abstract distance based on ACPI HMAT'

   - In the series 'Smart scanning mode for KSM' Stefan Roesch has
     optimized KSM by teaching it to retain and use some historical
     information from previous scans

   - Yosry Ahmed has fixed some inconsistencies in memcg statistics in
     the series 'mm: memcg: fix tracking of pending stats updates
     values'

   - In the series 'Implement IOCTL to get and optionally clear info
     about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
     which permits us to atomically read-then-clear page softdirty
     state. This is mainly used by CRIU

   - Hugh Dickins contributed the series 'shmem,tmpfs: general
     maintenance', a bunch of relatively minor maintenance tweaks to
     this code

   - Matthew Wilcox has increased the use of the VMA lock over
     file-backed page faults in the series 'Handle more faults under the
     VMA lock'. Some rationalizations of the fault path became possible
     as a result

   - In the series 'mm/rmap: convert page_move_anon_rmap() to
     folio_move_anon_rmap()' David Hildenbrand has implemented some
     cleanups and folio conversions

   - In the series 'various improvements to the GUP interface' Lorenzo
     Stoakes has simplified and improved the GUP interface with an eye
     to providing groundwork for future improvements

   - Andrey Konovalov has sent along the series 'kasan: assorted fixes
     and improvements' which does those things

   - Some page allocator maintenance work from Kemeng Shi in the series
     'Two minor cleanups to break_down_buddy_pages'

   - In thes series 'New selftest for mm' Breno Leitao has developed
     another MM self test which tickles a race we had between madvise()
     and page faults

   - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
     and an optimization to the core pagecache code

   - Nhat Pham has added memcg accounting for hugetlb memory in the
     series 'hugetlb memcg accounting'

   - Cleanups and rationalizations to the pagemap code from Lorenzo
     Stoakes, in the series 'Abstract vma_merge() and split_vma()'

   - Audra Mitchell has fixed issues in the procfs page_owner code's new
     timestamping feature which was causing some misbehaviours. In the
     series 'Fix page_owner's use of free timestamps'

   - Lorenzo Stoakes has fixed the handling of new mappings of sealed
     files in the series 'permit write-sealed memfd read-only shared
     mappings'

   - Mike Kravetz has optimized the hugetlb vmemmap optimization in the
     series 'Batch hugetlb vmemmap modification operations'

   - Some buffer_head folio conversions and cleanups from Matthew Wilcox
     in the series 'Finish the create_empty_buffers() transition'

   - As a page allocator performance optimization Huang Ying has added
     automatic tuning to the allocator's per-cpu-pages feature, in the
     series 'mm: PCP high auto-tuning'

   - Roman Gushchin has contributed the patchset 'mm: improve
     performance of accounted kernel memory allocations' which improves
     their performance by ~30% as measured by a micro-benchmark

   - folio conversions from Kefeng Wang in the series 'mm: convert page
     cpupid functions to folios'

   - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
     kmemleak'

   - Qi Zheng has improved our handling of memoryless nodes by keeping
     them off the allocation fallback list. This is done in the series
     'handle memoryless nodes more appropriately'

   - khugepaged conversions from Vishal Moola in the series 'Some
     khugepaged folio conversions'"

[ bcachefs conflicts with the dynamically allocated shrinkers have been
  resolved as per Stephen Rothwell in

     https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/

  with help from Qi Zheng.

  The clone3 test filtering conflict was half-arsed by yours truly ]

* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
  mm/damon/sysfs: update monitoring target regions for online input commit
  mm/damon/sysfs: remove requested targets when online-commit inputs
  selftests: add a sanity check for zswap
  Documentation: maple_tree: fix word spelling error
  mm/vmalloc: fix the unchecked dereference warning in vread_iter()
  zswap: export compression failure stats
  Documentation: ubsan: drop "the" from article title
  mempolicy: migration attempt to match interleave nodes
  mempolicy: mmap_lock is not needed while migrating folios
  mempolicy: alloc_pages_mpol() for NUMA policy without vma
  mm: add page_rmappable_folio() wrapper
  mempolicy: remove confusing MPOL_MF_LAZY dead code
  mempolicy: mpol_shared_policy_init() without pseudo-vma
  mempolicy trivia: use pgoff_t in shared mempolicy tree
  mempolicy trivia: slightly more consistent naming
  mempolicy trivia: delete those ancient pr_debug()s
  mempolicy: fix migrate_pages(2) syscall return nr_failed
  kernfs: drop shared NUMA mempolicy hooks
  hugetlbfs: drop shared NUMA mempolicy pretence
  mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
  ...
2023-11-02 19:38:47 -10:00

796 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright 2018 Marty E. Plummer <hanetzer@startmail.com> */
/* Copyright 2019 Linaro, Ltd., Rob Herring <robh@kernel.org> */
/* Copyright 2019 Collabora ltd. */
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pagemap.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <drm/panfrost_drm.h>
#include <drm/drm_drv.h>
#include <drm/drm_ioctl.h>
#include <drm/drm_syncobj.h>
#include <drm/drm_utils.h>
#include "panfrost_device.h"
#include "panfrost_gem.h"
#include "panfrost_mmu.h"
#include "panfrost_job.h"
#include "panfrost_gpu.h"
#include "panfrost_perfcnt.h"
#include "panfrost_debugfs.h"
static bool unstable_ioctls;
module_param_unsafe(unstable_ioctls, bool, 0600);
static int panfrost_ioctl_get_param(struct drm_device *ddev, void *data, struct drm_file *file)
{
struct drm_panfrost_get_param *param = data;
struct panfrost_device *pfdev = ddev->dev_private;
if (param->pad != 0)
return -EINVAL;
#define PANFROST_FEATURE(name, member) \
case DRM_PANFROST_PARAM_ ## name: \
param->value = pfdev->features.member; \
break
#define PANFROST_FEATURE_ARRAY(name, member, max) \
case DRM_PANFROST_PARAM_ ## name ## 0 ... \
DRM_PANFROST_PARAM_ ## name ## max: \
param->value = pfdev->features.member[param->param - \
DRM_PANFROST_PARAM_ ## name ## 0]; \
break
switch (param->param) {
PANFROST_FEATURE(GPU_PROD_ID, id);
PANFROST_FEATURE(GPU_REVISION, revision);
PANFROST_FEATURE(SHADER_PRESENT, shader_present);
PANFROST_FEATURE(TILER_PRESENT, tiler_present);
PANFROST_FEATURE(L2_PRESENT, l2_present);
PANFROST_FEATURE(STACK_PRESENT, stack_present);
PANFROST_FEATURE(AS_PRESENT, as_present);
PANFROST_FEATURE(JS_PRESENT, js_present);
PANFROST_FEATURE(L2_FEATURES, l2_features);
PANFROST_FEATURE(CORE_FEATURES, core_features);
PANFROST_FEATURE(TILER_FEATURES, tiler_features);
PANFROST_FEATURE(MEM_FEATURES, mem_features);
PANFROST_FEATURE(MMU_FEATURES, mmu_features);
PANFROST_FEATURE(THREAD_FEATURES, thread_features);
PANFROST_FEATURE(MAX_THREADS, max_threads);
