mirror_ubuntu-kernels/net/xfrm/xfrm_iptfs.c
Christian Hopps 0e4fbf013f xfrm: iptfs: add user packet (tunnel ingress) handling
Add tunnel packet output functionality. This is code handles
the ingress to the tunnel.

Signed-off-by: Christian Hopps <chopps@labn.net>
Tested-by: Antony Antony <antony.antony@secunet.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2024-12-05 10:01:44 +01:00

774 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* xfrm_iptfs: IPTFS encapsulation support
*
* April 21 2022, Christian Hopps <chopps@labn.net>
*
* Copyright (c) 2022, LabN Consulting, L.L.C.
*
*/
#include <linux/kernel.h>
#include <linux/icmpv6.h>
#include <net/gro.h>
#include <net/icmp.h>
#include <net/ip6_route.h>
#include <net/inet_ecn.h>
#include <net/xfrm.h>
#include <crypto/aead.h>
#include "xfrm_inout.h"
/* ------------------------------------------------ */
/* IPTFS default SA values (tunnel ingress/dir-out) */
/* ------------------------------------------------ */
/**
* define IPTFS_DEFAULT_INIT_DELAY_USECS - default initial output delay
*
* The initial output delay is the amount of time prior to servicing the output
* queue after queueing the first packet on said queue. This applies anytime the
* output queue was previously empty.
*
* Default 0.
*/
#define IPTFS_DEFAULT_INIT_DELAY_USECS 0
/**
* define IPTFS_DEFAULT_MAX_QUEUE_SIZE - default max output queue size.
*
* The default IPTFS max output queue size in octets. The output queue is where
* received packets destined for output over an IPTFS tunnel are stored prior to
* being output in aggregated/fragmented form over the IPTFS tunnel.
*
* Default 1M.
*/
#define IPTFS_DEFAULT_MAX_QUEUE_SIZE (1024 * 10240)
#define NSECS_IN_USEC 1000
#define IPTFS_HRTIMER_MODE HRTIMER_MODE_REL_SOFT
/**
* struct xfrm_iptfs_config - configuration for the IPTFS tunnel.
* @pkt_size: size of the outer IP packet. 0 to use interface and MTU discovery,
* otherwise the user specified value.
* @max_queue_size: The maximum number of octets allowed to be queued to be sent
* over the IPTFS SA. The queue size is measured as the size of all the
* packets enqueued.
*/
struct xfrm_iptfs_config {
u32 pkt_size; /* outer_packet_size or 0 */
u32 max_queue_size; /* octets */
};
/**
* struct xfrm_iptfs_data - mode specific xfrm state.
* @cfg: IPTFS tunnel config.
* @x: owning SA (xfrm_state).
* @queue: queued user packets to send.
* @queue_size: number of octets on queue (sum of packet sizes).
* @ecn_queue_size: octets above with ECN mark.
* @init_delay_ns: nanoseconds to wait to send initial IPTFS packet.
* @iptfs_timer: output timer.
* @payload_mtu: max payload size.
*/
struct xfrm_iptfs_data {
struct xfrm_iptfs_config cfg;
/* Ingress User Input */
struct xfrm_state *x; /* owning state */
struct sk_buff_head queue; /* output queue */
u32 queue_size; /* octets */
u32 ecn_queue_size; /* octets above which ECN mark */
u64 init_delay_ns; /* nanoseconds */
struct hrtimer iptfs_timer; /* output timer */
u32 payload_mtu; /* max payload size */
};
static u32 iptfs_get_inner_mtu(struct xfrm_state *x, int outer_mtu);
static enum hrtimer_restart iptfs_delay_timer(struct hrtimer *me);
/* ================================= */
/* IPTFS Sending (ingress) Functions */
/* ================================= */
/* ------------------------- */
/* Enqueue to send functions */
/* ------------------------- */
/**
* iptfs_enqueue() - enqueue packet if ok to send.
* @xtfs: xtfs state
* @skb: the packet
*
* Return: true if packet enqueued.
