Add debug functionality to ensure that the XFD MSR is up to date for XSAVE*
and XRSTOR* operations.
[ tglx: Improve comment. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-16-chang.seok.bae@intel.com
Add storage for XFD register state to struct fpstate. This will be used to
store the XFD MSR state. This will be used for switching the XFD MSR when
FPU content is restored.
Add a per-CPU variable to cache the current MSR value so the MSR has only
to be written when the values are different.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-15-chang.seok.bae@intel.com
On exec(), extended register states saved in the buffer is cleared. With
dynamic features, each task carries variables besides the register states.
The struct fpu has permission information and struct fpstate contains
buffer size and feature masks. They are all dynamically updated with
dynamic features.
Reset the current task's entire FPU data before an exec() so that the new
task starts with default permission and fpstate.
Rename the register state reset function because the old naming confuses as
it does not reset struct fpstate.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-12-chang.seok.bae@intel.com
The default portion of the parent's FPU state is saved in a child task.
With dynamic features enabled, the non-default portion is not saved in a
child's fpstate because these register states are defined to be
caller-saved. The new task's fpstate is therefore the default buffer.
Fork inherits the permission of the parent.
Also, do not use memcpy() when TIF_NEED_FPU_LOAD is set because it is
invalid when the parent has dynamic features.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-11-chang.seok.bae@intel.com
The software reserved portion of the fxsave frame in the signal frame
is copied from structures which have been set up at boot time. With
dynamically enabled features the content of these structures is no
longer correct because the xfeatures and size can be different per task.
Calculate the software reserved portion at runtime and fill in the
xfeatures and size values from the tasks active fpstate.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-10-chang.seok.bae@intel.com
To allow building up the infrastructure required to support dynamically
enabled FPU features, add:
- XFEATURES_MASK_DYNAMIC
This constant will hold xfeatures which can be dynamically enabled.
- fpu_state_size_dynamic()
A static branch for 64-bit and a simple 'return false' for 32-bit.
This helper allows to add dynamic-feature-specific changes to common
code which is shared between 32-bit and 64-bit without #ifdeffery.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-8-chang.seok.bae@intel.com
Dynamically enabled XSTATE features are by default disabled for all
processes. A process has to request permission to use such a feature.
To support this implement a architecture specific prctl() with the options:
- ARCH_GET_XCOMP_SUPP
Copies the supported feature bitmap into the user space provided
u64 storage. The pointer is handed in via arg2
- ARCH_GET_XCOMP_PERM
Copies the process wide permitted feature bitmap into the user space
provided u64 storage. The pointer is handed in via arg2
- ARCH_REQ_XCOMP_PERM
Request permission for a feature set. A feature set can be mapped to a
facility, e.g. AMX, and can require one or more XSTATE components to
be enabled.
The feature argument is the number of the highest XSTATE component
which is required for a facility to work.
The request argument is not a user supplied bitmap because that makes
filtering harder (think seccomp) and even impossible because to
support 32bit tasks the argument would have to be a pointer.
The permission mechanism works this way:
Task asks for permission for a facility and kernel checks whether that's
supported. If supported it does:
1) Check whether permission has already been granted
2) Compute the size of the required kernel and user space buffer
(sigframe) size.
3) Validate that no task has a sigaltstack installed
which is smaller than the resulting sigframe size
4) Add the requested feature bit(s) to the permission bitmap of
current->group_leader->fpu and store the sizes in the group
leaders fpu struct as well.
If that is successful then the feature is still not enabled for any of the
tasks. The first usage of a related instruction will result in a #NM
trap. The trap handler validates the permission bit of the tasks group
leader and if permitted it installs a larger kernel buffer and transfers
the permission and size info to the new fpstate container which makes all
the FPU functions which require per task information aware of the extended
feature set.
[ tglx: Adopted to new base code, added missing serialization,
massaged namings, comments and changelog ]
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-7-chang.seok.bae@intel.com
The upcoming prctl() which is required to request the permission for a
dynamically enabled feature will also provide an option to retrieve the
supported features. If the CPU does not support XSAVE, the supported
features would be 0 even when the CPU supports FP and SSE.
