mirror_ubuntu-kernels/drivers/s390/crypto/vfio_ap_ops.c
Tony Krowiak d0786556ca s390/vfio-ap: rename matrix_dev->lock mutex to matrix_dev->mdevs_lock
The matrix_dev->lock mutex is being renamed to matrix_dev->mdevs_lock to
better reflect its purpose, which is to control access to the state of the
mediated devices under the control of the vfio_ap device driver.

Signed-off-by: Tony Krowiak <akrowiak@linux.ibm.com>
Reviewed-by: Jason J. Herne <jjherne@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
2022-07-19 16:18:10 +02:00

1691 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Adjunct processor matrix VFIO device driver callbacks.
*
* Copyright IBM Corp. 2018
*
* Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
* Halil Pasic <pasic@linux.ibm.com>
* Pierre Morel <pmorel@linux.ibm.com>
*/
#include <linux/string.h>
#include <linux/vfio.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/ctype.h>
#include <linux/bitops.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/uuid.h>
#include <asm/kvm.h>
#include <asm/zcrypt.h>
#include "vfio_ap_private.h"
#include "vfio_ap_debug.h"
#define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough"
#define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device"
#define AP_QUEUE_ASSIGNED "assigned"
#define AP_QUEUE_UNASSIGNED "unassigned"
#define AP_QUEUE_IN_USE "in use"
static int vfio_ap_mdev_reset_queues(struct ap_matrix_mdev *matrix_mdev);
static struct vfio_ap_queue *vfio_ap_find_queue(int apqn);
static const struct vfio_device_ops vfio_ap_matrix_dev_ops;
/**
* vfio_ap_mdev_get_queue - retrieve a queue with a specific APQN from a
* hash table of queues assigned to a matrix mdev
* @matrix_mdev: the matrix mdev
* @apqn: The APQN of a queue device
*
* Return: the pointer to the vfio_ap_queue struct representing the queue or
* NULL if the queue is not assigned to @matrix_mdev
*/
static struct vfio_ap_queue *vfio_ap_mdev_get_queue(
struct ap_matrix_mdev *matrix_mdev,
int apqn)
{
struct vfio_ap_queue *q;
hash_for_each_possible(matrix_mdev->qtable.queues, q, mdev_qnode,
apqn) {
if (q && q->apqn == apqn)
return q;
}
return NULL;
}
/**
* vfio_ap_wait_for_irqclear - clears the IR bit or gives up after 5 tries
* @apqn: The AP Queue number
*
* Checks the IRQ bit for the status of this APQN using ap_tapq.
* Returns if the ap_tapq function succeeded and the bit is clear.
* Returns if ap_tapq function failed with invalid, deconfigured or
* checkstopped AP.
* Otherwise retries up to 5 times after waiting 20ms.
*/
static void vfio_ap_wait_for_irqclear(int apqn)
{
struct ap_queue_status status;
int retry = 5;
do {
status = ap_tapq(apqn, NULL);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
case AP_RESPONSE_RESET_IN_PROGRESS:
if (!status.irq_enabled)
return;
fallthrough;
case AP_RESPONSE_BUSY:
msleep(20);
break;
case AP_RESPONSE_Q_NOT_AVAIL:
case AP_RESPONSE_DECONFIGURED:
case AP_RESPONSE_CHECKSTOPPED:
default:
WARN_ONCE(1, "%s: tapq rc %02x: %04x\n", __func__,
status.response_code, apqn);
return;
}
} while (--retry);
WARN_ONCE(1, "%s: tapq rc %02x: %04x could not clear IR bit\n",
__func__, status.response_code, apqn);
}
/**
* vfio_ap_free_aqic_resources - free vfio_ap_queue resources
* @q: The vfio_ap_queue
*
* Unregisters the ISC in the GIB when the saved ISC not invalid.
* Unpins the guest's page holding the NIB when it exists.
* Resets the saved_pfn and saved_isc to invalid values.
*/
static void vfio_ap_free_aqic_resources(struct vfio_ap_queue *q)
{
if (!q)
return;
if (q->saved_isc != VFIO_AP_ISC_INVALID &&
!WARN_ON(!(q->matrix_mdev && q->matrix_mdev->kvm))) {
kvm_s390_gisc_unregister(q->matrix_mdev->kvm, q->saved_isc);
q->saved_isc = VFIO_AP_ISC_INVALID;
}
if (q->saved_pfn && !WARN_ON(!q->matrix_mdev)) {
vfio_unpin_pages(&q->matrix_mdev->vdev, &q->saved_pfn, 1);
q->saved_pfn = 0;
}
}
/**
* vfio_ap_irq_disable - disables and clears an ap_queue interrupt
* @q: The vfio_ap_queue
*
* Uses ap_aqic to disable the interruption and in case of success, reset
* in progress or IRQ disable command already proceeded: calls
* vfio_ap_wait_for_irqclear() to check for the IRQ bit to be clear
* and calls vfio_ap_free_aqic_resources() to free the resources associated
* with the AP interrupt handling.
*
* In the case the AP is busy, or a reset is in progress,
* retries after 20ms, up to 5 times.
*
* Returns if ap_aqic function failed with invalid, deconfigured or
* checkstopped AP.
*
* Return: &struct ap_queue_status
*/
static struct ap_queue_status vfio_ap_irq_disable(struct vfio_ap_queue *q)
{
struct ap_qirq_ctrl aqic_gisa = {};
struct ap_queue_status status;
int retries = 5;
do {
status = ap_aqic(q->apqn, aqic_gisa, NULL);
switch (status.response_code) {
case AP_RESPONSE_OTHERWISE_CHANGED:
case AP_RESPONSE_NORMAL:
vfio_ap_wait_for_irqclear(q->apqn);
goto end_free;
case AP_RESPONSE_RESET_IN_PROGRESS:
case AP_RESPONSE_BUSY:
msleep(20);
break;
case AP_RESPONSE_Q_NOT_AVAIL:
case AP_RESPONSE_DECONFIGURED:
case AP_RESPONSE_CHECKSTOPPED:
case AP_RESPONSE_INVALID_ADDRESS:
default:
/* All cases in default means AP not operational */
WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
status.response_code);
goto end_free;
}
} while (retries--);
WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
status.response_code);
end_free:
vfio_ap_free_aqic_resources(q);
return status;
}
/**
* vfio_ap_validate_nib - validate a notification indicator byte (nib) address.
*
* @vcpu: the object representing the vcpu executing the PQAP(AQIC) instruction.
* @nib: the location for storing the nib address.
* @g_pfn: the location for storing the page frame number of the page containing
* the nib.
*
* When the PQAP(AQIC) instruction is executed, general register 2 contains the
* address of the notification indicator byte (nib) used for IRQ notification.
* This function parses the nib from gr2 and calculates the page frame
* number for the guest of the page containing the nib. The values are
* stored in @nib and @g_pfn respectively.