*/
static bool iptfs_enqueue(struct xfrm_iptfs_data *xtfs, struct sk_buff *skb)
{
u64 newsz = xtfs->queue_size + skb->len;
struct iphdr *iph;
assert_spin_locked(&xtfs->x->lock);
if (newsz > xtfs->cfg.max_queue_size)
return false;
/* Set ECN CE if we are above our ECN queue threshold */
if (newsz > xtfs->ecn_queue_size) {
iph = ip_hdr(skb);
if (iph->version == 4)
IP_ECN_set_ce(iph);
else if (iph->version == 6)
IP6_ECN_set_ce(skb, ipv6_hdr(skb));
}
__skb_queue_tail(&xtfs->queue, skb);
xtfs->queue_size += skb->len;
return true;
}
static int iptfs_get_cur_pmtu(struct xfrm_state *x, struct xfrm_iptfs_data *xtfs,
struct sk_buff *skb)
{
struct xfrm_dst *xdst = (struct xfrm_dst *)skb_dst(skb);
u32 payload_mtu = xtfs->payload_mtu;
u32 pmtu = iptfs_get_inner_mtu(x, xdst->child_mtu_cached);
if (payload_mtu && payload_mtu < pmtu)
pmtu = payload_mtu;
return pmtu;
}
static int iptfs_is_too_big(struct sock *sk, struct sk_buff *skb, u32 pmtu)
{
if (skb->len <= pmtu)
return 0;
/* We only send ICMP too big if the user has configured us as
* dont-fragment.
*/
if (skb->dev)
XFRM_INC_STATS(dev_net(skb->dev), LINUX_MIB_XFRMOUTERROR);
if (sk)
xfrm_local_error(skb, pmtu);
else if (ip_hdr(skb)->version == 4)
icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(pmtu));
else
icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, pmtu);
return 1;
}
/* IPv4/IPv6 packet ingress to IPTFS tunnel, arrange to send in IPTFS payload
* (i.e., aggregating or fragmenting as appropriate).
* This is set in dst->output for an SA.
*/
static int iptfs_output_collect(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct dst_entry *dst = skb_dst(skb);
struct xfrm_state *x = dst->xfrm;
struct xfrm_iptfs_data *xtfs = x->mode_data;
struct sk_buff *segs, *nskb;
u32 pmtu = 0;
bool ok = true;
bool was_gso;
/* We have hooked into dst_entry->output which means we have skipped the
* protocol specific netfilter (see xfrm4_output, xfrm6_output).
* when our timer runs we will end up calling xfrm_output directly on
* the encapsulated traffic.
*
* For both cases this is the NF_INET_POST_ROUTING hook which allows
* changing the skb->dst entry which then may not be xfrm based anymore
* in which case a REROUTED flag is set. and dst_output is called.
*
* For IPv6 we are also skipping fragmentation handling for local
* sockets, which may or may not be good depending on our tunnel DF
* setting. Normally with fragmentation supported we want to skip this
* fragmentation.
*/
pmtu = iptfs_get_cur_pmtu(x, xtfs, skb);
/* Break apart GSO skbs. If the queue is nearing full then we want the
* accounting and queuing to be based on the individual packets not on the
* aggregate GSO buffer.
*/
was_gso = skb_is_gso(skb);
if (!was_gso) {
segs = skb;
} else {
segs = skb_gso_segment(skb, 0);
if (IS_ERR_OR_NULL(segs)) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMOUTERROR);
kfree_skb(skb);
if (IS_ERR(segs))
return PTR_ERR(segs);
return -EINVAL;
}
consume_skb(skb);
skb = NULL;
}
/* We can be running on multiple cores and from the network softirq or
* from user context depending on where the packet is coming from.
*/
spin_lock_bh(&x->lock);
skb_list_walk_safe(segs, skb, nskb) {
skb_mark_not_on_list(skb);
/* Once we drop due to no queue space we continue to drop the
* rest of the packets from that GRO.
