Commit Graph

336 Commits

Author SHA1 Message Date
Javier Martinez Canillas
4bc5e64e6c efi: Move efifb_setup_from_dmi() prototype from arch headers
Commit 8633ef82f1 ("drivers/firmware: consolidate EFI framebuffer setup
for all arches") made the Generic System Framebuffers (sysfb) driver able
to be built on non-x86 architectures.

But it left the efifb_setup_from_dmi() function prototype declaration in
the architecture specific headers. This could lead to the following
compiler warning as reported by the kernel test robot:

   drivers/firmware/efi/sysfb_efi.c:70:6: warning: no previous prototype for function 'efifb_setup_from_dmi' [-Wmissing-prototypes]
   void efifb_setup_from_dmi(struct screen_info *si, const char *opt)
        ^
   drivers/firmware/efi/sysfb_efi.c:70:1: note: declare 'static' if the function is not intended to be used outside of this translation unit
   void efifb_setup_from_dmi(struct screen_info *si, const char *opt)

Fixes: 8633ef82f1 ("drivers/firmware: consolidate EFI framebuffer setup for all arches")
Reported-by: kernel test robot <lkp@intel.com>
Cc: <stable@vger.kernel.org> # 5.15.x
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Acked-by: Thomas Zimmermann <tzimmermann@suse.de>
Link: https://lore.kernel.org/r/20211126001333.555514-1-javierm@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2021-12-13 15:07:16 +01:00
Elyes HAOUAS
f65b813209 include/linux/efi.h: Remove unneeded whitespaces before tabs
Signed-off-by: Elyes HAOUAS <ehaouas@noos.fr>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2021-11-21 17:04:09 +01:00
Ashish Kalra
2f70ddb1f7 EFI: Introduce the new AMD Memory Encryption GUID.
Introduce a new AMD Memory Encryption GUID which is currently
used for defining a new UEFI environment variable which indicates
UEFI/OVMF support for the SEV live migration feature. This variable
is setup when UEFI/OVMF detects host/hypervisor support for SEV
live migration and later this variable is read by the kernel using
EFI runtime services to verify if OVMF supports the live migration
feature.

Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Message-Id: <1cea22976d2208f34d47e0c1ce0ecac816c13111.1629726117.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 07:37:31 -05:00
Ard Biesheuvel
fb98cc0b3a efi: use 32-bit alignment for efi_guid_t literals
Commit 494c704f9a ("efi: Use 32-bit alignment for efi_guid_t") updated
the type definition of efi_guid_t to ensure that it always appears
sufficiently aligned (the UEFI spec is ambiguous about this, but given
the fact that its EFI_GUID type is defined in terms of a struct carrying
a uint32_t, the natural alignment is definitely >= 32 bits).

However, we missed the EFI_GUID() macro which is used to instantiate
efi_guid_t literals: that macro is still based on the guid_t type,
which does not have a minimum alignment at all. This results in warnings
such as

  In file included from drivers/firmware/efi/mokvar-table.c:35:
  include/linux/efi.h:1093:34: warning: passing 1-byte aligned argument to
      4-byte aligned parameter 2 of 'get_var' may result in an unaligned pointer
      access [-Walign-mismatch]
          status = get_var(L"SecureBoot", &EFI_GLOBAL_VARIABLE_GUID, NULL, &size,
                                          ^
  include/linux/efi.h:1101:24: warning: passing 1-byte aligned argument to
      4-byte aligned parameter 2 of 'get_var' may result in an unaligned pointer
      access [-Walign-mismatch]
          get_var(L"SetupMode", &EFI_GLOBAL_VARIABLE_GUID, NULL, &size, &setupmode);

The distinction only matters on CPUs that do not support misaligned loads
fully, but 32-bit ARM's load-multiple instructions fall into that category,
and these are likely to be emitted by the compiler that built the firmware
for loading word-aligned 128-bit GUIDs from memory

So re-implement the initializer in terms of our own efi_guid_t type, so that
the alignment becomes a property of the literal's type.

Fixes: 494c704f9a ("efi: Use 32-bit alignment for efi_guid_t")
Reported-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Link: https://github.com/ClangBuiltLinux/linux/issues/1327
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2021-03-19 07:44:28 +01:00
Ard Biesheuvel
3820749ddc efi/libstub: move TPM related prototypes into efistub.h
Move TPM related definitions that are only used in the EFI stub into
efistub.h, which is a local header.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2021-01-19 17:57:15 +01:00
Ard Biesheuvel
2f19605986 efi/libstub: whitespace cleanup
Trivial whitespace cleanup.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2021-01-19 17:57:15 +01:00
Ard Biesheuvel
8ff059b853 efi: ia64: move IA64-only declarations to new asm/efi.h header
Move some EFI related declarations that are only referenced on IA64 to
a new asm/efi.h arch header.

Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2021-01-18 13:50:37 +01:00
Ard Biesheuvel
e0a6aa3050 efi: ia64: disable the capsule loader
EFI capsule loading is a feature that was introduced into EFI long after
its initial introduction on Itanium, and it is highly unlikely that IA64
systems are receiving firmware updates in the first place, let alone
using EFI capsules.

So let's disable capsule support altogether on IA64. This fixes a build
error on IA64 due to a recent change that added an unconditional
include of asm/efi.h, which IA64 does not provide.

While at it, tweak the make rules a bit so that the EFI capsule
component that is always builtin (even if the EFI capsule loader itself
is built as a module) is omitted for all architectures if the module is
not enabled in the build.

Cc: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/linux-efi/20201214152200.38353-1-ardb@kernel.org
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-12-14 16:24:19 +01:00
Chester Lin
e1ac4b2406 efi: generalize efi_get_secureboot
Generalize the efi_get_secureboot() function so not only efistub but also
other subsystems can use it.

Note that the MokSbState handling is not factored out: the variable is
boot time only, and so it cannot be parameterized as easily. Also, the
IMA code will switch to this version in a future patch, and it does not
incorporate the MokSbState exception in the first place.

Note that the new efi_get_secureboot_mode() helper treats any failures
to read SetupMode as setup mode being disabled.

Co-developed-by: Chester Lin <clin@suse.com>
Signed-off-by: Chester Lin <clin@suse.com>
Acked-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-11-04 23:05:40 +01:00
Ingo Molnar
4d0a4388cc Merge branch 'efi/urgent' into efi/core, to pick up fixes
These fixes missed the v5.9 merge window, pick them up for early v5.10 merge.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-10-12 13:38:31 +02:00
Ard Biesheuvel
5d3c8617cc efi: efivars: un-export efivars_sysfs_init()
efivars_sysfs_init() is only used locally in the source file that
defines it, so make it static and unexport it.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-09-29 19:40:57 +02:00
Ard Biesheuvel
c9b51a2dbf efi: pstore: move workqueue handling out of efivars
The worker thread that gets kicked off to sync the state of the
EFI variable list is only used by the EFI pstore implementation,
and is defined in its source file. So let's move its scheduling
there as well. Since our efivar_init() scan will bail on duplicate
entries, there is no need to disable the workqueue like we did
before, so we can run it unconditionally.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-09-29 19:40:57 +02:00
Ard Biesheuvel
232f4eb639 efi: pstore: disentangle from deprecated efivars module
The EFI pstore implementation relies on the 'efivars' abstraction,
which encapsulates the EFI variable store in a way that can be
overridden by other backing stores, like the Google SMI one.

On top of that, the EFI pstore implementation also relies on the
efivars.ko module, which is a separate layer built on top of the
'efivars' abstraction that exposes the [deprecated] sysfs entries
for each variable that exists in the backing store.

Since the efivars.ko module is deprecated, and all users appear to
have moved to the efivarfs file system instead, let's prepare for
its removal, by removing EFI pstore's dependency on it.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-09-29 19:40:57 +02:00
Ard Biesheuvel
6277e374b0 efi: Add definition of EFI_MEMORY_CPU_CRYPTO and ability to report it
Incorporate the definition of EFI_MEMORY_CPU_CRYPTO from the UEFI
specification v2.8, and wire it into our memory map dumping routine
as well.

To make a bit of space in the output buffer, which is provided by
the various callers, shorten the descriptive names of the memory
types.

Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-09-25 23:29:04 +02:00
Lenny Szubowicz
58c909022a efi: Support for MOK variable config table
Because of system-specific EFI firmware limitations, EFI volatile
variables may not be capable of holding the required contents of
the Machine Owner Key (MOK) certificate store when the certificate
list grows above some size. Therefore, an EFI boot loader may pass
the MOK certs via a EFI configuration table created specifically for
this purpose to avoid this firmware limitation.

An EFI configuration table is a much more primitive mechanism
compared to EFI variables and is well suited for one-way passage
of static information from a pre-OS environment to the kernel.

This patch adds initial kernel support to recognize, parse,
and validate the EFI MOK configuration table, where named
entries contain the same data that would otherwise be provided
in similarly named EFI variables.

Additionally, this patch creates a sysfs binary file for each
EFI MOK configuration table entry found. These files are read-only
to root and are provided for use by user space utilities such as
mokutil.

A subsequent patch will load MOK certs into the trusted platform
key ring using this infrastructure.

Signed-off-by: Lenny Szubowicz <lszubowi@redhat.com>
Link: https://lore.kernel.org/r/20200905013107.10457-2-lszubowi@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-09-16 18:53:42 +03:00
Andrey Konovalov
2c547f9da0 efi: provide empty efi_enter_virtual_mode implementation
When CONFIG_EFI is not enabled, we might get an undefined reference to
efi_enter_virtual_mode() error, if this efi_enabled() call isn't inlined
into start_kernel().  This happens in particular, if start_kernel() is
annodated with __no_sanitize_address.

