mirror_ubuntu-kernels/arch/x86/include/asm/barrier.h
Mathieu Desnoyers fe90f3967b sched: Add missing memory barrier in switch_mm_cid
Many architectures' switch_mm() (e.g. arm64) do not have an smp_mb()
which the core scheduler code has depended upon since commit:

    commit 223baf9d17 ("sched: Fix performance regression introduced by mm_cid")

If switch_mm() doesn't call smp_mb(), sched_mm_cid_remote_clear() can
unset the actively used cid when it fails to observe active task after it
sets lazy_put.

There *is* a memory barrier between storing to rq->curr and _return to
userspace_ (as required by membarrier), but the rseq mm_cid has stricter
requirements: the barrier needs to be issued between store to rq->curr
and switch_mm_cid(), which happens earlier than:

  - spin_unlock(),
  - switch_to().

So it's fine when the architecture switch_mm() happens to have that
barrier already, but less so when the architecture only provides the
full barrier in switch_to() or spin_unlock().

It is a bug in the rseq switch_mm_cid() implementation. All architectures
that don't have memory barriers in switch_mm(), but rather have the full
barrier either in finish_lock_switch() or switch_to() have them too late
for the needs of switch_mm_cid().

Introduce a new smp_mb__after_switch_mm(), defined as smp_mb() in the
generic barrier.h header, and use it in switch_mm_cid() for scheduler
transitions where switch_mm() is expected to provide a memory barrier.

Architectures can override smp_mb__after_switch_mm() if their
switch_mm() implementation provides an implicit memory barrier.
Override it with a no-op on x86 which implicitly provide this memory
barrier by writing to CR3.

Fixes: 223baf9d17 ("sched: Fix performance regression introduced by mm_cid")
Reported-by: levi.yun <yeoreum.yun@arm.com>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> # for arm64
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> # for x86
Cc: <stable@vger.kernel.org> # 6.4.x
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240415152114.59122-2-mathieu.desnoyers@efficios.com
2024-04-16 13:59:45 +02:00

88 lines
2.4 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_BARRIER_H
#define _ASM_X86_BARRIER_H
#include <asm/alternative.h>
#include <asm/nops.h>
/*
* Force strict CPU ordering.
* And yes, this might be required on UP too when we're talking
* to devices.
*/
#ifdef CONFIG_X86_32
#define mb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "mfence", \
X86_FEATURE_XMM2) ::: "memory", "cc")
#define rmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "lfence", \
X86_FEATURE_XMM2) ::: "memory", "cc")
#define wmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "sfence", \
X86_FEATURE_XMM2) ::: "memory", "cc")
#else
#define __mb() asm volatile("mfence":::"memory")
#define __rmb() asm volatile("lfence":::"memory")
#define __wmb() asm volatile("sfence" ::: "memory")
#endif
/**
* array_index_mask_nospec() - generate a mask that is ~0UL when the
* bounds check succeeds and 0 otherwise
* @index: array element index
* @size: number of elements in array
*
* Returns:
* 0 - (index < size)
*/
static __always_inline unsigned long array_index_mask_nospec(unsigned long index,
unsigned long size)
{
unsigned long mask;
asm volatile ("cmp %1,%2; sbb %0,%0;"
:"=r" (mask)
:"g"(size),"r" (index)
:"cc");
return mask;
}
/* Override the default implementation from linux/nospec.h. */
#define array_index_mask_nospec array_index_mask_nospec
/* Prevent speculative execution past this barrier. */
#define barrier_nospec() alternative("", "lfence", X86_FEATURE_LFENCE_RDTSC)
#define __dma_rmb() barrier()
#define __dma_wmb() barrier()
#define __smp_mb() asm volatile("lock; addl $0,-4(%%" _ASM_SP ")" ::: "memory", "cc")
#define __smp_rmb() dma_rmb()
#define __smp_wmb() barrier()
#define __smp_store_mb(var, value) do { (void)xchg(&var, value); } while (0)
#define __smp_store_release(p, v) \
do { \
compiletime_assert_atomic_type(*p); \
barrier(); \
WRITE_ONCE(*p, v); \
} while (0)
#define __smp_load_acquire(p) \
({ \
typeof(*p) ___p1 = READ_ONCE(*p); \
compiletime_assert_atomic_type(*p); \
barrier(); \
___p1; \
})
/* Atomic operations are already serializing on x86 */
#define __smp_mb__before_atomic() do { } while (0)
#define __smp_mb__after_atomic() do { } while (0)
/* Writing to CR3 provides a full memory barrier in switch_mm(). */
#define smp_mb__after_switch_mm() do { } while (0)
#include <asm-generic/barrier.h>
#endif /* _ASM_X86_BARRIER_H */