mirror of
https://git.proxmox.com/git/mirror_ubuntu-kernels.git
synced 2025-11-07 08:20:49 +00:00
09d1c6a80f
454 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
04c3024560 |
x86/barrier: Do not serialize MSR accesses on AMD
AMD does not have the requirement for a synchronization barrier when
acccessing a certain group of MSRs. Do not incur that unnecessary
penalty there.
There will be a CPUID bit which explicitly states that a MFENCE is not
needed. Once that bit is added to the APM, this will be extended with
it.
While at it, move to processor.h to avoid include hell. Untangling that
file properly is a matter for another day.
Some notes on the performance aspect of why this is relevant, courtesy
of Kishon VijayAbraham <Kishon.VijayAbraham@amd.com>:
On a AMD Zen4 system with 96 cores, a modified ipi-bench[1] on a VM
shows x2AVIC IPI rate is 3% to 4% lower than AVIC IPI rate. The
ipi-bench is modified so that the IPIs are sent between two vCPUs in the
same CCX. This also requires to pin the vCPU to a physical core to
prevent any latencies. This simulates the use case of pinning vCPUs to
the thread of a single CCX to avoid interrupt IPI latency.
In order to avoid run-to-run variance (for both x2AVIC and AVIC), the
below configurations are done:
1) Disable Power States in BIOS (to prevent the system from going to
lower power state)
2) Run the system at fixed frequency 2500MHz (to prevent the system
from increasing the frequency when the load is more)
With the above configuration:
*) Performance measured using ipi-bench for AVIC:
Average Latency: 1124.98ns [Time to send IPI from one vCPU to another vCPU]
Cumulative throughput: 42.6759M/s [Total number of IPIs sent in a second from
48 vCPUs simultaneously]
*) Performance measured using ipi-bench for x2AVIC:
Average Latency: 1172.42ns [Time to send IPI from one vCPU to another vCPU]
Cumulative throughput: 40.9432M/s [Total number of IPIs sent in a second from
48 vCPUs simultaneously]
From above, x2AVIC latency is ~4% more than AVIC. However, the expectation is
x2AVIC performance to be better or equivalent to AVIC. Upon analyzing
the perf captures, it is observed significant time is spent in
weak_wrmsr_fence() invoked by x2apic_send_IPI().
With the fix to skip weak_wrmsr_fence()
*) Performance measured using ipi-bench for x2AVIC:
Average Latency: 1117.44ns [Time to send IPI from one vCPU to another vCPU]
Cumulative throughput: 42.9608M/s [Total number of IPIs sent in a second from
48 vCPUs simultaneously]
Comparing the performance of x2AVIC with and without the fix, it can be seen
the performance improves by ~4%.
Performance captured using an unmodified ipi-bench using the 'mesh-ipi' option
with and without weak_wrmsr_fence() on a Zen4 system also showed significant
performance improvement without weak_wrmsr_fence(). The 'mesh-ipi' option ignores
CCX or CCD and just picks random vCPU.
Average throughput (10 iterations) with weak_wrmsr_fence(),
Cumulative throughput: 4933374 IPI/s
Average throughput (10 iterations) without weak_wrmsr_fence(),
Cumulative throughput: 6355156 IPI/s
[1] https://github.com/bytedance/kvm-utils/tree/master/microbenchmark/ipi-bench
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230622095212.20940-1-bp@alien8.de
|
||
|
|
eb55307e67 |
X86 core code updates:
- Limit the hardcoded topology quirk for Hygon CPUs to those which have a
model ID less than 4. The newer models have the topology CPUID leaf 0xB
correctly implemented and are not affected.
- Make SMT control more robust against enumeration failures
SMT control was added to allow controlling SMT at boottime or
runtime. The primary purpose was to provide a simple mechanism to
disable SMT in the light of speculation attack vectors.
It turned out that the code is sensible to enumeration failures and
worked only by chance for XEN/PV. XEN/PV has no real APIC enumeration
which means the primary thread mask is not set up correctly. By chance
a XEN/PV boot ends up with smp_num_siblings == 2, which makes the
hotplug control stay at its default value "enabled". So the mask is
never evaluated.
