mirror of
https://git.proxmox.com/git/mirror_ubuntu-kernels.git
synced 2025-12-07 17:03:18 +00:00
This patch adds partial Access Control List (ACL) support for the ksz9477 family of switches. ACLs enable filtering of incoming layer 2 MAC, layer 3 IP, and layer 4 TCP/UDP packets on each port. They provide additional capabilities for filtering routed network protocols and can take precedence over other forwarding functions. ACLs can filter ingress traffic based on header fields such as source/destination MAC address, EtherType, IPv4 address, IPv4 protocol, UDP/TCP ports, and TCP flags. The ACL is an ordered list of up to 16 access control rules programmed into the ACL Table. Each entry specifies a set of matching conditions and action rules for controlling packet forwarding and priority. The ACL also implements a count function, generating an interrupt instead of a forwarding action. It can be used as a watchdog timer or an event counter. The ACL consists of three parts: matching rules, action rules, and processing entries. Multiple match conditions can be either AND'ed or OR'ed together. This patch introduces support for a subset of the available ACL functionality, specifically layer 2 matching and prioritization of matched packets. For example: tc qdisc add dev lan2 clsact tc filter add dev lan2 ingress protocol 0x88f7 flower action skbedit prio 7 tc qdisc add dev lan1 clsact tc filter add dev lan1 ingress protocol 0x88f7 flower action skbedit prio 7 The hardware offloading implementation was benchmarked against a configuration without hardware offloading. This latter setup relied on a software-based Linux bridge. No noticeable differences were observed between the two configurations. Here is an example of software-based test: ip l s dev enu1u1 up ip l s dev enu1u2 up ip l s dev enu1u4 up ethtool -A enu1u1 autoneg off rx off tx off ethtool -A enu1u2 autoneg off rx off tx off ethtool -A enu1u4 autoneg off rx off tx off ip l a name br0 type bridge ip l s dev br0 up ip l s enu1u1 master br0 ip l s enu1u2 master br0 ip l s enu1u4 master br0 tc qdisc add dev enu1u1 root handle 1: ets strict 4 priomap 3 3 2 2 1 1 0 0 tc qdisc add dev enu1u4 root handle 1: ets strict 4 priomap 3 3 2 2 1 1 0 0 tc qdisc add dev enu1u2 root handle 1: ets strict 4 priomap 3 3 2 2 1 1 0 0 tc qdisc add dev enu1u1 clsact tc filter add dev enu1u1 ingress protocol ipv4 flower action skbedit prio 7 tc qdisc add dev enu1u4 clsact tc filter add dev enu1u4 ingress protocol ipv4 flower action skbedit prio 0 On a system attached to the port enu1u2 I run two iperf3 server instances: iperf3 -s -p 5210 & iperf3 -s -p 5211 & On systems attached to enu1u4 and enu1u1 I run: iperf3 -u -c 172.17.0.1 -p 5210 -b100M -l1472 -t100 and iperf3 -u -c 172.17.0.1 -p 5211 -b100M -l1472 -t100 As a result, IP traffic on port enu1u1 will be prioritized and take precedence over IP traffic on port enu1u4 Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1174 lines
29 KiB
C
1174 lines
29 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Microchip KSZ9477 switch driver main logic
|
|
*
|
|
* Copyright (C) 2017-2019 Microchip Technology Inc.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/platform_data/microchip-ksz.h>
|
|
#include <linux/phy.h>
|
|
#include <linux/if_bridge.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <net/dsa.h>
|
|
#include <net/switchdev.h>
|
|
|
|
#include "ksz9477_reg.h"
|
|
#include "ksz_common.h"
|
|
#include "ksz9477.h"
|
|
|
|
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
|
|
{
|
|
regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
|
|
}
|
|
|
|
static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
|
|
bool set)
|
|
{
|
|
regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
|
|
bits, set ? bits : 0);
|
|
}
|
|
|
|
static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
|
|
{
|
|
regmap_update_bits(ksz_regmap_32(dev), addr, bits, set ? bits : 0);
|
|
}
|
|
|
|
static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
|
|
u32 bits, bool set)
|
|
{
|
|
regmap_update_bits(ksz_regmap_32(dev), PORT_CTRL_ADDR(port, offset),
|
|
bits, set ? bits : 0);
|
|
}
|
