When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but GUEST_CR3 is
still vmx->ept_identity_map_addr if EPT + !URG. So VCPU_EXREG_CR3 is
considered to be dirty and GUEST_CR3 needs to be updated in this case.
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211216021938.11752-4-jiangshanlai@gmail.com>
Fixes: c62c7bd4f9 ("KVM: VMX: Update vmcs.GUEST_CR3 only when the guest CR3 is dirty")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The host CR3 in the vcpu thread can only be changed when scheduling,
so commit 15ad9762d6 ("KVM: VMX: Save HOST_CR3 in vmx_prepare_switch_to_guest()")
changed vmx.c to only save it in vmx_prepare_switch_to_guest().
However, it also has to be synced in vmx_sync_vmcs_host_state() when switching VMCS.
vmx_set_host_fs_gs() is called in both places, so rename it to
vmx_set_vmcs_host_state() and make it update HOST_CR3.
Fixes: 15ad9762d6 ("KVM: VMX: Save HOST_CR3 in vmx_prepare_switch_to_guest()")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211216021938.11752-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pick commit fdba608f15 ("KVM: VMX: Wake vCPU when delivering posted
IRQ even if vCPU == this vCPU"). In addition to fixing a bug, it
also aligns the non-nested and nested usage of triggering posted
interrupts, allowing for additional cleanups.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop a check that guards triggering a posted interrupt on the currently
running vCPU, and more importantly guards waking the target vCPU if
triggering a posted interrupt fails because the vCPU isn't IN_GUEST_MODE.
If a vIRQ is delivered from asynchronous context, the target vCPU can be
the currently running vCPU and can also be blocking, in which case
skipping kvm_vcpu_wake_up() is effectively dropping what is supposed to
be a wake event for the vCPU.
The "do nothing" logic when "vcpu == running_vcpu" mostly works only
because the majority of calls to ->deliver_posted_interrupt(), especially
when using posted interrupts, come from synchronous KVM context. But if
a device is exposed to the guest using vfio-pci passthrough, the VFIO IRQ
and vCPU are bound to the same pCPU, and the IRQ is _not_ configured to
use posted interrupts, wake events from the device will be delivered to
KVM from IRQ context, e.g.
vfio_msihandler()
|
|-> eventfd_signal()
|
|-> ...
|
|-> irqfd_wakeup()
|
|->kvm_arch_set_irq_inatomic()
|
|-> kvm_irq_delivery_to_apic_fast()
|
|-> kvm_apic_set_irq()
This also aligns the non-nested and nested usage of triggering posted
interrupts, and will allow for additional cleanups.
Fixes: 379a3c8ee4 ("KVM: VMX: Optimize posted-interrupt delivery for timer fastpath")
Cc: stable@vger.kernel.org
Reported-by: Longpeng (Mike) <longpeng2@huawei.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Synthesize a triple fault if L2 guest state is invalid at the time of
VM-Enter, which can happen if L1 modifies SMRAM or if userspace stuffs
guest state via ioctls(), e.g. KVM_SET_SREGS. KVM should never emulate
invalid guest state, since from L1's perspective, it's architecturally
impossible for L2 to have invalid state while L2 is running in hardware.
E.g. attempts to set CR0 or CR4 to unsupported values will either VM-Exit
or #GP.
Modifying vCPU state via RSM+SMRAM and ioctl() are the only paths that
can trigger this scenario, as nested VM-Enter correctly rejects any
attempt to enter L2 with invalid state.
RSM is a straightforward case as (a) KVM follows AMD's SMRAM layout and
behavior, and (b) Intel's SDM states that loading reserved CR0/CR4 bits
via RSM results in shutdown, i.e. there is precedent for KVM's behavior.
Following AMD's SMRAM layout is important as AMD's layout saves/restores
the descriptor cache information, including CS.RPL and SS.RPL, and also
defines all the fields relevant to invalid guest state as read-only, i.e.
so long as the vCPU had valid state before the SMI, which is guaranteed
for L2, RSM will generate valid state unless SMRAM was modified. Intel's
layout saves/restores only the selector, which means that scenarios where
the selector and cached RPL don't match, e.g. conforming code segments,
would yield invalid guest state. Intel CPUs fudge around this issued by
stuffing SS.RPL and CS.RPL on RSM. Per Intel's SDM on the "Default
Treatment of RSM", paraphrasing for brevity:
IF internal storage indicates that the [CPU was post-VMXON]
THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 34.14.1;
set to their fixed values any bits in CR0 and CR4 whose values must
be fixed in VMX operation [unless coming from an unrestricted guest];
IF RFLAGS.VM = 0 AND (in VMX root operation OR the
“unrestricted guest” VM-execution control is 0)
THEN
CS.RPL := SS.DPL;
SS.RPL := SS.DPL;
FI;
restore current VMCS pointer;
FI;
Note that Intel CPUs also overwrite the fixed CR0/CR4 bits, whereas KVM
will sythesize TRIPLE_FAULT in this scenario. KVM's behavior is allowed
as both Intel and AMD define CR0/CR4 SMRAM fields as read-only, i.e. the
only way for CR0 and/or CR4 to have illegal values is if they were
modified by the L1 SMM handler, and Intel's SDM "SMRAM State Save Map"
section states "modifying these registers will result in unpredictable
behavior".
KVM's ioctl() behavior is less straightforward. Because KVM allows
ioctls() to be executed in any order, rejecting an ioctl() if it would
result in invalid L2 guest state is not an option as KVM cannot know if
a future ioctl() would resolve the invalid state, e.g. KVM_SET_SREGS, or
drop the vCPU out of L2, e.g. KVM_SET_NESTED_STATE. Ideally, KVM would
reject KVM_RUN if L2 contained invalid guest state, but that carries the
risk of a false positive, e.g. if RSM loaded invalid guest state and KVM
exited to userspace. Setting a flag/request to detect such a scenario is
undesirable because (a) it's extremely unlikely to add value to KVM as a
whole, and (b) KVM would need to consider ioctl() interactions with such
a flag, e.g. if userspace migrated the vCPU while the flag were set.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211207193006.120997-3-seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert a relatively recent change that set vmx->fail if the vCPU is in L2
and emulation_required is true, as that behavior is completely bogus.
Setting vmx->fail and synthesizing a VM-Exit is contradictory and wrong:
(a) it's impossible to have both a VM-Fail and VM-Exit
(b) vmcs.EXIT_REASON is not modified on VM-Fail
(c) emulation_required refers to guest state and guest state checks are
always VM-Exits, not VM-Fails.
For KVM specifically, emulation_required is handled before nested exits
in __vmx_handle_exit(), thus setting vmx->fail has no immediate effect,
i.e. KVM calls into handle_invalid_guest_state() and vmx->fail is ignored.
Setting vmx->fail can ultimately result in a WARN in nested_vmx_vmexit()
firing when tearing down the VM as KVM never expects vmx->fail to be set
when L2 is active, KVM always reflects those errors into L1.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 21158 at arch/x86/kvm/vmx/nested.c:4548
nested_vmx_vmexit+0x16bd/0x17e0
arch/x86/kvm/vmx/nested.c:4547
Modules linked in:
CPU: 0 PID: 21158 Comm: syz-executor.1 Not tainted 5.16.0-rc3-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:nested_vmx_vmexit+0x16bd/0x17e0 arch/x86/kvm/vmx/nested.c:4547
Code: <0f> 0b e9 2e f8 ff ff e8 57 b3 5d 00 0f 0b e9 00 f1 ff ff 89 e9 80
Call Trace:
vmx_leave_nested arch/x86/kvm/vmx/nested.c:6220 [inline]
nested_vmx_free_vcpu+0x83/0xc0 arch/x86/kvm/vmx/nested.c:330
vmx_free_vcpu+0x11f/0x2a0 arch/x86/kvm/vmx/vmx.c:6799
kvm_arch_vcpu_destroy+0x6b/0x240 arch/x86/kvm/x86.c:10989
kvm_vcpu_destroy+0x29/0x90 arch/x86/kvm/../../../virt/kvm/kvm_main.c:441
kvm_free_vcpus arch/x86/kvm/x86.c:11426 [inline]
kvm_arch_destroy_vm+0x3ef/0x6b0 arch/x86/kvm/x86.c:11545
kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:1189 [inline]
kvm_put_kvm+0x751/0xe40 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1220
kvm_vcpu_release+0x53/0x60 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3489
__fput+0x3fc/0x870 fs/file_table.c:280
task_work_run+0x146/0x1c0 kernel/task_work.c:164
exit_task_work include/linux/task_work.h:32 [inline]
do_exit+0x705/0x24f0 kernel/exit.c:832
do_group_exit+0x168/0x2d0 kernel/exit.c:929
get_signal+0x1740/0x2120 kernel/signal.c:2852
arch_do_signal_or_restart+0x9c/0x730 arch/x86/kernel/signal.c:868
handle_signal_work kernel/entry/common.c:148 [inline]
exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
exit_to_user_mode_prepare+0x191/0x220 kernel/entry/common.c:207
__syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]
syscall_exit_to_user_mode+0x2e/0x70 kernel/entry/common.c:300
do_syscall_64+0x53/0xd0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fixes: c8607e4a08 ("KVM: x86: nVMX: don't fail nested VM entry on invalid guest state if !from_vmentry")
Reported-by: syzbot+f1d2136db9c80d4733e8@syzkaller.appspotmail.com
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211207193006.120997-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The kvm_run struct's if_flag is a part of the userspace/kernel API. The
SEV-ES patches failed to set this flag because it's no longer needed by
QEMU (according to the comment in the source code). However, other
hypervisors may make use of this flag. Therefore, set the flag for
guests with encrypted registers (i.e., with guest_state_protected set).
Fixes: f1c6366e30 ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
Signed-off-by: Marc Orr <marcorr@google.com>
Message-Id: <20211209155257.128747-1-marcorr@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
In the vmread exceptin path, use the, thus far, unused output register
to push the @fault argument onto the stack. This, in turn, enables the
exception handler to not do pushes and only modify that register when
an exception does occur.
As noted by Sean the input constraint needs to be changed to "=&r" to
avoid the value and field occupying the same register.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20211110101325.781308550@infradead.org
Move the WARN sanity checks out of the PI descriptor update loop so as
not to spam the kernel log if the condition is violated and the update
takes multiple attempts due to another writer. This also eliminates a
few extra uops from the retry path.
Technically not checking every attempt could mean KVM will now fail to
WARN in a scenario that would have failed before, but any such failure
would be inherently racy as some other agent (CPU or device) would have
to concurrent modify the PI descriptor.
Add a helper to handle the actual write and more importantly to document
why the write may need to be retried.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a memory barrier between writing vcpu->requests and reading
vcpu->guest_mode to ensure the read is ordered after the write when
(potentially) delivering an IRQ to L2 via nested posted interrupt. If
the request were to be completed after reading vcpu->mode, it would be
possible for the target vCPU to enter the guest without posting the
interrupt and without handling the event request.
Note, the barrier is only for documentation since atomic operations are
serializing on x86.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 6b6977117f ("KVM: nVMX: Fix races when sending nested PI while dest enters/leaves L2")
Fixes: 705699a139 ("KVM: nVMX: Enable nested posted interrupt processing")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Updating MSR bitmap for L2 is not cheap and rearly needed. TLFS for Hyper-V
offers 'Enlightened MSR Bitmap' feature which allows L1 hypervisor to
inform L0 when it changes MSR bitmap, this eliminates the need to examine
L1's MSR bitmap for L2 every time when 'real' MSR bitmap for L2 gets
constructed.
Use 'vmx->nested.msr_bitmap_changed' flag to implement the feature.
Note, KVM already uses 'Enlightened MSR bitmap' feature when it runs as a
nested hypervisor on top of Hyper-V. The newly introduced feature is going
to be used by Hyper-V guests on KVM.