The ongoing rework of the topology evaluation caused XEN/PV to end up
with smp_num_siblings == 1, which sets the SMT control to "not
supported" and the empty primary thread mask causes the hotplug core to
deny the bringup of the APS.
Make the decision logic more robust and take 'not supported' and 'not
implemented' into account for the decision whether a CPU should be
booted or not.
- Fake primary thread mask for XEN/PV
Pretend that all XEN/PV vCPUs are primary threads, which makes the
usage of the primary thread mask valid on XEN/PV. That is consistent
with because all of the topology information on XEN/PV is fake or even
non-existent.
- Encapsulate topology information in cpuinfo_x86
Move the randomly scattered topology data into a separate data
structure for readability and as a preparatory step for the topology
evaluation overhaul.
- Consolidate APIC ID data type to u32
It's fixed width hardware data and not randomly u16, int, unsigned long
or whatever developers decided to use.
- Cure the abuse of cpuinfo for persisting logical IDs.
Per CPU cpuinfo is used to persist the logical package and die
IDs. That's really not the right place simply because cpuinfo is
subject to be reinitialized when a CPU goes through an offline/online
cycle.
Use separate per CPU data for the persisting to enable the further
topology management rework. It will be removed once the new topology
management is in place.
- Provide a debug interface for inspecting topology information
Useful in general and extremly helpful for validating the topology
management rework in terms of correctness or "bug" compatibility.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmU+yX0THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoROUD/4vlvKEcpm9rbI5DzLcaq4DFHKbyEZF
cQtzuOSM/9vTc9DHnuoNNLl9TWSYxiVYnejf3E21evfsqspYlzbTH8bId9XBCUid
6B68AJW842M2erNuwj0b0HwF1z++zpDmBDyhGOty/KQhoM8pYOHMvntAmbzJbuso
Dgx6BLVFcboTy6RwlfRa0EE8f9W5V+JbmG/VBDpdyCInal7VrudoVFZmWQnPIft7
zwOJpAoehkp8OKq7geKDf79yWxu9a1sNPd62HtaVEvfHwehHqE6OaMLss1us+0vT
SJ/D6gmRQBOwcXaZL0wL1dG7Km9Et4AisOvzhXGvTa5b2D5oljVoqJ7V7FTf5g3u
y3aqWbeUJzERUbeJt1HoGVAKyA4GtZOvg+TNIysf6F1Z4khl9alfa9jiqjj4g1au
zgItq/ZMBEBmJ7X4FxQUEUVBG2CDsEidyNBDRcimWQUDfBakV/iCs0suD8uu8ZOD
K5jMx8Hi2+xFx7r1YqsfsyMBYOf/zUZw65RbNe+kI992JbJ9nhcODbnbo5MlAsyv
vcqlK5FwXgZ4YAC8dZHU/tyTiqAW7oaOSkqKwTP5gcyNEqsjQHV//q6v+uqtjfYn
1C4oUsRHT2vJiV9ktNJTA4GQHIYF4geGgpG8Ih2SjXsSzdGtUd3DtX1iq0YiLEOk
eHhYsnniqsYB5g==
=xrz8
-----END PGP SIGNATURE-----
Merge tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Thomas Gleixner:
- Limit the hardcoded topology quirk for Hygon CPUs to those which have
a model ID less than 4.
The newer models have the topology CPUID leaf 0xB correctly
implemented and are not affected.
- Make SMT control more robust against enumeration failures
SMT control was added to allow controlling SMT at boottime or
runtime. The primary purpose was to provide a simple mechanism to
disable SMT in the light of speculation attack vectors.
It turned out that the code is sensible to enumeration failures and
worked only by chance for XEN/PV. XEN/PV has no real APIC enumeration
which means the primary thread mask is not set up correctly. By
chance a XEN/PV boot ends up with smp_num_siblings == 2, which makes
the hotplug control stay at its default value "enabled". So the mask
is never evaluated.
The ongoing rework of the topology evaluation caused XEN/PV to end up
with smp_num_siblings == 1, which sets the SMT control to "not
supported" and the empty primary thread mask causes the hotplug core
to deny the bringup of the APS.