|
|
|
int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
|
|
{
|
|
u16 frame_size;
|
|
|
|
if (!dsa_is_cpu_port(dev->ds, port))
|
|
return 0;
|
|
|
|
frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
|
|
|
|
return regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2,
|
|
REG_SW_MTU_MASK, frame_size);
|
|
}
|
|
|
|
static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
|
|
{
|
|
unsigned int val;
|
|
|
|
return regmap_read_poll_timeout(ksz_regmap_8(dev), REG_SW_VLAN_CTRL,
|
|
val, !(val & VLAN_START), 10, 1000);
|
|
}
|
|
|
|
static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
|
|
u32 *vlan_table)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&dev->vlan_mutex);
|
|
|
|
ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
|
|
ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
|
|
|
|
/* wait to be cleared */
|
|
ret = ksz9477_wait_vlan_ctrl_ready(dev);
|
|
if (ret) {
|
|
dev_dbg(dev->dev, "Failed to read vlan table\n");
|
|
goto exit;
|
|
}
|
|
|
|
ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
|
|
ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
|
|
ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
|
|
|
|
ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
|
|
|
|
exit:
|
|
mutex_unlock(&dev->vlan_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
|
|
u32 *vlan_table)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&dev->vlan_mutex);
|
|
|
|
ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
|
|
ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
|
|
ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
|
|
|
|
ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
|
|
ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
|
|
|
|
/* wait to be cleared */
|
|
ret = ksz9477_wait_vlan_ctrl_ready(dev);
|
|
if (ret) {
|
|
dev_dbg(dev->dev, "Failed to write vlan table\n");
|
|
goto exit;
|
|
}
|
|
|
|
ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
|
|
|
|
/* update vlan cache table */
|
|
dev->vlan_cache[vid].table[0] = vlan_table[0];
|
|
dev->vlan_cache[vid].table[1] = vlan_table[1];
|
|
dev->vlan_cache[vid].table[2] = vlan_table[2];
|
|
|
|
exit:
|
|
mutex_unlock(&dev->vlan_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
|
|
{
|
|
ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
|
|
ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
|
|
ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
|
|
ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
|
|
}
|
|
|
|
static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
|
|
{
|
|
ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
|
|
ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
|
|
ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
|
|
ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
|
|
}
|
|
|
|
static int ksz9477_wait_alu_ready(struct ksz_device *dev)
|
|
{
|
|
unsigned int val;
|
|
|
|
return regmap_read_poll_timeout(ksz_regmap_32(dev), REG_SW_ALU_CTRL__4,
|
|
val, !(val & ALU_START), 10, 1000);
|
|
}
|
|
|
|
static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
|
|
{
|
|
unsigned int val;
|
|
|
|
return regmap_read_poll_timeout(ksz_regmap_32(dev),
|
|
REG_SW_ALU_STAT_CTRL__4,
|
|
val, !(val & ALU_STAT_START),
|
|
10, 1000);
|
|
}
|
|
|
|
int ksz9477_reset_switch(struct ksz_device *dev)
|
|
{
|
|
u8 data8;
|
|
u32 data32;
|
|
|
|
/* reset switch */
|
|
ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
|
|
|
|
/* turn off SPI DO Edge select */
|
|
regmap_update_bits(ksz_regmap_8(dev), REG_SW_GLOBAL_SERIAL_CTRL_0,
|
|
SPI_AUTO_EDGE_DETECTION, 0);
|
|
|
|
/* default configuration */
|
|
ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
|
|
data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
|
|
SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
|
|
ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
|
|
|
|
/* disable interrupts */
|
|
ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
|
|
ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
|
|
ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
|
|
|
|
/* KSZ9893 compatible chips do not support refclk configuration */
|
|