PANFROST_FEATURE(THREAD_MAX_WORKGROUP_SZ,
thread_max_workgroup_sz);
PANFROST_FEATURE(THREAD_MAX_BARRIER_SZ,
thread_max_barrier_sz);
PANFROST_FEATURE(COHERENCY_FEATURES, coherency_features);
PANFROST_FEATURE(AFBC_FEATURES, afbc_features);
PANFROST_FEATURE_ARRAY(TEXTURE_FEATURES, texture_features, 3);
PANFROST_FEATURE_ARRAY(JS_FEATURES, js_features, 15);
PANFROST_FEATURE(NR_CORE_GROUPS, nr_core_groups);
PANFROST_FEATURE(THREAD_TLS_ALLOC, thread_tls_alloc);
default:
return -EINVAL;
}
return 0;
}
static int panfrost_ioctl_create_bo(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct panfrost_file_priv *priv = file->driver_priv;
struct panfrost_gem_object *bo;
struct drm_panfrost_create_bo *args = data;
struct panfrost_gem_mapping *mapping;
int ret;
if (!args->size || args->pad ||
(args->flags & ~(PANFROST_BO_NOEXEC | PANFROST_BO_HEAP)))
return -EINVAL;
/* Heaps should never be executable */
if ((args->flags & PANFROST_BO_HEAP) &&
!(args->flags & PANFROST_BO_NOEXEC))
return -EINVAL;
bo = panfrost_gem_create(dev, args->size, args->flags);
if (IS_ERR(bo))
return PTR_ERR(bo);
ret = drm_gem_handle_create(file, &bo->base.base, &args->handle);
if (ret)
goto out;
mapping = panfrost_gem_mapping_get(bo, priv);
if (mapping) {
args->offset = mapping->mmnode.start << PAGE_SHIFT;
panfrost_gem_mapping_put(mapping);
} else {
/* This can only happen if the handle from
* drm_gem_handle_create() has already been guessed and freed
* by user space
*/
ret = -EINVAL;
}
out:
drm_gem_object_put(&bo->base.base);
return ret;
}
/**
* panfrost_lookup_bos() - Sets up job->bo[] with the GEM objects
* referenced by the job.
* @dev: DRM device
* @file_priv: DRM file for this fd
* @args: IOCTL args
* @job: job being set up
*
* Resolve handles from userspace to BOs and attach them to job.
*
* Note that this function doesn't need to unreference the BOs on
* failure, because that will happen at panfrost_job_cleanup() time.
*/
static int
panfrost_lookup_bos(struct drm_device *dev,
struct drm_file *file_priv,
struct drm_panfrost_submit *args,
struct panfrost_job *job)
{
struct panfrost_file_priv *priv = file_priv->driver_priv;
struct panfrost_gem_object *bo;
unsigned int i;
int ret;
job->bo_count = args->bo_handle_count;
if (!job->bo_count)
return 0;
ret = drm_gem_objects_lookup(file_priv,
(void __user *)(uintptr_t)args->bo_handles,
job->bo_count, &job->bos);
if (ret)
return ret;
job->mappings = kvmalloc_array(job->bo_count,
sizeof(struct panfrost_gem_mapping *),
GFP_KERNEL | __GFP_ZERO);
if (!job->mappings)
return -ENOMEM;
for (i = 0; i < job->bo_count; i++) {
struct panfrost_gem_mapping *mapping;
bo = to_panfrost_bo(job->bos[i]);
mapping = panfrost_gem_mapping_get(bo, priv);
if (!mapping) {
ret = -EINVAL;
break;
}
atomic_inc(&bo->gpu_usecount);
job->mappings[i] = mapping;
}
return ret;
}
/**
* panfrost_copy_in_sync() - Sets up job->deps with the sync objects
* referenced by the job.
* @dev: DRM device
* @file_priv: DRM file for this fd
* @args: IOCTL args
* @job: job being set up
*
* Resolve syncobjs from userspace to fences and attach them to job.
*
* Note that this function doesn't need to unreference the fences on
* failure, because that will happen at panfrost_job_cleanup() time.
*/
static int