*/
if (!ok) {
nospace:
XFRM_INC_STATS(net, LINUX_MIB_XFRMOUTNOQSPACE);
kfree_skb_reason(skb, SKB_DROP_REASON_FULL_RING);
continue;
}
/* Fragmenting handled in following commits. */
if (iptfs_is_too_big(sk, skb, pmtu)) {
kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
continue;
}
/* Enqueue to send in tunnel */
ok = iptfs_enqueue(xtfs, skb);
if (!ok)
goto nospace;
}
/* Start a delay timer if we don't have one yet */
if (!hrtimer_is_queued(&xtfs->iptfs_timer))
hrtimer_start(&xtfs->iptfs_timer, xtfs->init_delay_ns, IPTFS_HRTIMER_MODE);
spin_unlock_bh(&x->lock);
return 0;
}
/* -------------------------- */
/* Dequeue and send functions */
/* -------------------------- */
static void iptfs_output_prepare_skb(struct sk_buff *skb, u32 blkoff)
{
struct ip_iptfs_hdr *h;
size_t hsz = sizeof(*h);
/* now reset values to be pointing at the rest of the packets */
h = skb_push(skb, hsz);
memset(h, 0, hsz);
if (blkoff)
h->block_offset = htons(blkoff);
/* network_header current points at the inner IP packet
* move it to the iptfs header
*/
skb->transport_header = skb->network_header;
skb->network_header -= hsz;
IPCB(skb)->flags |= IPSKB_XFRM_TUNNEL_SIZE;
}
static struct sk_buff **iptfs_rehome_fraglist(struct sk_buff **nextp, struct sk_buff *child)
{
u32 fllen = 0;
/* It might be possible to account for a frag list in addition to page
* fragment if it's a valid state to be in. The page fragments size
* should be kept as data_len so only the frag_list size is removed,
* this must be done above as well.
*/
*nextp = skb_shinfo(child)->frag_list;
while (*nextp) {
fllen += (*nextp)->len;
nextp = &(*nextp)->next;
}
skb_frag_list_init(child);
child->len -= fllen;
child->data_len -= fllen;
return nextp;
}
static void iptfs_output_queued(struct xfrm_state *x, struct sk_buff_head *list)
{
struct xfrm_iptfs_data *xtfs = x->mode_data;
struct sk_buff *skb, *skb2, **nextp;
struct skb_shared_info *shi;
while ((skb = __skb_dequeue(list))) {
u32 mtu = iptfs_get_cur_pmtu(x, xtfs, skb);
int remaining;
/* protocol comes to us cleared sometimes */
skb->protocol = x->outer_mode.family == AF_INET ? htons(ETH_P_IP) :
htons(ETH_P_IPV6);
if (skb->len > mtu) {
/* We handle this case before enqueueing so we are only
* here b/c MTU changed after we enqueued before we
* dequeued, just drop these.
*/
XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTERROR);
kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
continue;
}
/* If we don't have a cksum in the packet we need to add one
* before encapsulation.
*/
if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (skb_checksum_help(skb)) {
XFRM_INC_STATS(dev_net(skb_dst(skb)->dev), LINUX_MIB_XFRMOUTERROR);
kfree_skb(skb);
continue;
}
}
/* Consider the buffer Tx'd and no longer owned */
skb_orphan(skb);
/* Convert first inner packet into an outer IPTFS packet */
iptfs_output_prepare_skb(skb, 0);
/* The space remaining to send more inner packet data is `mtu` -
* (skb->len - sizeof iptfs header). This is b/c the `mtu` value
* has the basic IPTFS header len accounted for, and we added
* that header to the skb so it is a part of skb->len, thus we
* subtract it from the skb length.
*/
remaining = mtu - (skb->len - sizeof(struct ip_iptfs_hdr));
/* Re-home (un-nest) nested fragment lists. We need to do this
* b/c we will simply be appending any following aggregated
* inner packets to the frag list.
*/
shi = skb_shinfo(skb);
nextp = &shi->frag_list;
while (*nextp) {
if (skb_has_frag_list(*nextp))
nextp = iptfs_rehome_fraglist(&(*nextp)->next, *nextp);
else
nextp = &(*nextp)->next;
}
/* See if we have enough space to simply append.
*
* NOTE: Maybe do not append if we will be mis-aligned,
* SW-based endpoints will probably have to copy in this
* case.
*/
while ((skb2 = skb_peek(list))) {
if (skb2->len > remaining)
break;
__skb_unlink(skb2, list);
/* Consider the buffer Tx'd and no longer owned */
skb_orphan(skb);
/* If we don't have a cksum in the packet we need to add
* one before encapsulation.