When the feature is enabled for Win10+WSL2, it shaves off around 700 CPU
cycles from a nested vmexit cost (tight cpuid loop test).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211129094704.326635-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce a flag to keep track of whether MSR bitmap for L2 needs to be
rebuilt due to changes in MSR bitmap for L1 or switching to a different
L2. This information will be used for Enlightened MSR Bitmap feature for
Hyper-V guests.
Note, setting msr_bitmap_changed to 'true' from set_current_vmptr() is
not really needed for Enlightened MSR Bitmap as the feature can only
be used in conjunction with Enlightened VMCS but let's keep tracking
information complete, it's cheap and in the future similar PV feature can
easily be implemented for KVM on KVM too.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211129094704.326635-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation to enabling 'Enlightened MSR Bitmap' feature for Hyper-V
guests move MSR bitmap update tracking to a dedicated helper.
Note: vmx_msr_bitmap_l01_changed() is called when MSR bitmap might be
updated. KVM doesn't check if the bit we're trying to set is already set
(or the bit it's trying to clear is already cleared). Such situations
should not be common and a few false positives should not be a problem.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211129094704.326635-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace all ret/retq instructions with RET in preparation of making
RET a macro. Since AS is case insensitive it's a big no-op without
RET defined.
find arch/x86/ -name \*.S | while read file
do
sed -i 's/\<ret[q]*\>/RET/' $file
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211204134907.905503893@infradead.org
When KVM runs as a nested hypervisor on top of Hyper-V it uses Enlightened
VMCS and enables Enlightened MSR Bitmap feature for its L1s and L2s (which
are actually L2s and L3s from Hyper-V's perspective). When MSR bitmap is
updated, KVM has to reset HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP from
clean fields to make Hyper-V aware of the change. For KVM's L1s, this is
done in vmx_disable_intercept_for_msr()/vmx_enable_intercept_for_msr().
MSR bitmap for L2 is build in nested_vmx_prepare_msr_bitmap() by blending
MSR bitmap for L1 and L1's idea of MSR bitmap for L2. KVM, however, doesn't
check if the resulting bitmap is different and never cleans
HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP in eVMCS02. This is incorrect and
may result in Hyper-V missing the update.
The issue could've been solved by calling evmcs_touch_msr_bitmap() for
eVMCS02 from nested_vmx_prepare_msr_bitmap() unconditionally but doing so
would not give any performance benefits (compared to not using Enlightened
MSR Bitmap at all). 3-level nesting is also not a very common setup
nowadays.
Don't enable 'Enlightened MSR Bitmap' feature for KVM's L2s (real L3s) for
now.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211129094704.326635-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It uses vcpu->arch.walk_mmu always; nested EPT does not have PDPTRs,
and nested NPT treats them like all other non-leaf page table levels
instead of caching them.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-11-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Using ept_caps_to_lpage_level is simpler.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-9-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The level of supported large page on nEPT affects the rsvds_bits_mask.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-8-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The variable name is changed in the code.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211118110814.2568-8-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR_IA32_TSC_ADJUST can be left to the default way which also uese
kvm_set_msr_common().
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211118110814.2568-7-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The host CR3 in the vcpu thread can only be changed when scheduling.
Moving the code in vmx_prepare_switch_to_guest() makes the code
simpler.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211118110814.2568-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The value of host MSR_IA32_SYSENTER_ESP is known to be constant for
each CPU: (cpu_entry_stack(cpu) + 1) when 32 bit syscall is enabled or
NULL is 32 bit syscall is not enabled.
So rdmsrl() can be avoided for the first case and both rdmsrl() and
vmcs_writel() can be avoided for the second case.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211118110814.2568-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Document the meaning of the three combinations of regs_avail and
regs_dirty. Update regs_dirty just after writeback instead of
doing it later after vmexit. After vmexit, instead, we clear the
regs_avail bits corresponding to lazily-loaded registers.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When vcpu->arch.cr3 is changed, it is marked dirty, so vmcs.GUEST_CR3
can be updated only when kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3).
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211108124407.12187-12-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When vcpu->arch.cr3 is changed, it should be marked dirty unless it
is being updated to the value of the architecture guest CR3 (i.e.
VMX.GUEST_CR3 or vmcb->save.cr3 when tdp is enabled).
This patch has no functionality changed because
kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3) is superset of
kvm_register_mark_available(vcpu, VCPU_EXREG_CR3) with additional
change to vcpu->arch.regs_dirty, but no code uses regs_dirty for
VCPU_EXREG_CR3. (vmx_load_mmu_pgd() uses vcpu->arch.regs_avail instead
to test if VCPU_EXREG_CR3 dirty which means current code (ab)uses
regs_avail for VCPU_EXREG_CR3 dirty information.)
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211108124407.12187-11-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In set_cr4_guest_host_mask(), all cr4 pdptr bits are already set to be
intercepted in an unclear way.
Add X86_CR4_PDPTR_BITS to make it clear and self-documented.
No functionality changed.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211108124407.12187-6-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In set_cr4_guest_host_mask(), X86_CR4_PGE is set to be intercepted when
!enable_ept just because X86_CR4_PGE is the only bit that is
responsible for flushing TLB but listed in KVM_POSSIBLE_CR4_GUEST_BITS.
It is clearer and self-documented to use X86_CR4_TLBFLUSH_BITS instead.
No functionality changed.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211108124407.12187-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
mmu->pdptrs[] and vmcs.GUEST_PDPTR[0-3] are synced, so mmu->pdptrs is
available and GUEST_PDPTR[0-3] is not dirty.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211108124407.12187-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the vCPU from the wakeup list before updating the notification
vector in the posted interrupt post-block helper. There is no need to
wake the current vCPU as it is by definition not blocking. Practically
speaking this is a nop as it only shaves a few meager cycles in the
unlikely case that the vCPU was migrated and the previous pCPU gets a
wakeup IRQ right before PID.NV is updated. The real motivation is to
allow for more readable code in the future, when post-block is merged
with vmx_vcpu_pi_load(), at which point removal from the list will be
conditional on the old notification vector.
Opportunistically add comments to document why KVM has a per-CPU spinlock
that, at first glance, appears to be taken only on the owning CPU.
Explicitly call out that the spinlock must be taken with IRQs disabled, a
detail that was "lost" when KVM switched from spin_lock_irqsave() to
spin_lock(), with IRQs disabled for the entirety of the relevant path.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-29-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hoist the CPU => APIC ID conversion for the Posted Interrupt descriptor
out of the loop to write the descriptor, preemption is disabled so the
CPU won't change, and if the APIC ID changes KVM has bigger problems.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-28-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use READ_ONCE() when loading the posted interrupt descriptor control
field to ensure "old" and "new" have the same base value. If the
compiler emits separate loads, and loads into "new" before "old", KVM
could theoretically drop the ON bit if it were set between the loads.
Fixes: 28b835d60f ("KVM: Update Posted-Interrupts Descriptor when vCPU is preempted")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-27-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Save/restore IRQs when disabling IRQs in posted interrupt pre/post block
in preparation for moving the code into vcpu_put/load(), where it would be
called with IRQs already disabled.
No functional changed intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-26-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't update Posted Interrupt's NDST, a.k.a. the target pCPU, in the
pre-block path, as NDST is guaranteed to be up-to-date. The comment
about the vCPU being preempted during the update is simply wrong, as the
update path runs with IRQs disabled (from before snapshotting vcpu->cpu,
until after the update completes).
Since commit 8b306e2f3c ("KVM: VMX: avoid double list add with VT-d
posted interrupts", 2017-09-27) The vCPU can get preempted _before_
the update starts, but not during. And if the vCPU is preempted before,
vmx_vcpu_pi_load() is responsible for updating NDST when the vCPU is
scheduled back in. In that case, the check against the wakeup vector in
vmx_vcpu_pi_load() cannot be true as that would require the notification
vector to have been set to the wakeup vector _before_ blocking.
Opportunistically switch to using vcpu->cpu for the list/lock lookups,
which do not need pre_pcpu since the same commit.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return bools instead of ints for the posted interrupt "test" helpers.
The bit position of the flag being test does not matter to the callers,
and is in fact lost by virtue of test_bit() itself returning a bool.
Returning ints is potentially dangerous, e.g. "pi_test_on(pi_desc) == 1"
is safe-ish because ON is bit 0 and thus any sane implementation of
pi_test_on() will work, but for SN (bit 1), checking "== 1" would rely on
pi_test_on() to return 0 or 1, a.k.a. bools, as opposed to 0 or 2 (the
positive bit position).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop sanity checks on the validity of the previous pCPU when handling
vCPU block/unlock for posted interrupts. The intention behind the sanity
checks is to avoid memory corruption in case of a race or incorrect locking,
but the code has been stable for a few years now and the checks get in
the way of eliminating kvm_vcpu.pre_cpu.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly skip posted interrupt updates if APICv is disabled in all of
KVM, or if the guest doesn't have an in-kernel APIC. The PI descriptor
is kept up-to-date if APICv is inhibited, e.g. so that re-enabling APICv
doesn't require a bunch of updates, but neither the module param nor the
APIC type can be changed on-the-fly.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename a variety of HLT-related helpers to free up the function name
"kvm_vcpu_halt" for future use in generic KVM code, e.g. to differentiate
between "block" and "halt".
No functional change intended.
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't configure the wakeup handler when a vCPU is blocking with IRQs
disabled, in which case any IRQ, posted or otherwise, should not be
recognized and thus should not wake the vCPU.
Fixes: bf9f6ac8d7 ("KVM: Update Posted-Interrupts Descriptor when vCPU is blocked")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the gotos from vmx_get_mt_mask. It's easier to build the whole
memory type at once, than it is to combine separate cacheability and
ipat fields.
No functional change intended.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20211115234603.2908381-12-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The error paths in the prepare_vmcs02() function are supposed to set
*entry_failure_code but this path does not. It leads to using an
uninitialized variable in the caller.
Fixes: 71f7347025 ("KVM: nVMX: Load GUEST_IA32_PERF_GLOBAL_CTRL MSR on VM-Entry")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Message-Id: <20211130125337.GB24578@kili>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_vcpu_apicv_active() returns false if a virtual machine has no in-kernel
local APIC, however kvm_apicv_activated might still be true if there are
no reasons to disable APICv; in fact it is quite likely that there is none
because APICv is inhibited by specific configurations of the local APIC
and those configurations cannot be programmed. This triggers a WARN:
WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
To avoid this, introduce another cause for APICv inhibition, namely the
absence of an in-kernel local APIC. This cause is enabled by default,
and is dropped by either KVM_CREATE_IRQCHIP or the enabling of
KVM_CAP_IRQCHIP_SPLIT.
Reported-by: Ignat Korchagin <ignat@cloudflare.com>
Fixes: ee49a89329 ("KVM: x86: Move SVM's APICv sanity check to common x86", 2021-10-22)
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Ignat Korchagin <ignat@cloudflare.com>
Message-Id: <20211130123746.293379-1-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is nothing to synchronize if APICv is disabled, since neither
other vCPUs nor assigned devices can set PIR.ON.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, checks for whether VT-d PI can be used refer to the current
status of the feature in the current vCPU; or they more or less pick
vCPU 0 in case a specific vCPU is not available.
However, these checks do not attempt to synchronize with changes to
the IRTE. In particular, there is no path that updates the IRTE when
APICv is re-activated on vCPU 0; and there is no path to wakeup a CPU
that has APICv disabled, if the wakeup occurs because of an IRTE
that points to a posted interrupt.
To fix this, always go through the VT-d PI path as long as there are
assigned devices and APICv is available on both the host and the VM side.
Since the relevant condition was copied over three times, take the hint
and factor it into a separate function.
Suggested-by: Sean Christopherson <seanjc@google.com>
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Message-Id: <20211123004311.2954158-5-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If APICv is disabled for this vCPU, assigned devices may still attempt to
post interrupts. In that case, we need to cancel the vmentry and deliver
the interrupt with KVM_REQ_EVENT. Extend the existing code that handles
injection of L1 interrupts into L2 to cover this case as well.
vmx_hwapic_irr_update is only called when APICv is active so it would be
confusing to add a check for vcpu->arch.apicv_active in there. Instead,
just use vmx_set_rvi directly in vmx_sync_pir_to_irr.
