* Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of hugepage splitting in the stage-2
fault path.
* Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact with
services that live in the Secure world. pKVM intervenes on FF-A calls
to guarantee the host doesn't misuse memory donated to the hyp or a
pKVM guest.
* Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
* Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set configuration
from userspace, but the intent is to relax this limitation and allow
userspace to select a feature set consistent with the CPU.
* Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
* Use a separate set of pointer authentication keys for the hypervisor
when running in protected mode, as the host is untrusted at runtime.
* Ensure timer IRQs are consistently released in the init failure
paths.
* Avoid trapping CTR_EL0 on systems with Enhanced Virtualization Traps
(FEAT_EVT), as it is a register commonly read from userspace.
* Erratum workaround for the upcoming AmpereOne part, which has broken
hardware A/D state management.
RISC-V:
* Redirect AMO load/store misaligned traps to KVM guest
* Trap-n-emulate AIA in-kernel irqchip for KVM guest
* Svnapot support for KVM Guest
s390:
* New uvdevice secret API
* CMM selftest and fixes
* fix racy access to target CPU for diag 9c
x86:
* Fix missing/incorrect #GP checks on ENCLS
* Use standard mmu_notifier hooks for handling APIC access page
* Drop now unnecessary TR/TSS load after VM-Exit on AMD
* Print more descriptive information about the status of SEV and SEV-ES during
module load
* Add a test for splitting and reconstituting hugepages during and after
dirty logging
* Add support for CPU pinning in demand paging test
* Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes
included along the way
* Add a "nx_huge_pages=never" option to effectively avoid creating NX hugepage
recovery threads (because nx_huge_pages=off can be toggled at runtime)
* Move handling of PAT out of MTRR code and dedup SVM+VMX code
* Fix output of PIC poll command emulation when there's an interrupt
* Add a maintainer's handbook to document KVM x86 processes, preferred coding
style, testing expectations, etc.
* Misc cleanups, fixes and comments
Generic:
* Miscellaneous bugfixes and cleanups
Selftests:
* Generate dependency files so that partial rebuilds work as expected
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmSgHrIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroORcAf+KkBlXwQMf+Q0Hy6Mfe0OtkKmh0Ae
6HJ6dsuMfOHhWv5kgukh+qvuGUGzHq+gpVKmZg2yP3h3cLHOLUAYMCDm+rjXyjsk
F4DbnJLfxq43Pe9PHRKFxxSecRcRYCNox0GD5UYL4PLKcH0FyfQrV+HVBK+GI8L3
FDzUcyJkR12Lcj1qf++7fsbzfOshL0AJPmidQCoc6wkLJpUEr/nYUqlI1Kx3YNuQ
LKmxFHS4l4/O/px3GKNDrLWDbrVlwciGIa3GZLS52PZdW3mAqT+cqcPcYK6SW71P
m1vE80VbNELX5q3YSRoOXtedoZ3Pk97LEmz/xQAsJ/jri0Z5Syk0Ok0m/Q==
=AMXp
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of hugepage splitting in the
stage-2 fault path.
- Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact
with services that live in the Secure world. pKVM intervenes on
FF-A calls to guarantee the host doesn't misuse memory donated to
the hyp or a pKVM guest.
- Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
- Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set
configuration from userspace, but the intent is to relax this
limitation and allow userspace to select a feature set consistent
with the CPU.
- Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
- Use a separate set of pointer authentication keys for the
hypervisor when running in protected mode, as the host is untrusted
at runtime.
- Ensure timer IRQs are consistently released in the init failure
paths.
- Avoid trapping CTR_EL0 on systems with Enhanced Virtualization
Traps (FEAT_EVT), as it is a register commonly read from userspace.
- Erratum workaround for the upcoming AmpereOne part, which has
broken hardware A/D state management.