*
* The g_pfn of the nib is then validated to ensure the nib address is valid.
*
* Return: returns zero if the nib address is a valid; otherwise, returns
* -EINVAL.
*/
static int vfio_ap_validate_nib(struct kvm_vcpu *vcpu, unsigned long *nib,
unsigned long *g_pfn)
{
*nib = vcpu->run->s.regs.gprs[2];
*g_pfn = *nib >> PAGE_SHIFT;
if (kvm_is_error_hva(gfn_to_hva(vcpu->kvm, *g_pfn)))
return -EINVAL;
return 0;
}
/**
* vfio_ap_irq_enable - Enable Interruption for a APQN
*
* @q: the vfio_ap_queue holding AQIC parameters
* @isc: the guest ISC to register with the GIB interface
* @vcpu: the vcpu object containing the registers specifying the parameters
* passed to the PQAP(AQIC) instruction.
*
* Pin the NIB saved in *q
* Register the guest ISC to GIB interface and retrieve the
* host ISC to issue the host side PQAP/AQIC
*
* Response.status may be set to AP_RESPONSE_INVALID_ADDRESS in case the
* vfio_pin_pages failed.
*
* Otherwise return the ap_queue_status returned by the ap_aqic(),
* all retry handling will be done by the guest.
*
* Return: &struct ap_queue_status
*/
static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q,
int isc,
struct kvm_vcpu *vcpu)
{
unsigned long nib;
struct ap_qirq_ctrl aqic_gisa = {};
struct ap_queue_status status = {};
struct kvm_s390_gisa *gisa;
int nisc;
struct kvm *kvm;
unsigned long h_nib, g_pfn, h_pfn;
int ret;
/* Verify that the notification indicator byte address is valid */
if (vfio_ap_validate_nib(vcpu, &nib, &g_pfn)) {
VFIO_AP_DBF_WARN("%s: invalid NIB address: nib=%#lx, g_pfn=%#lx, apqn=%#04x\n",
__func__, nib, g_pfn, q->apqn);
status.response_code = AP_RESPONSE_INVALID_ADDRESS;
return status;
}
ret = vfio_pin_pages(&q->matrix_mdev->vdev, &g_pfn, 1,
IOMMU_READ | IOMMU_WRITE, &h_pfn);
switch (ret) {
case 1:
break;
default:
VFIO_AP_DBF_WARN("%s: vfio_pin_pages failed: rc=%d,"
"nib=%#lx, g_pfn=%#lx, apqn=%#04x\n",
__func__, ret, nib, g_pfn, q->apqn);
status.response_code = AP_RESPONSE_INVALID_ADDRESS;
return status;
}
kvm = q->matrix_mdev->kvm;
gisa = kvm->arch.gisa_int.origin;
h_nib = (h_pfn << PAGE_SHIFT) | (nib & ~PAGE_MASK);
aqic_gisa.gisc = isc;
nisc = kvm_s390_gisc_register(kvm, isc);
if (nisc < 0) {
VFIO_AP_DBF_WARN("%s: gisc registration failed: nisc=%d, isc=%d, apqn=%#04x\n",
__func__, nisc, isc, q->apqn);
status.response_code = AP_RESPONSE_INVALID_GISA;
return status;
}
aqic_gisa.isc = nisc;
aqic_gisa.ir = 1;
aqic_gisa.gisa = (uint64_t)gisa >> 4;
status = ap_aqic(q->apqn, aqic_gisa, (void *)h_nib);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
/* See if we did clear older IRQ configuration */
vfio_ap_free_aqic_resources(q);
q->saved_pfn = g_pfn;
q->saved_isc = isc;
break;
case AP_RESPONSE_OTHERWISE_CHANGED:
/* We could not modify IRQ setings: clear new configuration */
vfio_unpin_pages(&q->matrix_mdev->vdev, &g_pfn, 1);
kvm_s390_gisc_unregister(kvm, isc);
break;
default:
pr_warn("%s: apqn %04x: response: %02x\n", __func__, q->apqn,
status.response_code);
vfio_ap_irq_disable(q);
break;
}
if (status.response_code != AP_RESPONSE_NORMAL) {
VFIO_AP_DBF_WARN("%s: PQAP(AQIC) failed with status=%#02x: "
"zone=%#x, ir=%#x, gisc=%#x, f=%#x,"
"gisa=%#x, isc=%#x, apqn=%#04x\n",
__func__, status.response_code,
aqic_gisa.zone, aqic_gisa.ir, aqic_gisa.gisc,
aqic_gisa.gf, aqic_gisa.gisa, aqic_gisa.isc,
q->apqn);
}
return status;
}
/**
* vfio_ap_le_guid_to_be_uuid - convert a little endian guid array into an array
* of big endian elements that can be passed by
* value to an s390dbf sprintf event function to
* format a UUID string.
*
* @guid: the object containing the little endian guid
* @uuid: a six-element array of long values that can be passed by value as
* arguments for a formatting string specifying a UUID.
*
* The S390 Debug Feature (s390dbf) allows the use of "%s" in the sprintf
* event functions if the memory for the passed string is available as long as
* the debug feature exists. Since a mediated device can be removed at any
* time, it's name can not be used because %s passes the reference to the string
* in memory and the reference will go stale once the device is removed .
*
* The s390dbf string formatting function allows a maximum of 9 arguments for a
* message to be displayed in the 'sprintf' view. In order to use the bytes
* comprising the mediated device's UUID to display the mediated device name,
* they will have to be converted into an array whose elements can be passed by
* value to sprintf. For example:
*
* guid array: { 83, 78, 17, 62, bb, f1, f0, 47, 91, 4d, 32, a2, 2e, 3a, 88, 04 }
* mdev name: 62177883-f1bb-47f0-914d-32a22e3a8804
* array returned: { 62177883, f1bb, 47f0, 914d, 32a2, 2e3a8804 }
* formatting string: "%08lx-%04lx-%04lx-%04lx-%02lx%04lx"
*/
static void vfio_ap_le_guid_to_be_uuid(guid_t *guid, unsigned long *uuid)
{
/*
* The input guid is ordered in little endian, so it needs to be
* reordered for displaying a UUID as a string. This specifies the
* guid indices in proper order.
*/
uuid[0] = le32_to_cpup((__le32 *)guid);
uuid[1] = le16_to_cpup((__le16 *)&guid->b[4]);
uuid[2] = le16_to_cpup((__le16 *)&guid->b[6]);
uuid[3] = *((__u16 *)&guid->b[8]);
uuid[4] = *((__u16 *)&guid->b[10]);
uuid[5] = *((__u32 *)&guid->b[12]);
}
/**
* handle_pqap - PQAP instruction callback
*
* @vcpu: The vcpu on which we received the PQAP instruction
*
* Get the general register contents to initialize internal variables.