*/
if (skb2->ip_summed == CHECKSUM_PARTIAL) {
if (skb_checksum_help(skb2)) {
XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTERROR);
kfree_skb(skb2);
continue;
}
}
/* Do accounting */
skb->data_len += skb2->len;
skb->len += skb2->len;
remaining -= skb2->len;
/* Append to the frag_list */
*nextp = skb2;
nextp = &skb2->next;
if (skb_has_frag_list(skb2))
nextp = iptfs_rehome_fraglist(nextp, skb2);
skb->truesize += skb2->truesize;
}
xfrm_output(NULL, skb);
}
}
static enum hrtimer_restart iptfs_delay_timer(struct hrtimer *me)
{
struct sk_buff_head list;
struct xfrm_iptfs_data *xtfs;
struct xfrm_state *x;
xtfs = container_of(me, typeof(*xtfs), iptfs_timer);
x = xtfs->x;
/* Process all the queued packets
*
* softirq execution order: timer > tasklet > hrtimer
*
* Network rx will have run before us giving one last chance to queue
* ingress packets for us to process and transmit.
*/
spin_lock(&x->lock);
__skb_queue_head_init(&list);
skb_queue_splice_init(&xtfs->queue, &list);
xtfs->queue_size = 0;
spin_unlock(&x->lock);
/* After the above unlock, packets can begin queuing again, and the
* timer can be set again, from another CPU either in softirq or user
* context (not from this one since we are running at softirq level
* already).
*/
iptfs_output_queued(x, &list);
return HRTIMER_NORESTART;
}
/**
* iptfs_encap_add_ipv4() - add outer encaps
* @x: xfrm state
* @skb: the packet
*
* This was originally taken from xfrm4_tunnel_encap_add. The reason for the
* copy is that IP-TFS/AGGFRAG can have different functionality for how to set
* the TOS/DSCP bits. Sets the protocol to a different value and doesn't do
* anything with inner headers as they aren't pointing into a normal IP
* singleton inner packet.
*
* Return: 0 on success or a negative error code on failure
*/
static int iptfs_encap_add_ipv4(struct xfrm_state *x, struct sk_buff *skb)
{
struct dst_entry *dst = skb_dst(skb);
struct iphdr *top_iph;
skb_reset_inner_network_header(skb);
skb_reset_inner_transport_header(skb);
skb_set_network_header(skb, -(x->props.header_len - x->props.enc_hdr_len));
skb->mac_header = skb->network_header + offsetof(struct iphdr, protocol);
skb->transport_header = skb->network_header + sizeof(*top_iph);
top_iph = ip_hdr(skb);
top_iph->ihl = 5;
top_iph->version = 4;
top_iph->protocol = IPPROTO_AGGFRAG;
/* As we have 0, fractional, 1 or N inner packets there's no obviously
* correct DSCP mapping to inherit. ECN should be cleared per RFC9347
* 3.1.
*/
top_iph->tos = 0;
top_iph->frag_off = htons(IP_DF);
top_iph->ttl = ip4_dst_hoplimit(xfrm_dst_child(dst));
top_iph->saddr = x->props.saddr.a4;
top_iph->daddr = x->id.daddr.a4;
ip_select_ident(dev_net(dst->dev), skb, NULL);
return 0;
}
#if IS_ENABLED(CONFIG_IPV6)
/**
* iptfs_encap_add_ipv6() - add outer encaps
* @x: xfrm state
* @skb: the packet
*
* This was originally taken from xfrm6_tunnel_encap_add. The reason for the
* copy is that IP-TFS/AGGFRAG can have different functionality for how to set
* the flow label and TOS/DSCP bits. It also sets the protocol to a different
* value and doesn't do anything with inner headers as they aren't pointing into
* a normal IP singleton inner packet.
*
* Return: 0 on success or a negative error code on failure
*/
static int iptfs_encap_add_ipv6(struct xfrm_state *x, struct sk_buff *skb)
{
struct dst_entry *dst = skb_dst(skb);
struct ipv6hdr *top_iph;
int dsfield;
skb_reset_inner_network_header(skb);
skb_reset_inner_transport_header(skb);
skb_set_network_header(skb, -x->props.header_len + x->props.enc_hdr_len);
skb->mac_header = skb->network_header + offsetof(struct ipv6hdr, nexthdr);
skb->transport_header = skb->network_header + sizeof(*top_iph);
top_iph = ipv6_hdr(skb);
top_iph->version = 6;
top_iph->priority = 0;
memset(top_iph->flow_lbl, 0, sizeof(top_iph->flow_lbl));
top_iph->nexthdr = IPPROTO_AGGFRAG;
/* As we have 0, fractional, 1 or N inner packets there's no obviously
* correct DSCP mapping to inherit. ECN should be cleared per RFC9347
* 3.1.
