mirror_ubuntu-kernels/arch/x86/kernel/cpu/mce/intel.c
Borislav Petkov (AMD) c3629dd7e6 x86/mce: Prevent duplicate error records
A legitimate use case of the MCA infrastructure is to have the firmware
log all uncorrectable errors and also, have the OS see all correctable
errors.

The uncorrectable, UCNA errors are usually configured to be reported
through an SMI. CMCI, which is the correctable error reporting
interrupt, uses SMI too and having both enabled, leads to unnecessary
overhead.

So what ends up happening is, people disable CMCI in the wild and leave
on only the UCNA SMI.

When CMCI is disabled, the MCA infrastructure resorts to polling the MCA
banks. If a MCA MSR is shared between the logical threads, one error
ends up getting logged multiple times as the polling runs on every
logical thread.

Therefore, introduce locking on the Intel side of the polling routine to
prevent such duplicate error records from appearing.

Based on a patch by Aristeu Rozanski <aris@ruivo.org>.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Acked-by: Aristeu Rozanski <aris@ruivo.org>
Link: https://lore.kernel.org/r/20230515143225.GC4090740@cathedrallabs.org
2023-07-21 18:55:46 +02:00

539 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Intel specific MCE features.
* Copyright 2004 Zwane Mwaikambo <zwane@linuxpower.ca>
* Copyright (C) 2008, 2009 Intel Corporation
* Author: Andi Kleen
*/
#include <linux/gfp.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/cpumask.h>
#include <asm/apic.h>
#include <asm/cpufeature.h>
#include <asm/intel-family.h>
#include <asm/processor.h>
#include <asm/msr.h>
#include <asm/mce.h>
#include "internal.h"
/*
* Support for Intel Correct Machine Check Interrupts. This allows
* the CPU to raise an interrupt when a corrected machine check happened.
* Normally we pick those up using a regular polling timer.
* Also supports reliable discovery of shared banks.
*/
/*
* CMCI can be delivered to multiple cpus that share a machine check bank
* so we need to designate a single cpu to process errors logged in each bank
* in the interrupt handler (otherwise we would have many races and potential
* double reporting of the same error).
* Note that this can change when a cpu is offlined or brought online since
* some MCA banks are shared across cpus. When a cpu is offlined, cmci_clear()
* disables CMCI on all banks owned by the cpu and clears this bitfield. At
* this point, cmci_rediscover() kicks in and a different cpu may end up
* taking ownership of some of the shared MCA banks that were previously
* owned by the offlined cpu.
*/
static DEFINE_PER_CPU(mce_banks_t, mce_banks_owned);
/*
* CMCI storm detection backoff counter
*
* During storm, we reset this counter to INITIAL_CHECK_INTERVAL in case we've
* encountered an error. If not, we decrement it by one. We signal the end of
* the CMCI storm when it reaches 0.
*/
static DEFINE_PER_CPU(int, cmci_backoff_cnt);
/*
* cmci_discover_lock protects against parallel discovery attempts
* which could race against each other.
*/
static DEFINE_RAW_SPINLOCK(cmci_discover_lock);
/*
* On systems that do support CMCI but it's disabled, polling for MCEs can
* cause the same event to be reported multiple times because IA32_MCi_STATUS
* is shared by the same package.
*/
static DEFINE_SPINLOCK(cmci_poll_lock);
#define CMCI_THRESHOLD 1
#define CMCI_POLL_INTERVAL (30 * HZ)
#define CMCI_STORM_INTERVAL (HZ)
#define CMCI_STORM_THRESHOLD 15
static DEFINE_PER_CPU(unsigned long, cmci_time_stamp);
static DEFINE_PER_CPU(unsigned int, cmci_storm_cnt);
static DEFINE_PER_CPU(unsigned int, cmci_storm_state);
enum {
CMCI_STORM_NONE,
CMCI_STORM_ACTIVE,
CMCI_STORM_SUBSIDED,
};
static atomic_t cmci_storm_on_cpus;
static int cmci_supported(int *banks)
{
u64 cap;
if (mca_cfg.cmci_disabled || mca_cfg.ignore_ce)
return 0;
/*
* Vendor check is not strictly needed, but the initial
* initialization is vendor keyed and this
* makes sure none of the backdoors are entered otherwise.