if (dev->chip_id == KSZ9893_CHIP_ID ||
|
|
dev->chip_id == KSZ8563_CHIP_ID ||
|
|
dev->chip_id == KSZ9563_CHIP_ID)
|
|
return 0;
|
|
|
|
data8 = SW_ENABLE_REFCLKO;
|
|
if (dev->synclko_disable)
|
|
data8 = 0;
|
|
else if (dev->synclko_125)
|
|
data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
|
|
ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
|
|
{
|
|
struct ksz_port *p = &dev->ports[port];
|
|
unsigned int val;
|
|
u32 data;
|
|
int ret;
|
|
|
|
/* retain the flush/freeze bit */
|
|
data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
|
|
data |= MIB_COUNTER_READ;
|
|
data |= (addr << MIB_COUNTER_INDEX_S);
|
|
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
|
|
|
|
ret = regmap_read_poll_timeout(ksz_regmap_32(dev),
|
|
PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
|
|
val, !(val & MIB_COUNTER_READ), 10, 1000);
|
|
/* failed to read MIB. get out of loop */
|
|
if (ret) {
|
|
dev_dbg(dev->dev, "Failed to get MIB\n");
|
|
return;
|
|
}
|
|
|
|
/* count resets upon read */
|
|
ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
|
|
*cnt += data;
|
|
}
|
|
|
|
void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
|
|
u64 *dropped, u64 *cnt)
|
|
{
|
|
addr = dev->info->mib_names[addr].index;
|
|
ksz9477_r_mib_cnt(dev, port, addr, cnt);
|
|
}
|
|
|
|
void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
|
|
{
|
|
u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
|
|
struct ksz_port *p = &dev->ports[port];
|
|
|
|
/* enable/disable the port for flush/freeze function */
|
|
mutex_lock(&p->mib.cnt_mutex);
|
|
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
|
|
|
|
/* used by MIB counter reading code to know freeze is enabled */
|
|
p->freeze = freeze;
|
|
mutex_unlock(&p->mib.cnt_mutex);
|
|
}
|
|
|
|
void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
|
|
{
|
|
struct ksz_port_mib *mib = &dev->ports[port].mib;
|
|
|
|
/* flush all enabled port MIB counters */
|
|
mutex_lock(&mib->cnt_mutex);
|
|
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
|
|
MIB_COUNTER_FLUSH_FREEZE);
|
|
ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
|
|
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
|
|
mutex_unlock(&mib->cnt_mutex);
|
|
}
|
|
|
|
static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
|
|
u16 *data)
|
|
{
|
|
/* KSZ8563R do not have extended registers but BMSR_ESTATEN and
|
|
* BMSR_ERCAP bits are set.
|
|
*/
|
|
if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
|
|
*data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
|
|
}
|
|
|
|
int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
|
|
{
|
|
u16 val = 0xffff;
|
|
int ret;
|
|
|
|
/* No real PHY after this. Simulate the PHY.
|
|
* A fixed PHY can be setup in the device tree, but this function is
|
|
* still called for that port during initialization.
|
|
* For RGMII PHY there is no way to access it so the fixed PHY should
|
|
* be used. For SGMII PHY the supporting code will be added later.
|
|
*/
|
|
if (!dev->info->internal_phy[addr]) {
|
|
struct ksz_port *p = &dev->ports[addr];
|
|
|
|
switch (reg) {
|
|
case MII_BMCR:
|
|
val = 0x1140;
|
|
break;
|
|
case MII_BMSR:
|
|
val = 0x796d;
|
|
break;
|
|
case MII_PHYSID1:
|
|
val = 0x0022;
|
|
break;
|
|
case MII_PHYSID2:
|
|
val = 0x1631;
|
|
break;
|
|
case MII_ADVERTISE:
|
|
val = 0x05e1;
|
|
break;
|
|
case MII_LPA:
|
|
val = 0xc5e1;
|
|
break;
|
|
case MII_CTRL1000:
|
|
val = 0x0700;
|
|
break;
|
|
case MII_STAT1000:
|
|
if (p->phydev.speed == SPEED_1000)
|
|
val = 0x3800;
|
|
else
|
|
val = 0;
|
|
break;
|
|
}
|
|
} else {
|
|
ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ksz9477_r_phy_quirks(dev, addr, reg, &val);
|
|
}
|
|
|
|
*data = val;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
|
|
{
|
|
u32 mask, val32;
|
|
|
|
/* No real PHY after this. */
|
|
if (!dev->info->internal_phy[addr])
|
|
return 0;
|
|
|
|
if (reg < 0x10)
|
|
return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
|
|
|
|
/* Errata: When using SPI, I2C, or in-band register access,
|
|
* writes to certain PHY registers should be performed as
|
|
* 32-bit writes instead of 16-bit writes.