Provide separate storage for the legacy feature set to avoid that and fill
in the bits in the legacy init function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-6-chang.seok.bae@intel.com
Dynamically enabled features can be requested by any thread of a running
process at any time. The request does neither enable the feature nor
allocate larger buffers. It just stores the permission to use the feature
by adding the features to the permission bitmap and by calculating the
required sizes for kernel and user space.
The reallocation of the kernel buffer happens when the feature is used
for the first time which is caught by an exception. The permission
bitmap is then checked and if the feature is permitted, then it becomes
fully enabled. If not, the task dies similarly to a task which uses an
undefined instruction.
The size information is precomputed to allow proper sigaltstack size checks
once the feature is permitted, but not yet in use because otherwise this
would open race windows where too small stacks could be installed causing
a later fail on signal delivery.
Initialize them to the default feature set and sizes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-5-chang.seok.bae@intel.com
Split out the size calculation from the paranoia check so it can be used
for recalculating buffer sizes when dynamically enabled features are
supported.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
[ tglx: Adopted to changed base code ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-4-chang.seok.bae@intel.com
For the upcoming AMX support it's necessary to do a proper integration with
KVM. Currently KVM allocates two FPU structs which are used for saving the user
state of the vCPU thread and restoring the guest state when entering
vcpu_run() and doing the reverse operation before leaving vcpu_run().
With the new fpstate mechanism this can be reduced to one extra buffer by
swapping the fpstate pointer in current:🧵:fpu. This makes the
upcoming support for AMX and XFD simpler because then fpstate information
(features, sizes, xfd) are always consistent and it does not require any
nasty workarounds.
Convert the KVM FPU code over to this new scheme.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211022185313.019454292@linutronix.de
For the upcoming AMX support it's necessary to do a proper integration with
KVM. Currently KVM allocates two FPU structs which are used for saving the user
state of the vCPU thread and restoring the guest state when entering
vcpu_run() and doing the reverse operation before leaving vcpu_run().
With the new fpstate mechanism this can be reduced to one extra buffer by
swapping the fpstate pointer in current:🧵:fpu. This makes the
upcoming support for AMX and XFD simpler because then fpstate information
(features, sizes, xfd) are always consistent and it does not require any
nasty workarounds.
Provide:
- An allocator which initializes the state properly
- A replacement for the existing FPU swap mechanim
Aside of the reduced memory footprint, this also makes state switching
more efficient when TIF_FPU_NEED_LOAD is set. It does not require a
memcpy as the state is already correct in the to be swapped out fpstate.
The existing interfaces will be removed once KVM is converted over.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211022185312.954684740@linutronix.de
Now that everything is mopped up, move all the helpers and prototypes into
the core header. They are not required by the outside.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.514095101@linutronix.de
xfeatures_mask_fpstate() is no longer valid when dynamically enabled
features come into play.
Rework restore_regs_from_fpstate() so it takes a constant mask which will
then be applied against the maximum feature set so that the restore
operation brings all features which are not in the xsave buffer xfeature
bitmap into init state.
This ensures that if the previous task used a dynamically enabled feature
that the task which restores has all unused components properly initialized.
Cleanup the last user of xfeatures_mask_fpstate() as well and remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.461348278@linutronix.de
Use the new fpu_user_cfg to retrieve the information instead of
xfeatures_mask_uabi() which will be no longer correct when dynamically
enabled features become available.
Using fpu_user_cfg is appropriate when setting XCOMP_BV in the
init_fpstate since it has space allocated for "max_features". But,
normal fpstates might only have space for default xfeatures. Since
XRSTOR* derives the format of the XSAVE buffer from XCOMP_BV, this can
lead to XRSTOR reading out of bounds.
So when copying actively used fpstate, simply read the XCOMP_BV features
bits directly out of the fpstate instead.
This correction courtesy of Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.408879849@linutronix.de
Move the feature mask storage to the kernel and user config
structs. Default and maximum feature set are the same for now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.352041752@linutronix.de
Use the new kernel and user space config storage to store and retrieve the
XSTATE buffer sizes. The default and the maximum size are the same for now,
but will change when support for dynamically enabled features is added.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.296830097@linutronix.de
The size calculations are partially unreadable gunk. Clean them up.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.241223689@linutronix.de
Provide a struct to store information about the maximum supported and the
default feature set and buffer sizes for both user and kernel space.