*/
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
return 0;
if (!boot_cpu_has(X86_FEATURE_APIC) || lapic_get_maxlvt() < 6)
return 0;
rdmsrl(MSR_IA32_MCG_CAP, cap);
*banks = min_t(unsigned, MAX_NR_BANKS, cap & 0xff);
return !!(cap & MCG_CMCI_P);
}
static bool lmce_supported(void)
{
u64 tmp;
if (mca_cfg.lmce_disabled)
return false;
rdmsrl(MSR_IA32_MCG_CAP, tmp);
/*
* LMCE depends on recovery support in the processor. Hence both
* MCG_SER_P and MCG_LMCE_P should be present in MCG_CAP.
*/
if ((tmp & (MCG_SER_P | MCG_LMCE_P)) !=
(MCG_SER_P | MCG_LMCE_P))
return false;
/*
* BIOS should indicate support for LMCE by setting bit 20 in
* IA32_FEAT_CTL without which touching MCG_EXT_CTL will generate a #GP
* fault. The MSR must also be locked for LMCE_ENABLED to take effect.
* WARN if the MSR isn't locked as init_ia32_feat_ctl() unconditionally
* locks the MSR in the event that it wasn't already locked by BIOS.
*/
rdmsrl(MSR_IA32_FEAT_CTL, tmp);
if (WARN_ON_ONCE(!(tmp & FEAT_CTL_LOCKED)))
return false;
return tmp & FEAT_CTL_LMCE_ENABLED;
}
bool mce_intel_cmci_poll(void)
{
if (__this_cpu_read(cmci_storm_state) == CMCI_STORM_NONE)
return false;
/*
* Reset the counter if we've logged an error in the last poll
* during the storm.
*/
if (machine_check_poll(0, this_cpu_ptr(&mce_banks_owned)))
this_cpu_write(cmci_backoff_cnt, INITIAL_CHECK_INTERVAL);
else
this_cpu_dec(cmci_backoff_cnt);
return true;
}
void mce_intel_hcpu_update(unsigned long cpu)
{
if (per_cpu(cmci_storm_state, cpu) == CMCI_STORM_ACTIVE)
atomic_dec(&cmci_storm_on_cpus);
per_cpu(cmci_storm_state, cpu) = CMCI_STORM_NONE;
}
static void cmci_toggle_interrupt_mode(bool on)
{
unsigned long flags, *owned;
int bank;
u64 val;
raw_spin_lock_irqsave(&cmci_discover_lock, flags);
owned = this_cpu_ptr(mce_banks_owned);
for_each_set_bit(bank, owned, MAX_NR_BANKS) {
rdmsrl(MSR_IA32_MCx_CTL2(bank), val);
if (on)
val |= MCI_CTL2_CMCI_EN;
else
val &= ~MCI_CTL2_CMCI_EN;
wrmsrl(MSR_IA32_MCx_CTL2(bank), val);
}
raw_spin_unlock_irqrestore(&cmci_discover_lock, flags);
}
unsigned long cmci_intel_adjust_timer(unsigned long interval)
{
if ((this_cpu_read(cmci_backoff_cnt) > 0) &&
(__this_cpu_read(cmci_storm_state) == CMCI_STORM_ACTIVE)) {
mce_notify_irq();
return CMCI_STORM_INTERVAL;
}
switch (__this_cpu_read(cmci_storm_state)) {
case CMCI_STORM_ACTIVE:
/*
* We switch back to interrupt mode once the poll timer has
* silenced itself. That means no events recorded and the timer
* interval is back to our poll interval.
*/
__this_cpu_write(cmci_storm_state, CMCI_STORM_SUBSIDED);
if (!atomic_sub_return(1, &cmci_storm_on_cpus))
pr_notice("CMCI storm subsided: switching to interrupt mode\n");
fallthrough;
case CMCI_STORM_SUBSIDED:
/*
* We wait for all CPUs to go back to SUBSIDED state. When that
* happens we switch back to interrupt mode.
*/
if (!atomic_read(&cmci_storm_on_cpus)) {
__this_cpu_write(cmci_storm_state, CMCI_STORM_NONE);
cmci_toggle_interrupt_mode(true);
cmci_recheck();
}
return CMCI_POLL_INTERVAL;
default:
/* We have shiny weather. Let the poll do whatever it thinks. */
return interval;
}
}
static bool cmci_storm_detect(void)
{
unsigned int cnt = __this_cpu_read(cmci_storm_cnt);
unsigned long ts = __this_cpu_read(cmci_time_stamp);
unsigned long now = jiffies;
int r;
if (__this_cpu_read(cmci_storm_state) != CMCI_STORM_NONE)
return true;
if (time_before_eq(now, ts + CMCI_STORM_INTERVAL)) {
cnt++;
} else {
cnt = 1;
__this_cpu_write(cmci_time_stamp, now);
}
__this_cpu_write(cmci_storm_cnt, cnt);
if (cnt <= CMCI_STORM_THRESHOLD)
return false;
cmci_toggle_interrupt_mode(false);
__this_cpu_write(cmci_storm_state, CMCI_STORM_ACTIVE);
r = atomic_add_return(1, &cmci_storm_on_cpus);
mce_timer_kick(CMCI_STORM_INTERVAL);
this_cpu_write(cmci_backoff_cnt, INITIAL_CHECK_INTERVAL);
if (r == 1)
pr_notice("CMCI storm detected: switching to poll mode\n");
return true;
}
/*
* The interrupt handler. This is called on every event.