* REG[0]: APQN
* REG[1]: IR and ISC
* REG[2]: NIB
*
* Response.status may be set to following Response Code:
* - AP_RESPONSE_Q_NOT_AVAIL: if the queue is not available
* - AP_RESPONSE_DECONFIGURED: if the queue is not configured
* - AP_RESPONSE_NORMAL (0) : in case of successs
* Check vfio_ap_setirq() and vfio_ap_clrirq() for other possible RC.
* We take the matrix_dev lock to ensure serialization on queues and
* mediated device access.
*
* Return: 0 if we could handle the request inside KVM.
* Otherwise, returns -EOPNOTSUPP to let QEMU handle the fault.
*/
static int handle_pqap(struct kvm_vcpu *vcpu)
{
uint64_t status;
uint16_t apqn;
unsigned long uuid[6];
struct vfio_ap_queue *q;
struct ap_queue_status qstatus = {
.response_code = AP_RESPONSE_Q_NOT_AVAIL, };
struct ap_matrix_mdev *matrix_mdev;
apqn = vcpu->run->s.regs.gprs[0] & 0xffff;
/* If we do not use the AIV facility just go to userland */
if (!(vcpu->arch.sie_block->eca & ECA_AIV)) {
VFIO_AP_DBF_WARN("%s: AIV facility not installed: apqn=0x%04x, eca=0x%04x\n",
__func__, apqn, vcpu->arch.sie_block->eca);
return -EOPNOTSUPP;
}
mutex_lock(&matrix_dev->mdevs_lock);
if (!vcpu->kvm->arch.crypto.pqap_hook) {
VFIO_AP_DBF_WARN("%s: PQAP(AQIC) hook not registered with the vfio_ap driver: apqn=0x%04x\n",
__func__, apqn);
goto out_unlock;
}
matrix_mdev = container_of(vcpu->kvm->arch.crypto.pqap_hook,
struct ap_matrix_mdev, pqap_hook);
/* If the there is no guest using the mdev, there is nothing to do */
if (!matrix_mdev->kvm) {
vfio_ap_le_guid_to_be_uuid(&matrix_mdev->mdev->uuid, uuid);
VFIO_AP_DBF_WARN("%s: mdev %08lx-%04lx-%04lx-%04lx-%04lx%08lx not in use: apqn=0x%04x\n",
__func__, uuid[0], uuid[1], uuid[2],
uuid[3], uuid[4], uuid[5], apqn);
goto out_unlock;
}
q = vfio_ap_mdev_get_queue(matrix_mdev, apqn);
if (!q) {
VFIO_AP_DBF_WARN("%s: Queue %02x.%04x not bound to the vfio_ap driver\n",
__func__, AP_QID_CARD(apqn),
AP_QID_QUEUE(apqn));
goto out_unlock;
}
status = vcpu->run->s.regs.gprs[1];
/* If IR bit(16) is set we enable the interrupt */
if ((status >> (63 - 16)) & 0x01)
qstatus = vfio_ap_irq_enable(q, status & 0x07, vcpu);
else
qstatus = vfio_ap_irq_disable(q);
out_unlock:
memcpy(&vcpu->run->s.regs.gprs[1], &qstatus, sizeof(qstatus));
vcpu->run->s.regs.gprs[1] >>= 32;
mutex_unlock(&matrix_dev->mdevs_lock);
return 0;
}
static void vfio_ap_matrix_init(struct ap_config_info *info,
struct ap_matrix *matrix)
{
matrix->apm_max = info->apxa ? info->Na : 63;
matrix->aqm_max = info->apxa ? info->Nd : 15;
matrix->adm_max = info->apxa ? info->Nd : 15;
}
static void vfio_ap_mdev_filter_cdoms(struct ap_matrix_mdev *matrix_mdev)
{
bitmap_and(matrix_mdev->shadow_apcb.adm, matrix_mdev->matrix.adm,
(unsigned long *)matrix_dev->info.adm, AP_DOMAINS);
}
/*
* vfio_ap_mdev_filter_matrix - filter the APQNs assigned to the matrix mdev
* to ensure no queue devices are passed through to
* the guest that are not bound to the vfio_ap
* device driver.
*
* @matrix_mdev: the matrix mdev whose matrix is to be filtered.
*
* Note: If an APQN referencing a queue device that is not bound to the vfio_ap
* driver, its APID will be filtered from the guest's APCB. The matrix
* structure precludes filtering an individual APQN, so its APID will be
* filtered.
*/
static void vfio_ap_mdev_filter_matrix(unsigned long *apm, unsigned long *aqm,
struct ap_matrix_mdev *matrix_mdev)
{
int ret;
unsigned long apid, apqi, apqn;
ret = ap_qci(&matrix_dev->info);
if (ret)
return;
vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb);
/*
* Copy the adapters, domains and control domains to the shadow_apcb
* from the matrix mdev, but only those that are assigned to the host's
* AP configuration.
*/
bitmap_and(matrix_mdev->shadow_apcb.apm, matrix_mdev->matrix.apm,
(unsigned long *)matrix_dev->info.apm, AP_DEVICES);
bitmap_and(matrix_mdev->shadow_apcb.aqm, matrix_mdev->matrix.aqm,
(unsigned long *)matrix_dev->info.aqm, AP_DOMAINS);
for_each_set_bit_inv(apid, apm, AP_DEVICES) {
for_each_set_bit_inv(apqi, aqm, AP_DOMAINS) {
/*
* If the APQN is not bound to the vfio_ap device
* driver, then we can't assign it to the guest's
* AP configuration. The AP architecture won't
* allow filtering of a single APQN, so let's filter
* the APID since an adapter represents a physical
* hardware device.