RISC-V:
- Redirect AMO load/store misaligned traps to KVM guest
- Trap-n-emulate AIA in-kernel irqchip for KVM guest
- Svnapot support for KVM Guest
s390:
- New uvdevice secret API
- CMM selftest and fixes
- fix racy access to target CPU for diag 9c
x86:
- Fix missing/incorrect #GP checks on ENCLS
- Use standard mmu_notifier hooks for handling APIC access page
- Drop now unnecessary TR/TSS load after VM-Exit on AMD
- Print more descriptive information about the status of SEV and
SEV-ES during module load
- Add a test for splitting and reconstituting hugepages during and
after dirty logging
- Add support for CPU pinning in demand paging test
- Add support for AMD PerfMonV2, with a variety of cleanups and minor
fixes included along the way
- Add a "nx_huge_pages=never" option to effectively avoid creating NX
hugepage recovery threads (because nx_huge_pages=off can be toggled
at runtime)
- Move handling of PAT out of MTRR code and dedup SVM+VMX code
- Fix output of PIC poll command emulation when there's an interrupt
- Add a maintainer's handbook to document KVM x86 processes,
preferred coding style, testing expectations, etc.
- Misc cleanups, fixes and comments
Generic:
- Miscellaneous bugfixes and cleanups
Selftests:
- Generate dependency files so that partial rebuilds work as
expected"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (153 commits)
Documentation/process: Add a maintainer handbook for KVM x86
Documentation/process: Add a label for the tip tree handbook's coding style
KVM: arm64: Fix misuse of KVM_ARM_VCPU_POWER_OFF bit index
RISC-V: KVM: Remove unneeded semicolon
RISC-V: KVM: Allow Svnapot extension for Guest/VM
riscv: kvm: define vcpu_sbi_ext_pmu in header
RISC-V: KVM: Expose IMSIC registers as attributes of AIA irqchip
RISC-V: KVM: Add in-kernel virtualization of AIA IMSIC
RISC-V: KVM: Expose APLIC registers as attributes of AIA irqchip
RISC-V: KVM: Add in-kernel emulation of AIA APLIC
RISC-V: KVM: Implement device interface for AIA irqchip
RISC-V: KVM: Skeletal in-kernel AIA irqchip support
RISC-V: KVM: Set kvm_riscv_aia_nr_hgei to zero
RISC-V: KVM: Add APLIC related defines
RISC-V: KVM: Add IMSIC related defines
RISC-V: KVM: Implement guest external interrupt line management
KVM: x86: Remove PRIx* definitions as they are solely for user space
s390/uv: Update query for secret-UVCs
s390/uv: replace scnprintf with sysfs_emit
s390/uvdevice: Add 'Lock Secret Store' UVC
...
To incrementally implement in-kernel AIA irqchip support, we first
add minimal skeletal support which only compiles but does not provide
any functionality.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
This patch adds vector context save/restore for guest VCPUs. To reduce the
impact on KVM performance, the implementation imitates the FP context
switch mechanism to lazily store and restore the vector context only when
the kernel enters/exits the in-kernel run loop and not during the KVM
world switch.
Signed-off-by: Vincent Chen <vincent.chen@sifive.com>
Signed-off-by: Greentime Hu <greentime.hu@sifive.com>
Signed-off-by: Andy Chiu <andy.chiu@sifive.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Acked-by: Anup Patel <anup@brainfault.org>
Link: https://lore.kernel.org/r/20230605110724.21391-20-andy.chiu@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
To support 64 VCPU local interrupts on RV32 host, we should use
bitmap for irqs_pending and irqs_pending_mask in struct kvm_vcpu_arch.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
To incrementally implement AIA support, we first add minimal skeletal
support which only compiles and detects AIA hardware support at the
boot-time but does not provide any functionality.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
This patch only adds barebone structure of perf implementation. Most
of the function returns zero at this point and will be implemented
fully in the future.
Reviewed-by: Anup Patel <anup@brainfault.org>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
Now that KVM setup is handled directly in riscv_kvm_init(), tag functions
and data that are used/set only during init with __init/__ro_after_init.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Anup Patel <anup@brainfault.org>
Message-Id: <20221130230934.1014142-26-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_arch_hardware_setup() and kvm_arch_hardware_unsetup() now that
all implementations are nops.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Eric Farman <farman@linux.ibm.com> # s390
Acked-by: Anup Patel <anup@brainfault.org>
Message-Id: <20221130230934.1014142-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We should save VCPU mvendorid, marchid, and mimpid at the time
of creating VCPU so that we don't have to do host SBI call every
time Guest/VM ask for these details.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
Just like asm/kvm_vcpu_timer.h, we should have all sbi related struct
and functions in asm/kvm_vcpu_sbi.h.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
We should include asm/csr.h only where required so let us remove
redundant includes of this header.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
Record a statistic indicating the number of times a vCPU has exited
due to a pending signal.