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211123004311.2954158-3-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fully emulate a guest TLB flush on nested VM-Enter which changes vpid12,
i.e. L2's VPID, instead of simply doing INVVPID to flush real hardware's
TLB entries for vpid02. From L1's perspective, changing L2's VPID is
effectively a TLB flush unless "hardware" has previously cached entries
for the new vpid12. Because KVM tracks only a single vpid12, KVM doesn't
know if the new vpid12 has been used in the past and so must treat it as
a brand new, never been used VPID, i.e. must assume that the new vpid12
represents a TLB flush from L1's perspective.
For example, if L1 and L2 share a CR3, the first VM-Enter to L2 (with a
VPID) is effectively a TLB flush as hardware/KVM has never seen vpid12
and thus can't have cached entries in the TLB for vpid12.
Reported-by: Lai Jiangshan <jiangshanlai+lkml@gmail.com>
Fixes: 5c614b3583 ("KVM: nVMX: nested VPID emulation")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211125014944.536398-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Like KVM_REQ_TLB_FLUSH_CURRENT, the GUEST variant needs to be serviced at
nested transitions, as KVM doesn't track requests for L1 vs L2. E.g. if
there's a pending flush when a nested VM-Exit occurs, then the flush was
requested in the context of L2 and needs to be handled before switching
to L1, otherwise the flush for L2 would effectiely be lost.
Opportunistically add a helper to handle CURRENT and GUEST as a pair, the
logic for when they need to be serviced is identical as both requests are
tied to L1 vs. L2, the only difference is the scope of the flush.
Reported-by: Lai Jiangshan <jiangshanlai+lkml@gmail.com>
Fixes: 07ffaf343e ("KVM: nVMX: Sync all PGDs on nested transition with shadow paging")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211125014944.536398-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Flush the current VPID when handling KVM_REQ_TLB_FLUSH_GUEST instead of
always flushing vpid01. Any TLB flush that is triggered when L2 is
active is scoped to L2's VPID (if it has one), e.g. if L2 toggles CR4.PGE
and L1 doesn't intercept PGE writes, then KVM's emulation of the TLB
flush needs to be applied to L2's VPID.
Reported-by: Lai Jiangshan <jiangshanlai+lkml@gmail.com>
Fixes: 07ffaf343e ("KVM: nVMX: Sync all PGDs on nested transition with shadow paging")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211125014944.536398-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
An uninitialized gfn_to_hva_cache has ghc->len == 0, which causes
the accessors to croak very loudly. While a BUG_ON is definitely
_too_ loud and a bug on its own, there is indeed an issue of using
the caches in such a way that they could not have been initialized,
because ghc->gpa == 0 might match and thus kvm_gfn_to_hva_cache_init
would not be called.
For the vmcs12_cache, the solution is simply to invoke
kvm_gfn_to_hva_cache_init unconditionally: we already know
that the cache does not match the current VMCS pointer.
For the shadow_vmcs12_cache, there is no similar condition
that checks the VMCS link pointer, so invalidate the cache
on VMXON.
Fixes: cee66664dc ("KVM: nVMX: Use a gfn_to_hva_cache for vmptrld")
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Reported-by: syzbot+7b7db8bb4db6fd5e157b@syzkaller.appspotmail.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Fixes for Xen emulation
* Kill kvm_map_gfn() / kvm_unmap_gfn() and broken gfn_to_pfn_cache
* Fixes for migration of 32-bit nested guests on 64-bit hypervisor
* Compilation fixes
* More SEV cleanups
And thus another call to kvm_vcpu_map() can die.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211115165030.7422-7-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Kill another mostly gratuitous kvm_vcpu_map() which could just use the
userspace HVA for it.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211115165030.7422-6-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Using kvm_vcpu_map() for reading from the guest is entirely gratuitous,
when all we do is a single memcpy and unmap it again. Fix it up to use
kvm_read_guest()... but in fact I couldn't bring myself to do that
without also making it use a gfn_to_hva_cache for both that *and* the
copy in the other direction.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211115165030.7422-5-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When loading nested state, don't use check vcpu->arch.efer to get the
L1 host's 64-bit vs. 32-bit state and don't check it for consistency
with respect to VM_EXIT_HOST_ADDR_SPACE_SIZE, as register state in vCPU
may be stale when KVM_SET_NESTED_STATE is called---and architecturally
does not exist. When restoring L2 state in KVM, the CPU is placed in
non-root where nested VMX code has no snapshot of L1 host state: VMX
(conditionally) loads host state fields loaded on VM-exit, but they need
not correspond to the state before entry. A simple case occurs in KVM
itself, where the host RIP field points to vmx_vmexit rather than the
instruction following vmlaunch/vmresume.
However, for the particular case of L1 being in 32- or 64-bit mode
on entry, the exit controls can be treated instead as the source of
truth regarding the state of L1 on entry, and can be used to check
that vmcs12.VM_EXIT_HOST_ADDR_SPACE_SIZE matches vmcs12.HOST_EFER if
vmcs12.VM_EXIT_LOAD_IA32_EFER is set. The consistency check on CPU
EFER vs. vmcs12.VM_EXIT_HOST_ADDR_SPACE_SIZE, instead, happens only
on VM-Enter. That's because, again, there's conceptually no "current"
L1 EFER to check on KVM_SET_NESTED_STATE.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211115131837.195527-2-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that all state needed for VMX's PT interrupt handler is exposed to
vmx.c (specifically the currently running vCPU), move the handler into
vmx.c where it belongs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211111020738.2512932-14-seanjc@google.com
Differentiate between IRQ and NMI for KVM's PMC overflow callback, which
was originally invoked in response to an NMI that arrived while the guest
was running, but was inadvertantly changed to fire on IRQs as well when
support for perf without PMU/NMI was added to KVM. In practice, this
should be a nop as the PMC overflow callback shouldn't be reached, but
it's a cheap and easy fix that also better documents the situation.
Note, this also doesn't completely prevent false positives if perf
somehow ends up calling into KVM, e.g. an NMI can arrive in host after
KVM sets its flag.
Fixes: dd60d21706 ("KVM: x86: Fix perf timer mode IP reporting")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20211111020738.2512932-12-seanjc@google.com
Override the Processor Trace (PT) interrupt handler for guest mode if and
only if PT is configured for host+guest mode, i.e. is being used
independently by both host and guest. If PT is configured for system
mode, the host fully controls PT and must handle all events.
Fixes: 8479e04e7d ("KVM: x86: Inject PMI for KVM guest")
Reported-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reported-by: Artem Kashkanov <artem.kashkanov@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211111020738.2512932-4-seanjc@google.com
* Fix misuse of gfn-to-pfn cache when recording guest steal time / preempted status
* Fix selftests on APICv machines
* Fix sparse warnings
* Fix detection of KVM features in CPUID
* Cleanups for bogus writes to MSR_KVM_PV_EOI_EN
* Fixes and cleanups for MSR bitmap handling
* Cleanups for INVPCID
* Make x86 KVM_SOFT_MAX_VCPUS consistent with other architectures
Handle #GP on INVPCID due to an invalid type in the common switch
statement instead of relying on the callers (VMX and SVM) to manually
validate the type.
Unlike INVVPID and INVEPT, INVPCID is not explicitly documented to check
the type before reading the operand from memory, so deferring the
type validity check until after that point is architecturally allowed.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109174426.2350547-3-vipinsh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
handle_invept(), handle_invvpid(), handle_invpcid() read the same reg2
field in vmcs.VMX_INSTRUCTION_INFO to get the index of the GPR that
holds the invalidation type. Add a helper to retrieve reg2 from VMX
instruction info to consolidate and document the shift+mask magic.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109174426.2350547-2-vipinsh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clean up the x2APIC MSR bitmap intereption code for L2, which is the last
holdout of open coded bitmap manipulations. Freshen up the SDM/PRM
comment, rename the function to make it abundantly clear the funky
behavior is x2APIC specific, and explain _why_ vmcs01's bitmap is ignored
(the previous comment was flat out wrong for x2APIC behavior).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add builder macros to generate the MSR bitmap helpers to reduce the
amount of copy-paste code, especially with respect to all the magic
numbers needed to calc the correct bit location.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Always check vmcs01's MSR bitmap when merging L0 and L1 bitmaps for L2,
and always update the relevant bits in vmcs02. This fixes two distinct,
but intertwined bugs related to dynamic MSR bitmap modifications.
The first issue is that KVM fails to enable MSR interception in vmcs02
for the FS/GS base MSRs if L1 first runs L2 with interception disabled,
and later enables interception.
The second issue is that KVM fails to honor userspace MSR filtering when
preparing vmcs02.
Fix both issues simultaneous as fixing only one of the issues (doesn't
matter which) would create a mess that no one should have to bisect.
Fixing only the first bug would exacerbate the MSR filtering issue as
userspace would see inconsistent behavior depending on the whims of L1.
Fixing only the second bug (MSR filtering) effectively requires fixing
the first, as the nVMX code only knows how to transition vmcs02's
bitmap from 1->0.
Move the various accessor/mutators that are currently buried in vmx.c
into vmx.h so that they can be shared by the nested code.
Fixes: 1a155254ff ("KVM: x86: Introduce MSR filtering")
Fixes: d69129b4e4 ("KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible")
Cc: stable@vger.kernel.org
Cc: Alexander Graf <graf@amazon.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check the current VMCS controls to determine if an MSR write will be
intercepted due to MSR bitmaps being disabled. In the nested VMX case,
KVM will disable MSR bitmaps in vmcs02 if they're disabled in vmcs12 or
if KVM can't map L1's bitmaps for whatever reason.
Note, the bad behavior is relatively benign in the current code base as
KVM sets all bits in vmcs02's MSR bitmap by default, clears bits if and
only if L0 KVM also disables interception of an MSR, and only uses the
buggy helper for MSR_IA32_SPEC_CTRL. Because KVM explicitly tests WRMSR
before disabling interception of MSR_IA32_SPEC_CTRL, the flawed check
will only result in KVM reading MSR_IA32_SPEC_CTRL from hardware when it
isn't strictly necessary.
Tag the fix for stable in case a future fix wants to use
msr_write_intercepted(), in which case a buggy implementation in older
kernels could prove subtly problematic.
Fixes: d28b387fb7 ("KVM/VMX: Allow direct access to MSR_IA32_SPEC_CTRL")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_GUESTDBG_BLOCKIRQ relies on interrupts being injected using
standard kvm's inject_pending_event, and not via APICv/AVIC.
Since this is a debug feature, just inhibit APICv/AVIC while
KVM_GUESTDBG_BLOCKIRQ is in use on at least one vCPU.
Fixes: 61e5f69ef0 ("KVM: x86: implement KVM_GUESTDBG_BLOCKIRQ")
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211108090245.166408-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These function names sound like predicates, and they have siblings,
*is_valid_msr(), which _are_ predicates. Moreover, there are comments
that essentially warn that these functions behave unexpectedly.
Flip the polarity of the return values, so that they become
predicates, and convert the boolean result to a success/failure code
at the outer call site.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211105202058.1048757-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* More progress on the protected VM front, now with the full
fixed feature set as well as the limitation of some hypercalls
after initialisation.
* Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
* Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
* More memcg accounting of the memory allocated on behalf of a guest
* Timer and vgic selftests
* Workarounds for the Apple M1 broken vgic implementation
* KConfig cleanups
* New kvmarm.mode=none option, for those who really dislike us
RISC-V:
* New KVM port.
x86:
* New API to control TSC offset from userspace
* TSC scaling for nested hypervisors on SVM
* Switch masterclock protection from raw_spin_lock to seqcount
* Clean up function prototypes in the page fault code and avoid
repeated memslot lookups
* Convey the exit reason to userspace on emulation failure
* Configure time between NX page recovery iterations
* Expose Predictive Store Forwarding Disable CPUID leaf
* Allocate page tracking data structures lazily (if the i915
KVM-GT functionality is not compiled in)
* Cleanups, fixes and optimizations for the shadow MMU code
s390:
* SIGP Fixes
* initial preparations for lazy destroy of secure VMs
* storage key improvements/fixes
* Log the guest CPNC
Starting from this release, KVM-PPC patches will come from
Michael Ellerman's PPC tree.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmGBOiEUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNowwf/axlx3g9sgCwQHr12/6UF/7hL/RwP
9z+pGiUzjl2YQE+RjSvLqyd6zXh+h4dOdOKbZDLSkSTbcral/8U70ojKnQsXM0XM
1LoymxBTJqkgQBLm9LjYreEbzrPV4irk4ygEmuk3CPOHZu8xX1ei6c5LdandtM/n
XVUkXsQY+STkmnGv4P3GcPoDththCr0tBTWrFWtxa0w9hYOxx0ay1AZFlgM4FFX0
QFuRc8VBLoDJpIUjbkhsIRIbrlHc/YDGjuYnAU7lV/CIME8vf2BW6uBwIZJdYcDj
0ejozLjodEnuKXQGnc8sXFioLX2gbMyQJEvwCgRvUu/EU7ncFm1lfs7THQ==
=UxKM
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- More progress on the protected VM front, now with the full fixed
feature set as well as the limitation of some hypercalls after
initialisation.
- Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
- Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
- More memcg accounting of the memory allocated on behalf of a guest
- Timer and vgic selftests
- Workarounds for the Apple M1 broken vgic implementation
- KConfig cleanups
- New kvmarm.mode=none option, for those who really dislike us
RISC-V:
- New KVM port.
x86:
- New API to control TSC offset from userspace
- TSC scaling for nested hypervisors on SVM
- Switch masterclock protection from raw_spin_lock to seqcount
- Clean up function prototypes in the page fault code and avoid
repeated memslot lookups
- Convey the exit reason to userspace on emulation failure
- Configure time between NX page recovery iterations
- Expose Predictive Store Forwarding Disable CPUID leaf
- Allocate page tracking data structures lazily (if the i915 KVM-GT
functionality is not compiled in)
- Cleanups, fixes and optimizations for the shadow MMU code
s390:
- SIGP Fixes
- initial preparations for lazy destroy of secure VMs
- storage key improvements/fixes
- Log the guest CPNC
Starting from this release, KVM-PPC patches will come from Michael
Ellerman's PPC tree"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
RISC-V: KVM: fix boolreturn.cocci warnings
RISC-V: KVM: remove unneeded semicolon
RISC-V: KVM: Fix GPA passed to __kvm_riscv_hfence_gvma_xyz() functions
RISC-V: KVM: Factor-out FP virtualization into separate sources
KVM: s390: add debug statement for diag 318 CPNC data
KVM: s390: pv: properly handle page flags for protected guests
KVM: s390: Fix handle_sske page fault handling
KVM: x86: SGX must obey the KVM_INTERNAL_ERROR_EMULATION protocol
KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
KVM: x86: Clarify the kvm_run.emulation_failure structure layout
KVM: s390: Add a routine for setting userspace CPU state
KVM: s390: Simplify SIGP Set Arch handling
KVM: s390: pv: avoid stalls when making pages secure
KVM: s390: pv: avoid stalls for kvm_s390_pv_init_vm
KVM: s390: pv: avoid double free of sida page
KVM: s390: pv: add macros for UVC CC values
s390/mm: optimize reset_guest_reference_bit()
s390/mm: optimize set_guest_storage_key()
s390/mm: no need for pte_alloc_map_lock() if we know the pmd is present
...
- Cleanup of extable fixup handling to be more robust, which in turn
allows to make the FPU exception fixups more robust as well.
- Change the return code for signal frame related failures from explicit
error codes to a boolean fail/success as that's all what the calling
code evaluates.
- A large refactoring of the FPU code to prepare for adding AMX support:
- Distangle the public header maze and remove especially the misnomed
kitchen sink internal.h which is despite it's name included all over
the place.
- Add a proper abstraction for the register buffer storage (struct
fpstate) which allows to dynamically size the buffer at runtime by
flipping the pointer to the buffer container from the default
container which is embedded in task_struct::tread::fpu to a
dynamically allocated container with a larger register buffer.
- Convert the code over to the new fpstate mechanism.
- Consolidate the KVM FPU handling by moving the FPU related code into
the FPU core which removes the number of exports and avoids adding
even more export when AMX has to be supported in KVM. This also
removes duplicated code which was of course unnecessary different and
incomplete in the KVM copy.
- Simplify the KVM FPU buffer handling by utilizing the new fpstate
container and just switching the buffer pointer from the user space
buffer to the KVM guest buffer when entering vcpu_run() and flipping
it back when leaving the function. This cuts the memory requirements
of a vCPU for FPU buffers in half and avoids pointless memory copy
operations.
This also solves the so far unresolved problem of adding AMX support
because the current FPU buffer handling of KVM inflicted a circular
dependency between adding AMX support to the core and to KVM. With
the new scheme of switching fpstate AMX support can be added to the
core code without affecting KVM.
- Replace various variables with proper data structures so the extra
information required for adding dynamically enabled FPU features (AMX)
can be added in one place
- Add AMX (Advanved Matrix eXtensions) support (finally):
AMX is a large XSTATE component which is going to be available with
Saphire Rapids XEON CPUs. The feature comes with an extra MSR (MSR_XFD)
which allows to trap the (first) use of an AMX related instruction,
which has two benefits:
1) It allows the kernel to control access to the feature
2) It allows the kernel to dynamically allocate the large register
state buffer instead of burdening every task with the the extra 8K
or larger state storage.
It would have been great to gain this kind of control already with
AVX512.
The support comes with the following infrastructure components:
1) arch_prctl() to
- read the supported features (equivalent to XGETBV(0))
- read the permitted features for a task
- request permission for a dynamically enabled feature
Permission is granted per process, inherited on fork() and cleared
on exec(). The permission policy of the kernel is restricted to
sigaltstack size validation, but the syscall obviously allows
further restrictions via seccomp etc.
2) A stronger sigaltstack size validation for sys_sigaltstack(2) which
takes granted permissions and the potentially resulting larger
signal frame into account. This mechanism can also be used to
enforce factual sigaltstack validation independent of dynamic
features to help with finding potential victims of the 2K
sigaltstack size constant which is broken since AVX512 support was
added.
3) Exception handling for #NM traps to catch first use of a extended
feature via a new cause MSR. If the exception was caused by the use
of such a feature, the handler checks permission for that
feature. If permission has not been granted, the handler sends a
SIGILL like the #UD handler would do if the feature would have been
disabled in XCR0. If permission has been granted, then a new fpstate
which fits the larger buffer requirement is allocated.
In the unlikely case that this allocation fails, the handler sends
SIGSEGV to the task. That's not elegant, but unavoidable as the
other discussed options of preallocation or full per task
permissions come with their own set of horrors for kernel and/or
userspace. So this is the lesser of the evils and SIGSEGV caused by
unexpected memory allocation failures is not a fundamentally new
concept either.
When allocation succeeds, the fpstate properties are filled in to
reflect the extended feature set and the resulting sizes, the
fpu::fpstate pointer is updated accordingly and the trap is disarmed
for this task permanently.
4) Enumeration and size calculations
5) Trap switching via MSR_XFD
The XFD (eXtended Feature Disable) MSR is context switched with the
same life time rules as the FPU register state itself. The mechanism
is keyed off with a static key which is default disabled so !AMX
equipped CPUs have zero overhead. On AMX enabled CPUs the overhead
is limited by comparing the tasks XFD value with a per CPU shadow
variable to avoid redundant MSR writes. In case of switching from a
AMX using task to a non AMX using task or vice versa, the extra MSR
write is obviously inevitable.
All other places which need to be aware of the variable feature sets
and resulting variable sizes are not affected at all because they
retrieve the information (feature set, sizes) unconditonally from
the fpstate properties.
6) Enable the new AMX states
Note, this is relatively new code despite the fact that AMX support is in
the works for more than a year now.
The big refactoring of the FPU code, which allowed to do a proper
integration has been started exactly 3 weeks ago. Refactoring of the
existing FPU code and of the original AMX patches took a week and has
been subject to extensive review and testing. The only fallout which has
not been caught in review and testing right away was restricted to AMX
enabled systems, which is completely irrelevant for anyone outside Intel
and their early access program. There might be dragons lurking as usual,
but so far the fine grained refactoring has held up and eventual yet
undetected fallout is bisectable and should be easily addressable before
the 5.16 release. Famous last words...
Many thanks to Chang Bae and Dave Hansen for working hard on this and
also to the various test teams at Intel who reserved extra capacity to
follow the rapid development of this closely which provides the
confidence level required to offer this rather large update for inclusion
into 5.16-rc1.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/NkITHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYodDkEADH4+/nN/QoSUHIuuha5Zptj3g2b16a
/3TxT9fhwPen/kzMGsUk70s3iWJMA+I5dCfkSZexJ2hfhcRe9cBzZIa1HCawKwf3
YCISTsO/M+LpeORuZ+TpfFLJKnxNr1SEOl+EYffGhq0AkCjifb9Cnr0JZuoMUzGU
jpfJZ2bj28ri5lG812DtzSMBM9E3SAwgJv+GNjmZbxZKb9mAfhbAMdBUXHirX7Ej
jmx6koQjYOKwYIW8w1BrdC270lUKQUyJTbQgdRkN9Mh/HnKyFixQ18JqGlgaV2cT
EtYePUfTEdaHdAhUINLIlEug1MfOslHU+HyGsdywnoChNB4GHPQuePC5Tz60VeFN
RbQ9aKcBUu8r95rjlnKtAtBijNMA4bjGwllVxNwJ/ZoA9RPv1SbDZ07RX3qTaLVY
YhVQl8+shD33/W24jUTJv1kMMexpHXIlv0gyfMryzpwI7uzzmGHRPAokJdbYKctC
dyMPfdE90rxTiMUdL/1IQGhnh3awjbyfArzUhHyQ++HyUyzCFh0slsO0CD18vUy8
FofhCugGBhjuKw3XwLNQ+KsWURz5qHctSzBc3qMOSyqFHbAJCVRANkhsFvWJo2qL
75+Z7OTRebtsyOUZIdq26r4roSxHrps3dupWTtN70HWx2NhQG1nLEw986QYiQu1T
hcKvDmehQLrUvg==
=x3WL
-----END PGP SIGNATURE-----
Merge tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fpu updates from Thomas Gleixner:
- Cleanup of extable fixup handling to be more robust, which in turn
allows to make the FPU exception fixups more robust as well.
- Change the return code for signal frame related failures from
explicit error codes to a boolean fail/success as that's all what the
calling code evaluates.
- A large refactoring of the FPU code to prepare for adding AMX
support:
- Distangle the public header maze and remove especially the
misnomed kitchen sink internal.h which is despite it's name
included all over the place.
- Add a proper abstraction for the register buffer storage (struct
fpstate) which allows to dynamically size the buffer at runtime
by flipping the pointer to the buffer container from the default
container which is embedded in task_struct::tread::fpu to a
dynamically allocated container with a larger register buffer.
- Convert the code over to the new fpstate mechanism.
- Consolidate the KVM FPU handling by moving the FPU related code
into the FPU core which removes the number of exports and avoids
adding even more export when AMX has to be supported in KVM.
This also removes duplicated code which was of course
unnecessary different and incomplete in the KVM copy.
- Simplify the KVM FPU buffer handling by utilizing the new
fpstate container and just switching the buffer pointer from the
user space buffer to the KVM guest buffer when entering
vcpu_run() and flipping it back when leaving the function. This
cuts the memory requirements of a vCPU for FPU buffers in half
and avoids pointless memory copy operations.
This also solves the so far unresolved problem of adding AMX
support because the current FPU buffer handling of KVM inflicted
a circular dependency between adding AMX support to the core and
to KVM. With the new scheme of switching fpstate AMX support can
be added to the core code without affecting KVM.