|
|
*/
|
|
val32 = val;
|
|
mask = 0xffff;
|
|
if ((reg & 1) == 0) {
|
|
val32 <<= 16;
|
|
mask <<= 16;
|
|
}
|
|
reg &= ~1;
|
|
return ksz_prmw32(dev, addr, 0x100 + (reg << 1), mask, val32);
|
|
}
|
|
|
|
void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
|
|
{
|
|
ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
|
|
}
|
|
|
|
void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
|
|
{
|
|
const u16 *regs = dev->info->regs;
|
|
u8 data;
|
|
|
|
regmap_update_bits(ksz_regmap_8(dev), REG_SW_LUE_CTRL_2,
|
|
SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
|
|
SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
|
|
|
|
if (port < dev->info->port_cnt) {
|
|
/* flush individual port */
|
|
ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
|
|
if (!(data & PORT_LEARN_DISABLE))
|
|
ksz_pwrite8(dev, port, regs[P_STP_CTRL],
|
|
data | PORT_LEARN_DISABLE);
|
|
ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
|
|
ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
|
|
} else {
|
|
/* flush all */
|
|
ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
|
|
}
|
|
}
|
|
|
|
int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
|
|
bool flag, struct netlink_ext_ack *extack)
|
|
{
|
|
if (flag) {
|
|
ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
|
|
PORT_VLAN_LOOKUP_VID_0, true);
|
|
ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
|
|
} else {
|
|
ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
|
|
ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
|
|
PORT_VLAN_LOOKUP_VID_0, false);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
|
|
const struct switchdev_obj_port_vlan *vlan,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
u32 vlan_table[3];
|
|
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
|
|
int err;
|
|
|
|
err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
|
|
if (err) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
|
|
return err;
|
|
}
|
|
|
|
vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
|
|
if (untagged)
|
|
vlan_table[1] |= BIT(port);
|
|
else
|
|
vlan_table[1] &= ~BIT(port);
|
|
vlan_table[1] &= ~(BIT(dev->cpu_port));
|
|
|
|
vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
|
|
|
|
err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
|
|
if (err) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
|
|
return err;
|
|
}
|
|
|
|
/* change PVID */
|
|
if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
|
|
ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
|
|
const struct switchdev_obj_port_vlan *vlan)
|
|
{
|
|
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
|
|
u32 vlan_table[3];
|
|
u16 pvid;
|
|
|
|
ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
|
|
pvid = pvid & 0xFFF;
|
|
|
|
if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
|
|
dev_dbg(dev->dev, "Failed to get vlan table\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
vlan_table[2] &= ~BIT(port);
|
|
|
|
if (pvid == vlan->vid)
|
|
pvid = 1;
|
|
|
|
if (untagged)
|
|
vlan_table[1] &= ~BIT(port);
|
|
|
|
if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
|
|
dev_dbg(dev->dev, "Failed to set vlan table\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ksz9477_fdb_add(struct ksz_device *dev, int port,
|
|
const unsigned char *addr, u16 vid, struct dsa_db db)
|
|
{
|
|
u32 alu_table[4];
|
|
u32 data;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&dev->alu_mutex);
|
|
|
|
/* find any entry with mac & vid */
|
|
data = vid << ALU_FID_INDEX_S;
|
|
data |= ((addr[0] << 8) | addr[1]);
|
|
ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
|
|
|
|
data = ((addr[2] << 24) | (addr[3] << 16));
|
|
data |= ((addr[4] << 8) | addr[5]);
|
|
ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
|
|
|
|
/* start read operation */
|
|
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
|
|
|
|
/* wait to be finished */
|
|
ret = ksz9477_wait_alu_ready(dev);
|
|
if (ret) {
|
|
dev_dbg(dev->dev, "Failed to read ALU\n");
|
|
goto exit;
|
|
}
|
|
|
|
/* read ALU entry */
|
|
ksz9477_read_table(dev, alu_table);
|
|
|
|
/* update ALU entry */
|
|
alu_table[0] = ALU_V_STATIC_VALID;
|
|
alu_table[1] |= BIT(port);
|
|
if (vid)
|
|
alu_table[1] |= ALU_V_USE_FID;
|
|
alu_table[2] = (vid << ALU_V_FID_S);
|
|
alu_table[2] |= ((addr[0] << 8) | addr[1]);
|
|
alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
|
|
alu_table[3] |= ((addr[4] << 8) | addr[5]);
|
|
|
|
ksz9477_write_table(dev, alu_table);
|
|
|
|
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
|
|
|
|
/* wait to be finished */
|
|
ret = ksz9477_wait_alu_ready(dev);