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Reviewed-by: Guo Ren <guoren@kernel.org>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Anup Patel <anup@brainfault.org
The in-kernel AIA IMSIC support requires on-demand mapping / unmapping
of Guest IMSIC address to Host IMSIC guest files. To help achieve this,
we add kvm_riscv_stage2_ioremap() and kvm_riscv_stage2_iounmap() functions.
These new functions for updating G-stage page table mappings will be called
in atomic context so we have special "in_atomic" parameter for this purpose.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
We add an extensible CSR emulation framework which is based upon the
existing system instruction emulation. This will be useful to upcoming
AIA, PMU, Nested and other virtualization features.
The CSR emulation framework also has provision to emulate CSR in user
space but this will be used only in very specific cases such as AIA
IMSIC CSR emulation in user space or vendor specific CSR emulation
in user space.
By default, all CSRs not handled by KVM RISC-V will be redirected back
to Guest VCPU as illegal instruction trap.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
The instruction and CSR emulation for VCPU is going to grow over time
due to upcoming AIA, PMU, Nested and other virtualization features.
Let us factor-out VCPU instruction emulation from vcpu_exit.c to a
separate source dedicated for this purpose.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
Currently, the every vcpu only stores the ISA extensions in a unsigned long
which is not scalable as number of extensions will continue to grow.
Using a bitmap allows the ISA extension to support any number of
extensions. The CONFIG one reg interface implementation is modified to
support the bitmap as well. But it is meant only for base extensions.
Thus, the first element of the bitmap array is sufficient for that
interface.
In the future, all the new multi-letter extensions must use the
ISA_EXT one reg interface that allows enabling/disabling any extension
now.
Signed-off-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
On RISC-V platforms with hardware VMID support, we share same
VMID for all VCPUs of a particular Guest/VM. This means we might
have stale G-stage TLB entries on the current Host CPU due to
some other VCPU of the same Guest which ran previously on the
current Host CPU.
To cleanup stale TLB entries, we simply flush all G-stage TLB
entries by VMID whenever underlying Host CPU changes for a VCPU.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
The generic KVM has support for VCPU requests which can be used
to do arch-specific work in the run-loop. We introduce remote
HFENCE functions which will internally use VCPU requests instead
of host SBI calls.
Advantages of doing remote HFENCEs as VCPU requests are:
1) Multiple VCPUs of a Guest may be running on different Host CPUs
so it is not always possible to determine the Host CPU mask for
doing Host SBI call. For example, when VCPU X wants to do HFENCE
on VCPU Y, it is possible that VCPU Y is blocked or in user-space
(i.e. vcpu->cpu < 0).
2) To support nested virtualization, we will be having a separate
shadow G-stage for each VCPU and a common host G-stage for the
entire Guest/VM. The VCPU requests based remote HFENCEs helps
us easily synchronize the common host G-stage and shadow G-stage
of each VCPU without any additional IPI calls.
This is also a preparatory patch for upcoming nested virtualization
support where we will be having a shadow G-stage page table for
each Guest VCPU.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
Currently, the KVM_MAX_VCPUS value is 16384 for RV64 and 128
for RV32.
The KVM_MAX_VCPUS value is too high for RV64 and too low for
RV32 compared to other architectures (e.g. x86 sets it to 1024
and ARM64 sets it to 512). The too high value of KVM_MAX_VCPUS
on RV64 also leads to VCPU mask on stack consuming 2KB.
We set KVM_MAX_VCPUS to 1024 for both RV64 and RV32 to be
aligned other architectures.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
Various __kvm_riscv_hfence_xyz() functions implemented in the
kvm/tlb.S are equivalent to corresponding HFENCE.GVMA instructions
and we don't have range based local HFENCE functions.
This patch provides complete set of local HFENCE functions which
supports range based TLB invalidation and supports HFENCE.VVMA
based functions. This is also a preparatory patch for upcoming
Svinval support in KVM RISC-V.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
The two-stage address translation defined by the RISC-V privileged
specification defines: VS-stage (guest virtual address to guest
physical address) programmed by the Guest OS and G-stage (guest
physical addree to host physical address) programmed by the
hypervisor.