*/
apqn = AP_MKQID(apid, apqi);
if (!vfio_ap_mdev_get_queue(matrix_mdev, apqn)) {
clear_bit_inv(apid,
matrix_mdev->shadow_apcb.apm);
break;
}
}
}
}
static int vfio_ap_mdev_probe(struct mdev_device *mdev)
{
struct ap_matrix_mdev *matrix_mdev;
int ret;
if ((atomic_dec_if_positive(&matrix_dev->available_instances) < 0))
return -EPERM;
matrix_mdev = kzalloc(sizeof(*matrix_mdev), GFP_KERNEL);
if (!matrix_mdev) {
ret = -ENOMEM;
goto err_dec_available;
}
vfio_init_group_dev(&matrix_mdev->vdev, &mdev->dev,
&vfio_ap_matrix_dev_ops);
matrix_mdev->mdev = mdev;
vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix);
matrix_mdev->pqap_hook = handle_pqap;
vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb);
hash_init(matrix_mdev->qtable.queues);
dev_set_drvdata(&mdev->dev, matrix_mdev);
mutex_lock(&matrix_dev->mdevs_lock);
list_add(&matrix_mdev->node, &matrix_dev->mdev_list);
mutex_unlock(&matrix_dev->mdevs_lock);
ret = vfio_register_emulated_iommu_dev(&matrix_mdev->vdev);
if (ret)
goto err_list;
dev_set_drvdata(&mdev->dev, matrix_mdev);
return 0;
err_list:
mutex_lock(&matrix_dev->mdevs_lock);
list_del(&matrix_mdev->node);
mutex_unlock(&matrix_dev->mdevs_lock);
vfio_uninit_group_dev(&matrix_mdev->vdev);
kfree(matrix_mdev);
err_dec_available:
atomic_inc(&matrix_dev->available_instances);
return ret;
}
static void vfio_ap_mdev_link_queue(struct ap_matrix_mdev *matrix_mdev,
struct vfio_ap_queue *q)
{
if (q) {
q->matrix_mdev = matrix_mdev;
hash_add(matrix_mdev->qtable.queues, &q->mdev_qnode, q->apqn);
}
}
static void vfio_ap_mdev_link_apqn(struct ap_matrix_mdev *matrix_mdev, int apqn)
{
struct vfio_ap_queue *q;
q = vfio_ap_find_queue(apqn);
vfio_ap_mdev_link_queue(matrix_mdev, q);
}
static void vfio_ap_unlink_queue_fr_mdev(struct vfio_ap_queue *q)
{
hash_del(&q->mdev_qnode);
}
static void vfio_ap_unlink_mdev_fr_queue(struct vfio_ap_queue *q)
{
q->matrix_mdev = NULL;
}
static void vfio_ap_mdev_unlink_queue(struct vfio_ap_queue *q)
{
vfio_ap_unlink_queue_fr_mdev(q);
vfio_ap_unlink_mdev_fr_queue(q);
}
static void vfio_ap_mdev_unlink_fr_queues(struct ap_matrix_mdev *matrix_mdev)
{
struct vfio_ap_queue *q;
unsigned long apid, apqi;
for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) {
for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
AP_DOMAINS) {
q = vfio_ap_mdev_get_queue(matrix_mdev,
AP_MKQID(apid, apqi));
if (q)
q->matrix_mdev = NULL;
}
}
}
static void vfio_ap_mdev_remove(struct mdev_device *mdev)
{
struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(&mdev->dev);
vfio_unregister_group_dev(&matrix_mdev->vdev);
mutex_lock(&matrix_dev->mdevs_lock);
vfio_ap_mdev_reset_queues(matrix_mdev);
vfio_ap_mdev_unlink_fr_queues(matrix_mdev);
list_del(&matrix_mdev->node);
mutex_unlock(&matrix_dev->mdevs_lock);
vfio_uninit_group_dev(&matrix_mdev->vdev);
kfree(matrix_mdev);
atomic_inc(&matrix_dev->available_instances);
}
static ssize_t name_show(struct mdev_type *mtype,
struct mdev_type_attribute *attr, char *buf)
{
return sprintf(buf, "%s\n", VFIO_AP_MDEV_NAME_HWVIRT);
}
static MDEV_TYPE_ATTR_RO(name);
static ssize_t available_instances_show(struct mdev_type *mtype,
struct mdev_type_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n",
atomic_read(&matrix_dev->available_instances));
}
static MDEV_TYPE_ATTR_RO(available_instances);
static ssize_t device_api_show(struct mdev_type *mtype,
struct mdev_type_attribute *attr, char *buf)
{
return sprintf(buf, "%s\n", VFIO_DEVICE_API_AP_STRING);
}
static MDEV_TYPE_ATTR_RO(device_api);
static struct attribute *vfio_ap_mdev_type_attrs[] = {
&mdev_type_attr_name.attr,
&mdev_type_attr_device_api.attr,
&mdev_type_attr_available_instances.attr,
NULL,
};
static struct attribute_group vfio_ap_mdev_hwvirt_type_group = {
.name = VFIO_AP_MDEV_TYPE_HWVIRT,
.attrs = vfio_ap_mdev_type_attrs,
};
static struct attribute_group *vfio_ap_mdev_type_groups[] = {
&vfio_ap_mdev_hwvirt_type_group,
NULL,
};
#define MDEV_SHARING_ERR "Userspace may not re-assign queue %02lx.%04lx " \
"already assigned to %s"
static void vfio_ap_mdev_log_sharing_err(struct ap_matrix_mdev *matrix_mdev,
unsigned long *apm,
unsigned long *aqm)
{
unsigned long apid, apqi;
const struct device *dev = mdev_dev(matrix_mdev->mdev);
const char *mdev_name = dev_name(dev);
for_each_set_bit_inv(apid, apm, AP_DEVICES)
for_each_set_bit_inv(apqi, aqm, AP_DOMAINS)
dev_warn(dev, MDEV_SHARING_ERR, apid, apqi, mdev_name);
}
/**
* vfio_ap_mdev_verify_no_sharing - verify APQNs are not shared by matrix mdevs
*
* @mdev_apm: mask indicating the APIDs of the APQNs to be verified
* @mdev_aqm: mask indicating the APQIs of the APQNs to be verified
*
* Verifies that each APQN derived from the Cartesian product of a bitmap of
* AP adapter IDs and AP queue indexes is not configured for any matrix
* mediated device. AP queue sharing is not allowed.
*
* Return: 0 if the APQNs are not shared; otherwise return -EADDRINUSE.
*/
static int vfio_ap_mdev_verify_no_sharing(unsigned long *mdev_apm,
unsigned long *mdev_aqm)
{
struct ap_matrix_mdev *matrix_mdev;
DECLARE_BITMAP(apm, AP_DEVICES);
DECLARE_BITMAP(aqm, AP_DOMAINS);
list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
/*
* If the input apm and aqm are fields of the matrix_mdev
* object, then move on to the next matrix_mdev.
*/
if (mdev_apm == matrix_mdev->matrix.apm &&
mdev_aqm == matrix_mdev->matrix.aqm)
continue;
memset(apm, 0, sizeof(apm));
memset(aqm, 0, sizeof(aqm));
/*
* We work on full longs, as we can only exclude the leftover
* bits in non-inverse order. The leftover is all zeros.