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Elena Petrova <lenaptr@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Walter Wu <walter-zh.wu@mediatek.com>
Link: http://lkml.kernel.org/r/6514652d3a32d3ed33d6eb5c91d0af63bf0d1a0c.1596544734.git.andreyknvl@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:28 -07:00
Ard Biesheuvel
f88814cc25 efi/efivars: Expose RT service availability via efivars abstraction
Commit

  bf67fad19e ("efi: Use more granular check for availability for variable services")

introduced a check into the efivarfs, efi-pstore and other drivers that
aborts loading of the module if not all three variable runtime services
(GetVariable, SetVariable and GetNextVariable) are supported. However, this
results in efivarfs being unavailable entirely if only SetVariable support
is missing, which is only needed if you want to make any modifications.
Also, efi-pstore and the sysfs EFI variable interface could be backed by
another implementation of the 'efivars' abstraction, in which case it is
completely irrelevant which services are supported by the EFI firmware.

So make the generic 'efivars' abstraction dependent on the availibility of
the GetVariable and GetNextVariable EFI runtime services, and add a helper
'efivar_supports_writes()' to find out whether the currently active efivars
abstraction supports writes (and wire it up to the availability of
SetVariable for the generic one).

Then, use the efivar_supports_writes() helper to decide whether to permit
efivarfs to be mounted read-write, and whether to enable efi-pstore or the
sysfs EFI variable interface altogether.

Fixes: bf67fad19e ("efi: Use more granular check for availability for variable services")
Reported-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Tested-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-07-09 10:14:29 +03:00
Ard Biesheuvel
2a55280a36 efi/libstub: arm: Print CPU boot mode and MMU state at boot
On 32-bit ARM, we may boot at HYP mode, or with the MMU and caches off
(or both), even though the EFI spec does not actually support this.
While booting at HYP mode is something we might tolerate, fiddling
with the caches is a more serious issue, as disabling the caches is
tricky to do safely from C code, and running without the Dcache makes
it impossible to support unaligned memory accesses, which is another
explicit requirement imposed by the EFI spec.

So take note of the CPU mode and MMU state in the EFI stub diagnostic
output so that we can easily diagnose any issues that may arise from
this. E.g.,

  EFI stub: Entering in SVC mode with MMU enabled

Also, capture the CPSR and SCTLR system register values at EFI stub
entry, and after ExitBootServices() returns, and check whether the
MMU and Dcache were disabled at any point. If this is the case, a
diagnostic message like the following will be emitted:

  efi: [Firmware Bug]: EFI stub was entered with MMU and Dcache disabled, please fix your firmware!
  efi: CPSR at EFI stub entry        : 0x600001d3
  efi: SCTLR at EFI stub entry       : 0x00c51838
  efi: CPSR after ExitBootServices() : 0x600001d3
  efi: SCTLR after ExitBootServices(): 0x00c50838

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Leif Lindholm <leif@nuviainc.com>
2020-06-17 15:29:11 +02:00
Gustavo A. R. Silva
2963795122 efi: Replace zero-length array and use struct_size() helper
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:

struct foo {
        int stuff;
        struct boo array[];
};

By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.

Also, notice that, dynamic memory allocations won't be affected by
this change:

"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]

sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.

Lastly, make use of the sizeof_field() helper instead of an open-coded
version.

This issue was found with the help of Coccinelle and audited _manually_.

[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20200527171425.GA4053@embeddedor
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-06-15 14:38:56 +02:00
Ingo Molnar
d1343da330 More EFI changes for v5.8:
- Rename pr_efi/pr_efi_err to efi_info/efi_err, and use them consistently
 - Simplify and unify initrd loading
 - Parse the builtin command line on x86 (if provided)
 - Implement printk() support, including support for wide character strings
 - Some fixes for issues introduced by the first batch of v5.8 changes
 - Fix a missing prototypes warning
 - Simplify GDT handling in early mixed mode thunking code
 - Some other minor fixes and cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEEnNKg2mrY9zMBdeK7wjcgfpV0+n0FAl7Lb8UACgkQwjcgfpV0
 +n3/aAgAkEqqR/BoyzFiyYHujq6bXjESKYr8LrIjNWfnofB6nZqp1yXwFdL0qbj/
 PTZ1qIQAnOMmj11lvy1X894h2ZLqE6XEkqv7Xd2oxkh3fF6amlQUWfMpXUuGLo1k
 C4QGSfA0OOiM0OOi0Aqk1fL7sTmH23/j63dTR+fH8JMuYgjdls/yWNs0miqf8W2H
 ftj8fAKgHIJzFvdTC0vn1DZ6dEKczGLPEcVZ2ns2IJOJ69DsStKPLcD0mlW+EgV2
 EyfRSCQv55RYZRhdUOb+yVLRfU0M0IMDrrCDErHxZHXnQy00tmKXiEL20yuegv3u
 MUtRRw8ocn2/RskjgZkxtMjAAlty9A==
 =AwCh
 -----END PGP SIGNATURE-----

Merge tag 'efi-changes-for-v5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into efi/core

More EFI changes for v5.8:

 - Rename pr_efi/pr_efi_err to efi_info/efi_err, and use them consistently
 - Simplify and unify initrd loading
 - Parse the builtin command line on x86 (if provided)
 - Implement printk() support, including support for wide character strings
 - Some fixes for issues introduced by the first batch of v5.8 changes
 - Fix a missing prototypes warning
 - Simplify GDT handling in early mixed mode thunking code
 - Some other minor fixes and cleanups

Conflicts:
	drivers/firmware/efi/libstub/efistub.h

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-05-25 15:11:14 +02:00
Ingo Molnar
a5d8e55b2c Linux 5.7-rc7
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl7K9iEeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGzTAH/0ifZEG4BQ8x/WlB
 8YLSLE6QQTSXYi25nyExuJbFkkKY5Tik8M2HD/36xwY/HnZOlH9jH6m0ntqZxpaA
 3EU9lr1ct79nCBMYhiJssvz8d9AOZXlyogFW9y2y9pmPjlmUtseZ7yGh1xD465cj
 B5Ty2w2W34cs7zF3og2xn5agOJMtWWXLXZ5mRa9EOquKC5zeYyRicmd0T+plYQD6
 hbRYmxFfDfppVnBCBARPNN0+NU5JJD94H+8bOuf1tl48XNrLiZMOicmtohKNQ6+W
 rZNpJNEGEp7KMtqWH0Nl3hmy3yfZHMwe1DXM/AZDqR7jTHZY4mZ0GEpLyfI9AU4n
 34jVHwU=
 =SmJ9
 -----END PGP SIGNATURE-----

Merge tag 'v5.7-rc7' into efi/core, to refresh the branch and pick up fixes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-05-25 15:10:37 +02:00
Arvind Sankar
14c574f35c efi/gop: Add an option to list out the available GOP modes
Add video=efifb:list option to list the modes that are available.

Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-20-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-05-20 19:09:20 +02:00
Arvind Sankar
9b47c52756 efi/libstub: Add definitions for console input and events
Add the required typedefs etc for using con_in's simple text input
protocol, and for using the boottime event services.

Also add the prototype for the "stall" boot service.

Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-19-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-05-20 19:09:20 +02:00
Benjamin Thiel
e8da08a088 efi: Pull up arch-specific prototype efi_systab_show_arch()
Pull up arch-specific prototype efi_systab_show_arch() in order to
fix a -Wmissing-prototypes warning:

arch/x86/platform/efi/efi.c:957:7: warning: no previous prototype for
‘efi_systab_show_arch’ [-Wmissing-prototypes]
char *efi_systab_show_arch(char *str)

Signed-off-by: Benjamin Thiel <b.thiel@posteo.de>
Link: https://lore.kernel.org/r/20200516132647.14568-1-b.thiel@posteo.de
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-05-17 11:46:50 +02:00
Ard Biesheuvel
4e9a0f73f0 efi: Clean up config table description arrays
Increase legibility by adding whitespace to the efi_config_table_type_t
arrays that describe which EFI config tables we look for when going over
the firmware provided list. While at it, replace the 'name' char pointer
with a char array, which is more space efficient on relocatable 64-bit
kernels, as it avoids a 8 byte pointer and the associated relocation
data (24 bytes when using RELA format)

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-04-24 14:52:16 +02:00
Linus Torvalds
fdf5563a72 Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
 "This topic tree contains more commits than usual:

   - most of it are uaccess cleanups/reorganization by Al

   - there's a bunch of prototype declaration (--Wmissing-prototypes)
     cleanups

   - misc other cleanups all around the map"

* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
  x86/mm/set_memory: Fix -Wmissing-prototypes warnings
  x86/efi: Add a prototype for efi_arch_mem_reserve()
  x86/mm: Mark setup_emu2phys_nid() static
  x86/jump_label: Move 'inline' keyword placement
  x86/platform/uv: Add a missing prototype for uv_bau_message_interrupt()
  kill uaccess_try()
  x86: unsafe_put-style macro for sigmask
  x86: x32_setup_rt_frame(): consolidate uaccess areas
  x86: __setup_rt_frame(): consolidate uaccess areas
  x86: __setup_frame(): consolidate uaccess areas
  x86: setup_sigcontext(): list user_access_{begin,end}() into callers
  x86: get rid of put_user_try in __setup_rt_frame() (both 32bit and 64bit)
  x86: ia32_setup_rt_frame(): consolidate uaccess areas
  x86: ia32_setup_frame(): consolidate uaccess areas
  x86: ia32_setup_sigcontext(): lift user_access_{begin,end}() into the callers
  x86/alternatives: Mark text_poke_loc_init() static
  x86/cpu: Fix a -Wmissing-prototypes warning for init_ia32_feat_ctl()
  x86/mm: Drop pud_mknotpresent()
  x86: Replace setup_irq() by request_irq()
  x86/configs: Slightly reduce defconfigs
  ...
2020-03-31 11:04:05 -07:00
Benjamin Thiel
860f89e618 x86/efi: Add a prototype for efi_arch_mem_reserve()
... in order to fix a -Wmissing-ptototypes warning:

  arch/x86/platform/efi/quirks.c:245:13: warning:
  no previous prototype for ‘efi_arch_mem_reserve’ [-Wmissing-prototypes] \
	  void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)

Signed-off-by: Benjamin Thiel <b.thiel@posteo.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200326135041.3264-1-b.thiel@posteo.de
2020-03-27 11:21:21 +01:00
Ingo Molnar
3be5f0d286 Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into efi/core
More EFI updates for v5.7

 - Incorporate a stable branch with the EFI pieces of Hans's work on
   loading device firmware from EFI boot service memory regions

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-03-08 09:23:36 +01:00
Hans de Goede
f0df68d5ba efi: Add embedded peripheral firmware support
Just like with PCI options ROMs, which we save in the setup_efi_pci*
functions from arch/x86/boot/compressed/eboot.c, the EFI code / ROM itself
sometimes may contain data which is useful/necessary for peripheral drivers
to have access to.