Make the decision logic more robust and take 'not supported' and 'not
implemented' into account for the decision whether a CPU should be
booted or not.
- Fake primary thread mask for XEN/PV
Pretend that all XEN/PV vCPUs are primary threads, which makes the
usage of the primary thread mask valid on XEN/PV. That is consistent
with because all of the topology information on XEN/PV is fake or
even non-existent.
- Encapsulate topology information in cpuinfo_x86
Move the randomly scattered topology data into a separate data
structure for readability and as a preparatory step for the topology
evaluation overhaul.
- Consolidate APIC ID data type to u32
It's fixed width hardware data and not randomly u16, int, unsigned
long or whatever developers decided to use.
- Cure the abuse of cpuinfo for persisting logical IDs.
Per CPU cpuinfo is used to persist the logical package and die IDs.
That's really not the right place simply because cpuinfo is subject
to be reinitialized when a CPU goes through an offline/online cycle.
Use separate per CPU data for the persisting to enable the further
topology management rework. It will be removed once the new topology
management is in place.
- Provide a debug interface for inspecting topology information
Useful in general and extremly helpful for validating the topology
management rework in terms of correctness or "bug" compatibility.
* tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/apic, x86/hyperv: Use u32 in hv_snp_boot_ap() too
x86/cpu: Provide debug interface
x86/cpu/topology: Cure the abuse of cpuinfo for persisting logical ids
x86/apic: Use u32 for wakeup_secondary_cpu[_64]()
x86/apic: Use u32 for [gs]et_apic_id()
x86/apic: Use u32 for phys_pkg_id()
x86/apic: Use u32 for cpu_present_to_apicid()
x86/apic: Use u32 for check_apicid_used()
x86/apic: Use u32 for APIC IDs in global data
x86/apic: Use BAD_APICID consistently
x86/cpu: Move cpu_l[l2]c_id into topology info
x86/cpu: Move logical package and die IDs into topology info
x86/cpu: Remove pointless evaluation of x86_coreid_bits
x86/cpu: Move cu_id into topology info
x86/cpu: Move cpu_core_id into topology info
hwmon: (fam15h_power) Use topology_core_id()
scsi: lpfc: Use topology_core_id()
x86/cpu: Move cpu_die_id into topology info
x86/cpu: Move phys_proc_id into topology info
x86/cpu: Encapsulate topology information in cpuinfo_x86
...
|
||
|
|
f0d25b5d0f |
x86 MM handling code changes for v6.7:
- Add new NX-stack self-test - Improve NUMA partial-CFMWS handling - Fix #VC handler bugs resulting in SEV-SNP boot failures - Drop the 4MB memory size restriction on minimal NUMA nodes - Reorganize headers a bit, in preparation to header dependency reduction efforts - Misc cleanups & fixes Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmU9Ek4RHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1gIJQ/+Mg6mzMaThyNXqhJszeZJBmDaBv2sqjAB 5tcferg1nJBdNBzX8bJ95UFt9fIqeYAcgH00qlQCYSmyzbC1TQTk9U2Pre1zbOw4 042ONK8sygKSje1zdYleHoBeqwnxD2VNM0NwBElhGjumwHRng/tbLiI9wx6qiz+C VsFXavkBszHGA1pjy9wZLGixYIH5jCygMpH134Wp+CIhpS+C4nftcGdIL1D5Oil1 6Tm2XeI6uyfiQhm9IOwDjfoYeC7gUjx1rp8rHseGUMJxyO/BX9q5j1ixbsVriqfW 97ucYuRL9mza7ic516C9v7OlAA3AGH2xWV+SYOGK88i9Co4kYzP4WnamxXqOsD8+ popxG55oa6QelhaouTBZvgERpZ4fWupSDs/UccsDaE9leMCerNEbGHEzt/Mm/2sw xopjMQ0y5Kn6/fS0dLv8U+XHu4ANkvXJkFd6Ny0h/WfgGefuQOOTG9ruYgfeqqB8 dViQ4R7CO8ySjD45KawAZl/EqL86x1M/CI1nlt0YY4vNwUuOJbebL7Jn8w3Fjxm5 FVfUlDmcPdhZfL9Vnrsi6MIou1cU1yJPw4D6sXJ4sg4s7A4ebBcRRrjayVQ4msjv Q7cvBOMnWEHhOV11pvP50FmQuj74XW3bUqiuWrnK1SypvnhHavF6kc1XYpBLs1xZ y8nueJW2qPw= =tT5F -----END PGP SIGNATURE----- Merge tag 'x86-mm-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 mm handling updates from Ingo Molnar: - Add new NX-stack self-test - Improve NUMA partial-CFMWS handling - Fix #VC handler bugs resulting in SEV-SNP boot failures - Drop the 4MB memory size restriction on minimal NUMA nodes - Reorganize headers a bit, in preparation to header dependency reduction efforts - Misc cleanups & fixes * tag 'x86-mm-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm: Drop the 4 MB restriction on minimal NUMA node memory size selftests/x86/lam: Zero out buffer for readlink() x86/sev: Drop unneeded #include x86/sev: Move sev_setup_arch() to mem_encrypt.c x86/tdx: Replace deprecated strncpy() with strtomem_pad() selftests/x86/mm: Add new test that userspace stack is in fact NX x86/sev: Make boot_ghcb_page[] static x86/boot: Move x86_cache_alignment initialization to correct spot x86/sev-es: Set x86_virt_bits to the correct value straight away, instead of a two-phase approach x86/sev-es: Allow copy_from_kernel_nofault() in earlier boot x86_64: Show CR4.PSE on auxiliaries like on BSP x86/iommu/docs: Update AMD IOMMU specification document URL x86/sev/docs: Update document URL in amd-memory-encryption.rst x86/mm: Move arch_memory_failure() and arch_is_platform_page() definitions from <asm/processor.h> to <asm/pgtable.h> ACPI/NUMA: Apply SRAT proximity domain to entire CFMWS window x86/numa: Introduce numa_fill_memblks() |
||
|
|
4705243d23 |
x86/apic: Use u32 for APIC IDs in global data
APIC IDs are used with random data types u16, u32, int, unsigned int, unsigned long. Make it all consistently use u32 because that reflects the hardware register width and fixup the most obvious usage sites of that. The APIC callbacks will be addressed separately. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Reviewed-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230814085112.922905727@linutronix.de |
||
|
|
6e29032340 |
x86/cpu: Move cpu_l[l2]c_id into topology info
The topology IDs which identify the LLC and L2 domains clearly belong to the per CPU topology information. Move them into cpuinfo_x86::cpuinfo_topo and get rid of the extra per CPU data and the related exports. This also paves the way to do proper topology evaluation during early boot because it removes the only per CPU dependency for that. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Reviewed-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230814085112.803864641@linutronix.de |
||
|
|
22dc963162 |
x86/cpu: Move logical package and die IDs into topology info
Yet another topology related data pair. Rename logical_proc_id to logical_pkg_id so it fits the common naming conventions. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230814085112.745139505@linutronix.de |
||
|
|
e3c0c5d52a |
x86/cpu: Move cu_id into topology info
No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230814085112.628405546@linutronix.de |
||
|
|
e95256335d |
x86/cpu: Move cpu_core_id into topology info
Rename it to core_id and stick it to the other ID fields. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230814085112.566519388@linutronix.de |
||
|
|
8a169ed40f |
x86/cpu: Move cpu_die_id into topology info
Move the next member. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230814085112.388185134@linutronix.de |
||
|
|
02fb601d27 |
x86/cpu: Move phys_proc_id into topology info
Rename it to pkg_id which is the terminology used in the kernel. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230814085112.329006989@linutronix.de |