- Replace various variables with proper data structures so the
extra information required for adding dynamically enabled FPU
features (AMX) can be added in one place
- Add AMX (Advanced Matrix eXtensions) support (finally):
AMX is a large XSTATE component which is going to be available with
Saphire Rapids XEON CPUs. The feature comes with an extra MSR
(MSR_XFD) which allows to trap the (first) use of an AMX related
instruction, which has two benefits:
1) It allows the kernel to control access to the feature
2) It allows the kernel to dynamically allocate the large register
state buffer instead of burdening every task with the the extra
8K or larger state storage.
It would have been great to gain this kind of control already with
AVX512.
The support comes with the following infrastructure components:
1) arch_prctl() to
- read the supported features (equivalent to XGETBV(0))
- read the permitted features for a task
- request permission for a dynamically enabled feature
Permission is granted per process, inherited on fork() and
cleared on exec(). The permission policy of the kernel is
restricted to sigaltstack size validation, but the syscall
obviously allows further restrictions via seccomp etc.
2) A stronger sigaltstack size validation for sys_sigaltstack(2)
which takes granted permissions and the potentially resulting
larger signal frame into account. This mechanism can also be used
to enforce factual sigaltstack validation independent of dynamic
features to help with finding potential victims of the 2K
sigaltstack size constant which is broken since AVX512 support
was added.
3) Exception handling for #NM traps to catch first use of a extended
feature via a new cause MSR. If the exception was caused by the
use of such a feature, the handler checks permission for that
feature. If permission has not been granted, the handler sends a
SIGILL like the #UD handler would do if the feature would have
been disabled in XCR0. If permission has been granted, then a new
fpstate which fits the larger buffer requirement is allocated.
In the unlikely case that this allocation fails, the handler
sends SIGSEGV to the task. That's not elegant, but unavoidable as
the other discussed options of preallocation or full per task
permissions come with their own set of horrors for kernel and/or
userspace. So this is the lesser of the evils and SIGSEGV caused
by unexpected memory allocation failures is not a fundamentally
new concept either.
When allocation succeeds, the fpstate properties are filled in to
reflect the extended feature set and the resulting sizes, the
fpu::fpstate pointer is updated accordingly and the trap is
disarmed for this task permanently.
4) Enumeration and size calculations
5) Trap switching via MSR_XFD
The XFD (eXtended Feature Disable) MSR is context switched with
the same life time rules as the FPU register state itself. The
mechanism is keyed off with a static key which is default
disabled so !AMX equipped CPUs have zero overhead. On AMX enabled
CPUs the overhead is limited by comparing the tasks XFD value
with a per CPU shadow variable to avoid redundant MSR writes. In
case of switching from a AMX using task to a non AMX using task
or vice versa, the extra MSR write is obviously inevitable.
All other places which need to be aware of the variable feature
sets and resulting variable sizes are not affected at all because
they retrieve the information (feature set, sizes) unconditonally
from the fpstate properties.
6) Enable the new AMX states
Note, this is relatively new code despite the fact that AMX support
is in the works for more than a year now.
The big refactoring of the FPU code, which allowed to do a proper
integration has been started exactly 3 weeks ago. Refactoring of the
existing FPU code and of the original AMX patches took a week and has
been subject to extensive review and testing. The only fallout which
has not been caught in review and testing right away was restricted
to AMX enabled systems, which is completely irrelevant for anyone
outside Intel and their early access program. There might be dragons
lurking as usual, but so far the fine grained refactoring has held up
and eventual yet undetected fallout is bisectable and should be
easily addressable before the 5.16 release. Famous last words...
Many thanks to Chang Bae and Dave Hansen for working hard on this and
also to the various test teams at Intel who reserved extra capacity
to follow the rapid development of this closely which provides the
confidence level required to offer this rather large update for
inclusion into 5.16-rc1
* tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
Documentation/x86: Add documentation for using dynamic XSTATE features
x86/fpu: Include vmalloc.h for vzalloc()
selftests/x86/amx: Add context switch test
selftests/x86/amx: Add test cases for AMX state management
x86/fpu/amx: Enable the AMX feature in 64-bit mode
x86/fpu: Add XFD handling for dynamic states
x86/fpu: Calculate the default sizes independently
x86/fpu/amx: Define AMX state components and have it used for boot-time checks
x86/fpu/xstate: Prepare XSAVE feature table for gaps in state component numbers
x86/fpu/xstate: Add fpstate_realloc()/free()
x86/fpu/xstate: Add XFD #NM handler
x86/fpu: Update XFD state where required
x86/fpu: Add sanity checks for XFD
x86/fpu: Add XFD state to fpstate
x86/msr-index: Add MSRs for XFD
x86/cpufeatures: Add eXtended Feature Disabling (XFD) feature bit
x86/fpu: Reset permission and fpstate on exec()
x86/fpu: Prepare fpu_clone() for dynamically enabled features
x86/fpu/signal: Prepare for variable sigframe length
x86/signal: Use fpu::__state_user_size for sigalt stack validation
...
- Improve retpoline code patching by separating it from alternatives which
reduces memory footprint and allows to do better optimizations in the
actual runtime patching.
- Add proper retpoline support for x86/BPF
- Address noinstr warnings in x86/kvm, lockdep and paravirtualization code
- Add support to handle pv_opsindirect calls in the noinstr analysis
- Classify symbols upfront and cache the result to avoid redundant
str*cmp() invocations.
- Add a CFI hash to reduce memory consumption which also reduces runtime
on a allyesconfig by ~50%
- Adjust XEN code to make objtool handling more robust and as a side
effect to prevent text fragmentation due to placement of the hypercall
page.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/GFgTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoc1JD/0Sz6seP2OUMxbMT3gCcFo9sMvYTdsM
7WuGFbBbnCIo7g8JH7k0zRRBigptMp2eUtQXKkgaaIbWN4JbuVKf8KxN5/qXxLi4
fJ12QnNTGH9N2jtzl5wKmpjaKJnnJMD9D10XwoR+T6gn6NHd+AgLEs7GxxuQUlgo
eC9oEXhNHC8uNhiZc38EwfwmItI1bRgaLrnZWIL4rYGSMxfCK1/cEOpWrFfX9wmj
/diB6oqMyPXZXMCtgpX7TniUr5XOTCcUkeO9mQv5bmyq/YM/8hrTbcVSJlsVYLvP
EsBnUSHAcfLFiHXwa1RNiIGdbiPjbN+UYeXGAvqF58f3e5dTIHtN/UmWo7OH93If
9rLMVNcMpsfPx7QRk2IxEPumLCkyfwjzfKrVDM6P6TKEIUzD1og4IK9gTlfykVsh
56G5XiCOC/X2x8IMxKTLGuBiAVLFHXK/rSwoqhvNEWBFKDbP13QWs0LurBcW09Sa
/kQI9pIBT1xFA/R+OY5Xy1cqNVVK1Gxmk8/bllCijA9pCFSCFM4hLZE5CevdrBCV
h5SdqEK5hIlzFyypXfsCik/4p/+rfvlGfUKtFsPctxx29SPe+T0orx+l61jiWQok
rZOflwMawK5lDuASHrvNHGJcWaTwoo3VcXMQDnQY0Wulc43J5IFBaPxkZzgyd+S1
4lktHxatrCMUgw==
=pfZi
-----END PGP SIGNATURE-----
Merge tag 'objtool-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Thomas Gleixner:
- Improve retpoline code patching by separating it from alternatives
which reduces memory footprint and allows to do better optimizations
in the actual runtime patching.
- Add proper retpoline support for x86/BPF
- Address noinstr warnings in x86/kvm, lockdep and paravirtualization
code
- Add support to handle pv_opsindirect calls in the noinstr analysis
- Classify symbols upfront and cache the result to avoid redundant
str*cmp() invocations.
- Add a CFI hash to reduce memory consumption which also reduces
runtime on a allyesconfig by ~50%
- Adjust XEN code to make objtool handling more robust and as a side
effect to prevent text fragmentation due to placement of the
hypercall page.
* tag 'objtool-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
bpf,x86: Respect X86_FEATURE_RETPOLINE*
bpf,x86: Simplify computing label offsets
x86,bugs: Unconditionally allow spectre_v2=retpoline,amd
x86/alternative: Add debug prints to apply_retpolines()
x86/alternative: Try inline spectre_v2=retpoline,amd
x86/alternative: Handle Jcc __x86_indirect_thunk_\reg
x86/alternative: Implement .retpoline_sites support
x86/retpoline: Create a retpoline thunk array
x86/retpoline: Move the retpoline thunk declarations to nospec-branch.h
x86/asm: Fixup odd GEN-for-each-reg.h usage
x86/asm: Fix register order
x86/retpoline: Remove unused replacement symbols
objtool,x86: Replace alternatives with .retpoline_sites
objtool: Shrink struct instruction
objtool: Explicitly avoid self modifying code in .altinstr_replacement
objtool: Classify symbols
objtool: Support pv_opsindirect calls for noinstr
x86/xen: Rework the xen_{cpu,irq,mmu}_opsarrays
x86/xen: Mark xen_force_evtchn_callback() noinstr
x86/xen: Make irq_disable() noinstr
...
When passing the failing address and size out to user space, SGX must
ensure not to trample on the earlier fields of the emulation_failure
sub-union of struct kvm_run.
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-5-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Should instruction emulation fail, include the VM exit reason, etc. in
the emulation_failure data passed to userspace, in order that the VMM
can report it as a debugging aid when describing the failure.
Suggested-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-4-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extend the get_exit_info static call to provide the reason for the VM
exit. Modify relevant trace points to use this rather than extracting
the reason in the caller.
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-3-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unregister KVM's posted interrupt wakeup handler during unsetup so that a
spurious interrupt that arrives after kvm_intel.ko is unloaded doesn't
call into freed memory.
Fixes: bf9f6ac8d7 ("KVM: Update Posted-Interrupts Descriptor when vCPU is blocked")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009001107.3936588-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Paul pointed out the error messages when KVM fails to load are unhelpful
in understanding exactly what went wrong if userspace probes the "wrong"
module.
Add a mandatory kvm_x86_ops field to track vendor module names, kvm_intel
and kvm_amd, and use the name for relevant error message when KVM fails
to load so that the user knows which module failed to load.
Opportunistically tweak the "disabled by bios" error message to clarify
that _support_ was disabled, not that the module itself was magically
disabled by BIOS.
Suggested-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211018183929.897461-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SDM section 18.2.3 mentioned that:
"IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of
any general-purpose or fixed-function counters via a single WRMSR."
It is R/W mentioned by SDM, we read this msr on bare-metal during perf testing,
the value is always 0 for ICX/SKX boxes on hands. Let's fill get_msr
MSR_CORE_PERF_GLOBAL_OVF_CTRL w/ 0 as hardware behavior and drop
global_ovf_ctrl variable.
Tested-by: Like Xu <likexu@tencent.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1634631160-67276-2-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Per Intel SDM, RTIT_CTL_BRANCH_EN bit has no dependency on any CPUID
leaf 0x14.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-5-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To better self explain the meaning of this field and match the
PT_CAP_num_address_ranges constatn.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-4-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The number of valid PT ADDR MSRs for the guest is precomputed in
vmx->pt_desc.addr_range. Use it instead of calculating again.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-3-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A minor optimization to WRMSR MSR_IA32_RTIT_CTL when necessary.
Opportunistically refine the comment to call out that KVM requires
VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-2-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since commit c300ab9f08 ("KVM: x86: Replace late check_nested_events() hack with
more precise fix") there is no longer the certainty that check_nested_events()
tries to inject an external interrupt vmexit to L1 on every call to vcpu_enter_guest.
Therefore, even in that case we need to set KVM_REQ_EVENT. This ensures
that inject_pending_event() is called, and from there kvm_check_nested_events().