Specifically the EFI code may contain an embedded copy of firmware which
needs to be (re)loaded into the peripheral. Normally such firmware would be
part of linux-firmware, but in some cases this is not feasible, for 2
reasons:

1) The firmware is customized for a specific use-case of the chipset / use
with a specific hardware model, so we cannot have a single firmware file
for the chipset. E.g. touchscreen controller firmwares are compiled
specifically for the hardware model they are used with, as they are
calibrated for a specific model digitizer.

2) Despite repeated attempts we have failed to get permission to
redistribute the firmware. This is especially a problem with customized
firmwares, these get created by the chip vendor for a specific ODM and the
copyright may partially belong with the ODM, so the chip vendor cannot
give a blanket permission to distribute these.

This commit adds support for finding peripheral firmware embedded in the
EFI code and makes the found firmware available through the new
efi_get_embedded_fw() function.

Support for loading these firmwares through the standard firmware loading
mechanism is added in a follow-up commit in this patch-series.

Note we check the EFI_BOOT_SERVICES_CODE for embedded firmware near the end
of start_kernel(), just before calling rest_init(), this is on purpose
because the typical EFI_BOOT_SERVICES_CODE memory-segment is too large for
early_memremap(), so the check must be done after mm_init(). This relies
on EFI_BOOT_SERVICES_CODE not being free-ed until efi_free_boot_services()
is called, which means that this will only work on x86 for now.

Reported-by: Dave Olsthoorn <dave@bewaar.me>
Suggested-by: Peter Jones <pjones@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20200115163554.101315-3-hdegoede@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-03-03 10:28:00 +01:00
Hans de Goede
0e72a6a3cf efi: Export boot-services code and data as debugfs-blobs
Sometimes it is useful to be able to dump the efi boot-services code and
data. This commit adds these as debugfs-blobs to /sys/kernel/debug/efi,
but only if efi=debug is passed on the kernel-commandline as this requires
not freeing those memory-regions, which costs 20+ MB of RAM.

Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20200115163554.101315-2-hdegoede@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-03-03 10:27:30 +01:00
Tom Lendacky
badc61982a efi/x86: Add RNG seed EFI table to unencrypted mapping check
When booting with SME active, EFI tables must be mapped unencrypted since
they were built by UEFI in unencrypted memory. Update the list of tables
to be checked during early_memremap() processing to account for the EFI
RNG seed table.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Link: https://lore.kernel.org/r/b64385fc13e5d7ad4b459216524f138e7879234f.1582662842.git.thomas.lendacky@amd.com
Link: https://lore.kernel.org/r/20200228121408.9075-3-ardb@kernel.org
2020-02-29 10:16:56 +01:00
Ard Biesheuvel
fe4db90a80 efi: Add support for EFI_RT_PROPERTIES table
Take the newly introduced EFI_RT_PROPERTIES_TABLE configuration table
into account, which carries a mask of which EFI runtime services are
still functional after ExitBootServices() has been called by the OS.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
96a3dd3dec efi: Store mask of supported runtime services in struct efi
Revision 2.8 of the UEFI spec introduces provisions for firmware to
advertise lack of support for certain runtime services at OS runtime.
Let's store this mask in struct efi for easy access.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
3b2e4b4c63 efi/arm: Move FDT specific definitions into fdtparams.c
Push the FDT params specific types and definition into fdtparams.c,
and instead, pass a reference to the memory map data structure and
populate it directly, and return the system table address as the
return value.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
fd26830423 efi/x86: Drop 'systab' member from struct efi
The systab member in struct efi has outlived its usefulness, now that
we have better ways to access the only piece of information we are
interested in after init, which is the EFI runtime services table
address. So instead of instantiating a doctored copy at early boot
with lots of mangled values, and switching the pointer when switching
into virtual mode, let's grab the values we need directly, and get
rid of the systab pointer entirely.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
59f2a619a2 efi: Add 'runtime' pointer to struct efi
Instead of going through the EFI system table each time, just copy the
runtime services table pointer into struct efi directly. This is the
last use of the system table pointer in struct efi, allowing us to
drop it in a future patch, along with a fair amount of quirky handling
of the translated address.

Note that usually, the runtime services pointer changes value during
the call to SetVirtualAddressMap(), so grab the updated value as soon
as that call returns. (Mixed mode uses a 1:1 mapping, and kexec boot
enters with the updated address in the system table, so in those cases,
we don't need to do anything here)

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
9cd437ac0e efi/x86: Make fw_vendor, config_table and runtime sysfs nodes x86 specific
There is some code that exposes physical addresses of certain parts of
the EFI firmware implementation via sysfs nodes. These nodes are only
used on x86, and are of dubious value to begin with, so let's move
their handling into the x86 arch code.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
06c0bd9343 efi: Clean up config_parse_tables()
config_parse_tables() is a jumble of pointer arithmetic, due to the
fact that on x86, we may be dealing with firmware whose native word
size differs from the kernel's.

This is not a concern on other architectures, and doesn't quite
justify the state of the code, so let's clean it up by adding a
non-x86 code path, constifying statically allocated tables and
replacing preprocessor conditionals with IS_ENABLED() checks.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
3a0701dc7f efi: Make efi_config_init() x86 only
The efi_config_init() routine is no longer shared with ia64 so let's
move it into the x86 arch code before making further x86 specific
changes to it.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
14fb420909 efi: Merge EFI system table revision and vendor checks
We have three different versions of the code that checks the EFI system
table revision and copies the firmware vendor string, and they are
mostly equivalent, with the exception of the use of early_memremap_ro
vs. __va() and the lowest major revision to warn about. Let's move this
into common code and factor out the commonalities.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
b7846e6be2 efi: Make memreserve table handling local to efi.c
There is no need for struct efi to carry the address of the memreserve
table and share it with the world. So move it out and make it
__initdata as well.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
a17e809ea5 efi: Move mem_attr_table out of struct efi
The memory attributes table is only used at init time by the core EFI
code, so there is no need to carry its address in struct efi that is
shared with the world. So move it out, and make it __ro_after_init as
well, considering that the value is set during early boot.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
5d288dbd88 efi: Make rng_seed table handling local to efi.c
Move the rng_seed table address from struct efi into a static global
variable in efi.c, which is the only place we ever refer to it anyway.
This reduces the footprint of struct efi, which is a r/w data structure
that is shared with the world.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
fd506e0cf9 efi: Move UGA and PROP table handling to x86 code
The UGA table is x86 specific (its handling was introduced when the
EFI support code was modified to accommodate IA32), so there is no
need to handle it in generic code.

The EFI properties table is not strictly x86 specific, but it was
deprecated almost immediately after having been introduced, due to
implementation difficulties. Only x86 takes it into account today,
and this is not going to change, so make this table x86 only as well.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
120540f230 efi/ia64: Move HCDP and MPS table handling into IA64 arch code
The HCDP and MPS tables are Itanium specific EFI config tables, so
move their handling to ia64 arch code.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
50d53c58dd efi: Drop handling of 'boot_info' configuration table
Some plumbing exists to handle a UEFI configuration table of type
BOOT_INFO but since we never match it to a GUID anywhere, we never
actually register such a table, or access it, for that matter. So
simply drop all mentions of it.

Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
ec93fc371f efi/libstub: Add support for loading the initrd from a device path
There are currently two ways to specify the initrd to be passed to the
Linux kernel when booting via the EFI stub:
- it can be passed as a initrd= command line option when doing a pure PE
  boot (as opposed to the EFI handover protocol that exists for x86)
- otherwise, the bootloader or firmware can load the initrd into memory,
  and pass the address and size via the bootparams struct (x86) or
  device tree (ARM)

In the first case, we are limited to loading from the same file system
that the kernel was loaded from, and it is also problematic in a trusted
boot context, given that we cannot easily protect the command line from
tampering without either adding complicated white/blacklisting of boot
arguments or locking down the command line altogether.

In the second case, we force the bootloader to duplicate knowledge about
the boot protocol which is already encoded in the stub, and which may be
subject to change over time, e.g., bootparams struct definitions, memory
allocation/alignment requirements for the placement of the initrd etc etc.
In the ARM case, it also requires the bootloader to modify the hardware
description provided by the firmware, as it is passed in the same file.
On systems where the initrd is measured after loading, it creates a time
window where the initrd contents might be manipulated in memory before
handing over to the kernel.

Address these concerns by adding support for loading the initrd into
memory by invoking the EFI LoadFile2 protocol installed on a vendor
GUIDed device path that specifically designates a Linux initrd.
This addresses the above concerns, by putting the EFI stub in charge of
placement in memory and of passing the base and size to the kernel proper
(via whatever means it desires) while still leaving it up to the firmware
or bootloader to obtain the file contents, potentially from other file
systems than the one the kernel itself was loaded from. On platforms that
implement measured boot, it permits the firmware to take the measurement
right before the kernel actually consumes the contents.

