mirror of
https://git.proxmox.com/git/mirror_ubuntu-kernels.git
synced 2025-11-08 04:35:48 +00:00
Compilers optimize conditional operators at will, but often bpf programmers
want to force compilers to keep the same operator in asm as it's written in C.
Introduce bpf_cmp_likely/unlikely(var1, conditional_op, var2) macros that can be used as:
- if (seen >= 1000)
+ if (bpf_cmp_unlikely(seen, >=, 1000))
The macros take advantage of BPF assembly that is C like.
The macros check the sign of variable 'seen' and emits either
signed or unsigned compare.
For example:
int a;
bpf_cmp_unlikely(a, >, 0) will be translated to 'if rX s> 0 goto' in BPF assembly.
unsigned int a;
bpf_cmp_unlikely(a, >, 0) will be translated to 'if rX > 0 goto' in BPF assembly.
C type conversions coupled with comparison operator are tricky.
int i = -1;
unsigned int j = 1;
if (i < j) // this is false.
long i = -1;
unsigned int j = 1;
if (i < j) // this is true.
Make sure BPF program is compiled with -Wsign-compare then the macros will catch
the mistake.
The macros check LHS (left hand side) only to figure out the sign of compare.
'if 0 < rX goto' is not allowed in the assembly, so the users
have to use a variable on LHS anyway.
The patch updates few tests to demonstrate the use of the macros.
The macro allows to use BPF_JSET in C code, since LLVM doesn't generate it at
present. For example:
if (i & j) compiles into r0 &= r1; if r0 == 0 goto
while
if (bpf_cmp_unlikely(i, &, j)) compiles into if r0 & r1 goto
Note that the macros has to be careful with RHS assembly predicate.
Since:
u64 __rhs = 1ull << 42;
asm goto("if r0 < %[rhs] goto +1" :: [rhs] "ri" (__rhs));
LLVM will silently truncate 64-bit constant into s32 imm.
Note that [lhs] "r"((short)LHS) the type cast is a workaround for LLVM issue.
When LHS is exactly 32-bit LLVM emits redundant <<=32, >>=32 to zero upper 32-bits.
When LHS is 64 or 16 or 8-bit variable there are no shifts.
When LHS is 32-bit the (u64) cast doesn't help. Hence use (short) cast.
It does _not_ truncate the variable before it's assigned to a register.
Traditional likely()/unlikely() macros that use __builtin_expect(!!(x), 1 or 0)
have no effect on these macros, hence macros implement the logic manually.
bpf_cmp_unlikely() macro preserves compare operator as-is while
bpf_cmp_likely() macro flips the compare.
Consider two cases:
A.
for() {
if (foo >= 10) {
bar += foo;
}
other code;
}
B.
for() {
if (foo >= 10)
break;
other code;
}
It's ok to use either bpf_cmp_likely or bpf_cmp_unlikely macros in both cases,
but consider that 'break' is effectively 'goto out_of_the_loop'.
Hence it's better to use bpf_cmp_unlikely in the B case.
While 'bar += foo' is better to keep as 'fallthrough' == likely code path in the A case.
When it's written as:
A.
for() {
if (bpf_cmp_likely(foo, >=, 10)) {
bar += foo;
}
other code;
}
B.
for() {
if (bpf_cmp_unlikely(foo, >=, 10))
break;
other code;
}
The assembly will look like:
A.
for() {
if r1 < 10 goto L1;
bar += foo;
L1:
other code;
}
B.
for() {
if r1 >= 10 goto L2;
other code;
}
L2:
The bpf_cmp_likely vs bpf_cmp_unlikely changes basic block layout, hence it will
greatly influence the verification process. The number of processed instructions
will be different, since the verifier walks the fallthrough first.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/bpf/20231226191148.48536-3-alexei.starovoitov@gmail.com
369 lines
7.1 KiB
C
369 lines
7.1 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <vmlinux.h>
|
|
#include <bpf/bpf_tracing.h>
|
|
#include <bpf/bpf_helpers.h>
|
|
#include <bpf/bpf_core_read.h>
|
|
#include <bpf/bpf_endian.h>
|
|
#include "bpf_misc.h"
|
|
#include "bpf_experimental.h"
|
|
|
|
#ifndef ETH_P_IP
|
|
#define ETH_P_IP 0x0800
|
|
#endif
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_PROG_ARRAY);
|
|
__uint(max_entries, 4);
|
|
__uint(key_size, sizeof(__u32));
|
|
__uint(value_size, sizeof(__u32));
|
|
} jmp_table SEC(".maps");
|
|
|
|
static __noinline int static_func(u64 i)
|
|
{
|
|
bpf_throw(32);
|
|
return i;
|
|
}
|
|
|
|
__noinline int global2static_simple(u64 i)
|
|
{
|
|
static_func(i + 2);
|
|
return i - 1;
|
|
}
|
|
|
|
__noinline int global2static(u64 i)
|
|
{
|
|
if (i == ETH_P_IP)
|
|
bpf_throw(16);
|
|
return static_func(i);
|
|
}
|
|
|
|
static __noinline int static2global(u64 i)
|
|
{
|
|
return global2static(i) + i;
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_throw_always_1(struct __sk_buff *ctx)
|
|
{
|
|
bpf_throw(64);
|
|
return 0;
|
|
}
|
|
|
|
/* In this case, the global func will never be seen executing after call to
|
|
* static subprog, hence verifier will DCE the remaining instructions. Ensure we
|
|
* are resilient to that.