Fixes: c300ab9f08 ("KVM: x86: Replace late check_nested_events() hack with more precise fix")
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the file is empty, fixup all references with the proper includes
and delete the former kitchen sink.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011540.001197214@linutronix.de
Hardware may or may not set exit_reason.bus_lock_detected on BUS_LOCK
VM-Exits. Dealing with KVM_RUN_X86_BUS_LOCK in handle_bus_lock_vmexit
could be redundant when exit_reason.basic is EXIT_REASON_BUS_LOCK.
We can remove redundant handling of bus lock vmexit. Unconditionally Set
exit_reason.bus_lock_detected in handle_bus_lock_vmexit(), and deal with
KVM_RUN_X86_BUS_LOCK only in vmx_handle_exit().
Signed-off-by: Hao Xiang <hao.xiang@linux.alibaba.com>
Message-Id: <1634299161-30101-1-git-send-email-hao.xiang@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This was tested by booting a nested guest with TSC=1Ghz,
observing the clocks, and doing about 100 cycles of migration.
Note that qemu patch is needed to support migration because
of a new MSR that needs to be placed in the migration state.
The patch will be sent to the qemu mailing list soon.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-14-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vCPU RESET emulation, including initializating of select VMCS state,
to vmx_vcpu_reset(). Drop the open coded "vCPU load" sequence, as
->vcpu_reset() is invoked while the vCPU is properly loaded (which is
kind of the point of ->vcpu_reset()...). Hopefully KVM will someday
expose a dedicated RESET ioctl(), and in the meantime separating "create"
from "RESET" is a nice cleanup.
Deferring VMCS initialization is effectively a nop as it's impossible to
safely access the VMCS between the current call site and its new home, as
both the vCPU and the pCPU are put immediately after init_vmcs(), i.e.
the VMCS isn't guaranteed to be loaded.
Note, task preemption is not a problem as vmx_sched_in() _can't_ touch
the VMCS as ->sched_in() is invoked before the vCPU, and thus VMCS, is
reloaded. I.e. the preemption path also can't consume VMCS state.
Cc: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't zero out user return and nested MSRs during vCPU creation, and
instead rely on vcpu_vmx being zero-allocated. Explicitly zeroing MSRs
is not wrong, and is in fact necessary if KVM ever emulates vCPU RESET
outside of vCPU creation, but zeroing only a subset of MSRs is confusing.
Poking directly into KVM's backing is also undesirable in that it doesn't
scale and is error prone. Ideally KVM would have a common RESET path for
all MSRs, e.g. by expanding kvm_set_msr(), which would obviate the need
for this out-of-bad code (to support standalone RESET).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not blindly mark all registers as available+dirty at RESET/INIT, and
instead rely on writes to registers to go through the proper mutators or
to explicitly mark registers as dirty. INIT in particular does not blindly
overwrite all registers, e.g. select bits in CR0 are preserved across INIT,
thus marking registers available+dirty without first reading the register
from hardware is incorrect.
In practice this is a benign bug as KVM doesn't let the guest control CR0
bits that are preserved across INIT, and all other true registers are
explicitly written during the RESET/INIT flows. The PDPTRs and EX_INFO
"registers" are not explicitly written, but accessing those values during
RESET/INIT is nonsensical and would be a KVM bug regardless of register
caching.
Fixes: 66f7b72e11 ("KVM: x86: Make register state after reset conform to specification")
[sean: !!! NOT FOR STABLE !!!]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, 'vmx->nested.vmxon_ptr' is not reset upon VMXOFF
emulation. This is not a problem per se as we never access
it when !vmx->nested.vmxon. But this should be done to avoid
any issue in the future.
Also, initialize the vmxon_ptr when vcpu is created.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Message-Id: <20210929175154.11396-3-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clean up nested.c and vmx.c by using INVALID_GPA instead of "-1ull",
to denote an invalid address in nested VMX. Affected addresses are
the ones of VMXON region, current VMCS, VMCS link pointer, virtual-
APIC page, ENCLS-exiting bitmap, and IO bitmap etc.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Message-Id: <20210929175154.11396-2-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When updating the host's mask for its MSR_IA32_TSX_CTRL user return entry,
clear the mask in the found uret MSR instead of vmx->guest_uret_msrs[i].
Modifying guest_uret_msrs directly is completely broken as 'i' does not
point at the MSR_IA32_TSX_CTRL entry. In fact, it's guaranteed to be an
out-of-bounds accesses as is always set to kvm_nr_uret_msrs in a prior
loop. By sheer dumb luck, the fallout is limited to "only" failing to
preserve the host's TSX_CTRL_CPUID_CLEAR. The out-of-bounds access is
benign as it's guaranteed to clear a bit in a guest MSR value, which are
always zero at vCPU creation on both x86-64 and i386.
Cc: stable@vger.kernel.org
Fixes: 8ea8b8d6f8 ("KVM: VMX: Use common x86's uret MSR list as the one true list")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210926015545.281083-1-zhenzhong.duan@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If L1 had invalid state on VM entry (can happen on SMM transactions
when we enter from real mode, straight to nested guest),
then after we load 'host' state from VMCS12, the state has to become
valid again, but since we load the segment registers with
__vmx_set_segment we weren't always updating emulation_required.
Update emulation_required explicitly at end of load_vmcs12_host_state.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210913140954.165665-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is possible that when non root mode is entered via special entry
(!from_vmentry), that is from SMM or from loading the nested state,
the L2 state could be invalid in regard to non unrestricted guest mode,
but later it can become valid.
(for example when RSM emulation restores segment registers from SMRAM)
Thus delay the check to VM entry, where we will check this and fail.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210913140954.165665-7-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since no actual VM entry happened, the VM exit information is stale.
To avoid this, synthesize an invalid VM guest state VM exit.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210913140954.165665-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Windows Server 2022 with Hyper-V role enabled failed to boot on KVM when
enlightened VMCS is advertised. Debugging revealed there are two exposed
secondary controls it is not happy with: SECONDARY_EXEC_ENABLE_VMFUNC and
SECONDARY_EXEC_SHADOW_VMCS. These controls are known to be unsupported,
as there are no corresponding fields in eVMCSv1 (see the comment above
EVMCS1_UNSUPPORTED_2NDEXEC definition).
Previously, commit 31de3d2500 ("x86/kvm/hyper-v: move VMX controls
sanitization out of nested_enable_evmcs()") introduced the required
filtering mechanism for VMX MSRs but for some reason put only known
to be problematic (and not full EVMCS1_UNSUPPORTED_* lists) controls
there.
Note, Windows Server 2022 seems to have gained some sanity check for VMX
MSRs: it doesn't even try to launch a guest when there's something it
doesn't like, nested_evmcs_check_controls() mechanism can't catch the
problem.
Let's be bold this time and instead of playing whack-a-mole just filter out
all unsupported controls from VMX MSRs.
Fixes: 31de3d2500 ("x86/kvm/hyper-v: move VMX controls sanitization out of nested_enable_evmcs()")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210907163530.110066-1-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nested bus lock VM exits are not supported yet. If L2 triggers bus lock
VM exit, it will be directed to L1 VMM, which would cause unexpected
behavior. Therefore, handle L2's bus lock VM exits in L0 directly.
Fixes: fe6b6bc802 ("KVM: VMX: Enable bus lock VM exit")
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210914095041.29764-1-chenyi.qiang@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
"VMXON pointer" is saved in vmx->nested.vmxon_ptr since
commit 3573e22cfe ("KVM: nVMX: additional checks on
vmxon region"). Also, handle_vmptrld() & handle_vmclear()
now have logic to check the VMCS pointer against the VMXON
pointer.
So just remove the obsolete comments of handle_vmon().
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Message-Id: <20210908171731.18885-1-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove vcpu_vmx.nr_active_uret_msrs and its associated comment, which are
both defunct now that KVM keeps the list constant and instead explicitly
tracks which entries need to be loaded into hardware.
No functional change intended.
Fixes: ee9d22e08d ("KVM: VMX: Use flag to indicate "active" uret MSRs instead of sorting list")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210908002401.1947049-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Page ownership tracking between host EL1 and EL2
- Rely on userspace page tables to create large stage-2 mappings
- Fix incompatibility between pKVM and kmemleak
- Fix the PMU reset state, and improve the performance of the virtual PMU
- Move over to the generic KVM entry code
- Address PSCI reset issues w.r.t. save/restore
- Preliminary rework for the upcoming pKVM fixed feature
- A bunch of MM cleanups
- a vGIC fix for timer spurious interrupts
- Various cleanups
s390:
- enable interpretation of specification exceptions
- fix a vcpu_idx vs vcpu_id mixup
x86:
- fast (lockless) page fault support for the new MMU
- new MMU now the default
- increased maximum allowed VCPU count
- allow inhibit IRQs on KVM_RUN while debugging guests
- let Hyper-V-enabled guests run with virtualized LAPIC as long as they
do not enable the Hyper-V "AutoEOI" feature
- fixes and optimizations for the toggling of AMD AVIC (virtualized LAPIC)
- tuning for the case when two-dimensional paging (EPT/NPT) is disabled
- bugfixes and cleanups, especially with respect to 1) vCPU reset and
2) choosing a paging mode based on CR0/CR4/EFER
- support for 5-level page table on AMD processors
Generic:
- MMU notifier invalidation callbacks do not take mmu_lock unless necessary
- improved caching of LRU kvm_memory_slot
- support for histogram statistics
- add statistics for halt polling and remote TLB flush requests
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmE2CIAUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMyqwf+Ky2WoThuQ9Ra0r/m8pUTAx5+gsAf
MmG24rNLE+26X0xuBT9Q5+etYYRLrRTWJvo5cgHooz7muAYW6scR+ho5xzvLTAxi
DAuoijkXsSdGoFCp0OMUHiwG3cgY5N7feTEwLPAb2i6xr/l6SZyCP4zcwiiQbJ2s
UUD0i3rEoNQ02/hOEveud/ENxzUli9cmmgHKXR3kNgsJClSf1fcuLnhg+7EGMhK9
+c2V+hde5y0gmEairQWm22MLMRolNZ5NL4kjykiNh2M5q9YvbHe5+f/JmENlNZMT
bsUQT6Ry1ukuJ0V59rZvUw71KknPFzZ3d6HgW4pwytMq6EJKiISHzRbVnQ==
=FCAB
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- Page ownership tracking between host EL1 and EL2
- Rely on userspace page tables to create large stage-2 mappings
- Fix incompatibility between pKVM and kmemleak
- Fix the PMU reset state, and improve the performance of the virtual
PMU
- Move over to the generic KVM entry code
- Address PSCI reset issues w.r.t. save/restore
- Preliminary rework for the upcoming pKVM fixed feature
- A bunch of MM cleanups
- a vGIC fix for timer spurious interrupts
- Various cleanups
s390:
- enable interpretation of specification exceptions
- fix a vcpu_idx vs vcpu_id mixup
x86:
- fast (lockless) page fault support for the new MMU
- new MMU now the default
- increased maximum allowed VCPU count
- allow inhibit IRQs on KVM_RUN while debugging guests
- let Hyper-V-enabled guests run with virtualized LAPIC as long as
they do not enable the Hyper-V "AutoEOI" feature
- fixes and optimizations for the toggling of AMD AVIC (virtualized
LAPIC)
- tuning for the case when two-dimensional paging (EPT/NPT) is
disabled
- bugfixes and cleanups, especially with respect to vCPU reset and
choosing a paging mode based on CR0/CR4/EFER
- support for 5-level page table on AMD processors
Generic:
- MMU notifier invalidation callbacks do not take mmu_lock unless
necessary
- improved caching of LRU kvm_memory_slot
- support for histogram statistics
- add statistics for halt polling and remote TLB flush requests"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (210 commits)
KVM: Drop unused kvm_dirty_gfn_invalid()
KVM: x86: Update vCPU's hv_clock before back to guest when tsc_offset is adjusted
KVM: MMU: mark role_regs and role accessors as maybe unused
KVM: MIPS: Remove a "set but not used" variable
x86/kvm: Don't enable IRQ when IRQ enabled in kvm_wait
KVM: stats: Add VM stat for remote tlb flush requests
KVM: Remove unnecessary export of kvm_{inc,dec}_notifier_count()
KVM: x86/mmu: Move lpage_disallowed_link further "down" in kvm_mmu_page
KVM: x86/mmu: Relocate kvm_mmu_page.tdp_mmu_page for better cache locality
Revert "KVM: x86: mmu: Add guest physical address check in translate_gpa()"
KVM: x86/mmu: Remove unused field mmio_cached in struct kvm_mmu_page
kvm: x86: Increase KVM_SOFT_MAX_VCPUS to 710
kvm: x86: Increase MAX_VCPUS to 1024
kvm: x86: Set KVM_MAX_VCPU_ID to 4*KVM_MAX_VCPUS
KVM: VMX: avoid running vmx_handle_exit_irqoff in case of emulation
KVM: x86/mmu: Don't freak out if pml5_root is NULL on 4-level host
KVM: s390: index kvm->arch.idle_mask by vcpu_idx
KVM: s390: Enable specification exception interpretation
KVM: arm64: Trim guest debug exception handling
KVM: SVM: Add 5-level page table support for SVM
...