Acked-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
db8952e709 efi/dev-path-parser: Add struct definition for vendor type device path nodes
In preparation of adding support for loading the initrd via a special
device path, add the struct definition of a vendor GUIDed device path
node to efi.h.

Since we will be producing these data structures rather than just
consumsing the ones instantiated by the firmware, refactor the various
device path node definitions so we can take the size of each node using
sizeof() rather than having to resort to opaque arithmetic in the static
initializers.

While at it, drop the #if IS_ENABLED() check for the declaration of
efi_get_device_by_path(), which is unnecessary, and constify its first
argument as well.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:59:42 +01:00
Ard Biesheuvel
2931d526d5 efi/libstub: Make the LoadFile EFI protocol accessible
Add the protocol definitions, GUIDs and mixed mode glue so that
the EFI loadfile protocol can be used from the stub. This will
be used in a future patch to load the initrd.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:57:15 +01:00
Ard Biesheuvel
8166ec0915 efi/libstub: Move stub specific declarations into efistub.h
Move all the declarations that are only used in stub code from
linux/efi.h to efistub.h which is only included locally.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:57:15 +01:00
Ard Biesheuvel
a46a290a01 efi/libstub: Use consistent type names for file I/O protocols
Align the naming of efi_file_io_interface_t and efi_file_handle_t with
the UEFI spec, and call them efi_simple_file_system_protocol_t and
efi_file_protocol_t, respectively, using the same convention we use
for all other type definitions that originate in the UEFI spec.

While at it, move the definitions to efistub.h, so they are only seen
by code that needs them.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:57:15 +01:00
Ard Biesheuvel
a7495c28c8 efi/libstub: Simplify efi_high_alloc() and rename to efi_allocate_pages()
The implementation of efi_high_alloc() uses a complicated way of
traversing the memory map to find an available region that is located
as close as possible to the provided upper limit, and calls AllocatePages
subsequently to create the allocation at that exact address.

This is precisely what the EFI_ALLOCATE_MAX_ADDRESS allocation type
argument to AllocatePages() does, and considering that EFI_ALLOC_ALIGN
only exceeds EFI_PAGE_SIZE on arm64, let's use AllocatePages() directly
and implement the alignment using code that the compiler can remove if
it does not exceed EFI_PAGE_SIZE.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2020-02-23 21:57:15 +01:00
Dan Williams
484a418d07 efi: Fix handling of multiple efi_fake_mem= entries
Dave noticed that when specifying multiple efi_fake_mem= entries only
the last entry was successfully being reflected in the efi memory map.
This is due to the fact that the efi_memmap_insert() is being called
multiple times, but on successive invocations the insertion should be
applied to the last new memmap rather than the original map at
efi_fake_memmap() entry.

Rework efi_fake_memmap() to install the new memory map after each
efi_fake_mem= entry is parsed.

This also fixes an issue in efi_fake_memmap() that caused it to litter
emtpy entries into the end of the efi memory map. An empty entry causes
efi_memmap_insert() to attempt more memmap splits / copies than
efi_memmap_split_count() accounted for when sizing the new map. When
that happens efi_memmap_insert() may overrun its allocation, and if you
are lucky will spill over to an unmapped page leading to crash
signature like the following rather than silent corruption:

    BUG: unable to handle page fault for address: ffffffffff281000
    [..]
    RIP: 0010:efi_memmap_insert+0x11d/0x191
    [..]
    Call Trace:
     ? bgrt_init+0xbe/0xbe
     ? efi_arch_mem_reserve+0x1cb/0x228
     ? acpi_parse_bgrt+0xa/0xd
     ? acpi_table_parse+0x86/0xb8
     ? acpi_boot_init+0x494/0x4e3
     ? acpi_parse_x2apic+0x87/0x87
     ? setup_acpi_sci+0xa2/0xa2
     ? setup_arch+0x8db/0x9e1
     ? start_kernel+0x6a/0x547
     ? secondary_startup_64+0xb6/0xc0

Commit af16489848 "x86/efi: Update e820 with reserved EFI boot
services data to fix kexec breakage" introduced more occurrences where
efi_memmap_insert() is invoked after an efi_fake_mem= configuration has
been parsed. Previously the side effects of vestigial empty entries were
benign, but with commit af16489848 that follow-on efi_memmap_insert()
invocation triggers efi_memmap_insert() overruns.

Reported-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20191231014630.GA24942@dhcp-128-65.nay.redhat.com
Link: https://lore.kernel.org/r/20200113172245.27925-14-ardb@kernel.org
2020-01-20 08:14:29 +01:00
Dan Williams
1db91035d0 efi: Add tracking for dynamically allocated memmaps
In preparation for fixing efi_memmap_alloc() leaks, add support for
recording whether the memmap was dynamically allocated from slab,
memblock, or is the original physical memmap provided by the platform.

Given this tracking is established in efi_memmap_alloc() and needs to be
carried to efi_memmap_install(), use 'struct efi_memory_map_data' to
convey the flags.

Some small cleanups result from this reorganization, specifically the
removal of local variables for 'phys' and 'size' that are already
tracked in @data.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200113172245.27925-12-ardb@kernel.org
2020-01-20 08:14:29 +01:00
Dan Williams
26c0e44a21 efi: Add a flags parameter to efi_memory_map
In preparation for garbage collecting dynamically allocated EFI memory
maps, where the allocation method of memblock vs slab needs to be
recalled, convert the existing 'late' flag into a 'flags' bitmask.

Arrange for the flag to be passed via 'struct efi_memory_map_data'. This
structure grows additional flags in follow-on changes.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200113172245.27925-11-ardb@kernel.org
2020-01-20 08:14:28 +01:00
Matthew Garrett
4444f8541d efi: Allow disabling PCI busmastering on bridges during boot
Add an option to disable the busmaster bit in the control register on
all PCI bridges before calling ExitBootServices() and passing control
to the runtime kernel. System firmware may configure the IOMMU to prevent
malicious PCI devices from being able to attack the OS via DMA. However,
since firmware can't guarantee that the OS is IOMMU-aware, it will tear
down IOMMU configuration when ExitBootServices() is called. This leaves
a window between where a hostile device could still cause damage before
Linux configures the IOMMU again.

If CONFIG_EFI_DISABLE_PCI_DMA is enabled or "efi=disable_early_pci_dma"
is passed on the command line, the EFI stub will clear the busmaster bit
on all PCI bridges before ExitBootServices() is called. This will
prevent any malicious PCI devices from being able to perform DMA until
the kernel reenables busmastering after configuring the IOMMU.

This option may cause failures with some poorly behaved hardware and
should not be enabled without testing. The kernel commandline options
"efi=disable_early_pci_dma" or "efi=no_disable_early_pci_dma" may be
used to override the default. Note that PCI devices downstream from PCI
bridges are disconnected from their drivers first, using the UEFI
driver model API, so that DMA can be disabled safely at the bridge
level.

[ardb: disconnect PCI I/O handles first, as suggested by Arvind]

Co-developed-by: Matthew Garrett <mjg59@google.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Matthew Garrett <matthewgarrett@google.com>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20200103113953.9571-18-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-10 18:55:04 +01:00
Ard Biesheuvel
33b85447fa efi/x86: Drop two near identical versions of efi_runtime_init()
The routines efi_runtime_init32() and efi_runtime_init64() are
almost indistinguishable, and the only relevant difference is
the offset in the runtime struct from where to obtain the physical
address of the SetVirtualAddressMap() routine.

However, this address is only used once, when installing the virtual
address map that the OS will use to invoke EFI runtime services, and
at the time of the call, we will necessarily be running with a 1:1
mapping, and so there is no need to do the map/unmap dance here to
retrieve the address. In fact, in the preceding changes to these users,
we stopped using the address recorded here entirely.

So let's just get rid of all this code since it no longer serves a
purpose. While at it, tweak the logic so that we handle unsupported
and disable EFI runtime services in the same way, and unmap the EFI
memory map in both cases.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Matthew Garrett <mjg59@google.com>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20200103113953.9571-12-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-10 18:55:03 +01:00
Ard Biesheuvel
89ed486532 efi/x86: Avoid redundant cast of EFI firmware service pointer
All EFI firmware call prototypes have been annotated as __efiapi,
permitting us to attach attributes regarding the calling convention
by overriding __efiapi to an architecture specific value.

On 32-bit x86, EFI firmware calls use the plain calling convention
where all arguments are passed via the stack, and cleaned up by the
caller. Let's add this to the __efiapi definition so we no longer
need to cast the function pointers before invoking them.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Matthew Garrett <mjg59@google.com>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20200103113953.9571-6-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-10 18:55:02 +01:00
Ard Biesheuvel
cd33a5c1d5 efi/libstub: Remove 'sys_table_arg' from all function prototypes
We have a helper efi_system_table() that gives us the address of the
EFI system table in memory, so there is no longer point in passing
it around from each function to the next.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-20-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25 10:49:23 +01:00
Ard Biesheuvel
8173ec7905 efi/libstub: Drop sys_table_arg from printk routines
As a first step towards getting rid of the need to pass around a function
parameter 'sys_table_arg' pointing to the EFI system table, remove the
references to it in the printing code, which is represents the majority
of the use cases.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-19-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25 10:49:22 +01:00
Ard Biesheuvel
14e900c7e4 efi/libstub: Avoid protocol wrapper for file I/O routines
The EFI file I/O routines built on top of the file I/O firmware
services are incompatible with mixed mode, so there is no need
to obfuscate them by using protocol wrappers whose only purpose
is to hide the mixed mode handling. So let's switch to plain
indirect calls instead.