|
|
if (ret)
|
|
dev_dbg(dev->dev, "Failed to write ALU\n");
|
|
|
|
exit:
|
|
mutex_unlock(&dev->alu_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ksz9477_fdb_del(struct ksz_device *dev, int port,
|
|
const unsigned char *addr, u16 vid, struct dsa_db db)
|
|
{
|
|
u32 alu_table[4];
|
|
u32 data;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&dev->alu_mutex);
|
|
|
|
/* read any entry with mac & vid */
|
|
data = vid << ALU_FID_INDEX_S;
|
|
data |= ((addr[0] << 8) | addr[1]);
|
|
ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
|
|
|
|
data = ((addr[2] << 24) | (addr[3] << 16));
|
|
data |= ((addr[4] << 8) | addr[5]);
|
|
ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
|
|
|
|
/* start read operation */
|
|
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
|
|
|
|
/* wait to be finished */
|
|
ret = ksz9477_wait_alu_ready(dev);
|
|
if (ret) {
|
|
dev_dbg(dev->dev, "Failed to read ALU\n");
|
|
goto exit;
|
|
}
|
|
|
|
ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
|
|
if (alu_table[0] & ALU_V_STATIC_VALID) {
|
|
ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
|
|
ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
|
|
ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
|
|
|
|
/* clear forwarding port */
|
|
alu_table[1] &= ~BIT(port);
|
|
|
|
/* if there is no port to forward, clear table */
|
|
if ((alu_table[1] & ALU_V_PORT_MAP) == 0) {
|
|
alu_table[0] = 0;
|
|
alu_table[1] = 0;
|
|
alu_table[2] = 0;
|
|
alu_table[3] = 0;
|
|
}
|
|
} else {
|
|
alu_table[0] = 0;
|
|
alu_table[1] = 0;
|
|
alu_table[2] = 0;
|
|
alu_table[3] = 0;
|
|
}
|
|
|
|
ksz9477_write_table(dev, alu_table);
|
|
|
|
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
|
|
|
|
/* wait to be finished */
|
|
ret = ksz9477_wait_alu_ready(dev);
|
|
if (ret)
|
|
dev_dbg(dev->dev, "Failed to write ALU\n");
|
|
|
|
exit:
|
|
mutex_unlock(&dev->alu_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
|
|
{
|
|
alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
|
|
alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
|
|
alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
|
|
alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
|
|
ALU_V_PRIO_AGE_CNT_M;
|
|
alu->mstp = alu_table[0] & ALU_V_MSTP_M;
|
|
|
|
alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
|
|
alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
|
|
alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
|
|
|
|
alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
|
|
|
|
alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
|
|
alu->mac[1] = alu_table[2] & 0xFF;
|
|
alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
|
|
alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
|
|
alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
|
|
alu->mac[5] = alu_table[3] & 0xFF;
|
|
}
|
|
|
|
int ksz9477_fdb_dump(struct ksz_device *dev, int port,
|
|
dsa_fdb_dump_cb_t *cb, void *data)
|
|
{
|
|
int ret = 0;
|
|
u32 ksz_data;
|
|
u32 alu_table[4];
|
|
struct alu_struct alu;
|
|
int timeout;
|
|
|
|
mutex_lock(&dev->alu_mutex);
|
|
|
|
/* start ALU search */
|
|
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
|
|
|
|
do {
|
|
timeout = 1000;
|
|
do {
|
|
ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
|
|
if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
|
|
break;
|
|
usleep_range(1, 10);
|
|
} while (timeout-- > 0);
|
|
|
|
if (!timeout) {
|
|
dev_dbg(dev->dev, "Failed to search ALU\n");
|
|
ret = -ETIMEDOUT;
|
|
goto exit;
|
|
}
|
|
|
|
if (!(ksz_data & ALU_VALID))
|
|
continue;
|
|
|
|
/* read ALU table */
|
|
ksz9477_read_table(dev, alu_table);
|
|
|
|
ksz9477_convert_alu(&alu, alu_table);
|
|
|
|
if (alu.port_forward & BIT(port)) {
|
|
ret = cb(alu.mac, alu.fid, alu.is_static, data);
|
|
if (ret)
|
|
goto exit;
|
|
}
|
|
} while (ksz_data & ALU_START);
|
|
|
|
exit:
|
|
|
|
/* stop ALU search */
|
|
ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
|
|
|
|
mutex_unlock(&dev->alu_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ksz9477_mdb_add(struct ksz_device *dev, int port,
|
|
const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
|
|
{
|
|
u32 static_table[4];
|
|
const u8 *shifts;
|
|
const u32 *masks;
|
|
u32 data;
|
|
int index;
|
|
u32 mac_hi, mac_lo;
|
|
int err = 0;
|
|
|
|
shifts = dev->info->shifts;
|
|
masks = dev->info->masks;
|
|
|
|
mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
|
|
mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
|
|
mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
|
|
|
|
mutex_lock(&dev->alu_mutex);