*/
if (!bitmap_and(apm, mdev_apm, matrix_mdev->matrix.apm,
AP_DEVICES))
continue;
if (!bitmap_and(aqm, mdev_aqm, matrix_mdev->matrix.aqm,
AP_DOMAINS))
continue;
vfio_ap_mdev_log_sharing_err(matrix_mdev, apm, aqm);
return -EADDRINUSE;
}
return 0;
}
static int vfio_ap_mdev_validate_masks(struct ap_matrix_mdev *matrix_mdev)
{
if (ap_apqn_in_matrix_owned_by_def_drv(matrix_mdev->matrix.apm,
matrix_mdev->matrix.aqm))
return -EADDRNOTAVAIL;
return vfio_ap_mdev_verify_no_sharing(matrix_mdev->matrix.apm,
matrix_mdev->matrix.aqm);
}
static void vfio_ap_mdev_link_adapter(struct ap_matrix_mdev *matrix_mdev,
unsigned long apid)
{
unsigned long apqi;
for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS)
vfio_ap_mdev_link_apqn(matrix_mdev,
AP_MKQID(apid, apqi));
}
/**
* assign_adapter_store - parses the APID from @buf and sets the
* corresponding bit in the mediated matrix device's APM
*
* @dev: the matrix device
* @attr: the mediated matrix device's assign_adapter attribute
* @buf: a buffer containing the AP adapter number (APID) to
* be assigned
* @count: the number of bytes in @buf
*
* Return: the number of bytes processed if the APID is valid; otherwise,
* returns one of the following errors:
*
* 1. -EINVAL
* The APID is not a valid number
*
* 2. -ENODEV
* The APID exceeds the maximum value configured for the system
*
* 3. -EADDRNOTAVAIL
* An APQN derived from the cross product of the APID being assigned
* and the APQIs previously assigned is not bound to the vfio_ap device
* driver; or, if no APQIs have yet been assigned, the APID is not
* contained in an APQN bound to the vfio_ap device driver.
*
* 4. -EADDRINUSE
* An APQN derived from the cross product of the APID being assigned
* and the APQIs previously assigned is being used by another mediated
* matrix device
*/
static ssize_t assign_adapter_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long apid;
DECLARE_BITMAP(apm_delta, AP_DEVICES);
struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
mutex_lock(&matrix_dev->mdevs_lock);
/* If the KVM guest is running, disallow assignment of adapter */
if (matrix_mdev->kvm) {
ret = -EBUSY;
goto done;
}
ret = kstrtoul(buf, 0, &apid);
if (ret)
goto done;
if (apid > matrix_mdev->matrix.apm_max) {
ret = -ENODEV;
goto done;
}
set_bit_inv(apid, matrix_mdev->matrix.apm);
ret = vfio_ap_mdev_validate_masks(matrix_mdev);
if (ret) {
clear_bit_inv(apid, matrix_mdev->matrix.apm);
goto done;
}
vfio_ap_mdev_link_adapter(matrix_mdev, apid);
memset(apm_delta, 0, sizeof(apm_delta));
set_bit_inv(apid, apm_delta);
vfio_ap_mdev_filter_matrix(apm_delta,
matrix_mdev->matrix.aqm, matrix_mdev);
ret = count;
done:
mutex_unlock(&matrix_dev->mdevs_lock);
return ret;
}
static DEVICE_ATTR_WO(assign_adapter);
static void vfio_ap_mdev_unlink_adapter(struct ap_matrix_mdev *matrix_mdev,
unsigned long apid)
{
unsigned long apqi;
struct vfio_ap_queue *q;
for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS) {
q = vfio_ap_mdev_get_queue(matrix_mdev, AP_MKQID(apid, apqi));
if (q)
vfio_ap_mdev_unlink_queue(q);
}
}
/**
* unassign_adapter_store - parses the APID from @buf and clears the
* corresponding bit in the mediated matrix device's APM
*
* @dev: the matrix device
* @attr: the mediated matrix device's unassign_adapter attribute
* @buf: a buffer containing the adapter number (APID) to be unassigned
* @count: the number of bytes in @buf
*
* Return: the number of bytes processed if the APID is valid; otherwise,
* returns one of the following errors:
* -EINVAL if the APID is not a number
* -ENODEV if the APID it exceeds the maximum value configured for the
* system
*/
static ssize_t unassign_adapter_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long apid;
struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
mutex_lock(&matrix_dev->mdevs_lock);
/* If the KVM guest is running, disallow unassignment of adapter */
if (matrix_mdev->kvm) {
ret = -EBUSY;
goto done;
}
ret = kstrtoul(buf, 0, &apid);
if (ret)
goto done;
if (apid > matrix_mdev->matrix.apm_max) {
ret = -ENODEV;
goto done;
}
clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm);
vfio_ap_mdev_unlink_adapter(matrix_mdev, apid);
if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm))
clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm);
ret = count;
done:
mutex_unlock(&matrix_dev->mdevs_lock);
return ret;
}
static DEVICE_ATTR_WO(unassign_adapter);
static void vfio_ap_mdev_link_domain(struct ap_matrix_mdev *matrix_mdev,
unsigned long apqi)
{
unsigned long apid;
for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES)
vfio_ap_mdev_link_apqn(matrix_mdev,
AP_MKQID(apid, apqi));
}
/**
* assign_domain_store - parses the APQI from @buf and sets the
* corresponding bit in the mediated matrix device's AQM
*
* @dev: the matrix device
* @attr: the mediated matrix device's assign_domain attribute
* @buf: a buffer containing the AP queue index (APQI) of the domain to
* be assigned
* @count: the number of bytes in @buf
*
* Return: the number of bytes processed if the APQI is valid; otherwise returns
* one of the following errors:
*
* 1. -EINVAL
* The APQI is not a valid number
*
* 2. -ENODEV
* The APQI exceeds the maximum value configured for the system
*
* 3. -EADDRNOTAVAIL
* An APQN derived from the cross product of the APQI being assigned
* and the APIDs previously assigned is not bound to the vfio_ap device
* driver; or, if no APIDs have yet been assigned, the APQI is not
* contained in an APQN bound to the vfio_ap device driver.