This allows quick retrieval of this information for the upcoming support
for dynamically enabled features.
[ bp: Add vertical spacing between the struct members. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.126107370@linutronix.de
For dynamically enabled features it's required to get the features which
are enabled for that context when restoring from sigframe.
The same applies for all signal frame size calculations.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/87ilxz5iew.ffs@tglx
Prepare for dynamically enabled states per task. The function needs to
retrieve the features and sizes which are valid in a fpstate
context. Retrieve them from fpstate.
Move the function declarations to the core header as they are not
required anywhere else.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145323.233529986@linutronix.de
With dynamically enabled features the copy function must know the features
and the size which is valid for the task. Retrieve them from fpstate.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145323.181495492@linutronix.de
With dynamically enabled features the sigframe code must know the features
which are enabled for the task. Get them from fpstate.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145323.077781448@linutronix.de
With variable feature sets XSAVE[S] requires to know the feature set for
which the buffer is valid. Retrieve it from fpstate.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145323.025695590@linutronix.de
Make use of fpstate::size in various places which require the buffer size
information for sanity checks or memcpy() sizing.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.973518954@linutronix.de
Add state size and feature mask information to the fpstate container. This
will be used for runtime checks with the upcoming support for dynamically
enabled features and dynamically sized buffers. That avoids conditionals
all over the place as the required information is accessible for both
default and extended buffers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.921388806@linutronix.de
In preparation for dynamically enabled FPU features move the function
out of line as the goal is to expose less and not more information.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.869001791@linutronix.de
Convert the rest of the core code to the new register storage mechanism in
preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.659456185@linutronix.de
Convert signal related code to the new register storage mechanism in
preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.607370221@linutronix.de
Convert regset related code to the new register storage mechanism in
preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.555239736@linutronix.de
In order to prepare for the support of dynamically enabled FPU features,
move the clearing of xstate components to the FPU core code.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: kvm@vger.kernel.org
Link: https://lkml.kernel.org/r/20211013145322.399567049@linutronix.de
Convert restore_fpregs_from_fpstate() and related code to the new
register storage mechanism in preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.347395546@linutronix.de
Convert fpstate_init() and related code to the new register storage
mechanism in preparation for dynamically sized buffers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.292157401@linutronix.de
New xfeatures will not longer be automatically stored in the regular XSAVE
buffer in thread_struct::fpu.
The kernel will provide the default sized buffer for storing the regular
features up to AVX512 in thread_struct::fpu and if a task requests to use
one of the new features then the register storage has to be extended.
The state will be accessed via a pointer in thread_struct::fpu which
defaults to the builtin storage and can be switched when extended storage
is required.
To avoid conditionals all over the code, create a new container for the
register storage which will gain other information, e.g. size, feature
masks etc., later. For now it just contains the register storage, which
gives it exactly the same layout as the exiting fpu::state.
Stick fpu::state and the new fpu::__fpstate into an anonymous union and
initialize the pointer. Add build time checks to validate that both are
at the same place and have the same size.
This allows step by step conversion of all users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211013145322.234458659@linutronix.de
Similar to the copy from user function the FPU core has this already
implemented with all bells and whistles.
Get rid of the duplicated code and use the core functionality.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: kvm@vger.kernel.org
Link: https://lkml.kernel.org/r/20211015011539.244101845@linutronix.de
To make upcoming changes for support of dynamically enabled features
simpler, provide a proper function for the exception handler which removes
exposure of FPU internals.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011540.053515012@linutronix.de
Now that the file is empty, fixup all references with the proper includes
and delete the former kitchen sink.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011540.001197214@linutronix.de
In order to remove internal.h make signal.h independent of it.
Include asm/fpu/xstate.h to fix a missing update_regset_xstate_info()
prototype, which is
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.844565975@linutronix.de
Move function declarations which need to be globally available to api.h
where they belong.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.792363754@linutronix.de
Only used internally in the FPU core code.
While at it, convert to the percpu accessors which verify preemption is
disabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.686806639@linutronix.de
Further disintegration of internal.h:
Move the CPU feature tests to a core header and remove the unused one.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.401510559@linutronix.de
internal.h is a kitchen sink which needs to get out of the way to prepare
for the upcoming changes.