panfrost_copy_in_sync(struct drm_device *dev,
struct drm_file *file_priv,
struct drm_panfrost_submit *args,
struct panfrost_job *job)
{
u32 *handles;
int ret = 0;
int i, in_fence_count;
in_fence_count = args->in_sync_count;
if (!in_fence_count)
return 0;
handles = kvmalloc_array(in_fence_count, sizeof(u32), GFP_KERNEL);
if (!handles) {
ret = -ENOMEM;
DRM_DEBUG("Failed to allocate incoming syncobj handles\n");
goto fail;
}
if (copy_from_user(handles,
(void __user *)(uintptr_t)args->in_syncs,
in_fence_count * sizeof(u32))) {
ret = -EFAULT;
DRM_DEBUG("Failed to copy in syncobj handles\n");
goto fail;
}
for (i = 0; i < in_fence_count; i++) {
ret = drm_sched_job_add_syncobj_dependency(&job->base, file_priv,
handles[i], 0);
if (ret)
goto fail;
}
fail:
kvfree(handles);
return ret;
}
static int panfrost_ioctl_submit(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct panfrost_device *pfdev = dev->dev_private;
struct panfrost_file_priv *file_priv = file->driver_priv;
struct drm_panfrost_submit *args = data;
struct drm_syncobj *sync_out = NULL;
struct panfrost_job *job;
int ret = 0, slot;
if (!args->jc)
return -EINVAL;
if (args->requirements && args->requirements != PANFROST_JD_REQ_FS)
return -EINVAL;
if (args->out_sync > 0) {
sync_out = drm_syncobj_find(file, args->out_sync);
if (!sync_out)
return -ENODEV;
}
job = kzalloc(sizeof(*job), GFP_KERNEL);
if (!job) {
ret = -ENOMEM;
goto out_put_syncout;
}
kref_init(&job->refcount);
job->pfdev = pfdev;
job->jc = args->jc;
job->requirements = args->requirements;
job->flush_id = panfrost_gpu_get_latest_flush_id(pfdev);
job->mmu = file_priv->mmu;
job->engine_usage = &file_priv->engine_usage;
slot = panfrost_job_get_slot(job);
ret = drm_sched_job_init(&job->base,
&file_priv->sched_entity[slot],
NULL);
if (ret)
goto out_put_job;
ret = panfrost_copy_in_sync(dev, file, args, job);
if (ret)
goto out_cleanup_job;
ret = panfrost_lookup_bos(dev, file, args, job);
if (ret)
goto out_cleanup_job;
ret = panfrost_job_push(job);
if (ret)
goto out_cleanup_job;
/* Update the return sync object for the job */
if (sync_out)
drm_syncobj_replace_fence(sync_out, job->render_done_fence);
out_cleanup_job:
if (ret)
drm_sched_job_cleanup(&job->base);
out_put_job:
panfrost_job_put(job);
out_put_syncout:
if (sync_out)
drm_syncobj_put(sync_out);
return ret;
}
static int
panfrost_ioctl_wait_bo(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
long ret;
struct drm_panfrost_wait_bo *args = data;
struct drm_gem_object *gem_obj;
unsigned long timeout = drm_timeout_abs_to_jiffies(args->timeout_ns);
if (args->pad)
return -EINVAL;
gem_obj = drm_gem_object_lookup(file_priv, args->handle);
if (!gem_obj)
return -ENOENT;
ret = dma_resv_wait_timeout(gem_obj->resv, DMA_RESV_USAGE_READ,
true, timeout);
if (!ret)
ret = timeout ? -ETIMEDOUT : -EBUSY;
drm_gem_object_put(gem_obj);
return ret;
}
static int panfrost_ioctl_mmap_bo(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_panfrost_mmap_bo *args = data;
struct drm_gem_object *gem_obj;
int ret;
if (args->flags != 0) {
DRM_INFO("unknown mmap_bo flags: %d\n", args->flags);
return -EINVAL;
}
gem_obj = drm_gem_object_lookup(file_priv, args->handle);
if (!gem_obj) {
DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