*
* 4. -EADDRINUSE
* An APQN derived from the cross product of the APQI being assigned
* and the APIDs previously assigned is being used by another mediated
* matrix device
*/
static ssize_t assign_domain_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long apqi;
DECLARE_BITMAP(aqm_delta, AP_DOMAINS);
struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
unsigned long max_apqi = matrix_mdev->matrix.aqm_max;
mutex_lock(&matrix_dev->mdevs_lock);
/* If the KVM guest is running, disallow assignment of domain */
if (matrix_mdev->kvm) {
ret = -EBUSY;
goto done;
}
ret = kstrtoul(buf, 0, &apqi);
if (ret)
goto done;
if (apqi > max_apqi) {
ret = -ENODEV;
goto done;
}
set_bit_inv(apqi, matrix_mdev->matrix.aqm);
ret = vfio_ap_mdev_validate_masks(matrix_mdev);
if (ret) {
clear_bit_inv(apqi, matrix_mdev->matrix.aqm);
goto done;
}
vfio_ap_mdev_link_domain(matrix_mdev, apqi);
memset(aqm_delta, 0, sizeof(aqm_delta));
set_bit_inv(apqi, aqm_delta);
vfio_ap_mdev_filter_matrix(matrix_mdev->matrix.apm, aqm_delta,
matrix_mdev);
ret = count;
done:
mutex_unlock(&matrix_dev->mdevs_lock);
return ret;
}
static DEVICE_ATTR_WO(assign_domain);
static void vfio_ap_mdev_unlink_domain(struct ap_matrix_mdev *matrix_mdev,
unsigned long apqi)
{
unsigned long apid;
struct vfio_ap_queue *q;
for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) {
q = vfio_ap_mdev_get_queue(matrix_mdev, AP_MKQID(apid, apqi));
if (q)
vfio_ap_mdev_unlink_queue(q);
}
}
/**
* unassign_domain_store - parses the APQI from @buf and clears the
* corresponding bit in the mediated matrix device's AQM
*
* @dev: the matrix device
* @attr: the mediated matrix device's unassign_domain attribute
* @buf: a buffer containing the AP queue index (APQI) of the domain to
* be unassigned
* @count: the number of bytes in @buf
*
* Return: the number of bytes processed if the APQI is valid; otherwise,
* returns one of the following errors:
* -EINVAL if the APQI is not a number
* -ENODEV if the APQI exceeds the maximum value configured for the system
*/
static ssize_t unassign_domain_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long apqi;
struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
mutex_lock(&matrix_dev->mdevs_lock);
/* If the KVM guest is running, disallow unassignment of domain */
if (matrix_mdev->kvm) {
ret = -EBUSY;
goto done;
}
ret = kstrtoul(buf, 0, &apqi);
if (ret)
goto done;
if (apqi > matrix_mdev->matrix.aqm_max) {
ret = -ENODEV;
goto done;
}
clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm);
vfio_ap_mdev_unlink_domain(matrix_mdev, apqi);
if (test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm))
clear_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm);
ret = count;
done:
mutex_unlock(&matrix_dev->mdevs_lock);
return ret;
}
static DEVICE_ATTR_WO(unassign_domain);
/**
* assign_control_domain_store - parses the domain ID from @buf and sets
* the corresponding bit in the mediated matrix device's ADM
*
* @dev: the matrix device
* @attr: the mediated matrix device's assign_control_domain attribute
* @buf: a buffer containing the domain ID to be assigned
* @count: the number of bytes in @buf
*
* Return: the number of bytes processed if the domain ID is valid; otherwise,
* returns one of the following errors:
* -EINVAL if the ID is not a number
* -ENODEV if the ID exceeds the maximum value configured for the system
*/
static ssize_t assign_control_domain_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long id;
struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
mutex_lock(&matrix_dev->mdevs_lock);
/* If the KVM guest is running, disallow assignment of control domain */
if (matrix_mdev->kvm) {
ret = -EBUSY;
goto done;
}
ret = kstrtoul(buf, 0, &id);
if (ret)
goto done;
if (id > matrix_mdev->matrix.adm_max) {
ret = -ENODEV;
goto done;
}
/* Set the bit in the ADM (bitmask) corresponding to the AP control
* domain number (id). The bits in the mask, from most significant to
* least significant, correspond to IDs 0 up to the one less than the
* number of control domains that can be assigned.
*/
set_bit_inv(id, matrix_mdev->matrix.adm);
vfio_ap_mdev_filter_cdoms(matrix_mdev);
ret = count;
done:
mutex_unlock(&matrix_dev->mdevs_lock);
return ret;
}
static DEVICE_ATTR_WO(assign_control_domain);
/**
* unassign_control_domain_store - parses the domain ID from @buf and
* clears the corresponding bit in the mediated matrix device's ADM
*
* @dev: the matrix device
* @attr: the mediated matrix device's unassign_control_domain attribute
* @buf: a buffer containing the domain ID to be unassigned
* @count: the number of bytes in @buf
*
* Return: the number of bytes processed if the domain ID is valid; otherwise,
* returns one of the following errors:
* -EINVAL if the ID is not a number
* -ENODEV if the ID exceeds the maximum value configured for the system
*/
static ssize_t unassign_control_domain_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long domid;
struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
unsigned long max_domid = matrix_mdev->matrix.adm_max;
mutex_lock(&matrix_dev->mdevs_lock);
/* If a KVM guest is running, disallow unassignment of control domain */
if (matrix_mdev->kvm) {
ret = -EBUSY;
goto done;
}
ret = kstrtoul(buf, 0, &domid);
if (ret)
goto done;
if (domid > max_domid) {
ret = -ENODEV;
goto done;
}
clear_bit_inv(domid, matrix_mdev->matrix.adm);
if (test_bit_inv(domid, matrix_mdev->shadow_apcb.adm))
clear_bit_inv(domid, matrix_mdev->shadow_apcb.adm);
ret = count;
done:
mutex_unlock(&matrix_dev->mdevs_lock);
return ret;
}
static DEVICE_ATTR_WO(unassign_control_domain);
static ssize_t control_domains_show(struct device *dev,
struct device_attribute *dev_attr,
char *buf)
{
unsigned long id;
int nchars = 0;
int n;
char *bufpos = buf;
struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
unsigned long max_domid = matrix_mdev->matrix.adm_max;
mutex_lock(&matrix_dev->mdevs_lock);
for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) {
n = sprintf(bufpos, "%04lx\n", id);
bufpos += n;
nchars += n;
}
mutex_unlock(&matrix_dev->mdevs_lock);
return nchars;
}
static DEVICE_ATTR_RO(control_domains);
static ssize_t matrix_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
char *bufpos = buf;
unsigned long apid;
unsigned long apqi;
unsigned long apid1;
unsigned long apqi1;
unsigned long napm_bits = matrix_mdev->matrix.apm_max + 1;
unsigned long naqm_bits = matrix_mdev->matrix.aqm_max + 1;
int nchars = 0;
int n;
apid1 = find_first_bit_inv(matrix_mdev->matrix.apm, napm_bits);
apqi1 = find_first_bit_inv(matrix_mdev->matrix.aqm, naqm_bits);
mutex_lock(&matrix_dev->mdevs_lock);
if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) {
for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
naqm_bits) {
n = sprintf(bufpos, "%02lx.%04lx\n", apid,
apqi);
bufpos += n;
nchars += n;
}
}
} else if (apid1 < napm_bits) {
for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
n = sprintf(bufpos, "%02lx.\n", apid);
bufpos += n;
nchars += n;
}
} else if (apqi1 < naqm_bits) {
for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, naqm_bits) {
n = sprintf(bufpos, ".%04lx\n", apqi);
bufpos += n;
nchars += n;
}
}
mutex_unlock(&matrix_dev->mdevs_lock);
return nchars;
}
static DEVICE_ATTR_RO(matrix);
static struct attribute *vfio_ap_mdev_attrs[] = {
&dev_attr_assign_adapter.attr,
&dev_attr_unassign_adapter.attr,
&dev_attr_assign_domain.attr,
&dev_attr_unassign_domain.attr,
&dev_attr_assign_control_domain.attr,
&dev_attr_unassign_control_domain.attr,
&dev_attr_control_domains.attr,
&dev_attr_matrix.attr,
NULL,
};
static struct attribute_group vfio_ap_mdev_attr_group = {
.attrs = vfio_ap_mdev_attrs
};
static const struct attribute_group *vfio_ap_mdev_attr_groups[] = {
&vfio_ap_mdev_attr_group,
NULL
};
/**
* vfio_ap_mdev_set_kvm - sets all data for @matrix_mdev that are needed
* to manage AP resources for the guest whose state is represented by @kvm
*
* @matrix_mdev: a mediated matrix device
* @kvm: reference to KVM instance
*
* Return: 0 if no other mediated matrix device has a reference to @kvm;
* otherwise, returns an -EPERM.