* Just call the poller directly to log any events.
* This could in theory increase the threshold under high load,
* but doesn't for now.
*/
static void intel_threshold_interrupt(void)
{
if (cmci_storm_detect())
return;
machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_banks_owned));
}
/*
* Enable CMCI (Corrected Machine Check Interrupt) for available MCE banks
* on this CPU. Use the algorithm recommended in the SDM to discover shared
* banks.
*/
static void cmci_discover(int banks)
{
unsigned long *owned = (void *)this_cpu_ptr(&mce_banks_owned);
unsigned long flags;
int i;
int bios_wrong_thresh = 0;
raw_spin_lock_irqsave(&cmci_discover_lock, flags);
for (i = 0; i < banks; i++) {
u64 val;
int bios_zero_thresh = 0;
if (test_bit(i, owned))
continue;
/* Skip banks in firmware first mode */
if (test_bit(i, mce_banks_ce_disabled))
continue;
rdmsrl(MSR_IA32_MCx_CTL2(i), val);
/* Already owned by someone else? */
if (val & MCI_CTL2_CMCI_EN) {
clear_bit(i, owned);
__clear_bit(i, this_cpu_ptr(mce_poll_banks));
continue;
}
if (!mca_cfg.bios_cmci_threshold) {
val &= ~MCI_CTL2_CMCI_THRESHOLD_MASK;
val |= CMCI_THRESHOLD;
} else if (!(val & MCI_CTL2_CMCI_THRESHOLD_MASK)) {
/*
* If bios_cmci_threshold boot option was specified
* but the threshold is zero, we'll try to initialize
* it to 1.
*/
bios_zero_thresh = 1;
val |= CMCI_THRESHOLD;
}
val |= MCI_CTL2_CMCI_EN;
wrmsrl(MSR_IA32_MCx_CTL2(i), val);
rdmsrl(MSR_IA32_MCx_CTL2(i), val);
/* Did the enable bit stick? -- the bank supports CMCI */
if (val & MCI_CTL2_CMCI_EN) {
set_bit(i, owned);
__clear_bit(i, this_cpu_ptr(mce_poll_banks));
/*
* We are able to set thresholds for some banks that
* had a threshold of 0. This means the BIOS has not
* set the thresholds properly or does not work with
* this boot option. Note down now and report later.
*/
if (mca_cfg.bios_cmci_threshold && bios_zero_thresh &&
(val & MCI_CTL2_CMCI_THRESHOLD_MASK))
bios_wrong_thresh = 1;
} else {
WARN_ON(!test_bit(i, this_cpu_ptr(mce_poll_banks)));
}
}
raw_spin_unlock_irqrestore(&cmci_discover_lock, flags);
if (mca_cfg.bios_cmci_threshold && bios_wrong_thresh) {
pr_info_once(
"bios_cmci_threshold: Some banks do not have valid thresholds set\n");
pr_info_once(
"bios_cmci_threshold: Make sure your BIOS supports this boot option\n");
}
}
/*
* Just in case we missed an event during initialization check
* all the CMCI owned banks.
*/
void cmci_recheck(void)
{
unsigned long flags;
int banks;
if (!mce_available(raw_cpu_ptr(&cpu_info)) || !cmci_supported(&banks))
return;
local_irq_save(flags);
machine_check_poll(0, this_cpu_ptr(&mce_banks_owned));
local_irq_restore(flags);
}
/* Caller must hold the lock on cmci_discover_lock */
static void __cmci_disable_bank(int bank)
{
u64 val;
if (!test_bit(bank, this_cpu_ptr(mce_banks_owned)))
return;
rdmsrl(MSR_IA32_MCx_CTL2(bank), val);
val &= ~MCI_CTL2_CMCI_EN;
wrmsrl(MSR_IA32_MCx_CTL2(bank), val);
__clear_bit(bank, this_cpu_ptr(mce_banks_owned));
}
/*
* Disable CMCI on this CPU for all banks it owns when it goes down.