If we are emulating an invalid guest state, we don't have a correct
exit reason, and thus we shouldn't do anything in this function.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210826095750.1650467-2-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 95b5a48c4f ("KVM: VMX: Handle NMIs, #MCs and async #PFs in common irqs-disabled fn", 2019-06-18)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AMD future CPUs will require a 5-level NPT if host CR4.LA57 is set.
To prevent kvm_mmu_get_tdp_level() from incorrectly changing NPT level
on behalf of CPUs, add a new parameter in kvm_configure_mmu() to force
a fixed TDP level.
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-2-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clear nested.pi_pending on nested VM-Enter even if L2 will run without
posted interrupts enabled. If nested.pi_pending is left set from a
previous L2, vmx_complete_nested_posted_interrupt() will pick up the
stale flag and exit to userspace with an "internal emulation error" due
the new L2 not having a valid nested.pi_desc.
Arguably, vmx_complete_nested_posted_interrupt() should first check for
posted interrupts being enabled, but it's also completely reasonable that
KVM wouldn't screw up a fundamental flag. Not to mention that the mere
existence of nested.pi_pending is a long-standing bug as KVM shouldn't
move the posted interrupt out of the IRR until it's actually processed,
e.g. KVM effectively drops an interrupt when it performs a nested VM-Exit
with a "pending" posted interrupt. Fixing the mess is a future problem.
Prior to vmx_complete_nested_posted_interrupt() interpreting a null PI
descriptor as an error, this was a benign bug as the null PI descriptor
effectively served as a check on PI not being enabled. Even then, the
new flow did not become problematic until KVM started checking the result
of kvm_check_nested_events().
Fixes: 705699a139 ("KVM: nVMX: Enable nested posted interrupt processing")
Fixes: 966eefb896 ("KVM: nVMX: Disable vmcs02 posted interrupts if vmcs12 PID isn't mappable")
Fixes: 47d3530f86c0 ("KVM: x86: Exit to userspace when kvm_check_nested_events fails")
Cc: stable@vger.kernel.org
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810144526.2662272-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ROL16(val, n) macro is repeatedly defined in several vmcs-related
files, and it has never been used outside the KVM context.
Let's move it to vmcs.h without any intended functional changes.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20210809093410.59304-4-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the declaration of kvm_spurious_fault() to KVM's "private" x86.h,
it should never be called by anything other than low level KVM code.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
[sean: rebased to a series without __ex()/__kvm_handle_fault_on_reboot()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210809173955.1710866-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the __kvm_handle_fault_on_reboot() and __ex() macros now that all
VMX and SVM instructions use asm goto to handle the fault (or in the
case of VMREAD, completely custom logic). Drop kvm_spurious_fault()'s
asmlinkage annotation as __kvm_handle_fault_on_reboot() was the only
flow that invoked it from assembly code.
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210809173955.1710866-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that nested VMX pulls KVM's desired VMCS controls from vmcs01 instead
of re-calculating on the fly, bury the helpers that do the calcluations
in vmx.c.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the secondary execution controls cache now that it's effectively
dead code; it is only read immediately after it is written.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When preparing controls for vmcs02, grab KVM's desired controls from
vmcs01's shadow state instead of recalculating the controls from scratch,
or in the secondary execution controls, instead of using the dedicated
cache. Calculating secondary exec controls is eye-poppingly expensive
due to the guest CPUID checks, hence the dedicated cache, but the other
calculations aren't exactly free either.
Explicitly clear several bits (x2APIC, DESC exiting, and load EFER on
exit) as appropriate as they may be set in vmcs01, whereas the previous
implementation relied on dynamic bits being cleared in the calculator.
Intentionally propagate VM_{ENTRY,EXIT}_LOAD_IA32_PERF_GLOBAL_CTRL from
vmcs01 to vmcs02. Whether or not PERF_GLOBAL_CTRL is loaded depends on
whether or not perf itself is active, so unless perf stops between the
exit from L1 and entry to L2, vmcs01 will hold the desired value. This
is purely an optimization as atomic_switch_perf_msrs() will set/clear
the control as needed at VM-Enter, i.e. it avoids two extra VMWRITEs in
the case where perf is active (versus starting with the bits clear in
vmcs02, which was the previous behavior).
Cc: Zeng Guang <guang.zeng@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The commit efdab99281 ("KVM: x86: fix escape of guest dr6 to the host")
fixed a bug by resetting DR6 unconditionally when the vcpu being scheduled out.
But writing to debug registers is slow, and it can be visible in perf results
sometimes, even if neither the host nor the guest activate breakpoints.
Since KVM_DEBUGREG_WONT_EXIT on Intel processors is the only case
where DR6 gets the guest value, and it never happens at all on SVM,
the register can be cleared in vmx.c right after reading it.
Reported-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit c77fb5fe6f ("KVM: x86: Allow the guest to run with dirty debug
registers") allows the guest accessing to DRs without exiting when
KVM_DEBUGREG_WONT_EXIT and we need to ensure that they are synchronized
on entry to the guest---including DR6 that was not synced before the commit.
But the commit sets the hardware DR6 not only when KVM_DEBUGREG_WONT_EXIT,
but also when KVM_DEBUGREG_BP_ENABLED. The second case is unnecessary
and just leads to a more case which leaks stale DR6 to the host which has
to be resolved by unconditionally reseting DR6 in kvm_arch_vcpu_put().
Even if KVM_DEBUGREG_WONT_EXIT, however, setting the host DR6 only matters
on VMX because SVM always uses the DR6 value from the VMCB. So move this
line to vmx.c and make it conditional on KVM_DEBUGREG_WONT_EXIT.
Reported-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use vmx_need_pf_intercept() when determining if L0 wants to handle a #PF
in L2 or if the VM-Exit should be forwarded to L1. The current logic fails
to account for the case where #PF is intercepted to handle
guest.MAXPHYADDR < host.MAXPHYADDR and ends up reflecting all #PFs into
L1. At best, L1 will complain and inject the #PF back into L2. At
worst, L1 will eat the unexpected fault and cause L2 to hang on infinite
page faults.
Note, while the bug was technically introduced by the commit that added
support for the MAXPHYADDR madness, the shame is all on commit
a0c134347b ("KVM: VMX: introduce vmx_need_pf_intercept").
Fixes: 1dbf5d68af ("KVM: VMX: Add guest physical address check in EPT violation and misconfig")
Cc: stable@vger.kernel.org
Cc: Peter Shier <pshier@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812045615.3167686-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a nested EPT violation/misconfig is injected into the guest,
the shadow EPT PTEs associated with that address need to be synced.
This is done by kvm_inject_emulated_page_fault() before it calls
nested_ept_inject_page_fault(). However, that will only sync the
shadow EPT PTE associated with the current L1 EPTP. Since the ASID
is based on EP4TA rather than the full EPTP, so syncing the current
EPTP is not enough. The SPTEs associated with any other L1 EPTPs
in the prev_roots cache with the same EP4TA also need to be synced.
Signed-off-by: Junaid Shahid <junaids@google.com>
Message-Id: <20210806222229.1645356-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the secondary_exec_controls_get() accessor in vmx_has_waitpkg() to
effectively get the controls for the current VMCS, as opposed to using
vmx->secondary_exec_controls, which is the cached value of KVM's desired
controls for vmcs01 and truly not reflective of any particular VMCS.
While the waitpkg control is not dynamic, i.e. vmcs01 will always hold
the same waitpkg configuration as vmx->secondary_exec_controls, the same
does not hold true for vmcs02 if the L1 VMM hides the feature from L2.
If L1 hides the feature _and_ does not intercept MSR_IA32_UMWAIT_CONTROL,
L2 could incorrectly read/write L1's virtual MSR instead of taking a #GP.
Fixes: 6e3ba4abce ("KVM: vmx: Emulate MSR IA32_UMWAIT_CONTROL")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Based on our observations, after any vm-exit associated with vPMU, there
are at least two or more perf interfaces to be called for guest counter
emulation, such as perf_event_{pause, read_value, period}(), and each one
will {lock, unlock} the same perf_event_ctx. The frequency of calls becomes
more severe when guest use counters in a multiplexed manner.
Holding a lock once and completing the KVM request operations in the perf
context would introduce a set of impractical new interfaces. So we can
further optimize the vPMU implementation by avoiding repeated calls to
these interfaces in the KVM context for at least one pattern:
After we call perf_event_pause() once, the event will be disabled and its
internal count will be reset to 0. So there is no need to pause it again
or read its value. Once the event is paused, event period will not be
updated until the next time it's resumed or reprogrammed. And there is
also no need to call perf_event_period twice for a non-running counter,
considering the perf_event for a running counter is never paused.
Based on this implementation, for the following common usage of
sampling 4 events using perf on a 4u8g guest:
echo 0 > /proc/sys/kernel/watchdog
echo 25 > /proc/sys/kernel/perf_cpu_time_max_percent
echo 10000 > /proc/sys/kernel/perf_event_max_sample_rate
echo 0 > /proc/sys/kernel/perf_cpu_time_max_percent
for i in `seq 1 1 10`
do
taskset -c 0 perf record \
-e cpu-cycles -e instructions -e branch-instructions -e cache-misses \
/root/br_instr a
done
the average latency of the guest NMI handler is reduced from
37646.7 ns to 32929.3 ns (~1.14x speed up) on the Intel ICX server.
Also, in addition to collecting more samples, no loss of sampling
accuracy was observed compared to before the optimization.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20210728120705.6855-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Move VMWRITE sequences in vmx_vcpu_reset() guarded by !init_event into
init_vmcs() to make it more obvious that they're, uh, initializing the
VMCS.
No meaningful functional change intended (though the order of VMWRITEs
and whatnot is different).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-44-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop a call to vmx_clear_hlt() during vCPU INIT, the guest's activity
state is unconditionally set to "active" a few lines earlier in
vmx_vcpu_reset().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-43-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate all of the dynamic MSR bitmap adjustments into
vmx_update_msr_bitmap_x2apic(), and rename the mode tracker to reflect
that it is x2APIC specific. If KVM gains more cases of dynamic MSR
pass-through, odds are very good that those new cases will be better off
with their own logic, e.g. see Intel PT MSRs and MSR_IA32_SPEC_CTRL.
Attempting to handle all updates in a common helper did more harm than
good, as KVM ended up collecting a large number of useless "updates".
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-42-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't bother initializing msr_bitmap_mode to 0, all of struct vcpu_vmx is
zero initialized.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-41-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop an explicit call to update the x2APIC MSRs when the userspace MSR
filter is modified. The x2APIC MSRs are deliberately exempt from
userspace filtering.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-40-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop unnecessary MSR bitmap updates during nested transitions, as L1's
APIC_BASE MSR is not modified by the standard VM-Enter/VM-Exit flows,
and L2's MSR bitmap is managed separately. In the unlikely event that L1
is pathological and loads APIC_BASE via the VM-Exit load list, KVM will
handle updating the bitmap in its normal WRMSR flows.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-39-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove an unnecessary MSR bitmap refresh during vCPU RESET/INIT. In both
cases, the MSR bitmap already has the desired values and state.