Move the context switch and exit to user inlines into a separate header,
which is all that code needs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.349132461@linutronix.de
Prepare for replacing the KVM copy xstate to user function by extending
copy_xstate_to_uabi_buf() with a pkru argument which allows the caller to
hand in the pkru value, which is required for KVM because the guest PKRU is
not accessible via current. Fixup all callsites accordingly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.191902137@linutronix.de
Copying a user space buffer to the memory buffer is already available in
the FPU core. The copy mechanism in KVM lacks sanity checks and needs to
use cpuid() to lookup the offset of each component, while the FPU core has
this information cached.
Make the FPU core variant accessible for KVM and replace the home brewed
mechanism.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: kvm@vger.kernel.org
Link: https://lkml.kernel.org/r/20211015011539.134065207@linutronix.de
Swapping the host/guest FPU is directly fiddling with FPU internals which
requires 5 exports. The upcoming support of dynamically enabled states
would even need more.
Implement a swap function in the FPU core code and export that instead.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: kvm@vger.kernel.org
Link: https://lkml.kernel.org/r/20211015011539.076072399@linutronix.de
These loops evaluating xfeature bits are really hard to read. Create an
iterator and use for_each_set_bit_from() inside which already does the right
thing.
No functional changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011538.958107505@linutronix.de
No point in having this duplicated all over the place with needlessly
different defines.
Provide a proper initialization function which initializes user buffers
properly and make KVM use it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011538.897664678@linutronix.de
There is no reason why kernel and IO worker threads need a full clone of
the parent's FPU state. Both are kernel threads which are not supposed to
use FPU. So copying a large state or doing XSAVE() is pointless. Just clean
out the minimally required state for those tasks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011538.839822981@linutronix.de
Zeroing the forked task's FPU registers buffer to avoid leaking init
optimized stale data into the clone is a pointless exercise for the case
where the current task has TIF_NEED_FPU_LOAD set. In that case, the FPU
registers state is copied from current's FPU register buffer which can
contain stale init optimized data as well.
The alledged information leak is non-existant because this stale init
optimized data is used nowhere and cannot leak anywhere.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011538.722854569@linutronix.de
These interfaces are really only valid for features which are independently
managed and not part of the task context state for various reasons.
Tighten the checks and adjust the misleading comments.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011538.608492174@linutronix.de
copy_fpstate_to_sigframe() does not have a slow path anymore. Neither does
the !ia32 restore in __fpu_restore_sig().
Update the comments accordingly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011538.493570236@linutronix.de
Turn fault_in_pages_{readable,writeable} into versions that return the
number of bytes not faulted in, similar to copy_to_user, instead of
returning a non-zero value when any of the requested pages couldn't be
faulted in. This supports the existing users that require all pages to
be faulted in as well as new users that are happy if any pages can be
faulted in.
Rename the functions to fault_in_{readable,writeable} to make sure
this change doesn't silently break things.
Neither of these functions is entirely trivial and it doesn't seem
useful to inline them, so move them to mm/gup.c.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Resolve the conflict between these commits:
x86/fpu: 1193f408cd ("x86/fpu/signal: Change return type of __fpu_restore_sig() to boolean")
x86/urgent: d298b03506 ("x86/fpu: Restore the masking out of reserved MXCSR bits")
b2381acd3f ("x86/fpu: Mask out the invalid MXCSR bits properly")
Conflicts:
arch/x86/kernel/fpu/signal.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is a fix for the fix (yeah, /facepalm).
The correct mask to use is not the negation of the MXCSR_MASK but the
actual mask which contains the supported bits in the MXCSR register.