return -ENOENT;
}
/* Don't allow mmapping of heap objects as pages are not pinned. */
if (to_panfrost_bo(gem_obj)->is_heap) {
ret = -EINVAL;
goto out;
}
ret = drm_gem_create_mmap_offset(gem_obj);
if (ret == 0)
args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
out:
drm_gem_object_put(gem_obj);
return ret;
}
static int panfrost_ioctl_get_bo_offset(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct panfrost_file_priv *priv = file_priv->driver_priv;
struct drm_panfrost_get_bo_offset *args = data;
struct panfrost_gem_mapping *mapping;
struct drm_gem_object *gem_obj;
struct panfrost_gem_object *bo;
gem_obj = drm_gem_object_lookup(file_priv, args->handle);
if (!gem_obj) {
DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
return -ENOENT;
}
bo = to_panfrost_bo(gem_obj);
mapping = panfrost_gem_mapping_get(bo, priv);
drm_gem_object_put(gem_obj);
if (!mapping)
return -EINVAL;
args->offset = mapping->mmnode.start << PAGE_SHIFT;
panfrost_gem_mapping_put(mapping);
return 0;
}
static int panfrost_ioctl_madvise(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct panfrost_file_priv *priv = file_priv->driver_priv;
struct drm_panfrost_madvise *args = data;
struct panfrost_device *pfdev = dev->dev_private;
struct drm_gem_object *gem_obj;
struct panfrost_gem_object *bo;
int ret = 0;
gem_obj = drm_gem_object_lookup(file_priv, args->handle);
if (!gem_obj) {
DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
return -ENOENT;
}
bo = to_panfrost_bo(gem_obj);
ret = dma_resv_lock_interruptible(bo->base.base.resv, NULL);
if (ret)
goto out_put_object;
mutex_lock(&pfdev->shrinker_lock);
mutex_lock(&bo->mappings.lock);
if (args->madv == PANFROST_MADV_DONTNEED) {
struct panfrost_gem_mapping *first;
first = list_first_entry(&bo->mappings.list,
struct panfrost_gem_mapping,
node);
/*
* If we want to mark the BO purgeable, there must be only one
* user: the caller FD.
* We could do something smarter and mark the BO purgeable only
* when all its users have marked it purgeable, but globally
* visible/shared BOs are likely to never be marked purgeable
* anyway, so let's not bother.
*/
if (!list_is_singular(&bo->mappings.list) ||
WARN_ON_ONCE(first->mmu != priv->mmu)) {
ret = -EINVAL;
goto out_unlock_mappings;
}
}
args->retained = drm_gem_shmem_madvise(&bo->base, args->madv);
if (args->retained) {
if (args->madv == PANFROST_MADV_DONTNEED)
list_move_tail(&bo->base.madv_list,
&pfdev->shrinker_list);
else if (args->madv == PANFROST_MADV_WILLNEED)
list_del_init(&bo->base.madv_list);
}
out_unlock_mappings:
mutex_unlock(&bo->mappings.lock);
mutex_unlock(&pfdev->shrinker_lock);
dma_resv_unlock(bo->base.base.resv);
out_put_object:
drm_gem_object_put(gem_obj);
return ret;
}
int panfrost_unstable_ioctl_check(void)
{
if (!unstable_ioctls)
return -ENOSYS;
return 0;
}
static int
panfrost_open(struct drm_device *dev, struct drm_file *file)
{
int ret;
struct panfrost_device *pfdev = dev->dev_private;
struct panfrost_file_priv *panfrost_priv;
panfrost_priv = kzalloc(sizeof(*panfrost_priv), GFP_KERNEL);
if (!panfrost_priv)
return -ENOMEM;
panfrost_priv->pfdev = pfdev;
file->driver_priv = panfrost_priv;
panfrost_priv->mmu = panfrost_mmu_ctx_create(pfdev);
if (IS_ERR(panfrost_priv->mmu)) {