|
|
*/
|
|
SEC("tc")
|
|
int exception_throw_always_2(struct __sk_buff *ctx)
|
|
{
|
|
return global2static_simple(ctx->protocol);
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_throw_unwind_1(struct __sk_buff *ctx)
|
|
{
|
|
return static2global(bpf_ntohs(ctx->protocol));
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_throw_unwind_2(struct __sk_buff *ctx)
|
|
{
|
|
return static2global(bpf_ntohs(ctx->protocol) - 1);
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_throw_default(struct __sk_buff *ctx)
|
|
{
|
|
bpf_throw(0);
|
|
return 1;
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_throw_default_value(struct __sk_buff *ctx)
|
|
{
|
|
bpf_throw(5);
|
|
return 1;
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_tail_call_target(struct __sk_buff *ctx)
|
|
{
|
|
bpf_throw(16);
|
|
return 0;
|
|
}
|
|
|
|
static __noinline
|
|
int exception_tail_call_subprog(struct __sk_buff *ctx)
|
|
{
|
|
volatile int ret = 10;
|
|
|
|
bpf_tail_call_static(ctx, &jmp_table, 0);
|
|
return ret;
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_tail_call(struct __sk_buff *ctx) {
|
|
volatile int ret = 0;
|
|
|
|
ret = exception_tail_call_subprog(ctx);
|
|
return ret + 8;
|
|
}
|
|
|
|
__noinline int exception_ext_global(struct __sk_buff *ctx)
|
|
{
|
|
volatile int ret = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __noinline int exception_ext_static(struct __sk_buff *ctx)
|
|
{
|
|
return exception_ext_global(ctx);
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_ext(struct __sk_buff *ctx)
|
|
{
|
|
return exception_ext_static(ctx);
|
|
}
|
|
|
|
__noinline int exception_cb_mod_global(u64 cookie)
|
|
{
|
|
volatile int ret = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Example of how the exception callback supplied during verification can still
|
|
* introduce extensions by calling to dummy global functions, and alter runtime
|
|
* behavior.
|
|
*
|
|
* Right now we don't allow freplace attachment to exception callback itself,
|
|
* but if the need arises this restriction is technically feasible to relax in
|
|
* the future.
|
|
*/
|
|
__noinline int exception_cb_mod(u64 cookie)
|
|
{
|
|
return exception_cb_mod_global(cookie) + cookie + 10;
|
|
}
|
|
|
|
SEC("tc")
|
|
__exception_cb(exception_cb_mod)
|
|
int exception_ext_mod_cb_runtime(struct __sk_buff *ctx)
|
|
{
|
|
bpf_throw(25);
|
|
return 0;
|
|
}
|
|
|
|
__noinline static int subprog(struct __sk_buff *ctx)
|
|
{
|
|
return bpf_ktime_get_ns();
|
|
}
|
|
|
|
__noinline static int throwing_subprog(struct __sk_buff *ctx)
|
|
{
|
|
if (ctx->tstamp)
|
|
bpf_throw(0);
|
|
return bpf_ktime_get_ns();
|
|
}
|
|
|
|
__noinline int global_subprog(struct __sk_buff *ctx)
|
|
{
|
|
return bpf_ktime_get_ns();
|
|
}
|
|
|
|
__noinline int throwing_global_subprog(struct __sk_buff *ctx)
|
|
{
|
|
if (ctx->tstamp)
|
|
bpf_throw(0);
|
|
return bpf_ktime_get_ns();
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_throw_subprog(struct __sk_buff *ctx)
|
|
{
|
|
switch (ctx->protocol) {
|
|
case 1:
|
|
return subprog(ctx);
|
|
case 2:
|
|
return global_subprog(ctx);
|
|
case 3:
|
|
return throwing_subprog(ctx);
|
|
case 4:
|
|
return throwing_global_subprog(ctx);
|
|
default:
|
|
break;
|
|
}
|
|
bpf_throw(1);
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_nz_gfunc(u64 c)
|
|
{
|
|
volatile u64 cookie = c;
|
|
|
|
bpf_assert(cookie != 0);
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_zero_gfunc(u64 c)
|
|
{
|
|
volatile u64 cookie = c;
|
|
|
|
bpf_assert(bpf_cmp_unlikely(cookie, ==, 0));
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_neg_gfunc(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert(bpf_cmp_unlikely(cookie, <, 0));