This also means we can drop the mixed_mode aliases from the various
types involved.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-15-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25 10:49:20 +01:00
Ard Biesheuvel
8f24f8c2fc efi/libstub: Annotate firmware routines as __efiapi
Annotate all the firmware routines (boot services, runtime services and
protocol methods) called in the boot context as __efiapi, and make
it expand to __attribute__((ms_abi)) on 64-bit x86. This allows us
to use the compiler to generate the calls into firmware that use the
MS calling convention instead of the SysV one.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-13-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25 10:49:19 +01:00
Ard Biesheuvel
960a8d0183 efi/libstub: Use stricter typing for firmware function pointers
We will soon remove another level of pointer casting, so let's make
sure all type handling involving firmware calls at boot time is correct.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-12-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25 10:49:18 +01:00
Ard Biesheuvel
e8bd5ddf60 efi/libstub: Drop explicit 32/64-bit protocol definitions
Now that we have incorporated the mixed mode protocol definitions
into the native ones using unions, we no longer need the separate
32/64 bit struct definitions, with the exception of the EFI system
table definition and the boot services, runtime services and
configuration table definitions. So drop the unused ones.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-11-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25 10:49:18 +01:00
Ard Biesheuvel
f958efe975 efi/libstub: Distinguish between native/mixed not 32/64 bit
Currently, we support mixed mode by casting all boot time firmware
calls to 64-bit explicitly on native 64-bit systems, and to 32-bit
on 32-bit systems or 64-bit systems running with 32-bit firmware.

Due to this explicit awareness of the bitness in the code, we do a
lot of casting even on generic code that is shared with other
architectures, where mixed mode does not even exist. This casting
leads to loss of coverage of type checking by the compiler, which
we should try to avoid.

So instead of distinguishing between 32-bit vs 64-bit, distinguish
between native vs mixed, and limit all the nasty casting and
pointer mangling to the code that actually deals with mixed mode.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-10-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25 10:49:17 +01:00
Ard Biesheuvel
1786e83011 efi/libstub: Extend native protocol definitions with mixed_mode aliases
In preparation of moving to a native vs. mixed mode split rather than a
32 vs. 64 bit split when it comes to invoking EFI firmware services,
update all the native protocol definitions and redefine them as unions
containing an anonymous struct for the native view and a struct called
'mixed_mode' describing the 32-bit view of the protocol when called from
64-bit code.

While at it, flesh out some PCI I/O member definitions that we will be
needing shortly.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-9-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25 10:49:17 +01:00
Ard Biesheuvel
2732ea0d5c efi/libstub: Use a helper to iterate over a EFI handle array
Iterating over a EFI handle array is a bit finicky, since we have
to take mixed mode into account, where handles are only 32-bit
while the native efi_handle_t type is 64-bit.

So introduce a helper, and replace the various occurrences of
this pattern.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-8-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25 10:49:16 +01:00
Arvind Sankar
44c84b4ada efi/gop: Convert GOP structures to typedef and clean up some types
Use typedef for the GOP structures, in anticipation of unifying
32/64-bit code. Also use more appropriate types in the non-bitness
specific structures for the framebuffer address and pointers.

Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-4-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25 10:49:14 +01:00
Arvind Sankar
6c895c2fca efi/gop: Remove unused typedef
We have stopped using gop->query_mode(), so remove the unused typedef
for the function prototype.

Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-3-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25 10:49:14 +01:00
Arvind Sankar
8d62af1778 efi/gop: Remove bogus packed attribute from GOP structures
EFI structures are not packed, they follow natural alignment.

The packed attribute doesn't have any effect on the structure layout due
to the types and order of the members, and we only ever get these
structures as output from the EFI firmware so alignment issues have not
come up.

Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-2-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25 10:49:13 +01:00
Arvind Sankar
9fa76ca7b8 efi: Fix efi_loaded_image_t::unload type
The ::unload field is a function pointer, so it should be u32 for 32-bit,
u64 for 64-bit. Add a prototype for it in the native efi_loaded_image_t
type. Also change type of parent_handle and device_handle from void * to
efi_handle_t for documentation purposes.

The unload method is not used, so no functional change.

Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191206165542.31469-6-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-08 12:42:19 +01:00
Linus Torvalds
6e9f879684 ACPI updates for 5.5-rc1
- Update the ACPICA code in the kernel to upstream revision 20191018
    including:
 
    * Fixes for Clang warnings (Bob Moore).
 
    * Fix for possible overflow in get_tick_count() (Bob Moore).
 
    * Introduction of acpi_unload_table() (Bob Moore).
 
    * Debugger and utilities updates (Erik Schmauss).
 
    * Fix for unloading tables loaded via configfs (Nikolaus Voss).
 
  - Add support for EFI specific purpose memory to optionally allow
    either application-exclusive or core-kernel-mm managed access to
    differentiated memory (Dan Williams).
 
  - Fix and clean up processing of the HMAT table (Brice Goglin,
    Qian Cai, Tao Xu).
 
  - Update the ACPI EC driver to make it work on systems with
    hardware-reduced ACPI (Daniel Drake).
 
  - Always build in support for the Generic Event Device (GED) to
    allow one kernel binary to work both on systems with full
    hardware ACPI and hardware-reduced ACPI (Arjan van de Ven).
 
  - Fix the table unload mechanism to unregister platform devices
    created when the given table was loaded (Andy Shevchenko).
 
  - Rework the lid blacklist handling in the button driver and add
    more lid quirks to it (Hans de Goede).
 
  - Improve ACPI-based device enumeration for some platforms based
    on Intel BayTrail SoCs (Hans de Goede).
 
  - Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC
    and prevent handlers from being registered for unhandled PMIC
    OpRegions (Hans de Goede).
 
  - Unify ACPI _HID/_UID matching (Andy Shevchenko).
 
  - Clean up documentation and comments (Cao jin, James Pack, Kacper
    Piwiński).
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl3dHNkSHHJqd0Byand5
 c29ja2kubmV0AAoJEILEb/54YlRx/NkP/2y6DWjslA6UW4gjZwaRBcjYoyWExMtQ
 Z86goiRJtP+/NqOwm09wHFcV6FdZ4kitUno3UgMCDZJjrURapg1D0rxb1lSYtMzs
 mGr2FBZlVsJ9erOVSzKj1x2afVhdgl0Rl0fxPzoKgCFt8tCJar6cXy4CVEQKdeLs
 eUui2ksXMIEODGhpN/tr/fJqY4O4jlLmPY6gKWfFpSTsv6lnZmzcCxLf5EvUU7JW
 O91/jXdWz4Vl6IdP32sce6dGDjkvwnY105c7HeBf5EQWUe9RHFuSex982qhCD8U+
 iE+JzlhoYpUb03EktJSXbL++IKUHvoUpTanbhka6unMhazC86x0hDf7ruUtYo2Bk
 V8347CFeQ1x2O5IabfJNnUfKaMYhYmOXIoFHJTLKFO5mcCJmP8KOOyDAYilC1psb
 RJpl1fDoAhk7NqhMttyBqfxiotP0kMoKuqtAAl8Y0hTF0DwR9IfKntuTtp1yTGds
 R4dpJrizUDzw1/o4fCWbc3dFZQR3NFGpL/EAyfPzqjGaeaBBkLoNYstqkal5XHwT
 CILmQg2WHoNuQLXZ4NFFDrM2k2G+VUAjQdkYcb/MCOFbw+aTVPu1wyQq37RLtbMo
 9UwGeeT6SXW3iA1nyMoM+YvitjmxS7gHPPPl+b9G6kBubAzBPp91Ra0Mj9dPIGRB
 Evv5nzOIh8Hi
 =7Cqr
 -----END PGP SIGNATURE-----

Merge tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull ACPI updates from Rafael Wysocki:
 "These update the ACPICA code in the kernel to upstream revision
  20191018, add support for EFI specific purpose memory, update the ACPI
  EC driver to make it work on systems with hardware-reduced ACPI,
  improve ACPI-based device enumeration for some platforms, rework the
  lid blacklist handling in the button driver and add more lid quirks to
  it, unify ACPI _HID/_UID matching, fix assorted issues and clean up
  the code and documentation.

  Specifics:

   - Update the ACPICA code in the kernel to upstream revision 20191018
     including:
      * Fixes for Clang warnings (Bob Moore)
      * Fix for possible overflow in get_tick_count() (Bob Moore)
      * Introduction of acpi_unload_table() (Bob Moore)
      * Debugger and utilities updates (Erik Schmauss)
      * Fix for unloading tables loaded via configfs (Nikolaus Voss)

   - Add support for EFI specific purpose memory to optionally allow
     either application-exclusive or core-kernel-mm managed access to
     differentiated memory (Dan Williams)

   - Fix and clean up processing of the HMAT table (Brice Goglin, Qian
     Cai, Tao Xu)

   - Update the ACPI EC driver to make it work on systems with
     hardware-reduced ACPI (Daniel Drake)

   - Always build in support for the Generic Event Device (GED) to allow
     one kernel binary to work both on systems with full hardware ACPI
     and hardware-reduced ACPI (Arjan van de Ven)

   - Fix the table unload mechanism to unregister platform devices
     created when the given table was loaded (Andy Shevchenko)

   - Rework the lid blacklist handling in the button driver and add more
     lid quirks to it (Hans de Goede)

   - Improve ACPI-based device enumeration for some platforms based on
     Intel BayTrail SoCs (Hans de Goede)

   - Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC and
     prevent handlers from being registered for unhandled PMIC OpRegions
     (Hans de Goede)

   - Unify ACPI _HID/_UID matching (Andy Shevchenko)

   - Clean up documentation and comments (Cao jin, James Pack, Kacper
     Piwiński)"

* tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (52 commits)
  ACPI: OSI: Shoot duplicate word
  ACPI: HMAT: use %u instead of %d to print u32 values
  ACPI: NUMA: HMAT: fix a section mismatch
  ACPI: HMAT: don't mix pxm and nid when setting memory target processor_pxm
  ACPI: NUMA: HMAT: Register "soft reserved" memory as an "hmem" device
  ACPI: NUMA: HMAT: Register HMAT at device_initcall level
  device-dax: Add a driver for "hmem" devices
  dax: Fix alloc_dax_region() compile warning
  lib: Uplevel the pmem "region" ida to a global allocator
  x86/efi: Add efi_fake_mem support for EFI_MEMORY_SP
  arm/efi: EFI soft reservation to memblock
  x86/efi: EFI soft reservation to E820 enumeration
  efi: Common enable/disable infrastructure for EFI soft reservation
  x86/efi: Push EFI_MEMMAP check into leaf routines
  efi: Enumerate EFI_MEMORY_SP
  ACPI: NUMA: Establish a new drivers/acpi/numa/ directory
  ACPICA: Update version to 20191018
  ACPICA: debugger: remove leading whitespaces when converting a string to a buffer
  ACPICA: acpiexec: initialize all simple types and field units from user input
  ACPICA: debugger: add field unit support for acpi_db_get_next_token
  ...
2019-11-26 19:25:25 -08:00
Dan Williams
b617c5266e efi: Common enable/disable infrastructure for EFI soft reservation
UEFI 2.8 defines an EFI_MEMORY_SP attribute bit to augment the
interpretation of the EFI Memory Types as "reserved for a specific
purpose".

The proposed Linux behavior for specific purpose memory is that it is
reserved for direct-access (device-dax) by default and not available for
any kernel usage, not even as an OOM fallback.  Later, through udev
scripts or another init mechanism, these device-dax claimed ranges can
be reconfigured and hot-added to the available System-RAM with a unique
node identifier. This device-dax management scheme implements "soft" in
the "soft reserved" designation by allowing some or all of the
reservation to be recovered as typical memory. This policy can be
disabled at compile-time with CONFIG_EFI_SOFT_RESERVE=n, or runtime with
efi=nosoftreserve.

As for this patch, define the common helpers to determine if the
EFI_MEMORY_SP attribute should be honored. The determination needs to be
made early to prevent the kernel from being loaded into soft-reserved
memory, or otherwise allowing early allocations to land there. Follow-on
changes are needed per architecture to leverage these helpers in their
respective mem-init paths.

Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-11-07 15:44:08 +01:00
Dan Williams
6950e31b35 x86/efi: Push EFI_MEMMAP check into leaf routines
In preparation for adding another EFI_MEMMAP dependent call that needs
to occur before e820__memblock_setup() fixup the existing efi calls to
check for EFI_MEMMAP internally. This ends up being cleaner than the
alternative of checking EFI_MEMMAP multiple times in setup_arch().

Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-11-07 15:44:04 +01:00
Dan Williams
fe3e5e65c0 efi: Enumerate EFI_MEMORY_SP
UEFI 2.8 defines an EFI_MEMORY_SP attribute bit to augment the
interpretation of the EFI Memory Types as "reserved for a specific
purpose". The intent of this bit is to allow the OS to identify precious
or scarce memory resources and optionally manage it separately from
EfiConventionalMemory. As defined older OSes that do not know about this
attribute are permitted to ignore it and the memory will be handled
according to the OS default policy for the given memory type.

In other words, this "specific purpose" hint is deliberately weaker than
EfiReservedMemoryType in that the system continues to operate if the OS
takes no action on the attribute. The risk of taking no action is
potentially unwanted / unmovable kernel allocations from the designated
resource that prevent the full realization of the "specific purpose".
For example, consider a system with a high-bandwidth memory pool. Older
kernels are permitted to boot and consume that memory as conventional
"System-RAM" newer kernels may arrange for that memory to be set aside
(soft reserved) by the system administrator for a dedicated
high-bandwidth memory aware application to consume.

Specifically, this mechanism allows for the elimination of scenarios
where platform firmware tries to game OS policy by lying about ACPI SLIT
values, i.e. claiming that a precious memory resource has a high
distance to trigger the OS to avoid it by default. This reservation hint
allows platform-firmware to instead tell the truth about performance
characteristics by indicate to OS memory management to put immovable
allocations elsewhere.

Implement simple detection of the bit for EFI memory table dumps and
save the kernel policy for a follow-on change.

Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-11-07 15:43:54 +01:00
Dominik Brodowski
0d95981438 x86: efi/random: Invoke EFI_RNG_PROTOCOL to seed the UEFI RNG table
Invoke the EFI_RNG_PROTOCOL protocol in the context of the x86 EFI stub,
same as is done on arm/arm64 since commit 568bc4e870 ("efi/arm*/libstub:
Invoke EFI_RNG_PROTOCOL to seed the UEFI RNG table"). Within the stub,
a Linux-specific RNG seed UEFI config table will be seeded. The EFI routines
in the core kernel will pick that up later, yet still early during boot,
to seed the kernel entropy pool. If CONFIG_RANDOM_TRUST_BOOTLOADER, entropy
is credited for this seed.

Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2019-11-07 10:18:45 +01:00
Kairui Song
220dd7699c x86, efi: Never relocate kernel below lowest acceptable address
Currently, kernel fails to boot on some HyperV VMs when using EFI.
And it's a potential issue on all x86 platforms.

It's caused by broken kernel relocation on EFI systems, when below three
conditions are met:

1. Kernel image is not loaded to the default address (LOAD_PHYSICAL_ADDR)
   by the loader.
2. There isn't enough room to contain the kernel, starting from the
   default load address (eg. something else occupied part the region).
3. In the memmap provided by EFI firmware, there is a memory region
   starts below LOAD_PHYSICAL_ADDR, and suitable for containing the
   kernel.

EFI stub will perform a kernel relocation when condition 1 is met. But
due to condition 2, EFI stub can't relocate kernel to the preferred
address, so it fallback to ask EFI firmware to alloc lowest usable memory
region, got the low region mentioned in condition 3, and relocated
kernel there.

It's incorrect to relocate the kernel below LOAD_PHYSICAL_ADDR. This
is the lowest acceptable kernel relocation address.

The first thing goes wrong is in arch/x86/boot/compressed/head_64.S.
Kernel decompression will force use LOAD_PHYSICAL_ADDR as the output
address if kernel is located below it. Then the relocation before
decompression, which move kernel to the end of the decompression buffer,
will overwrite other memory region, as there is no enough memory there.

To fix it, just don't let EFI stub relocate the kernel to any address
lower than lowest acceptable address.

[ ardb: introduce efi_low_alloc_above() to reduce the scope of the change ]

Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191029173755.27149-6-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-31 09:40:19 +01:00
Narendra K
1c5fecb612 efi: Export Runtime Configuration Interface table to sysfs
System firmware advertises the address of the 'Runtime
Configuration Interface table version 2 (RCI2)' via
an EFI Configuration Table entry. This code retrieves the RCI2
table from the address and exports it to sysfs as a binary
attribute 'rci2' under /sys/firmware/efi/tables directory.
The approach adopted is similar to the attribute 'DMI' under
/sys/firmware/dmi/tables.

RCI2 table contains BIOS HII in XML format and is used to populate
BIOS setup page in Dell EMC OpenManage Server Administrator tool.
The BIOS setup page contains BIOS tokens which can be configured.

Signed-off-by: Narendra K <Narendra.K@dell.com>
Reviewed-by: Mario Limonciello <mario.limonciello@dell.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-08-08 11:10:25 +03:00
Ard Biesheuvel
5828efb95b efi: ia64: move SAL systab handling out of generic EFI code
The SAL systab is an Itanium specific EFI configuration table, so
move its handling into arch/ia64 where it belongs.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-08-08 11:01:48 +03:00
Ard Biesheuvel
ec7e1605d7 efi/x86: move UV_SYSTAB handling into arch/x86
The SGI UV UEFI machines are tightly coupled to the x86 architecture
so there is no need to keep any awareness of its existence in the
generic EFI layer, especially since we already have the infrastructure
to handle arch-specific configuration tables, and were even already
using it to some extent.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-08-08 11:01:48 +03:00
Ard Biesheuvel
e55f31a599 efi: x86: move efi_is_table_address() into arch/x86
The function efi_is_table_address() and the associated array of table
pointers is specific to x86. Since we will be adding some more x86
specific tables, let's move this code out of the generic code first.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2019-08-08 11:01:48 +03:00
Matthew Garrett
166a2809d6 tpm: Don't duplicate events from the final event log in the TCG2 log
After the first call to GetEventLog() on UEFI systems using the TCG2
crypto agile log format, any further log events (other than those
triggered by ExitBootServices()) will be logged in both the main log and
also in the Final Events Log. While the kernel only calls GetEventLog()
immediately before ExitBootServices(), we can't control whether earlier
parts of the boot process have done so. This will result in log entries
that exist in both logs, and so the current approach of simply appending
the Final Event Log to the main log will result in events being
duplicated.

We can avoid this problem by looking at the size of the Final Event Log
just before we call ExitBootServices() and exporting this to the main
kernel. The kernel can then skip over all events that occured before
ExitBootServices() and only append events that were not also logged to
the main log.

Signed-off-by: Matthew Garrett <mjg59@google.com>
Reported-by: Joe Richey <joerichey@google.com>
Suggested-by: Joe Richey <joerichey@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2019-06-24 23:57:50 +03:00
Matthew Garrett
c46f340569 tpm: Reserve the TPM final events table
UEFI systems provide a boot services protocol for obtaining the TPM
event log, but this is unusable after ExitBootServices() is called.
Unfortunately ExitBootServices() itself triggers additional TPM events
that then can't be obtained using this protocol. The platform provides a
mechanism for the OS to obtain these events by recording them to a
separate UEFI configuration table which the OS can then map.