ret = PTR_ERR(panfrost_priv->mmu);
goto err_free;
}
ret = panfrost_job_open(panfrost_priv);
if (ret)
goto err_job;
return 0;
err_job:
panfrost_mmu_ctx_put(panfrost_priv->mmu);
err_free:
kfree(panfrost_priv);
return ret;
}
static void
panfrost_postclose(struct drm_device *dev, struct drm_file *file)
{
struct panfrost_file_priv *panfrost_priv = file->driver_priv;
panfrost_perfcnt_close(file);
panfrost_job_close(panfrost_priv);
panfrost_mmu_ctx_put(panfrost_priv->mmu);
kfree(panfrost_priv);
}
static const struct drm_ioctl_desc panfrost_drm_driver_ioctls[] = {
#define PANFROST_IOCTL(n, func, flags) \
DRM_IOCTL_DEF_DRV(PANFROST_##n, panfrost_ioctl_##func, flags)
PANFROST_IOCTL(SUBMIT, submit, DRM_RENDER_ALLOW),
PANFROST_IOCTL(WAIT_BO, wait_bo, DRM_RENDER_ALLOW),
PANFROST_IOCTL(CREATE_BO, create_bo, DRM_RENDER_ALLOW),
PANFROST_IOCTL(MMAP_BO, mmap_bo, DRM_RENDER_ALLOW),
PANFROST_IOCTL(GET_PARAM, get_param, DRM_RENDER_ALLOW),
PANFROST_IOCTL(GET_BO_OFFSET, get_bo_offset, DRM_RENDER_ALLOW),
PANFROST_IOCTL(PERFCNT_ENABLE, perfcnt_enable, DRM_RENDER_ALLOW),
PANFROST_IOCTL(PERFCNT_DUMP, perfcnt_dump, DRM_RENDER_ALLOW),
PANFROST_IOCTL(MADVISE, madvise, DRM_RENDER_ALLOW),
};
static void panfrost_gpu_show_fdinfo(struct panfrost_device *pfdev,
struct panfrost_file_priv *panfrost_priv,
struct drm_printer *p)
{
int i;
/*
* IMPORTANT NOTE: drm-cycles and drm-engine measurements are not
* accurate, as they only provide a rough estimation of the number of
* GPU cycles and CPU time spent in a given context. This is due to two
* different factors:
* - Firstly, we must consider the time the CPU and then the kernel
* takes to process the GPU interrupt, which means additional time and
* GPU cycles will be added in excess to the real figure.
* - Secondly, the pipelining done by the Job Manager (2 job slots per
* engine) implies there is no way to know exactly how much time each
* job spent on the GPU.
*/
static const char * const engine_names[] = {
"fragment", "vertex-tiler", "compute-only"
};
BUILD_BUG_ON(ARRAY_SIZE(engine_names) != NUM_JOB_SLOTS);
for (i = 0; i < NUM_JOB_SLOTS - 1; i++) {
drm_printf(p, "drm-engine-%s:\t%llu ns\n",
engine_names[i], panfrost_priv->engine_usage.elapsed_ns[i]);
drm_printf(p, "drm-cycles-%s:\t%llu\n",
engine_names[i], panfrost_priv->engine_usage.cycles[i]);
drm_printf(p, "drm-maxfreq-%s:\t%lu Hz\n",
engine_names[i], pfdev->pfdevfreq.fast_rate);
drm_printf(p, "drm-curfreq-%s:\t%lu Hz\n",
engine_names[i], pfdev->pfdevfreq.current_frequency);
}
}
static void panfrost_show_fdinfo(struct drm_printer *p, struct drm_file *file)
{
struct drm_device *dev = file->minor->dev;
struct panfrost_device *pfdev = dev->dev_private;
panfrost_gpu_show_fdinfo(pfdev, file->driver_priv, p);
drm_show_memory_stats(p, file);
}
static const struct file_operations panfrost_drm_driver_fops = {
.owner = THIS_MODULE,
DRM_GEM_FOPS,
.show_fdinfo = drm_show_fdinfo,
};
/*
* Panfrost driver version:
* - 1.0 - initial interface
* - 1.1 - adds HEAP and NOEXEC flags for CREATE_BO
* - 1.2 - adds AFBC_FEATURES query
*/
static const struct drm_driver panfrost_drm_driver = {
.driver_features = DRIVER_RENDER | DRIVER_GEM | DRIVER_SYNCOBJ,
.open = panfrost_open,
.postclose = panfrost_postclose,