At RESET, the vCPU is guaranteed to be running with x2APIC disabled, the
x2APIC MSRs are guaranteed to be intercepted due to the MSR bitmap being
initialized to all ones by alloc_loaded_vmcs(), and vmx->msr_bitmap_mode
is guaranteed to be zero, i.e. reflecting x2APIC disabled.
At INIT, the APIC_BASE MSR is not modified, thus there can't be any
change in x2APIC state.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-38-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the setting of CR0, CR4, EFER, RFLAGS, and RIP from vendor code to
common x86. VMX and SVM now have near-identical sequences, the only
difference being that VMX updates the exception bitmap. Updating the
bitmap on SVM is unnecessary, but benign. Unfortunately it can't be left
behind in VMX due to the need to update exception intercepts after the
control registers are set.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-37-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When emulating vCPU INIT, do not unconditionally refresh the list of user
return MSRs that need to be loaded into hardware when running the guest.
Unconditionally refreshing the list is confusing, as the vast majority of
MSRs are not modified on INIT. The real motivation is to handle the case
where an INIT during long mode obviates the need to load the SYSCALL MSRs,
and that is handled as needed by vmx_set_efer().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-36-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After a CPUID update, refresh the list of user return MSRs that are
loaded into hardware when running the vCPU. This is necessary to handle
the oddball case where userspace exposes X86_FEATURE_RDTSCP to the guest
after the vCPU is running.
Fixes: 0023ef39dc ("kvm: vmx: Set IA32_TSC_AUX for legacy mode guests")
Fixes: 4e47c7a6d7 ("KVM: VMX: Add instruction rdtscp support for guest")
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split setup_msrs() into vmx_setup_uret_msrs() and an open coded refresh
of the MSR bitmap, and skip the latter when refreshing the user return
MSRs during an EFER load. Only the x2APIC MSRs are dynamically exposed
and hidden, and those are not affected by a change in EFER.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-34-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the "internal" variants of setting segment registers when stuffing
state on nested VM-Exit in order to skip the "emulation required"
updates. VM-Exit must always go to protected mode, and all segments are
mostly hardcoded (to valid values) on VM-Exit. The bits of the segments
that aren't hardcoded are explicitly checked during VM-Enter, e.g. the
selector RPLs must all be zero.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-30-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't refresh "emulation required" when stuffing segments during
transitions to/from real mode when running without unrestricted guest.
The checks are unnecessary as vmx_set_cr0() unconditionally rechecks
"emulation required". They also happen to be broken, as enter_pmode()
and enter_rmode() run with a stale vcpu->arch.cr0.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-29-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the long mode and EPT w/o unrestricted guest side effect processing
down in vmx_set_cr0() so that the EPT && !URG case doesn't have to stuff
vcpu->arch.cr0 early. This also fixes an oddity where CR0 might not be
marked available, i.e. the early vcpu->arch.cr0 write would appear to be
in danger of being overwritten, though that can't actually happen in the
current code since CR0.TS is the only guest-owned bit, and CR0.TS is not
read by vmx_set_cr4().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-28-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Tweak the logic for grabbing vmcs.GUEST_CR3 in vmx_cache_reg() to look
directly at the execution controls, as opposed to effectively inferring
the controls based on vCPUs. Inferring the controls isn't wrong, but it
creates a very subtle dependency between the caching logic, the state of
vcpu->arch.cr0 (via is_paging()), and the behavior of vmx_set_cr0().
Using the execution controls doesn't completely eliminate the dependency
in vmx_set_cr0(), e.g. neglecting to cache CR3 before enabling
interception would still break the guest, but it does reduce the
code dependency and mostly eliminate the logical dependency (that CR3
loads are intercepted in certain scenarios). Eliminating the subtle
read of vcpu->arch.cr0 will also allow for additional cleanup in
vmx_set_cr0().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-26-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Keep CR3 load/store exiting enable as needed when running L2 in order to
honor L1's desires. This fixes a largely theoretical bug where L1 could
intercept CR3 but not CR0.PG and end up not getting the desired CR3 exits
when L2 enables paging. In other words, the existing !is_paging() check
inadvertantly handles the normal case for L2 where vmx_set_cr0() is
called during VM-Enter, which is guaranteed to run with paging enabled,
and thus will never clear the bits.
Removing the !is_paging() check will also allow future consolidation and
cleanup of the related code. From a performance perspective, this is
all a nop, as the VMCS controls shadow will optimize away the VMWRITE
when the controls are in the desired state.
Add a comment explaining why CR3 is intercepted, with a big disclaimer
about not querying the old CR3. Because vmx_set_cr0() is used for flows
that are not directly tied to MOV CR3, e.g. vCPU RESET/INIT and nested
VM-Enter, it's possible that is_paging() is not synchronized with CR3
load/store exiting. This is actually guaranteed in the current code, as
KVM starts with CR3 interception disabled. Obviously that can be fixed,
but there's no good reason to play whack-a-mole, and it tends to end
poorly, e.g. descriptor table exiting for UMIP emulation attempted to be
precise in the past and ended up botching the interception toggling.
Fixes: fe3ef05c75 ("KVM: nVMX: Prepare vmcs02 from vmcs01 and vmcs12")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the CR0/CR3/CR4 shenanigans for EPT without unrestricted guest back
into vmx_set_cr0(). This will allow a future patch to eliminate the
rather gross stuffing of vcpu->arch.cr0 in the paging transition cases
by snapshotting the old CR0.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove a bogus write to vcpu->arch.cr0 that immediately precedes
vmx_set_cr0() during vCPU RESET/INIT. For RESET, this is a nop since
the "old" CR0 value is meaningless. But for INIT, if the vCPU is coming
from paging enabled mode, crushing vcpu->arch.cr0 will cause the various
is_paging() checks in vmx_set_cr0() to get false negatives.
For the exit_lmode() case, the false negative is benign as vmx_set_efer()
is called immediately after vmx_set_cr0().
For EPT without unrestricted guest, the false negative will cause KVM to
unnecessarily run with CR3 load/store exiting. But again, this is
benign, albeit sub-optimal.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Opt-in to forcing CR0.WP=1 for shadow paging, and stop lying about WP
being "always on" for unrestricted guest. In addition to making KVM a
wee bit more honest, this paves the way for additional cleanup.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the EDX initialization at vCPU RESET, which is now identical between
VMX and SVM, into common code.
No functional change intended.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate the APIC base RESET logic, which is currently spread out
across both x86 and vendor code. For an in-kernel APIC, the vendor code
is redundant. But for a userspace APIC, KVM relies on the vendor code
to initialize vcpu->arch.apic_base. Hoist the vcpu->arch.apic_base
initialization above the !apic check so that it applies to both flavors
of APIC emulation, and delete the vendor code.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Write vcpu->arch.apic_base directly instead of bouncing through
kvm_set_apic_base(). This is a glorified nop, and is a step towards
cleaning up the mess that is local APIC creation.
When using an in-kernel APIC, kvm_create_lapic() explicitly sets
vcpu->arch.apic_base to MSR_IA32_APICBASE_ENABLE to avoid its own
kvm_lapic_set_base() call in kvm_lapic_reset() from triggering state
changes. That call during RESET exists purely to set apic->base_address
to the default base value. As a result, by the time VMX gets control,
the only missing piece is the BSP bit being set for the reset BSP.
For a userspace APIC, there are no side effects to process (for the APIC).
In both cases, the call to kvm_update_cpuid_runtime() is a nop because
the vCPU hasn't yet been exposed to userspace, i.e. there can't be any
CPUID entries.
No functional change intended.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop an explicit MMU reset when entering emulated real mode now that the
vCPU INIT/RESET path correctly handles conditional MMU resets, e.g. if
INIT arrives while the vCPU is in 64-bit mode.
Note, while there are multiple other direct calls to vmx_set_cr0(), i.e.
paths that change CR0 without invoking kvm_post_set_cr0(), only the INIT
emulation can reach enter_rmode(). CLTS emulation only toggles CR.TS,
VM-Exit (and late VM-Fail) emulation cannot architecturally transition to
Real Mode, and VM-Enter to Real Mode is possible if and only if
Unrestricted Guest is enabled (exposed to L1).
This effectively reverts commit 8668a3c468 ("KVM: VMX: Reset mmu
context when entering real mode")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set EDX at RESET/INIT based on the userspace-defined CPUID model when
possible, i.e. when CPUID.0x1.EAX is defind by userspace. At RESET/INIT,
all CPUs that support CPUID set EDX to the FMS enumerated in
CPUID.0x1.EAX. If no CPUID match is found, fall back to KVM's default
of 0x600 (Family '6'), which is the least awful approximation of KVM's
virtual CPU model.
Fixes: 6aa8b732ca ("[PATCH] kvm: userspace interface")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set L1's LDTR on VM-Exit per the Intel SDM:
The host-state area does not contain a selector field for LDTR. LDTR is
established as follows on all VM exits: the selector is cleared to
0000H, the segment is marked unusable and is otherwise undefined
(although the base address is always canonical).
This is likely a benign bug since the LDTR is unusable, as it means the
L1 VMM is conditioned to reload its LDTR in order to function properly on
bare metal.
Fixes: 4704d0befb ("KVM: nVMX: Exiting from L2 to L1")
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_msr_index was used to record the list of MSRs which can be lazily
restored when kvm returns to userspace. It is now reimplemented as
kvm_uret_msrs_list, a common x86 list which is only used inside x86.c.
So just remove the obsolete declaration in vmx.h.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Message-Id: <20210707235702.31595-1-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This better reflects the purpose of this variable on AMD, since
on AMD the AVIC's memory slot can be enabled and disabled dynamically.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210623113002.111448-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the kvm_intel module unloads the module parameter
'allow_smaller_maxphyaddr' is not cleared because the backing variable is
defined in the kvm module. As a result, if the module parameter's state
was set before kvm_intel unloads, it will also be set when it reloads.
Explicitly clear the state in vmx_exit() to prevent this from happening.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Message-Id: <20210623203426.1891402-1-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Expand the comments for the MMU roles. The interactions with gfn_track
PGD reuse in particular are hairy.
Regarding PGD reuse, add comments in the nested virtualization flows to
call out why kvm_init_mmu() is unconditionally called even when nested
TDP is used.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-50-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Mark #ACs that won't be reinjected to the guest as wanted by L0 so that
KVM handles split-lock #AC from L2 instead of forwarding the exception to
L1. Split-lock #AC isn't yet virtualized, i.e. L1 will treat it like a
regular #AC and do the wrong thing, e.g. reinject it into L2.
Fixes: e6f8b6c12f ("KVM: VMX: Extend VMXs #AC interceptor to handle split lock #AC in guest")
Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622172244.3561540-1-seanjc@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Failed VM-entry is often due to a faulty core. To help identify bad
cores, print the id of the last logical processor that attempted
VM-entry whenever dumping a VMCS or VMCB.
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210621221648.1833148-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Calculate the max VMCS index for vmcs12 by walking the array to find the
actual max index. Hardcoding the index is prone to bitrot, and the
calculation is only done on KVM bringup (albeit on every CPU, but there
aren't _that_ many null entries in the array).
Fixes: 3c0f99366e ("KVM: nVMX: Add a TSC multiplier field in VMCS12")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210618214658.2700765-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As part of smaller maxphyaddr emulation, kvm needs to intercept
present page faults to see if it needs to add the RSVD flag (bit 3) to
the error code. However, there is no need to intercept page faults
that already have the RSVD flag set. When setting up the page fault
intercept, add the RSVD flag into the #PF error code mask field (but
not the #PF error code match field) to skip the intercept when the
RSVD flag is already set.
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210618235941.1041604-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>