*/
dsfield = 0;
ipv6_change_dsfield(top_iph, 0, dsfield);
top_iph->hop_limit = ip6_dst_hoplimit(xfrm_dst_child(dst));
top_iph->saddr = *(struct in6_addr *)&x->props.saddr;
top_iph->daddr = *(struct in6_addr *)&x->id.daddr;
return 0;
}
#endif
/**
* iptfs_prepare_output() - prepare the skb for output
* @x: xfrm state
* @skb: the packet
*
* Return: Error value, if 0 then skb values should be as follows:
* - transport_header should point at ESP header
* - network_header should point at Outer IP header
* - mac_header should point at protocol/nexthdr of the outer IP
*/
static int iptfs_prepare_output(struct xfrm_state *x, struct sk_buff *skb)
{
if (x->outer_mode.family == AF_INET)
return iptfs_encap_add_ipv4(x, skb);
if (x->outer_mode.family == AF_INET6) {
#if IS_ENABLED(CONFIG_IPV6)
return iptfs_encap_add_ipv6(x, skb);
#else
return -EAFNOSUPPORT;
#endif
}
return -EOPNOTSUPP;
}
/* ========================== */
/* State Management Functions */
/* ========================== */
/**
* iptfs_get_inner_mtu() - return inner MTU with no fragmentation.
* @x: xfrm state.
* @outer_mtu: the outer mtu
*/
static u32 iptfs_get_inner_mtu(struct xfrm_state *x, int outer_mtu)
{
struct crypto_aead *aead;
u32 blksize;
aead = x->data;
blksize = ALIGN(crypto_aead_blocksize(aead), 4);
return ((outer_mtu - x->props.header_len - crypto_aead_authsize(aead)) &
~(blksize - 1)) - 2;
}
/**
* iptfs_user_init() - initialize the SA with IPTFS options from netlink.
* @net: the net data
* @x: xfrm state
* @attrs: netlink attributes
* @extack: extack return data
*
* Return: 0 on success or a negative error code on failure
*/
static int iptfs_user_init(struct net *net, struct xfrm_state *x,
struct nlattr **attrs,
struct netlink_ext_ack *extack)
{
struct xfrm_iptfs_data *xtfs = x->mode_data;
struct xfrm_iptfs_config *xc;
u64 q;
xc = &xtfs->cfg;
xc->max_queue_size = IPTFS_DEFAULT_MAX_QUEUE_SIZE;
xtfs->init_delay_ns = IPTFS_DEFAULT_INIT_DELAY_USECS * NSECS_IN_USEC;
if (attrs[XFRMA_IPTFS_PKT_SIZE]) {
xc->pkt_size = nla_get_u32(attrs[XFRMA_IPTFS_PKT_SIZE]);
if (!xc->pkt_size) {
xtfs->payload_mtu = 0;
} else if (xc->pkt_size > x->props.header_len) {
xtfs->payload_mtu = xc->pkt_size - x->props.header_len;
} else {
NL_SET_ERR_MSG(extack,
"Packet size must be 0 or greater than IPTFS/ESP header length");
return -EINVAL;
}
}
if (attrs[XFRMA_IPTFS_MAX_QSIZE])
xc->max_queue_size = nla_get_u32(attrs[XFRMA_IPTFS_MAX_QSIZE]);
if (attrs[XFRMA_IPTFS_INIT_DELAY])
xtfs->init_delay_ns =
(u64)nla_get_u32(attrs[XFRMA_IPTFS_INIT_DELAY]) * NSECS_IN_USEC;
q = (u64)xc->max_queue_size * 95;
do_div(q, 100);
xtfs->ecn_queue_size = (u32)q;
return 0;
}
static unsigned int iptfs_sa_len(const struct xfrm_state *x)
{
struct xfrm_iptfs_data *xtfs = x->mode_data;
struct xfrm_iptfs_config *xc = &xtfs->cfg;
unsigned int l = 0;
if (x->dir == XFRM_SA_DIR_OUT) {
l += nla_total_size(sizeof(u32)); /* init delay usec */
l += nla_total_size(sizeof(xc->max_queue_size));
l += nla_total_size(sizeof(xc->pkt_size));
}
return l;
}