|
|
|
|
for (index = 0; index < dev->info->num_statics; index++) {
|
|
/* find empty slot first */
|
|
data = (index << shifts[ALU_STAT_INDEX]) |
|
|
masks[ALU_STAT_READ] | ALU_STAT_START;
|
|
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
|
|
|
|
/* wait to be finished */
|
|
err = ksz9477_wait_alu_sta_ready(dev);
|
|
if (err) {
|
|
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
|
|
goto exit;
|
|
}
|
|
|
|
/* read ALU static table */
|
|
ksz9477_read_table(dev, static_table);
|
|
|
|
if (static_table[0] & ALU_V_STATIC_VALID) {
|
|
/* check this has same vid & mac address */
|
|
if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
|
|
((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
|
|
static_table[3] == mac_lo) {
|
|
/* found matching one */
|
|
break;
|
|
}
|
|
} else {
|
|
/* found empty one */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* no available entry */
|
|
if (index == dev->info->num_statics) {
|
|
err = -ENOSPC;
|
|
goto exit;
|
|
}
|
|
|
|
/* add entry */
|
|
static_table[0] = ALU_V_STATIC_VALID;
|
|
static_table[1] |= BIT(port);
|
|
if (mdb->vid)
|
|
static_table[1] |= ALU_V_USE_FID;
|
|
static_table[2] = (mdb->vid << ALU_V_FID_S);
|
|
static_table[2] |= mac_hi;
|
|
static_table[3] = mac_lo;
|
|
|
|
ksz9477_write_table(dev, static_table);
|
|
|
|
data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
|
|
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
|
|
|
|
/* wait to be finished */
|
|
if (ksz9477_wait_alu_sta_ready(dev))
|
|
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
|
|
|
|
exit:
|
|
mutex_unlock(&dev->alu_mutex);
|
|
return err;
|
|
}
|
|
|
|
int ksz9477_mdb_del(struct ksz_device *dev, int port,
|
|
const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
|
|
{
|
|
u32 static_table[4];
|
|
const u8 *shifts;
|
|
const u32 *masks;
|
|
u32 data;
|
|
int index;
|
|
int ret = 0;
|
|
u32 mac_hi, mac_lo;
|
|
|
|
shifts = dev->info->shifts;
|
|
masks = dev->info->masks;
|
|
|
|
mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
|
|
mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
|
|
mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
|
|
|
|
mutex_lock(&dev->alu_mutex);
|
|
|
|
for (index = 0; index < dev->info->num_statics; index++) {
|
|
/* find empty slot first */
|
|
data = (index << shifts[ALU_STAT_INDEX]) |
|
|
masks[ALU_STAT_READ] | ALU_STAT_START;
|
|
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
|
|
|
|
/* wait to be finished */
|
|
ret = ksz9477_wait_alu_sta_ready(dev);
|
|
if (ret) {
|
|
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
|
|
goto exit;
|
|
}
|
|
|
|
/* read ALU static table */
|
|
ksz9477_read_table(dev, static_table);
|
|
|
|
if (static_table[0] & ALU_V_STATIC_VALID) {
|
|
/* check this has same vid & mac address */
|
|
|
|
if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
|
|
((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
|
|
static_table[3] == mac_lo) {
|
|
/* found matching one */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* no available entry */
|
|
if (index == dev->info->num_statics)
|
|
goto exit;
|
|
|
|
/* clear port */
|
|
static_table[1] &= ~BIT(port);
|
|
|
|
if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
|
|
/* delete entry */
|
|
static_table[0] = 0;
|
|
static_table[1] = 0;
|
|
static_table[2] = 0;
|
|
static_table[3] = 0;
|
|
}
|
|
|
|
ksz9477_write_table(dev, static_table);
|
|
|
|
data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
|
|
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
|
|
|
|
/* wait to be finished */
|
|
ret = ksz9477_wait_alu_sta_ready(dev);
|
|
if (ret)
|
|
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
|
|
|
|
exit:
|
|
mutex_unlock(&dev->alu_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
|
|
struct dsa_mall_mirror_tc_entry *mirror,
|
|
bool ingress, struct netlink_ext_ack *extack)
|
|
{
|
|
u8 data;
|
|
int p;
|
|
|
|
/* Limit to one sniffer port
|
|
* Check if any of the port is already set for sniffing
|
|
* If yes, instruct the user to remove the previous entry & exit
|
|
*/
|
|
for (p = 0; p < dev->info->port_cnt; p++) {
|
|
/* Skip the current sniffing port */
|
|
if (p == mirror->to_local_port)
|
|
continue;
|
|
|
|
ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
|
|
|
|
if (data & PORT_MIRROR_SNIFFER) {
|
|
NL_SET_ERR_MSG_MOD(extack,
|
|
"Sniffer port is already configured, delete existing rules & retry");
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
if (ingress)
|
|
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
|
|
else
|
|