To align with above terminology, we replace "stage2" with "gstage"
and "Stage2" with "G-stage" name everywhere in KVM RISC-V sources.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
Use the generic kvm_vcpu's srcu_idx instead of using an indentical field
in RISC-V's version of kvm_vcpu_arch. Generic KVM very intentionally
does not touch vcpu->srcu_idx, i.e. there's zero chance of running afoul
of common code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220415004343.2203171-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The wait for interrupt (WFI) instruction emulation can share the VCPU
halt logic with SBI HSM suspend emulation so this patch adds a common
kvm_riscv_vcpu_wfi() function for this purpose.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
The number of GPA bits supported for a RISC-V Guest/VM is based on the
MMU mode used by the G-stage translation. The KVM RISC-V will detect and
use the best possible MMU mode for the G-stage in kvm_arch_init().
We add a generic VM capability KVM_CAP_VM_GPA_BITS which can be used by
the KVM userspace to get the number of GPA (guest physical address) bits
supported for a Guest/VM.
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Reviewed-and-tested-by: Atish Patra <atishp@rivosinc.com>
Use common KVM's implementation of the MMU memory caches, which for all
intents and purposes is semantically identical to RISC-V's version, the
only difference being that the common implementation will fall back to an
atomic allocation if there's a KVM bug that triggers a cache underflow.
RISC-V appears to have based its MMU code on arm64 before the conversion
to the common caches in commit c1a33aebe9 ("KVM: arm64: Use common KVM
implementation of MMU memory caches"), despite having also copy-pasted
the definition of KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE in kvm_types.h.
Opportunistically drop the superfluous wrapper
kvm_riscv_stage2_flush_cache(), whose name is very, very confusing as
"cache flush" in the context of MMU code almost always refers to flushing
hardware caches, not freeing unused software objects.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Drop kvm_arch_vcpu_block_finish() now that all arch implementations are
nops.
No functional change intended.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The KVM_MAX_VCPUS value is supposed to be aligned with number of
VMID bits in the hgatp CSR but the current KVM_MAX_VCPUS value
is aligned with number of ASID bits in the satp CSR.
Fixes: 99cdc6c18c ("RISC-V: Add initial skeletal KVM support")
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
The parameter passed to HFENCE.GVMA instruction in rs1 register
is guest physical address right shifted by 2 (i.e. divided by 4).
Unfortunately, we overlooked the semantics of rs1 registers for
HFENCE.GVMA instruction and never right shifted guest physical
address by 2. This issue did not manifest for hypervisors till
now because:
1) Currently, only __kvm_riscv_hfence_gvma_all() and SBI
HFENCE calls are used to invalidate TLB.
2) All H-extension implementations (such as QEMU, Spike,
Rocket Core FPGA, etc) that we tried till now were
conservatively flushing everything upon any HFENCE.GVMA
instruction.
This patch fixes GPA passed to __kvm_riscv_hfence_gvma_vmid_gpa()
and __kvm_riscv_hfence_gvma_gpa() functions.
Fixes: fd7bb4a251 ("RISC-V: KVM: Implement VMID allocator")
Reported-by: Ian Huang <ihuang@ventanamicro.com>
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Message-Id: <20211026170136.2147619-4-anup.patel@wdc.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The timer and SBI virtualization is already in separate sources.
In future, we will have vector and AIA virtualization also added
as separate sources.
To align with above described modularity, we factor-out FP
virtualization into separate sources.
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Message-Id: <20211026170136.2147619-3-anup.patel@wdc.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The KVM host kernel is running in HS-mode needs so we need to handle
the SBI calls coming from guest kernel running in VS-mode.
This patch adds SBI v0.1 support in KVM RISC-V. Almost all SBI v0.1
calls are implemented in KVM kernel module except GETCHAR and PUTCHART
calls which are forwarded to user space because these calls cannot be
implemented in kernel space. In future, when we implement SBI v0.2 for
Guest, we will forward SBI v0.2 experimental and vendor extension calls
to user space.
Signed-off-by: Atish Patra <atish.patra@wdc.com>
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
This patch adds floating point (F and D extension) context save/restore
for guest VCPUs. The FP context is saved and restored lazily only when
kernel enter/exits the in-kernel run loop and not during the KVM world
switch. This way FP save/restore has minimal impact on KVM performance.