Reported and debugged by Ville Syrjälä <ville.syrjala@linux.intel.com>
Fixes: d298b03506 ("x86/fpu: Restore the masking out of reserved MXCSR bits")
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Tested-by: Ser Olmy <ser.olmy@protonmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/YWgYIYXLriayyezv@intel.com
Ser Olmy reported a boot failure:
init[1] bad frame in sigreturn frame:(ptrval) ip:b7c9fbe6 sp:bf933310 orax:ffffffff \
in libc-2.33.so[b7bed000+156000]
Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b
CPU: 0 PID: 1 Comm: init Tainted: G W 5.14.9 #1
Hardware name: Hewlett-Packard HP PC/HP Board, BIOS JD.00.06 12/06/2001
Call Trace:
dump_stack_lvl
dump_stack
panic
do_exit.cold
do_group_exit
get_signal
arch_do_signal_or_restart
? force_sig_info_to_task
? force_sig
exit_to_user_mode_prepare
syscall_exit_to_user_mode
do_int80_syscall_32
entry_INT80_32
on an old 32-bit Intel CPU:
vendor_id : GenuineIntel
cpu family : 6
model : 6
model name : Celeron (Mendocino)
stepping : 5
microcode : 0x3
Ser bisected the problem to the commit in Fixes.
tglx suggested reverting the rejection of invalid MXCSR values which
this commit introduced and replacing it with what the old code did -
simply masking them out to zero.
Further debugging confirmed his suggestion:
fpu->state.fxsave.mxcsr: 0xb7be13b4, mxcsr_feature_mask: 0xffbf
WARNING: CPU: 0 PID: 1 at arch/x86/kernel/fpu/signal.c:384 __fpu_restore_sig+0x51f/0x540
so restore the original behavior only for 32-bit kernels where you have
ancient machines with buggy hardware. For 32-bit programs on 64-bit
kernels, user space which supplies wrong MXCSR values is considered
malicious so fail the sigframe restoration there.
Fixes: 6f9866a166 ("x86/fpu/signal: Let xrstor handle the features to init")
Reported-by: Ser Olmy <ser.olmy@protonmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Ser Olmy <ser.olmy@protonmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/YVtA67jImg3KlBTw@zn.tnic
Fix the missing return code polarity in save_xstate_epilog().
[ bp: Massage, use the right commit in the Fixes: tag ]
Fixes: 2af07f3a6e ("x86/fpu/signal: Change return type of copy_fpregs_to_sigframe() helpers to boolean")
Reported-by: Remi Duraffort <remi.duraffort@linaro.org>
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://github.com/ClangBuiltLinux/linux/issues/1461
Link: https://lkml.kernel.org/r/20210922200901.1823741-1-anders.roxell@linaro.org
__fpu_sig_restore() only needs information about success or fail and no
real error code.
This cleans up the confusing conversion of the trap number, which is
returned by the *RSTOR() exception fixups, to an error code.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210908132526.084109938@linutronix.de
__fpu_sig_restore() only needs success/fail information and no detailed
error code.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210908132526.024024598@linutronix.de
Now that fpu__restore_sig() returns a boolean get rid of the individual
error codes in __fpu_restore_sig() as well.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210908132525.966197097@linutronix.de
None of the call sites cares about the error code. All they need to know is
whether the function succeeded or not.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210908132525.909065931@linutronix.de
Now that copy_fpregs_to_sigframe() returns boolean the individual return
codes in the related helper functions do not make sense anymore. Change
them to return boolean success/fail.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210908132525.794334915@linutronix.de
None of the call sites cares about the actual return code. Change the
return type to boolean and return 'true' on success.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210908132525.736773588@linutronix.de
When the direct saving of the FPU registers to the user space sigframe
fails, copy_fpregs_to_sigframe() attempts to clear the user buffer.
The most likely reason for such a fail is a page fault. As
copy_fpregs_to_sigframe() is invoked with pagefaults disabled the chance
that __clear_user() succeeds is minuscule.
Move the clearing out into the caller which replaces the
fault_in_pages_writeable() in that error handling path.
The return value confusion will be cleaned up separately.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210908132525.679356300@linutronix.de
There is no reason to have the header zeroing in the pagefault disabled
region. Do it upfront once.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210908132525.621674721@linutronix.de
FPU restore from a signal frame can trigger various exceptions. The
exceptions are caught with an exception table entry. The handler of this
entry stores the trap number in EAX. The FPU specific fixup negates that
trap number to convert it into an negative error code.
Any other exception than #PF is fatal and recovery is not possible. This
relies on the fact that the #PF exception number is the same as EFAULT, but
that's not really obvious.
Remove the negation from the exception fixup as it really has no value and
check for X86_TRAP_PF at the call site.
