mirror of
https://git.proxmox.com/git/mirror_ubuntu-kernels.git
synced 2025-12-02 14:47:09 +00:00
af8800c953
7 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
|
ca8afd4046 |
powerpc/hugetlb: fix page rights verification in gup_hugepte()
gup_hugepte() checks if pages are present and readable, and
when 'write' is set, also checks if the pages are writable.
Initially this was done by checking if _PAGE_PRESENT and
_PAGE_READ were set. In addition, _PAGE_WRITE was verified for write
accesses.
The problem is that we have to handle the three following cases:
1/ The target defines __PAGE_READ and __PAGE_WRITE
2/ The target defines __PAGE_RW
3/ The target defines __PAGE_RO
In case 1/, this is obvious
In case 2/, __PAGE_READ is defined as 0 and __PAGE_WRITE as __PAGE_RW
so it works as well.
But in case 3, __PAGE_RW is defined as 0, which means __PAGE_WRITE is 0
and then the test returns true (page writable) in all cases.
A first correction was attempted in commit
|
||
|
|
3fb66a70a4 |
powerpc/booke: Fix boot crash due to null hugepd
On 32-bit book-e machines, hugepd_ok() no longer takes into account null
hugepd values, causing this crash at boot:
Unable to handle kernel paging request for data at address 0x80000000
...
NIP [c0018378] follow_huge_addr+0x38/0xf0
LR [c001836c] follow_huge_addr+0x2c/0xf0
Call Trace:
follow_huge_addr+0x2c/0xf0 (unreliable)
follow_page_mask+0x40/0x3e0
__get_user_pages+0xc8/0x450
get_user_pages_remote+0x8c/0x250
copy_strings+0x110/0x390
copy_strings_kernel+0x2c/0x50
do_execveat_common+0x478/0x630
do_execve+0x2c/0x40
try_to_run_init_process+0x18/0x60
kernel_init+0xbc/0x110
ret_from_kernel_thread+0x5c/0x64
This impacts all nxp (ex-freescale) 32-bit booke platforms.
This was caused by the change of hugepd_t.pd from signed to unsigned,
and the update to the nohash version of hugepd_ok(). Previously
hugepd_ok() could exclude all non-huge and NULL pgds using > 0, whereas
now we need to explicitly check that the value is not zero and also that
PD_HUGE is *clear*.
This isn't protected by the pgd_none() check in __find_linux_pte_or_hugepte()
because on 32-bit we use pgtable-nopud.h, which causes the pgd_none()
check to be always false.
Fixes:
|
||
|
|
20717e1ff5 |
powerpc/mm: Fix little-endian 4K hugetlb
When we switched to big endian page table, we never updated the hugepd
format such that it can work for both big endian and little endian
config. This patch series update hugepd format such that it is looked at
as __be64 value in big endian page table config.
This patch also switch hugepd_t.pd from signed long to unsigned long.
I did update the FSL hugepd_ok check to check for the top bit instead
of checking > 0.
Fixes:
|
||
|
|
4b91428699 |
powerpc/8xx: Implement support of hugepages
8xx uses a two level page table with two different linux page size support (4k and 16k). 8xx also support two different hugepage sizes 512k and 8M. In order to support them on linux we define two different page table layout. The size of pages is in the PGD entry, using PS field (bits 28-29): 00 : Small pages (4k or 16k) 01 : 512k pages 10 : reserved 11 : 8M pages For 512K hugepage size a pgd entry have the below format [<hugepte address >0101] . The hugepte table allocated will contain 8 entries pointing to 512K huge pte in 4k pages mode and 64 entries in 16k pages mode. For 8M in 16k mode, a pgd entry have the below format [<hugepte address >1101] . The hugepte table allocated will contain 8 entries pointing to 8M huge pte. For 8M in 4k mode, multiple pgd entries point to the same hugepte address and pgd entry will have the below format [<hugepte address>1101]. The hugepte table allocated will only have one entry. For the time being, we do not support CPU15 ERRATA when HUGETLB is selected Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> (v3, for the generic bits) Signed-off-by: Scott Wood <oss@buserror.net> |
||
|
|
26a344aea4 |
powerpc/mm: Move hugetlb related headers
W.r.t hugetlb, we support two format for pmd. With book3s_64 and 64K linux page size, we can have pte at the pmd level. Hence we don't need to support hugepd there. For everything else hugepd is supported and pmd_huge is (0). Acked-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> |
||
|
|
17ed9e3192 |
powerpc/booke: Move nohash headers
Move the booke related headers below booke/32 or booke/64 Acked-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> |