Unfortunately this table isn't self describing in terms of providing its
length, so we need to parse the events inside it to figure out how long
it is. Since the table isn't mapped at this point, we need to extend the
length calculation function to be able to map the event as it goes
along.

(Fixes by Bartosz Szczepanek <bsz@semihalf.com>)

Signed-off-by: Matthew Garrett <mjg59@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Bartosz Szczepanek <bsz@semihalf.com>
Tested-by: Bartosz Szczepanek <bsz@semihalf.com>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Tested-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
2019-06-24 23:57:49 +03:00
Jian-Hong Pan
0082517fa4 x86/reboot, efi: Use EFI reboot for Acer TravelMate X514-51T
Upon reboot, the Acer TravelMate X514-51T laptop appears to complete the
shutdown process, but then it hangs in BIOS POST with a black screen.

The problem is intermittent - at some points it has appeared related to
Secure Boot settings or different kernel builds, but ultimately we have
not been able to identify the exact conditions that trigger the issue to
come and go.

Besides, the EFI mode cannot be disabled in the BIOS of this model.

However, after extensive testing, we observe that using the EFI reboot
method reliably avoids the issue in all cases.

So add a boot time quirk to use EFI reboot on such systems.

Buglink: https://bugzilla.kernel.org/show_bug.cgi?id=203119
Signed-off-by: Jian-Hong Pan <jian-hong@endlessm.com>
Signed-off-by: Daniel Drake <drake@endlessm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Cc: linux@endlessm.com
Link: http://lkml.kernel.org/r/20190412080152.3718-1-jian-hong@endlessm.com
[ Fix !CONFIG_EFI build failure, clarify the code and the changelog a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-16 10:01:24 +02:00
Linus Torvalds
3d8dfe75ef arm64 updates for 5.1:
- Pseudo NMI support for arm64 using GICv3 interrupt priorities
 
 - uaccess macros clean-up (unsafe user accessors also merged but
   reverted, waiting for objtool support on arm64)
 
 - ptrace regsets for Pointer Authentication (ARMv8.3) key management
 
 - inX() ordering w.r.t. delay() on arm64 and riscv (acks in place by the
   riscv maintainers)
 
 - arm64/perf updates: PMU bindings converted to json-schema, unused
   variable and misleading comment removed
 
 - arm64/debug fixes to ensure checking of the triggering exception level
   and to avoid the propagation of the UNKNOWN FAR value into the si_code
   for debug signals
 
 - Workaround for Fujitsu A64FX erratum 010001
 
 - lib/raid6 ARM NEON optimisations
 
 - NR_CPUS now defaults to 256 on arm64
 
 - Minor clean-ups (documentation/comments, Kconfig warning, unused
   asm-offsets, clang warnings)
 
 - MAINTAINERS update for list information to the ARM64 ACPI entry
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlyCl0cACgkQa9axLQDI
 XvEyKxAAiogBZLbyhcy8bTUHVzVoJE0FyAkdO2wWnnaff2Ohkhy1Y/npv33IeK2q
 RknxqDIx2DUUVPJNRZGoI/WwBtTZdKaAnW4rIKG84yC1eAkFcd96WQasaZzcp1qY
 HmvbJiYXM0bh+0J7i3Wgry/QzOkrltJFJW2kp6Wd5aFE+R1WyWyxT6d+Fp0J3vlA
 bT70jlpBK6LXEOmmBS+04Ml02+8MvaGxIl8EInBHSfDLRLErj5E8n41rRHKUiSWz
 maWI+kVoLYwOE68xiZlDftUBEeQpUSWgg2nxeK+640QSl1wJmVcRcY9nm6TZeMG2
 AiZTR9a7cP5rrdSN5suUmb7d4AMMVlVMisGDlwb+9oCxeTRDzg0uwACaVgHfPqQr
 UeBdHbL9nStN7uBH23H8L9mKk+tqpFmk0sgzdrKejOwysAiqWV8aazb/Na3qnVRl
 J1B5opxMnGOsjXmHvtG/tiZl281Uwz5ZmzfLmIY3gUZgUgdA3511Egp0ry5y1dzJ
 SkYC4Hmzb2ybQvXGIDDa3OzCwXXiqyqKsO+O8Egg1k4OIwbp3w+NHE7gKeA+dMgD
 gjN7zEalCUi46Q28xiCPEb+88BpQ18czIWGQLb9mAnmYeZPjqqenXKXuRHr4lgVe
 jPURJ/vqvFEglZJN1RDuQHKzHEcm5f2XE566sMZYdSoeiUCb0QM=
 =2U56
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:

 - Pseudo NMI support for arm64 using GICv3 interrupt priorities

 - uaccess macros clean-up (unsafe user accessors also merged but
   reverted, waiting for objtool support on arm64)

 - ptrace regsets for Pointer Authentication (ARMv8.3) key management

 - inX() ordering w.r.t. delay() on arm64 and riscv (acks in place by
   the riscv maintainers)

 - arm64/perf updates: PMU bindings converted to json-schema, unused
   variable and misleading comment removed

 - arm64/debug fixes to ensure checking of the triggering exception
   level and to avoid the propagation of the UNKNOWN FAR value into the
   si_code for debug signals

 - Workaround for Fujitsu A64FX erratum 010001

 - lib/raid6 ARM NEON optimisations

 - NR_CPUS now defaults to 256 on arm64

 - Minor clean-ups (documentation/comments, Kconfig warning, unused
   asm-offsets, clang warnings)

 - MAINTAINERS update for list information to the ARM64 ACPI entry

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (54 commits)
  arm64: mmu: drop paging_init comments
  arm64: debug: Ensure debug handlers check triggering exception level
  arm64: debug: Don't propagate UNKNOWN FAR into si_code for debug signals
  Revert "arm64: uaccess: Implement unsafe accessors"
  arm64: avoid clang warning about self-assignment
  arm64: Kconfig.platforms: fix warning unmet direct dependencies
  lib/raid6: arm: optimize away a mask operation in NEON recovery routine
  lib/raid6: use vdupq_n_u8 to avoid endianness warnings
  arm64: io: Hook up __io_par() for inX() ordering
  riscv: io: Update __io_[p]ar() macros to take an argument
  asm-generic/io: Pass result of I/O accessor to __io_[p]ar()
  arm64: Add workaround for Fujitsu A64FX erratum 010001
  arm64: Rename get_thread_info()
  arm64: Remove documentation about TIF_USEDFPU
  arm64: irqflags: Fix clang build warnings
  arm64: Enable the support of pseudo-NMIs
  arm64: Skip irqflags tracing for NMI in IRQs disabled context
  arm64: Skip preemption when exiting an NMI
  arm64: Handle serror in NMI context
  irqchip/gic-v3: Allow interrupts to be set as pseudo-NMI
  ...
2019-03-10 10:17:23 -07:00
Linus Torvalds
c8f5ed6ef9 Merge branch 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull EFI updates from Ingo Molnar:
 "The main EFI changes in this cycle were:

   - Use 32-bit alignment for efi_guid_t

   - Allow the SetVirtualAddressMap() call to be omitted

   - Implement earlycon=efifb based on existing earlyprintk code

   - Various minor fixes and code cleanups from Sai, Ard and me"

* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  efi: Fix build error due to enum collision between efi.h and ima.h
  efi/x86: Convert x86 EFI earlyprintk into generic earlycon implementation
  x86: Make ARCH_USE_MEMREMAP_PROT a generic Kconfig symbol
  efi/arm/arm64: Allow SetVirtualAddressMap() to be omitted
  efi: Replace GPL license boilerplate with SPDX headers
  efi/fdt: Apply more cleanups
  efi: Use 32-bit alignment for efi_guid_t
  efi/memattr: Don't bail on zero VA if it equals the region's PA
  x86/efi: Mark can_free_region() as an __init function
2019-03-06 07:13:56 -08:00
Ard Biesheuvel
582a32e708 efi/arm: Revert "Defer persistent reservations until after paging_init()"
This reverts commit eff8962888, which
deferred the processing of persistent memory reservations to a point
where the memory may have already been allocated and overwritten,
defeating the purpose.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190215123333.21209-3-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-16 15:02:03 +01:00
Anders Roxell
5c418dc789 efi: Fix build error due to enum collision between efi.h and ima.h
The following commit:

  a893ea15d764 ("tpm: move tpm_chip definition to include/linux/tpm.h")

introduced a build error when both IMA and EFI are enabled:

    In file included from ../security/integrity/ima/ima_fs.c:30:
    ../security/integrity/ima/ima.h:176:7: error: redeclaration of enumerator "NONE"

What happens is that both headers (ima.h and efi.h) defines the same
'NONE' constant, and it broke when they started getting included from
the same file:

Rework to prefix the EFI enum with 'EFI_*'.

Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190215165551.12220-2-ard.biesheuvel@linaro.org
[ Cleaned up the changelog a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-16 12:18:55 +01:00
Julien Thierry
13b210ddf4 efi: Let architectures decide the flags that should be saved/restored
Currently, irqflags are saved before calling runtime services and
checked for mismatch on return.

Provide a pair of overridable macros to save and restore (if needed) the
state that need to be preserved on return from a runtime service.
This allows to check for flags that are not necesarly related to
irqflags.

Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: linux-efi@vger.kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-06 10:05:19 +00:00
Ard Biesheuvel
494c704f9a efi: Use 32-bit alignment for efi_guid_t
The UEFI spec and EDK2 reference implementation both define EFI_GUID as
struct { u32 a; u16; b; u16 c; u8 d[8]; }; and so the implied alignment
is 32 bits not 8 bits like our guid_t. In some cases (i.e., on 32-bit ARM),
this means that firmware services invoked by the kernel may assume that
efi_guid_t* arguments are 32-bit aligned, and use memory accessors that
do not tolerate misalignment. So let's set the minimum alignment to 32 bits.