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
|
|
|
|
/* configure mirror port */
|
|
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
|
|
PORT_MIRROR_SNIFFER, true);
|
|
|
|
ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
|
|
struct dsa_mall_mirror_tc_entry *mirror)
|
|
{
|
|
bool in_use = false;
|
|
u8 data;
|
|
int p;
|
|
|
|
if (mirror->ingress)
|
|
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
|
|
else
|
|
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
|
|
|
|
|
|
/* Check if any of the port is still referring to sniffer port */
|
|
for (p = 0; p < dev->info->port_cnt; p++) {
|
|
ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
|
|
|
|
if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
|
|
in_use = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* delete sniffing if there are no other mirroring rules */
|
|
if (!in_use)
|
|
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
|
|
PORT_MIRROR_SNIFFER, false);
|
|
}
|
|
|
|
static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
|
|
{
|
|
phy_interface_t interface;
|
|
bool gbit;
|
|
|
|
if (dev->info->internal_phy[port])
|
|
return PHY_INTERFACE_MODE_NA;
|
|
|
|
gbit = ksz_get_gbit(dev, port);
|
|
|
|
interface = ksz_get_xmii(dev, port, gbit);
|
|
|
|
return interface;
|
|
}
|
|
|
|
void ksz9477_get_caps(struct ksz_device *dev, int port,
|
|
struct phylink_config *config)
|
|
{
|
|
config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
|
|
MAC_SYM_PAUSE;
|
|
|
|
if (dev->info->gbit_capable[port])
|
|
config->mac_capabilities |= MAC_1000FD;
|
|
}
|
|
|
|
int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
|
|
{
|
|
u32 secs = msecs / 1000;
|
|
u8 value;
|
|
u8 data;
|
|
int ret;
|
|
|
|
value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs);
|
|
|
|
ret = ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
data = FIELD_GET(SW_AGE_PERIOD_10_8_M, secs);
|
|
|
|
ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
value &= ~SW_AGE_CNT_M;
|
|
value |= FIELD_PREP(SW_AGE_CNT_M, data);
|
|
|
|
return ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
|
|
}
|
|
|
|
void ksz9477_port_queue_split(struct ksz_device *dev, int port)
|
|
{
|
|
u8 data;
|
|
|
|
if (dev->info->num_tx_queues == 8)
|
|
data = PORT_EIGHT_QUEUE;
|
|
else if (dev->info->num_tx_queues == 4)
|
|
data = PORT_FOUR_QUEUE;
|
|
else if (dev->info->num_tx_queues == 2)
|
|
data = PORT_TWO_QUEUE;
|
|
else
|
|
data = PORT_SINGLE_QUEUE;
|
|
|
|
ksz_prmw8(dev, port, REG_PORT_CTRL_0, PORT_QUEUE_SPLIT_MASK, data);
|
|
}
|
|
|
|
void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
|
|
{
|
|
struct dsa_switch *ds = dev->ds;
|
|
u16 data16;
|
|
u8 member;
|
|
|
|
/* enable tag tail for host port */
|
|
if (cpu_port)
|
|
ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
|
|
true);
|
|
|
|
ksz9477_port_queue_split(dev, port);
|
|
|
|
ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
|
|
|
|
/* set back pressure */
|
|
ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
|
|
|
|
/* enable broadcast storm limit */
|
|
ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
|
|
|
|
/* disable DiffServ priority */
|
|
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
|
|
|
|
/* replace priority */
|
|
ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
|
|
false);
|
|
ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
|
|
MTI_PVID_REPLACE, false);
|
|
|
|
/* enable 802.1p priority */
|
|
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
|
|
|
|
/* force flow control for non-PHY ports only */
|
|
ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
|
|
PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
|
|
!dev->info->internal_phy[port]);
|
|
|
|
if (cpu_port)
|
|
member = dsa_user_ports(ds);
|
|
else
|
|
member = BIT(dsa_upstream_port(ds, port));
|
|
|
|
ksz9477_cfg_port_member(dev, port, member);
|
|
|
|
/* clear pending interrupts */
|
|
if (dev->info->internal_phy[port])
|
|
ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
|
|
|
|
ksz9477_port_acl_init(dev, port);
|
|
}
|
|
|
|
void ksz9477_config_cpu_port(struct dsa_switch *ds)
|
|
{
|
|
struct ksz_device *dev = ds->priv;
|
|
struct ksz_port *p;
|
|
int i;
|
|
|
|
for (i = 0; i < dev->info->port_cnt; i++) {
|
|
if (dsa_is_cpu_port(ds, i) &&
|
|
(dev->info->cpu_ports & (1 << i))) {
|
|
phy_interface_t interface;
|
|
const char *prev_msg;
|
|
const char *prev_mode;
|
|
|
|
dev->cpu_port = i;
|
|
p = &dev->ports[i];
|
|
|
|
/* Read from XMII register to determine host port
|
|
* interface. If set specifically in device tree
|
|
* note the difference to help debugging.