*/
static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev,
struct kvm *kvm)
{
struct ap_matrix_mdev *m;
if (kvm->arch.crypto.crycbd) {
down_write(&kvm->arch.crypto.pqap_hook_rwsem);
kvm->arch.crypto.pqap_hook = &matrix_mdev->pqap_hook;
up_write(&kvm->arch.crypto.pqap_hook_rwsem);
mutex_lock(&kvm->lock);
mutex_lock(&matrix_dev->mdevs_lock);
list_for_each_entry(m, &matrix_dev->mdev_list, node) {
if (m != matrix_mdev && m->kvm == kvm) {
mutex_unlock(&kvm->lock);
mutex_unlock(&matrix_dev->mdevs_lock);
return -EPERM;
}
}
kvm_get_kvm(kvm);
matrix_mdev->kvm = kvm;
kvm_arch_crypto_set_masks(kvm, matrix_mdev->shadow_apcb.apm,
matrix_mdev->shadow_apcb.aqm,
matrix_mdev->shadow_apcb.adm);
mutex_unlock(&kvm->lock);
mutex_unlock(&matrix_dev->mdevs_lock);
}
return 0;
}
/**
* vfio_ap_mdev_iommu_notifier - IOMMU notifier callback
*
* @nb: The notifier block
* @action: Action to be taken
* @data: data associated with the request
*
* For an UNMAP request, unpin the guest IOVA (the NIB guest address we
* pinned before). Other requests are ignored.
*
* Return: for an UNMAP request, NOFITY_OK; otherwise NOTIFY_DONE.
*/
static int vfio_ap_mdev_iommu_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct ap_matrix_mdev *matrix_mdev;
matrix_mdev = container_of(nb, struct ap_matrix_mdev, iommu_notifier);
if (action == VFIO_IOMMU_NOTIFY_DMA_UNMAP) {
struct vfio_iommu_type1_dma_unmap *unmap = data;
unsigned long g_pfn = unmap->iova >> PAGE_SHIFT;
vfio_unpin_pages(&matrix_mdev->vdev, &g_pfn, 1);
return NOTIFY_OK;
}
return NOTIFY_DONE;
}
/**
* vfio_ap_mdev_unset_kvm - performs clean-up of resources no longer needed
* by @matrix_mdev.
*
* @matrix_mdev: a matrix mediated device
*/
static void vfio_ap_mdev_unset_kvm(struct ap_matrix_mdev *matrix_mdev)
{
struct kvm *kvm = matrix_mdev->kvm;
if (kvm && kvm->arch.crypto.crycbd) {
down_write(&kvm->arch.crypto.pqap_hook_rwsem);
kvm->arch.crypto.pqap_hook = NULL;
up_write(&kvm->arch.crypto.pqap_hook_rwsem);
mutex_lock(&kvm->lock);
mutex_lock(&matrix_dev->mdevs_lock);
kvm_arch_crypto_clear_masks(kvm);
vfio_ap_mdev_reset_queues(matrix_mdev);
kvm_put_kvm(kvm);
matrix_mdev->kvm = NULL;
mutex_unlock(&kvm->lock);
mutex_unlock(&matrix_dev->mdevs_lock);
}
}
static struct vfio_ap_queue *vfio_ap_find_queue(int apqn)
{
struct ap_queue *queue;
struct vfio_ap_queue *q = NULL;
queue = ap_get_qdev(apqn);
if (!queue)
return NULL;
if (queue->ap_dev.device.driver == &matrix_dev->vfio_ap_drv->driver)
q = dev_get_drvdata(&queue->ap_dev.device);
put_device(&queue->ap_dev.device);
return q;
}
static int vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q,
unsigned int retry)
{
struct ap_queue_status status;
int ret;
int retry2 = 2;
if (!q)
return 0;
retry_zapq:
status = ap_zapq(q->apqn);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
ret = 0;
break;
case AP_RESPONSE_RESET_IN_PROGRESS:
if (retry--) {
msleep(20);
goto retry_zapq;
}
ret = -EBUSY;
break;
case AP_RESPONSE_Q_NOT_AVAIL:
case AP_RESPONSE_DECONFIGURED:
case AP_RESPONSE_CHECKSTOPPED:
WARN_ON_ONCE(status.irq_enabled);
ret = -EBUSY;
goto free_resources;
default:
/* things are really broken, give up */
WARN(true, "PQAP/ZAPQ completed with invalid rc (%x)\n",
status.response_code);
return -EIO;
}
/* wait for the reset to take effect */
while (retry2--) {
if (status.queue_empty && !status.irq_enabled)
break;
msleep(20);
status = ap_tapq(q->apqn, NULL);
}
WARN_ON_ONCE(retry2 <= 0);
free_resources:
vfio_ap_free_aqic_resources(q);
return ret;
}
static int vfio_ap_mdev_reset_queues(struct ap_matrix_mdev *matrix_mdev)
{
int ret, loop_cursor, rc = 0;
struct vfio_ap_queue *q;
hash_for_each(matrix_mdev->qtable.queues, loop_cursor, q, mdev_qnode) {
ret = vfio_ap_mdev_reset_queue(q, 1);
/*
* Regardless whether a queue turns out to be busy, or
* is not operational, we need to continue resetting
* the remaining queues.