.show_fdinfo = panfrost_show_fdinfo,
.ioctls = panfrost_drm_driver_ioctls,
.num_ioctls = ARRAY_SIZE(panfrost_drm_driver_ioctls),
.fops = &panfrost_drm_driver_fops,
.name = "panfrost",
.desc = "panfrost DRM",
.date = "20180908",
.major = 1,
.minor = 2,
.gem_create_object = panfrost_gem_create_object,
.gem_prime_import_sg_table = panfrost_gem_prime_import_sg_table,
#ifdef CONFIG_DEBUG_FS
.debugfs_init = panfrost_debugfs_init,
#endif
};
static int panfrost_probe(struct platform_device *pdev)
{
struct panfrost_device *pfdev;
struct drm_device *ddev;
int err;
pfdev = devm_kzalloc(&pdev->dev, sizeof(*pfdev), GFP_KERNEL);
if (!pfdev)
return -ENOMEM;
pfdev->pdev = pdev;
pfdev->dev = &pdev->dev;
platform_set_drvdata(pdev, pfdev);
pfdev->comp = of_device_get_match_data(&pdev->dev);
if (!pfdev->comp)
return -ENODEV;
pfdev->coherent = device_get_dma_attr(&pdev->dev) == DEV_DMA_COHERENT;
/* Allocate and initialize the DRM device. */
ddev = drm_dev_alloc(&panfrost_drm_driver, &pdev->dev);
if (IS_ERR(ddev))
return PTR_ERR(ddev);
ddev->dev_private = pfdev;
pfdev->ddev = ddev;
mutex_init(&pfdev->shrinker_lock);
INIT_LIST_HEAD(&pfdev->shrinker_list);
err = panfrost_device_init(pfdev);
if (err) {
if (err != -EPROBE_DEFER)
dev_err(&pdev->dev, "Fatal error during GPU init\n");
goto err_out0;
}
pm_runtime_set_active(pfdev->dev);
pm_runtime_mark_last_busy(pfdev->dev);
pm_runtime_enable(pfdev->dev);
pm_runtime_set_autosuspend_delay(pfdev->dev, 50); /* ~3 frames */
pm_runtime_use_autosuspend(pfdev->dev);
/*
* Register the DRM device with the core and the connectors with
* sysfs
*/
err = drm_dev_register(ddev, 0);
if (err < 0)
goto err_out1;
err = panfrost_gem_shrinker_init(ddev);
if (err)
goto err_out2;
return 0;
err_out2:
drm_dev_unregister(ddev);
err_out1:
pm_runtime_disable(pfdev->dev);
panfrost_device_fini(pfdev);
pm_runtime_set_suspended(pfdev->dev);
err_out0:
drm_dev_put(ddev);
return err;
}
static void panfrost_remove(struct platform_device *pdev)
{
struct panfrost_device *pfdev = platform_get_drvdata(pdev);
struct drm_device *ddev = pfdev->ddev;
drm_dev_unregister(ddev);
panfrost_gem_shrinker_cleanup(ddev);
pm_runtime_get_sync(pfdev->dev);
pm_runtime_disable(pfdev->dev);
panfrost_device_fini(pfdev);
pm_runtime_set_suspended(pfdev->dev);
drm_dev_put(ddev);
}
/*
* The OPP core wants the supply names to be NULL terminated, but we need the
* correct num_supplies value for regulator core. Hence, we NULL terminate here
* and then initialize num_supplies with ARRAY_SIZE - 1.
*/
static const char * const default_supplies[] = { "mali", NULL };
static const struct panfrost_compatible default_data = {
.num_supplies = ARRAY_SIZE(default_supplies) - 1,
.supply_names = default_supplies,
.num_pm_domains = 1, /* optional */
.pm_domain_names = NULL,
};
static const struct panfrost_compatible amlogic_data = {
.num_supplies = ARRAY_SIZE(default_supplies) - 1,
.supply_names = default_supplies,
.vendor_quirk = panfrost_gpu_amlogic_quirk,
};
/*
* The old data with two power supplies for MT8183 is here only to
* keep retro-compatibility with older devicetrees, as DVFS will
* not work with this one.
*
* On new devicetrees please use the _b variant with a single and
* coupled regulators instead.
