mirror_ubuntu-kernels/include/linux/cacheinfo.h
Pierre Gondois 5944ce092b arch_topology: Build cacheinfo from primary CPU
commit 3fcbf1c77d ("arch_topology: Fix cache attributes detection
in the CPU hotplug path")
adds a call to detect_cache_attributes() to populate the cacheinfo
before updating the siblings mask. detect_cache_attributes() allocates
memory and can take the PPTT mutex (on ACPI platforms). On PREEMPT_RT
kernels, on secondary CPUs, this triggers a:
  'BUG: sleeping function called from invalid context' [1]
as the code is executed with preemption and interrupts disabled.

The primary CPU was previously storing the cache information using
the now removed (struct cpu_topology).llc_id:
commit 5b8dc787ce ("arch_topology: Drop LLC identifier stash from
the CPU topology")

allocate_cache_info() tries to build the cacheinfo from the primary
CPU prior secondary CPUs boot, if the DT/ACPI description
contains cache information.
If allocate_cache_info() fails, then fallback to the current state
for the cacheinfo allocation. [1] will be triggered in such case.

When unplugging a CPU, the cacheinfo memory cannot be freed. If it
was, then the memory would be allocated early by the re-plugged
CPU and would trigger [1].

Note that populate_cache_leaves() might be called multiple times
due to populate_leaves being moved up. This is required since
detect_cache_attributes() might be called with per_cpu_cacheinfo(cpu)
being allocated but not populated.

[1]:
 | BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
 | in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 0, name: swapper/111
 | preempt_count: 1, expected: 0
 | RCU nest depth: 1, expected: 1
 | 3 locks held by swapper/111/0:
 |  #0:  (&pcp->lock){+.+.}-{3:3}, at: get_page_from_freelist+0x218/0x12c8
 |  #1:  (rcu_read_lock){....}-{1:3}, at: rt_spin_trylock+0x48/0xf0
 |  #2:  (&zone->lock){+.+.}-{3:3}, at: rmqueue_bulk+0x64/0xa80
 | irq event stamp: 0
 | hardirqs last  enabled at (0):  0x0
 | hardirqs last disabled at (0):  copy_process+0x5dc/0x1ab8
 | softirqs last  enabled at (0):  copy_process+0x5dc/0x1ab8
 | softirqs last disabled at (0):  0x0
 | Preemption disabled at:
 |  migrate_enable+0x30/0x130
 | CPU: 111 PID: 0 Comm: swapper/111 Tainted: G        W          6.0.0-rc4-rt6-[...]
 | Call trace:
 |  __kmalloc+0xbc/0x1e8
 |  detect_cache_attributes+0x2d4/0x5f0
 |  update_siblings_masks+0x30/0x368
 |  store_cpu_topology+0x78/0xb8
 |  secondary_start_kernel+0xd0/0x198
 |  __secondary_switched+0xb0/0xb4

Signed-off-by: Pierre Gondois <pierre.gondois@arm.com>
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Link: https://lore.kernel.org/r/20230104183033.755668-7-pierre.gondois@arm.com
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
2023-01-18 09:58:40 +00:00

133 lines
4.1 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_CACHEINFO_H
#define _LINUX_CACHEINFO_H
#include <linux/bitops.h>
#include <linux/cpumask.h>
#include <linux/smp.h>
struct device_node;
struct attribute;
enum cache_type {
CACHE_TYPE_NOCACHE = 0,
CACHE_TYPE_INST = BIT(0),
CACHE_TYPE_DATA = BIT(1),
CACHE_TYPE_SEPARATE = CACHE_TYPE_INST | CACHE_TYPE_DATA,
CACHE_TYPE_UNIFIED = BIT(2),
};
extern unsigned int coherency_max_size;
/**
* struct cacheinfo - represent a cache leaf node
* @id: This cache's id. It is unique among caches with the same (type, level).
* @type: type of the cache - data, inst or unified
* @level: represents the hierarchy in the multi-level cache
* @coherency_line_size: size of each cache line usually representing
* the minimum amount of data that gets transferred from memory
* @number_of_sets: total number of sets, a set is a collection of cache
* lines sharing the same index
* @ways_of_associativity: number of ways in which a particular memory
* block can be placed in the cache
* @physical_line_partition: number of physical cache lines sharing the
* same cachetag
* @size: Total size of the cache
* @shared_cpu_map: logical cpumask representing all the cpus sharing
* this cache node
* @attributes: bitfield representing various cache attributes
* @fw_token: Unique value used to determine if different cacheinfo
* structures represent a single hardware cache instance.
* @disable_sysfs: indicates whether this node is visible to the user via
* sysfs or not
* @priv: pointer to any private data structure specific to particular
* cache design
*
* While @of_node, @disable_sysfs and @priv are used for internal book
* keeping, the remaining members form the core properties of the cache
*/
struct cacheinfo {
unsigned int id;
enum cache_type type;
unsigned int level;
unsigned int coherency_line_size;
unsigned int number_of_sets;
unsigned int ways_of_associativity;
unsigned int physical_line_partition;
unsigned int size;
cpumask_t shared_cpu_map;
unsigned int attributes;
#define CACHE_WRITE_THROUGH BIT(0)
#define CACHE_WRITE_BACK BIT(1)
#define CACHE_WRITE_POLICY_MASK \
(CACHE_WRITE_THROUGH | CACHE_WRITE_BACK)
#define CACHE_READ_ALLOCATE BIT(2)
#define CACHE_WRITE_ALLOCATE BIT(3)
#define CACHE_ALLOCATE_POLICY_MASK \
(CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE)
#define CACHE_ID BIT(4)
void *fw_token;
bool disable_sysfs;
void *priv;
};
struct cpu_cacheinfo {
struct cacheinfo *info_list;
unsigned int num_levels;
unsigned int num_leaves;
bool cpu_map_populated;
};
struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu);
int init_cache_level(unsigned int cpu);
int init_of_cache_level(unsigned int cpu);
int populate_cache_leaves(unsigned int cpu);
int cache_setup_acpi(unsigned int cpu);
bool last_level_cache_is_valid(unsigned int cpu);
bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y);
int fetch_cache_info(unsigned int cpu);
int detect_cache_attributes(unsigned int cpu);
#ifndef CONFIG_ACPI_PPTT
/*
* acpi_get_cache_info() is only called on ACPI enabled
* platforms using the PPTT for topology. This means that if
* the platform supports other firmware configuration methods
* we need to stub out the call when ACPI is disabled.
* ACPI enabled platforms not using PPTT won't be making calls
* to this function so we need not worry about them.
*/
static inline
int acpi_get_cache_info(unsigned int cpu,
unsigned int *levels, unsigned int *split_levels)
{
return 0;
}
#else
int acpi_get_cache_info(unsigned int cpu,
unsigned int *levels, unsigned int *split_levels);
#endif
const struct attribute_group *cache_get_priv_group(struct cacheinfo *this_leaf);
/*
* Get the id of the cache associated with @cpu at level @level.
* cpuhp lock must be held.
*/
static inline int get_cpu_cacheinfo_id(int cpu, int level)
{
struct cpu_cacheinfo *ci = get_cpu_cacheinfo(cpu);
int i;
for (i = 0; i < ci->num_leaves; i++) {
if (ci->info_list[i].level == level) {
if (ci->info_list[i].attributes & CACHE_ID)
return ci->info_list[i].id;
return -1;
}
}
return -1;
}
#endif /* _LINUX_CACHEINFO_H */