static int iptfs_copy_to_user(struct xfrm_state *x, struct sk_buff *skb)
{
struct xfrm_iptfs_data *xtfs = x->mode_data;
struct xfrm_iptfs_config *xc = &xtfs->cfg;
int ret = 0;
u64 q;
if (x->dir == XFRM_SA_DIR_OUT) {
q = xtfs->init_delay_ns;
do_div(q, NSECS_IN_USEC);
ret = nla_put_u32(skb, XFRMA_IPTFS_INIT_DELAY, q);
if (ret)
return ret;
ret = nla_put_u32(skb, XFRMA_IPTFS_MAX_QSIZE, xc->max_queue_size);
if (ret)
return ret;
ret = nla_put_u32(skb, XFRMA_IPTFS_PKT_SIZE, xc->pkt_size);
}
return ret;
}
static void __iptfs_init_state(struct xfrm_state *x,
struct xfrm_iptfs_data *xtfs)
{
__skb_queue_head_init(&xtfs->queue);
hrtimer_init(&xtfs->iptfs_timer, CLOCK_MONOTONIC, IPTFS_HRTIMER_MODE);
xtfs->iptfs_timer.function = iptfs_delay_timer;
/* Modify type (esp) adjustment values */
if (x->props.family == AF_INET)
x->props.header_len += sizeof(struct iphdr) + sizeof(struct ip_iptfs_hdr);
else if (x->props.family == AF_INET6)
x->props.header_len += sizeof(struct ipv6hdr) + sizeof(struct ip_iptfs_hdr);
x->props.enc_hdr_len = sizeof(struct ip_iptfs_hdr);
/* Always keep a module reference when x->mode_data is set */
__module_get(x->mode_cbs->owner);
x->mode_data = xtfs;
xtfs->x = x;
}
static int iptfs_clone_state(struct xfrm_state *x, struct xfrm_state *orig)
{
struct xfrm_iptfs_data *xtfs;
xtfs = kmemdup(orig->mode_data, sizeof(*xtfs), GFP_KERNEL);
if (!xtfs)
return -ENOMEM;
x->mode_data = xtfs;
xtfs->x = x;
return 0;
}
static int iptfs_init_state(struct xfrm_state *x)
{
struct xfrm_iptfs_data *xtfs;
if (x->mode_data) {
/* We have arrived here from xfrm_state_clone() */
xtfs = x->mode_data;
} else {
xtfs = kzalloc(sizeof(*xtfs), GFP_KERNEL);
if (!xtfs)
return -ENOMEM;
}
__iptfs_init_state(x, xtfs);
return 0;
}
static void iptfs_destroy_state(struct xfrm_state *x)
{
struct xfrm_iptfs_data *xtfs = x->mode_data;
struct sk_buff_head list;
struct sk_buff *skb;
if (!xtfs)
return;
spin_lock_bh(&xtfs->x->lock);
hrtimer_cancel(&xtfs->iptfs_timer);
__skb_queue_head_init(&list);
skb_queue_splice_init(&xtfs->queue, &list);
spin_unlock_bh(&xtfs->x->lock);
while ((skb = __skb_dequeue(&list)))
kfree_skb(skb);
kfree_sensitive(xtfs);
module_put(x->mode_cbs->owner);
}
static const struct xfrm_mode_cbs iptfs_mode_cbs = {
.owner = THIS_MODULE,
.init_state = iptfs_init_state,
.clone_state = iptfs_clone_state,
.destroy_state = iptfs_destroy_state,
.user_init = iptfs_user_init,
.copy_to_user = iptfs_copy_to_user,
.sa_len = iptfs_sa_len,
.get_inner_mtu = iptfs_get_inner_mtu,
.output = iptfs_output_collect,
.prepare_output = iptfs_prepare_output,
};
static int __init xfrm_iptfs_init(void)
{
int err;
pr_info("xfrm_iptfs: IPsec IP-TFS tunnel mode module\n");
err = xfrm_register_mode_cbs(XFRM_MODE_IPTFS, &iptfs_mode_cbs);
if (err < 0)
pr_info("%s: can't register IP-TFS\n", __func__);
return err;
}
static void __exit xfrm_iptfs_fini(void)
{
xfrm_unregister_mode_cbs(XFRM_MODE_IPTFS);
}
module_init(xfrm_iptfs_init);
module_exit(xfrm_iptfs_fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("IP-TFS support for xfrm ipsec tunnels");