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_pos_gfunc(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert(bpf_cmp_unlikely(cookie, >, 0));
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_negeq_gfunc(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert(bpf_cmp_unlikely(cookie, <=, -1));
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_poseq_gfunc(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert(bpf_cmp_unlikely(cookie, >=, 1));
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_nz_gfunc_with(u64 c)
|
|
{
|
|
volatile u64 cookie = c;
|
|
|
|
bpf_assert_with(cookie != 0, cookie + 100);
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_zero_gfunc_with(u64 c)
|
|
{
|
|
volatile u64 cookie = c;
|
|
|
|
bpf_assert_with(bpf_cmp_unlikely(cookie, ==, 0), cookie + 100);
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_neg_gfunc_with(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert_with(bpf_cmp_unlikely(cookie, <, 0), cookie + 100);
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_pos_gfunc_with(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert_with(bpf_cmp_unlikely(cookie, >, 0), cookie + 100);
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_negeq_gfunc_with(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert_with(bpf_cmp_unlikely(cookie, <=, -1), cookie + 100);
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_poseq_gfunc_with(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert_with(bpf_cmp_unlikely(cookie, >=, 1), cookie + 100);
|
|
return 0;
|
|
}
|
|
|
|
#define check_assert(name, cookie, tag) \
|
|
SEC("tc") \
|
|
int exception##tag##name(struct __sk_buff *ctx) \
|
|
{ \
|
|
return name(cookie) + 1; \
|
|
}
|
|
|
|
check_assert(assert_nz_gfunc, 5, _);
|
|
check_assert(assert_zero_gfunc, 0, _);
|
|
check_assert(assert_neg_gfunc, -100, _);
|
|
check_assert(assert_pos_gfunc, 100, _);
|
|
check_assert(assert_negeq_gfunc, -1, _);
|
|
check_assert(assert_poseq_gfunc, 1, _);
|
|
|
|
check_assert(assert_nz_gfunc_with, 5, _);
|
|
check_assert(assert_zero_gfunc_with, 0, _);
|
|
check_assert(assert_neg_gfunc_with, -100, _);
|
|
check_assert(assert_pos_gfunc_with, 100, _);
|
|
check_assert(assert_negeq_gfunc_with, -1, _);
|
|
check_assert(assert_poseq_gfunc_with, 1, _);
|
|
|
|
check_assert(assert_nz_gfunc, 0, _bad_);
|
|
check_assert(assert_zero_gfunc, 5, _bad_);
|
|
check_assert(assert_neg_gfunc, 100, _bad_);
|
|
check_assert(assert_pos_gfunc, -100, _bad_);
|
|
check_assert(assert_negeq_gfunc, 1, _bad_);
|
|
check_assert(assert_poseq_gfunc, -1, _bad_);
|
|
|
|
check_assert(assert_nz_gfunc_with, 0, _bad_);
|
|
check_assert(assert_zero_gfunc_with, 5, _bad_);
|
|
check_assert(assert_neg_gfunc_with, 100, _bad_);
|
|
check_assert(assert_pos_gfunc_with, -100, _bad_);
|
|
check_assert(assert_negeq_gfunc_with, 1, _bad_);
|
|
check_assert(assert_poseq_gfunc_with, -1, _bad_);
|
|
|
|
SEC("tc")
|
|
int exception_assert_range(struct __sk_buff *ctx)
|
|
{
|
|
u64 time = bpf_ktime_get_ns();
|
|
|
|
bpf_assert_range(time, 0, ~0ULL);
|
|
return 1;
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_assert_range_with(struct __sk_buff *ctx)
|
|
{
|
|
u64 time = bpf_ktime_get_ns();
|
|
|
|
bpf_assert_range_with(time, 0, ~0ULL, 10);
|
|
return 1;
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_bad_assert_range(struct __sk_buff *ctx)
|
|
{
|
|
u64 time = bpf_ktime_get_ns();
|
|
|
|
bpf_assert_range(time, -100, 100);
|
|
return 1;
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_bad_assert_range_with(struct __sk_buff *ctx)
|
|
{
|
|
u64 time = bpf_ktime_get_ns();
|
|
|
|
bpf_assert_range_with(time, -1000, 1000, 10);
|
|
return 1;
|
|
}
|
|
|
|
char _license[] SEC("license") = "GPL";
|