*/
if (ret)
rc = ret;
}
return rc;
}
static int vfio_ap_mdev_open_device(struct vfio_device *vdev)
{
struct ap_matrix_mdev *matrix_mdev =
container_of(vdev, struct ap_matrix_mdev, vdev);
unsigned long events;
int ret;
if (!vdev->kvm)
return -EINVAL;
ret = vfio_ap_mdev_set_kvm(matrix_mdev, vdev->kvm);
if (ret)
return ret;
matrix_mdev->iommu_notifier.notifier_call = vfio_ap_mdev_iommu_notifier;
events = VFIO_IOMMU_NOTIFY_DMA_UNMAP;
ret = vfio_register_notifier(vdev, VFIO_IOMMU_NOTIFY, &events,
&matrix_mdev->iommu_notifier);
if (ret)
goto err_kvm;
return 0;
err_kvm:
vfio_ap_mdev_unset_kvm(matrix_mdev);
return ret;
}
static void vfio_ap_mdev_close_device(struct vfio_device *vdev)
{
struct ap_matrix_mdev *matrix_mdev =
container_of(vdev, struct ap_matrix_mdev, vdev);
vfio_unregister_notifier(vdev, VFIO_IOMMU_NOTIFY,
&matrix_mdev->iommu_notifier);
vfio_ap_mdev_unset_kvm(matrix_mdev);
}
static int vfio_ap_mdev_get_device_info(unsigned long arg)
{
unsigned long minsz;
struct vfio_device_info info;
minsz = offsetofend(struct vfio_device_info, num_irqs);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET;
info.num_regions = 0;
info.num_irqs = 0;
return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
}
static ssize_t vfio_ap_mdev_ioctl(struct vfio_device *vdev,
unsigned int cmd, unsigned long arg)
{
struct ap_matrix_mdev *matrix_mdev =
container_of(vdev, struct ap_matrix_mdev, vdev);
int ret;
mutex_lock(&matrix_dev->mdevs_lock);
switch (cmd) {
case VFIO_DEVICE_GET_INFO:
ret = vfio_ap_mdev_get_device_info(arg);
break;
case VFIO_DEVICE_RESET:
ret = vfio_ap_mdev_reset_queues(matrix_mdev);
break;
default:
ret = -EOPNOTSUPP;
break;
}
mutex_unlock(&matrix_dev->mdevs_lock);
return ret;
}
static struct ap_matrix_mdev *vfio_ap_mdev_for_queue(struct vfio_ap_queue *q)
{
struct ap_matrix_mdev *matrix_mdev;
unsigned long apid = AP_QID_CARD(q->apqn);
unsigned long apqi = AP_QID_QUEUE(q->apqn);
list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
if (test_bit_inv(apid, matrix_mdev->matrix.apm) &&
test_bit_inv(apqi, matrix_mdev->matrix.aqm))
return matrix_mdev;
}
return NULL;
}
static ssize_t status_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t nchars = 0;
struct vfio_ap_queue *q;
struct ap_matrix_mdev *matrix_mdev;
struct ap_device *apdev = to_ap_dev(dev);
mutex_lock(&matrix_dev->mdevs_lock);
q = dev_get_drvdata(&apdev->device);
matrix_mdev = vfio_ap_mdev_for_queue(q);
if (matrix_mdev) {
if (matrix_mdev->kvm)
nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
AP_QUEUE_IN_USE);
else
nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
AP_QUEUE_ASSIGNED);
} else {
nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
AP_QUEUE_UNASSIGNED);
}
mutex_unlock(&matrix_dev->mdevs_lock);
return nchars;
}
static DEVICE_ATTR_RO(status);
static struct attribute *vfio_queue_attrs[] = {
&dev_attr_status.attr,
NULL,
};
static const struct attribute_group vfio_queue_attr_group = {
.attrs = vfio_queue_attrs,
};
static const struct vfio_device_ops vfio_ap_matrix_dev_ops = {
.open_device = vfio_ap_mdev_open_device,
.close_device = vfio_ap_mdev_close_device,
.ioctl = vfio_ap_mdev_ioctl,
};
static struct mdev_driver vfio_ap_matrix_driver = {
.driver = {
.name = "vfio_ap_mdev",
.owner = THIS_MODULE,
.mod_name = KBUILD_MODNAME,
.dev_groups = vfio_ap_mdev_attr_groups,
},
.probe = vfio_ap_mdev_probe,
.remove = vfio_ap_mdev_remove,
.supported_type_groups = vfio_ap_mdev_type_groups,
};
int vfio_ap_mdev_register(void)
{
int ret;
atomic_set(&matrix_dev->available_instances, MAX_ZDEV_ENTRIES_EXT);
ret = mdev_register_driver(&vfio_ap_matrix_driver);
if (ret)
return ret;
ret = mdev_register_device(&matrix_dev->device, &vfio_ap_matrix_driver);
if (ret)
goto err_driver;
return 0;
err_driver:
mdev_unregister_driver(&vfio_ap_matrix_driver);
return ret;
}
void vfio_ap_mdev_unregister(void)
{
mdev_unregister_device(&matrix_dev->device);
mdev_unregister_driver(&vfio_ap_matrix_driver);
}
/*
* vfio_ap_queue_link_mdev
*
* @q: The queue to link with the matrix mdev.
*
* Links @q with the matrix mdev to which the queue's APQN is assigned.
*/
static void vfio_ap_queue_link_mdev(struct vfio_ap_queue *q)
{
unsigned long apid = AP_QID_CARD(q->apqn);
unsigned long apqi = AP_QID_QUEUE(q->apqn);
struct ap_matrix_mdev *matrix_mdev;
list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
if (test_bit_inv(apid, matrix_mdev->matrix.apm) &&
test_bit_inv(apqi, matrix_mdev->matrix.aqm)) {
vfio_ap_mdev_link_queue(matrix_mdev, q);
break;
}
}
}
int vfio_ap_mdev_probe_queue(struct ap_device *apdev)
{
int ret;
struct vfio_ap_queue *q;
ret = sysfs_create_group(&apdev->device.kobj, &vfio_queue_attr_group);
if (ret)
return ret;
q = kzalloc(sizeof(*q), GFP_KERNEL);
if (!q)
return -ENOMEM;
mutex_lock(&matrix_dev->mdevs_lock);
q->apqn = to_ap_queue(&apdev->device)->qid;
q->saved_isc = VFIO_AP_ISC_INVALID;
vfio_ap_queue_link_mdev(q);
if (q->matrix_mdev) {
vfio_ap_mdev_filter_matrix(q->matrix_mdev->matrix.apm,
q->matrix_mdev->matrix.aqm,
q->matrix_mdev);
}
dev_set_drvdata(&apdev->device, q);
mutex_unlock(&matrix_dev->mdevs_lock);
return 0;
}
void vfio_ap_mdev_remove_queue(struct ap_device *apdev)
{
unsigned long apid;
struct vfio_ap_queue *q;
mutex_lock(&matrix_dev->mdevs_lock);
sysfs_remove_group(&apdev->device.kobj, &vfio_queue_attr_group);
q = dev_get_drvdata(&apdev->device);
if (q->matrix_mdev) {
vfio_ap_unlink_queue_fr_mdev(q);
apid = AP_QID_CARD(q->apqn);
if (test_bit_inv(apid, q->matrix_mdev->shadow_apcb.apm))
clear_bit_inv(apid, q->matrix_mdev->shadow_apcb.apm);
}
vfio_ap_mdev_reset_queue(q, 1);
dev_set_drvdata(&apdev->device, NULL);
kfree(q);
mutex_unlock(&matrix_dev->mdevs_lock);
}