*/
static const char * const mediatek_mt8183_supplies[] = { "mali", "sram", NULL };
static const char * const mediatek_mt8183_pm_domains[] = { "core0", "core1", "core2" };
static const struct panfrost_compatible mediatek_mt8183_data = {
.num_supplies = ARRAY_SIZE(mediatek_mt8183_supplies) - 1,
.supply_names = mediatek_mt8183_supplies,
.num_pm_domains = ARRAY_SIZE(mediatek_mt8183_pm_domains),
.pm_domain_names = mediatek_mt8183_pm_domains,
};
static const char * const mediatek_mt8183_b_supplies[] = { "mali", NULL };
static const struct panfrost_compatible mediatek_mt8183_b_data = {
.num_supplies = ARRAY_SIZE(mediatek_mt8183_b_supplies) - 1,
.supply_names = mediatek_mt8183_b_supplies,
.num_pm_domains = ARRAY_SIZE(mediatek_mt8183_pm_domains),
.pm_domain_names = mediatek_mt8183_pm_domains,
};
static const char * const mediatek_mt8186_pm_domains[] = { "core0", "core1" };
static const struct panfrost_compatible mediatek_mt8186_data = {
.num_supplies = ARRAY_SIZE(mediatek_mt8183_b_supplies) - 1,
.supply_names = mediatek_mt8183_b_supplies,
.num_pm_domains = ARRAY_SIZE(mediatek_mt8186_pm_domains),
.pm_domain_names = mediatek_mt8186_pm_domains,
};
static const char * const mediatek_mt8192_supplies[] = { "mali", NULL };
static const char * const mediatek_mt8192_pm_domains[] = { "core0", "core1", "core2",
"core3", "core4" };
static const struct panfrost_compatible mediatek_mt8192_data = {
.num_supplies = ARRAY_SIZE(mediatek_mt8192_supplies) - 1,
.supply_names = mediatek_mt8192_supplies,
.num_pm_domains = ARRAY_SIZE(mediatek_mt8192_pm_domains),
.pm_domain_names = mediatek_mt8192_pm_domains,
};
static const struct of_device_id dt_match[] = {
/* Set first to probe before the generic compatibles */
{ .compatible = "amlogic,meson-gxm-mali",
.data = &amlogic_data, },
{ .compatible = "amlogic,meson-g12a-mali",
.data = &amlogic_data, },
{ .compatible = "arm,mali-t604", .data = &default_data, },
{ .compatible = "arm,mali-t624", .data = &default_data, },
{ .compatible = "arm,mali-t628", .data = &default_data, },
{ .compatible = "arm,mali-t720", .data = &default_data, },
{ .compatible = "arm,mali-t760", .data = &default_data, },
{ .compatible = "arm,mali-t820", .data = &default_data, },
{ .compatible = "arm,mali-t830", .data = &default_data, },
{ .compatible = "arm,mali-t860", .data = &default_data, },
{ .compatible = "arm,mali-t880", .data = &default_data, },
{ .compatible = "arm,mali-bifrost", .data = &default_data, },
{ .compatible = "arm,mali-valhall-jm", .data = &default_data, },
{ .compatible = "mediatek,mt8183-mali", .data = &mediatek_mt8183_data },
{ .compatible = "mediatek,mt8183b-mali", .data = &mediatek_mt8183_b_data },
{ .compatible = "mediatek,mt8186-mali", .data = &mediatek_mt8186_data },
{ .compatible = "mediatek,mt8192-mali", .data = &mediatek_mt8192_data },
{}
};
MODULE_DEVICE_TABLE(of, dt_match);
static struct platform_driver panfrost_driver = {
.probe = panfrost_probe,
.remove_new = panfrost_remove,
.driver = {
.name = "panfrost",
.pm = pm_ptr(&panfrost_pm_ops),
.of_match_table = dt_match,
},
};
module_platform_driver(panfrost_driver);
MODULE_AUTHOR("Panfrost Project Developers");
MODULE_DESCRIPTION("Panfrost DRM Driver");
MODULE_LICENSE("GPL v2");