There is still confusion due to the return code conversion for the error
case which will be cleaned up separately.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210908132525.506192488@linutronix.de
The change which made copy_xstate_to_uabi_buf() usable for
[x]fpregs_get() removed the zeroing of the header which means the
header, which is copied to user space later, contains except for the
xfeatures member, random stack content.
Add the memset() back to zero it before usage.
Fixes: eb6f51723f ("x86/fpu: Make copy_xstate_to_kernel() usable for [x]fpregs_get()")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/875yy3wb8h.ffs@nanos.tec.linutronix.de
There is no reason to do an extra XRSTOR from init_fpstate for feature
bits which have been cleared by user space in the FX magic xfeatures
storage.
Just clear them in the task's XSTATE header and do a full restore which
will put these cleared features into init state.
There is no real difference in performance because the current code
already does a full restore when the xfeatures bits are preserved as the
signal frame setup has stored them, which is the full UABI feature set.
[ bp: Use the negated mxcsr_feature_mask in the MXCSR check. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121457.804115017@linutronix.de
If *RSTOR raises an exception, then the slow path is taken. That's wrong
because if the reason was not #PF then going through the slow path is waste
of time because that will end up with the same conclusion that the data is
invalid.
Now that the wrapper around *RSTOR return an negative error code, which is
the negated trap number, it's possible to differentiate.
If the *RSTOR raised #PF then handle it directly in the fast path and if it
was some other exception, e.g. #GP, then give up and do not try the fast
path.
This removes the legacy frame FRSTOR code from the slow path because FRSTOR
is not a ia32_fxstate frame and is therefore handled in the fast path.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121457.696022863@linutronix.de
Now that user_xfeatures is correctly set when xsave is enabled, remove
the duplicated initialization of components.
Rename the function while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121457.377341297@linutronix.de
Utilize the check for the extended state magic in the FX software reserved
bytes and set the parameters for restoring fx_only in the relevant members
of fw_sw_user.
This allows further cleanups on top because the data is consistent.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121457.277738268@linutronix.de
Checking for the XSTATE buffer being 64-byte aligned, and if not,
deciding just to restore the FXSR state is daft.
If user space provides an unaligned math frame and has the extended state
magic set in the FX software reserved bytes, then it really can keep the
pieces.
If the frame is unaligned and the FX software magic is not set, then
fx_only is already set and the restore will use fxrstor.
Remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121457.184149902@linutronix.de
__fpu__restore_sig() is convoluted and some of the basic checks can
trivially be done in the calling function as well as the final error
handling of clearing user state.
[ bp: Fixup typos. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121457.086336154@linutronix.de
PKRU for a task is stored in task->thread.pkru when the task is scheduled
out. For 'current' the authoritative source of PKRU is the hardware.
fpu_reset_fpstate() has two callers:
1) fpu__clear_user_states() for !FPU systems. For those PKRU is irrelevant
2) fpu_flush_thread() which is invoked from flush_thread(). flush_thread()
resets the hardware to the kernel restrictive default value.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121456.802850233@linutronix.de
As the PKRU state is managed separately restoring it from the xstate
buffer would be counterproductive as it might either restore a stale
value or reinit the PKRU state to 0.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121456.606745195@linutronix.de
One nice thing about having PKRU be XSAVE-managed is that it gets naturally
exposed into the XSAVE-using ABIs. Now that XSAVE will not be used to
manage PKRU, these ABIs need to be manually enabled to deal with PKRU.
ptrace() uses copy_uabi_xstate_to_kernel() to collect the tracee's
XSTATE. As PKRU is not in the task's XSTATE buffer, use task->thread.pkru
for filling in up the ptrace buffer.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121456.508770763@linutronix.de
switch_to() and flush_thread() write the task's PKRU value eagerly so
the PKRU value of current is always valid in the hardware.
That means there is no point in restoring PKRU on exit to user or when
reactivating the task's FPU registers in the signal frame setup path.
This allows to remove all the xstate buffer updates with PKRU values once
the PKRU state is stored in thread struct while a task is scheduled out.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121456.303919033@linutronix.de
Rename it so it's clear that this is about user ABI features which can
differ from the feature set which the kernel saves and restores because the
kernel handles e.g. PKRU differently. But the user ABI (ptrace, signal
frame) expects it to be there.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121456.211585137@linutronix.de
copy_kernel_to_fpregs() restores all xfeatures but it is also the place
where the AMD FXSAVE_LEAK bug is handled.