Signed-off-by: Atish Patra <atish.patra@wdc.com>
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
The RISC-V hypervisor specification doesn't have any virtual timer
feature.
Due to this, the guest VCPU timer will be programmed via SBI calls.
The host will use a separate hrtimer event for each guest VCPU to
provide timer functionality. We inject a virtual timer interrupt to
the guest VCPU whenever the guest VCPU hrtimer event expires.
This patch adds guest VCPU timer implementation along with ONE_REG
interface to access VCPU timer state from user space.
Signed-off-by: Atish Patra <atish.patra@wdc.com>
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
This patch implements MMU notifiers for KVM RISC-V so that Guest
physical address space is in-sync with Host physical address space.
This will allow swapping, page migration, etc to work transparently
with KVM RISC-V.
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
This patch implements all required functions for programming
the stage2 page table for each Guest/VM.
At high-level, the flow of stage2 related functions is similar
from KVM ARM/ARM64 implementation but the stage2 page table
format is quite different for KVM RISC-V.
[jiangyifei: stage2 dirty log support]
Signed-off-by: Yifei Jiang <jiangyifei@huawei.com>
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
We implement a simple VMID allocator for Guests/VMs which:
1. Detects number of VMID bits at boot-time
2. Uses atomic number to track VMID version and increments
VMID version whenever we run-out of VMIDs
3. Flushes Guest TLBs on all host CPUs whenever we run-out
of VMIDs
4. Force updates HW Stage2 VMID for each Guest VCPU whenever
VMID changes using VCPU request KVM_REQ_UPDATE_HGATP
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
We will get stage2 page faults whenever Guest/VM access SW emulated
MMIO device or unmapped Guest RAM.
This patch implements MMIO read/write emulation by extracting MMIO
details from the trapped load/store instruction and forwarding the
MMIO read/write to user-space. The actual MMIO emulation will happen
in user-space and KVM kernel module will only take care of register
updates before resuming the trapped VCPU.
The handling for stage2 page faults for unmapped Guest RAM will be
implemeted by a separate patch later.
[jiangyifei: ioeventfd and in-kernel mmio device support]
Signed-off-by: Yifei Jiang <jiangyifei@huawei.com>
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
This patch implements the VCPU world-switch for KVM RISC-V.
The KVM RISC-V world-switch (i.e. __kvm_riscv_switch_to()) mostly
switches general purpose registers, SSTATUS, STVEC, SSCRATCH and
HSTATUS CSRs. Other CSRs are switched via vcpu_load() and vcpu_put()
interface in kvm_arch_vcpu_load() and kvm_arch_vcpu_put() functions
respectively.
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
This patch implements VCPU interrupts and requests which are both
asynchronous events.
The VCPU interrupts can be set/unset using KVM_INTERRUPT ioctl from
user-space. In future, the in-kernel IRQCHIP emulation will use
kvm_riscv_vcpu_set_interrupt() and kvm_riscv_vcpu_unset_interrupt()
functions to set/unset VCPU interrupts.
Important VCPU requests implemented by this patch are:
KVM_REQ_SLEEP - set whenever VCPU itself goes to sleep state
KVM_REQ_VCPU_RESET - set whenever VCPU reset is requested
The WFI trap-n-emulate (added later) will use KVM_REQ_SLEEP request
and kvm_riscv_vcpu_has_interrupt() function.
The KVM_REQ_VCPU_RESET request will be used by SBI emulation (added
later) to power-up a VCPU in power-off state. The user-space can use
the GET_MPSTATE/SET_MPSTATE ioctls to get/set power state of a VCPU.
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
This patch implements VCPU create, init and destroy functions
required by generic KVM module. We don't have much dynamic
resources in struct kvm_vcpu_arch so these functions are quite
simple for KVM RISC-V.
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
This patch adds initial skeletal KVM RISC-V support which has:
1. A simple implementation of arch specific VM functions
except kvm_vm_ioctl_get_dirty_log() which will implemeted
in-future as part of stage2 page loging.
2. Stubs of required arch specific VCPU functions except
kvm_arch_vcpu_ioctl_run() which is semi-complete and
extended by subsequent patches.
3. Stubs for required arch specific stage2 MMU functions.
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>