Note that the UEFI spec as well as some comments in the EDK2 code base
suggest that EFI_GUID should be 64-bit aligned, but this appears to be
a mistake, given that no code seems to exist that actually enforces that
or relies on it.

Reported-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Alexander Graf <agraf@suse.de>
Cc: Bjorn Andersson <bjorn.andersson@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jeffrey Hugo <jhugo@codeaurora.org>
Cc: Lee Jones <lee.jones@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190202094119.13230-5-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 08:26:35 +01:00
Linus Torvalds
f218a29c25 Merge branch 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull integrity updates from James Morris:
 "In Linux 4.19, a new LSM hook named security_kernel_load_data was
  upstreamed, allowing LSMs and IMA to prevent the kexec_load syscall.
  Different signature verification methods exist for verifying the
  kexec'ed kernel image. This adds additional support in IMA to prevent
  loading unsigned kernel images via the kexec_load syscall,
  independently of the IMA policy rules, based on the runtime "secure
  boot" flag. An initial IMA kselftest is included.

  In addition, this pull request defines a new, separate keyring named
  ".platform" for storing the preboot/firmware keys needed for verifying
  the kexec'ed kernel image's signature and includes the associated IMA
  kexec usage of the ".platform" keyring.

  (David Howell's and Josh Boyer's patches for reading the
  preboot/firmware keys, which were previously posted for a different
  use case scenario, are included here)"

* 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
  integrity: Remove references to module keyring
  ima: Use inode_is_open_for_write
  ima: Support platform keyring for kernel appraisal
  efi: Allow the "db" UEFI variable to be suppressed
  efi: Import certificates from UEFI Secure Boot
  efi: Add an EFI signature blob parser
  efi: Add EFI signature data types
  integrity: Load certs to the platform keyring
  integrity: Define a trusted platform keyring
  selftests/ima: kexec_load syscall test
  ima: don't measure/appraise files on efivarfs
  x86/ima: retry detecting secure boot mode
  docs: Extend trusted keys documentation for TPM 2.0
  x86/ima: define arch_get_ima_policy() for x86
  ima: add support for arch specific policies
  ima: refactor ima_init_policy()
  ima: prevent kexec_load syscall based on runtime secureboot flag
  x86/ima: define arch_ima_get_secureboot
  integrity: support new struct public_key_signature encoding field
2019-01-02 09:43:14 -08:00
James Morris
5580b4a1a8 Merge branch 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity into next-integrity
From Mimi:

In Linux 4.19, a new LSM hook named security_kernel_load_data was
upstreamed, allowing LSMs and IMA to prevent the kexec_load
syscall.  Different signature verification methods exist for verifying
the kexec'ed kernel image.  This pull request adds additional support
in IMA to prevent loading unsigned kernel images via the kexec_load
syscall, independently of the IMA policy rules, based on the runtime
"secure boot" flag.  An initial IMA kselftest is included.

In addition, this pull request defines a new, separate keyring named
".platform" for storing the preboot/firmware keys needed for verifying
the kexec'ed kernel image's signature and includes the associated IMA
kexec usage of the ".platform" keyring.

(David Howell's and Josh Boyer's patches for reading the
preboot/firmware keys, which were previously posted for a different
use case scenario, are included here.)
2018-12-17 11:26:46 -08:00
Dave Howells
0bc9ae395b efi: Add an EFI signature blob parser
Add a function to parse an EFI signature blob looking for elements of
interest. A list is made up of a series of sublists, where all the
elements in a sublist are of the same type, but sublists can be of
different types.

For each sublist encountered, the function pointed to by the
get_handler_for_guid argument is called with the type specifier GUID and
returns either a pointer to a function to handle elements of that type or
NULL if the type is not of interest.

If the sublist is of interest, each element is passed to the handler
function in turn.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Nayna Jain <nayna@linux.ibm.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
2018-12-12 22:04:29 -05:00
Dave Howells
5c126ba22f efi: Add EFI signature data types
Add the data types that are used for containing hashes, keys and
certificates for cryptographic verification along with their corresponding
type GUIDs.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Nayna Jain <nayna@linux.ibm.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Reviewed-by: James Morris <james.morris@microsoft.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
2018-12-12 22:03:36 -05:00
Ard Biesheuvel
80424b02d4 efi: Reduce the amount of memblock reservations for persistent allocations
The current implementation of efi_mem_reserve_persistent() is rather
naive, in the sense that for each invocation, it creates a separate
linked list entry to describe the reservation. Since the linked list
entries themselves need to persist across subsequent kexec reboots,
every reservation created this way results in two memblock_reserve()
calls at the next boot.

On arm64 systems with 100s of CPUs, this may result in a excessive
number of memblock reservations, and needless fragmentation.

So instead, make use of the newly updated struct linux_efi_memreserve
layout to put multiple reservations into a single linked list entry.
This should get rid of the numerous tiny memblock reservations, and
effectively cut the total number of reservations in half on arm64
systems with many CPUs.

 [ mingo: build warning fix. ]

Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arend van Spriel <arend.vanspriel@broadcom.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Snowberg <eric.snowberg@oracle.com>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jon Hunter <jonathanh@nvidia.com>
Cc: Julien Thierry <julien.thierry@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: YiFei Zhu <zhuyifei1999@gmail.com>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20181129171230.18699-11-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-11-30 09:37:57 +01:00
Ard Biesheuvel
5f0b0ecf04 efi: Permit multiple entries in persistent memreserve data structure
In preparation of updating efi_mem_reserve_persistent() to cause less
fragmentation when dealing with many persistent reservations, update
the struct definition and the code that handles it currently so it
can describe an arbitrary number of reservations using a single linked
list entry. The actual optimization will be implemented in a subsequent
patch.

Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arend van Spriel <arend.vanspriel@broadcom.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Snowberg <eric.snowberg@oracle.com>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jon Hunter <jonathanh@nvidia.com>
Cc: Julien Thierry <julien.thierry@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: YiFei Zhu <zhuyifei1999@gmail.com>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20181129171230.18699-10-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-11-30 09:10:31 +01:00
Sai Praneeth Prakhya
47c33a095e x86/efi: Move efi_<reserve/free>_boot_services() to arch/x86
efi_<reserve/free>_boot_services() are x86 specific quirks and as such
should be in asm/efi.h, so move them from linux/efi.h. Also, call
efi_free_boot_services() from __efi_enter_virtual_mode() as it is x86
specific call and ideally shouldn't be part of init/main.c

Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arend van Spriel <arend.vanspriel@broadcom.com>
Cc: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Snowberg <eric.snowberg@oracle.com>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jon Hunter <jonathanh@nvidia.com>
Cc: Julien Thierry <julien.thierry@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: YiFei Zhu <zhuyifei1999@gmail.com>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20181129171230.18699-7-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-11-30 09:10:31 +01:00
Ard Biesheuvel
eff8962888 efi/arm: Defer persistent reservations until after paging_init()
The new memory EFI reservation feature we introduced to allow memory
reservations to persist across kexec may trigger an unbounded number
of calls to memblock_reserve(). The memblock subsystem can deal with
this fine, but not before memblock resizing is enabled, which we can
only do after paging_init(), when the memory we reallocate the array
into is actually mapped.

So break out the memreserve table processing into a separate routine
and call it after paging_init() on arm64. On ARM, because of limited
reviewing bandwidth of the maintainer, we cannot currently fix this,
so instead, disable the EFI persistent memreserve entirely on ARM so
we can fix it later.

Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20181114175544.12860-5-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-11-15 10:04:46 +01:00
Sai Praneeth
3425d934fc efi/x86: Handle page faults occurring while running EFI runtime services
Memory accesses performed by UEFI runtime services should be limited to:
- reading/executing from EFI_RUNTIME_SERVICES_CODE memory regions
- reading/writing from/to EFI_RUNTIME_SERVICES_DATA memory regions
- reading/writing by-ref arguments
- reading/writing from/to the stack.

Accesses outside these regions may cause the kernel to hang because the
memory region requested by the firmware isn't mapped in efi_pgd, which
causes a page fault in ring 0 and the kernel fails to handle it, leading
to die(). To save kernel from hanging, add an EFI specific page fault
handler which recovers from such faults by
1. If the efi runtime service is efi_reset_system(), reboot the machine
   through BIOS.
2. If the efi runtime service is _not_ efi_reset_system(), then freeze
   efi_rts_wq and schedule a new process.

The EFI page fault handler offers us two advantages:
1. Avoid potential hangs caused by buggy firmware.
2. Shout loud that the firmware is buggy and hence is not a kernel bug.

Tested-by: Bhupesh Sharma <bhsharma@redhat.com>
Suggested-by: Matt Fleming <matt@codeblueprint.co.uk>
Based-on-code-from: Ricardo Neri <ricardo.neri@intel.com>
Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
[ardb: clarify commit log]
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2018-09-26 12:14:55 +02:00
Sai Praneeth
9dbbedaa61 efi: Make efi_rts_work accessible to efi page fault handler
After the kernel has booted, if any accesses by firmware causes a page
fault, the efi page fault handler would freeze efi_rts_wq and schedules
a new process. To do this, the efi page fault handler needs
efi_rts_work. Hence, make it accessible.

There will be no race conditions in accessing this structure, because
all the calls to efi runtime services are already serialized.

Tested-by: Bhupesh Sharma <bhsharma@redhat.com>
Suggested-by: Matt Fleming <matt@codeblueprint.co.uk>
Based-on-code-from: Ricardo Neri <ricardo.neri@intel.com>
Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2018-09-26 12:14:50 +02:00