ENETC ports can manage the MDIO bus via local register
interface. However there's also a centralized way
to manage the MDIO bus, via the MDIO PCIe endpoint
device integrated by the same root complex that also
integrates the ENETC ports (eth controllers).
Depending on board design and use case, centralized
access to MDIO may be better than using local ENETC
port registers. For instance, on the LS1028A QDS board
where MDIO muxing is required. Also, the LS1028A on-chip
switch doesn't have a local MDIO register interface.
The current patch registers the above PCIe endpoint as a
separate MDIO bus and provides a driver for it by re-using
the code used for local MDIO access. It also allows the
ENETC port PHYs to be managed by this driver if the local
"mdio" node is missing from the ENETC port node.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
Clean up overcomplicated makefile to make it more maintainable.
Basically, there's a set of common objects shared between
the PF and VF driver modules. This can be implemented in a
simpler way, without conditionals, less repetition, allowing
also for easier updates in the future.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Each ENETC PF has its own MDIO interface, the corresponding
MDIO registers are mapped in the ENETC's Port register block.
The current patch adds a driver for these PF level MDIO buses,
so that each PF can manage directly its own external link.
Signed-off-by: Alex Marginean <alexandru.marginean@nxp.com>
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is to add PTP clock driver for ENETC.
The driver reused QorIQ PTP clock driver.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
VSIs (VFs) may send a message to the PSI (PF) for general notification
or to gain access to hardware resources which requires host inspection.
These messages may vary in size and are handled as a partition copy
between two memory regions owned by the respective participants.
The PSI will respond with fail or success and a 16-bit message code.
The patch implements the vf to pf messaging mechanism above and, as the
first application making use of this support, it enables the VF to
configure its own primary MAC address.
Signed-off-by: Catalin Horghidan <catalin.horghidan@nxp.com>
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ENETC is a multi-port virtualized Ethernet controller supporting GbE
designs and Time-Sensitive Networking (TSN) functionality.
ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated
Endpoint (RCIE). As such, it contains multiple physical (PF) and
virtual (VF) PCIe functions, discoverable by standard PCI Express.
Introduce basic PF and VF ENETC ethernet drivers. The PF has access to
the ENETC Port registers and resources and makes the required privileged
configurations for the underlying VF devices. Common functionality is
controlled through so called System Interface (SI) register blocks, PFs
and VFs own a SI each. Though SI register blocks are almost identical,
there are a few privileged SI level controls that are accessible only to
PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI).
As such, the bulk of the code, including datapath processing, basic h/w
offload support and generic pci related configuration, is shared between
the 2 drivers and is factored out in common source files (i.e. enetc.c).
Major functionalities included (for both drivers):
MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs
to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and
jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G
support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and
initial control ring support, VLAN extraction/ insertion, PF Rx VLAN
CTAG filtering, VF mac address config support, VF VLAN isolation support,
etc.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>