* This allows other CPUs to claim the banks on rediscovery.
*/
void cmci_clear(void)
{
unsigned long flags;
int i;
int banks;
if (!cmci_supported(&banks))
return;
raw_spin_lock_irqsave(&cmci_discover_lock, flags);
for (i = 0; i < banks; i++)
__cmci_disable_bank(i);
raw_spin_unlock_irqrestore(&cmci_discover_lock, flags);
}
static void cmci_rediscover_work_func(void *arg)
{
int banks;
/* Recheck banks in case CPUs don't all have the same */
if (cmci_supported(&banks))
cmci_discover(banks);
}
/* After a CPU went down cycle through all the others and rediscover */
void cmci_rediscover(void)
{
int banks;
if (!cmci_supported(&banks))
return;
on_each_cpu(cmci_rediscover_work_func, NULL, 1);
}
/*
* Reenable CMCI on this CPU in case a CPU down failed.
*/
void cmci_reenable(void)
{
int banks;
if (cmci_supported(&banks))
cmci_discover(banks);
}
void cmci_disable_bank(int bank)
{
int banks;
unsigned long flags;
if (!cmci_supported(&banks))
return;
raw_spin_lock_irqsave(&cmci_discover_lock, flags);
__cmci_disable_bank(bank);
raw_spin_unlock_irqrestore(&cmci_discover_lock, flags);
}
/* Bank polling function when CMCI is disabled. */
static void cmci_mc_poll_banks(void)
{
spin_lock(&cmci_poll_lock);
machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
spin_unlock(&cmci_poll_lock);
}
void intel_init_cmci(void)
{
int banks;
if (!cmci_supported(&banks)) {
mc_poll_banks = cmci_mc_poll_banks;
return;
}
mce_threshold_vector = intel_threshold_interrupt;
cmci_discover(banks);
/*
* For CPU #0 this runs with still disabled APIC, but that's
* ok because only the vector is set up. We still do another
* check for the banks later for CPU #0 just to make sure
* to not miss any events.
*/
apic_write(APIC_LVTCMCI, THRESHOLD_APIC_VECTOR|APIC_DM_FIXED);
cmci_recheck();
}
void intel_init_lmce(void)
{
u64 val;
if (!lmce_supported())
return;
rdmsrl(MSR_IA32_MCG_EXT_CTL, val);
if (!(val & MCG_EXT_CTL_LMCE_EN))
wrmsrl(MSR_IA32_MCG_EXT_CTL, val | MCG_EXT_CTL_LMCE_EN);
}
void intel_clear_lmce(void)
{
u64 val;
if (!lmce_supported())
return;
rdmsrl(MSR_IA32_MCG_EXT_CTL, val);
val &= ~MCG_EXT_CTL_LMCE_EN;
wrmsrl(MSR_IA32_MCG_EXT_CTL, val);
}
/*
* Enable additional error logs from the integrated
* memory controller on processors that support this.
*/
static void intel_imc_init(struct cpuinfo_x86 *c)
{
u64 error_control;
switch (c->x86_model) {
case INTEL_FAM6_SANDYBRIDGE_X:
case INTEL_FAM6_IVYBRIDGE_X:
case INTEL_FAM6_HASWELL_X:
if (rdmsrl_safe(MSR_ERROR_CONTROL, &error_control))
return;
error_control |= 2;
wrmsrl_safe(MSR_ERROR_CONTROL, error_control);
break;
}
}
void mce_intel_feature_init(struct cpuinfo_x86 *c)
{
intel_init_cmci();
intel_init_lmce();
intel_imc_init(c);
}
void mce_intel_feature_clear(struct cpuinfo_x86 *c)
{
intel_clear_lmce();
}
bool intel_filter_mce(struct mce *m)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
/* MCE errata HSD131, HSM142, HSW131, BDM48, HSM142 and SKX37 */
if ((c->x86 == 6) &&
((c->x86_model == INTEL_FAM6_HASWELL) ||
(c->x86_model == INTEL_FAM6_HASWELL_L) ||
(c->x86_model == INTEL_FAM6_BROADWELL) ||
(c->x86_model == INTEL_FAM6_HASWELL_G) ||
(c->x86_model == INTEL_FAM6_SKYLAKE_X)) &&
(m->bank == 0) &&
((m->status & 0xa0000000ffffffff) == 0x80000000000f0005))
return true;
return false;
}