|
|
*/
|
|
interface = ksz9477_get_interface(dev, i);
|
|
if (!p->interface) {
|
|
if (dev->compat_interface) {
|
|
dev_warn(dev->dev,
|
|
"Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
|
|
"Please update your device tree.\n",
|
|
i);
|
|
p->interface = dev->compat_interface;
|
|
} else {
|
|
p->interface = interface;
|
|
}
|
|
}
|
|
if (interface && interface != p->interface) {
|
|
prev_msg = " instead of ";
|
|
prev_mode = phy_modes(interface);
|
|
} else {
|
|
prev_msg = "";
|
|
prev_mode = "";
|
|
}
|
|
dev_info(dev->dev,
|
|
"Port%d: using phy mode %s%s%s\n",
|
|
i,
|
|
phy_modes(p->interface),
|
|
prev_msg,
|
|
prev_mode);
|
|
|
|
/* enable cpu port */
|
|
ksz9477_port_setup(dev, i, true);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < dev->info->port_cnt; i++) {
|
|
if (i == dev->cpu_port)
|
|
continue;
|
|
ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
|
|
}
|
|
}
|
|
|
|
int ksz9477_enable_stp_addr(struct ksz_device *dev)
|
|
{
|
|
const u32 *masks;
|
|
u32 data;
|
|
int ret;
|
|
|
|
masks = dev->info->masks;
|
|
|
|
/* Enable Reserved multicast table */
|
|
ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
|
|
|
|
/* Set the Override bit for forwarding BPDU packet to CPU */
|
|
ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
|
|
ALU_V_OVERRIDE | BIT(dev->cpu_port));
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
|
|
|
|
ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* wait to be finished */
|
|
ret = ksz9477_wait_alu_sta_ready(dev);
|
|
if (ret < 0) {
|
|
dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ksz9477_setup(struct dsa_switch *ds)
|
|
{
|
|
struct ksz_device *dev = ds->priv;
|
|
int ret = 0;
|
|
|
|
ds->mtu_enforcement_ingress = true;
|
|
|
|
/* Required for port partitioning. */
|
|
ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
|
|
true);
|
|
|
|
/* Do not work correctly with tail tagging. */
|
|
ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
|
|
|
|
/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
|
|
ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
|
|
|
|
/* Now we can configure default MTU value */
|
|
ret = regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2, REG_SW_MTU_MASK,
|
|
VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* queue based egress rate limit */
|
|
ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
|
|
|
|
/* enable global MIB counter freeze function */
|
|
ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
u32 ksz9477_get_port_addr(int port, int offset)
|
|
{
|
|
return PORT_CTRL_ADDR(port, offset);
|
|
}
|
|
|
|
int ksz9477_tc_cbs_set_cinc(struct ksz_device *dev, int port, u32 val)
|
|
{
|
|
val = val >> 8;
|
|
|
|
return ksz_pwrite16(dev, port, REG_PORT_MTI_CREDIT_INCREMENT, val);
|
|
}
|
|
|
|
int ksz9477_switch_init(struct ksz_device *dev)
|
|
{
|
|
u8 data8;
|
|
int ret;
|
|
|
|
dev->port_mask = (1 << dev->info->port_cnt) - 1;
|
|
|
|
/* turn off SPI DO Edge select */
|
|
ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
|
|
if (ret)
|
|
return ret;
|
|
|
|
data8 &= ~SPI_AUTO_EDGE_DETECTION;
|
|
ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ksz9477_switch_exit(struct ksz_device *dev)
|
|
{
|
|
ksz9477_reset_switch(dev);
|
|
}
|
|
|
|
MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
|
|
MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
|
|
MODULE_LICENSE("GPL");
|