That prevents fpregs_restore_userregs() to limit the restored features,
which is required to untangle PKRU and XSTATE handling and also for the
upcoming supervisor state management.
Move the FXSAVE_LEAK quirk into __copy_kernel_to_fpregs() and deinline that
function which has become rather fat.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121456.114271278@linutronix.de
Rename it so that it becomes entirely clear what this function is
about. It's purpose is to restore the FPU registers to the state which was
saved in the task's FPU memory state either at context switch or by an in
kernel FPU user.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121456.018867925@linutronix.de
fpu__clear() currently resets both register state and kernel XSAVE buffer
state. It has two modes: one for all state (supervisor and user) and
another for user state only. fpu__clear_all() uses the "all state"
(user_only=0) mode, while a number of signal paths use the user_only=1
mode.
Make fpu__clear() work only for user state (user_only=1) and remove the
"all state" (user_only=0) code. Rename it to match so it can be used by
the signal paths.
Replace the "all state" (user_only=0) fpu__clear() functionality. Use the
TIF_NEED_FPU_LOAD functionality instead of making any actual hardware
registers changes in this path.
Instead of invoking fpu__initialize() just memcpy() init_fpstate into the
task's FPU state because that has already the correct format and in case of
PKRU also contains the default PKRU value. Move the actual PKRU write out
into flush_thread() where it belongs and where it will end up anyway when
PKRU and XSTATE have been untangled.
For bisectability a workaround is required which stores the PKRU value in
the xstate memory until PKRU is untangled from XSTATE for context
switching and return to user.
[ Dave Hansen: Polished changelog ]
[ tglx: Fixed the PKRU fallout ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.922729522@linutronix.de
There is no point in using copy_init_pkru_to_fpregs() which in turn calls
write_pkru(). write_pkru() tries to fiddle with the task's xstate buffer
for nothing because the XRSTOR[S](init_fpstate) just cleared the xfeature
flag in the xstate header which makes get_xsave_addr() fail.
It's a useless exercise anyway because the reinitialization activates the
FPU so before the task's xstate buffer can be used again a XRSTOR[S] must
happen which in turn dumps the PKRU value.
Get rid of the now unused copy_init_pkru_to_fpregs().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.732508792@linutronix.de
X86_FEATURE_OSPKE is enabled first on the boot CPU and the feature flag is
set. Secondary CPUs have to enable CR4.PKE as well and set their per CPU
feature flag. That's ineffective because all call sites have checks for
boot_cpu_data.
Make it smarter and force the feature flag when PKU is enabled on the boot
cpu which allows then to use cpu_feature_enabled(X86_FEATURE_OSPKE) all
over the place. That either compiles the code out when PKEY support is
disabled in Kconfig or uses a static_cpu_has() for the feature check which
makes a significant difference in hotpaths, e.g. context switch.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.305113644@linutronix.de
Both function names are a misnomer.
fpu__save() is actually about synchronizing the hardware register state
into the task's memory state so that either coredump or a math exception
handler can inspect the state at the time where the problem happens.
The function guarantees to preserve the register state, while "save" is a
common terminology for saving the current state so it can be modified and
restored later. This is clearly not the case here.
Rename it to fpu_sync_fpstate().
fpu__copy() is used to clone the current task's FPU state when duplicating
task_struct. While the register state is a copy the rest of the FPU state
is not.
Name it accordingly and remove the really pointless @src argument along
with the warning which comes along with it.
Nothing can ever copy the FPU state of a non-current task. It's clearly
just a consequence of arch_dup_task_struct(), but it makes no sense to
proliferate that further.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.196727450@linutronix.de
The copy functions for the independent features are horribly named and the
supervisor and independent part is just overengineered.
The point is that the supplied mask has either to be a subset of the
independent features or a subset of the task->fpu.xstate managed features.
Rewrite it so it checks for invalid overlaps of these areas in the caller
supplied feature mask. Rename it so it follows the new naming convention
for these operations. Mop up the function documentation.
This allows to use that function for other purposes as well.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210623121455.004880675@linutronix.de