||
|
|
b9655e702d |
x86/cpu: Encapsulate topology information in cpuinfo_x86
The topology related information is randomly scattered across cpuinfo_x86. Create a new structure cpuinfo_topo and move in a first step initial_apicid and apicid into it. Aside of being better readable this is in preparation for replacing the horribly fragile CPU topology evaluation code further down the road. Consolidate APIC ID fields to u32 as that represents the hardware type. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230814085112.269787744@linutronix.de |
||
|
|
3fc18b06b8 |
Linux 6.6-rc4
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmUZ4WEeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGnIYH/07zef2U1nlqI+ro HRL2GlWGIs9yE70Oax+A3eYUYsjJIPu0yiDhFHUgOV3VyAALo44ZX/WNwKCGsI3e zhuOeItyyVcLGZXVC/jxSu0uveyfEiEYIWRYGyQ6Sna8Ksdk/qwhNgQNotdWdQG5 7xt8z32couglu0uOkxcGqjTxmbjO6WSM5qi7Ts+xLsgrcS5cRuNhAg/vezp9bfeL 1IUieCih4RJFgar/6LPOiB8uoVXEBonVbtlTRRqYdnqcsSIC+ACR9ZFk/+X88b5z S+Ta5VTcOAPu+2M/lSGe+PlUECvoBNK0SIYnaVCP2paPmDxfDXOFvSy/qJE87/7L 9BeonFw= =8FTr -----END PGP SIGNATURE----- Merge tag 'v6.6-rc4' into x86/entry, to pick up fixes Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
|
|
d73a105586 |
x86/mm: Move arch_memory_failure() and arch_is_platform_page() definitions from <asm/processor.h> to <asm/pgtable.h>
<linux/mm.h> relies on these definitions being included first, which is true currently due to historic header spaghetti, but in the future <asm/processor.h> will not guaranteed to be included by the MM code. Move these definitions over into a suitable MM header. This is a preparatory patch for x86 header dependency simplifications and reductions. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: linux-kernel@vger.kernel.org |
||
|
|
91857ae203 |
x86/srso: Set CPUID feature bits independently of bug or mitigation status
Booting with mitigations=off incorrectly prevents the
X86_FEATURE_{IBPB_BRTYPE,SBPB} CPUID bits from getting set.
Also, future CPUs without X86_BUG_SRSO might still have IBPB with branch
type prediction flushing, in which case SBPB should be used instead of
IBPB. The current code doesn't allow for that.
Also, cpu_has_ibpb_brtype_microcode() has some surprising side effects
and the setting of these feature bits really doesn't belong in the
mitigation code anyway. Move it to earlier.
Fixes:
|
||
|
|
f71e1d2ff8 |
x86/entry: Rename ignore_sysret()
The SYSCALL instruction cannot really be disabled in compatibility mode. The best that can be done is to configure the CSTAR msr to point to a minimal handler. Currently this handler has a rather misleading name - ignore_sysret() as it's not really doing anything with sysret. Give it a more descriptive name. Signed-off-by: Nikolay Borisov <nik.borisov@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20230623111409.3047467-3-nik.borisov@suse.com |
||
|
|
df57721f9a |
Add x86 shadow stack support
Convert IBT selftest to asm to fix objtool warning -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTv1QQACgkQaDWVMHDJ krAUwhAAn6TOwHJK8BSkHeiQhON1nrlP3c5cv0AyZ2NP8RYDrZrSZvhpYBJ6wgKC Cx5CGq5nn9twYsYS3KsktLKDfR3lRdsQ7K9qtyFtYiaeaVKo+7gEKl/K+klwai8/ gninQWHk0zmSCja8Vi77q52WOMkQKapT8+vaON9EVDO8dVEi+CvhAIfPwMafuiwO Rk4X86SzoZu9FP79LcCg9XyGC/XbM2OG9eNUTSCKT40qTTKm5y4gix687NvAlaHR ko5MTsdl0Wfp6Qk0ohT74LnoA2c1g/FluvZIM33ci/2rFpkf9Hw7ip3lUXqn6CPx rKiZ+pVRc0xikVWkraMfIGMJfUd2rhelp8OyoozD7DB7UZw40Q4RW4N5tgq9Fhe9 MQs3p1v9N8xHdRKl365UcOczUxNAmv4u0nV5gY/4FMC6VjldCl2V9fmqYXyzFS4/ Ogg4FSd7c2JyGFKPs+5uXyi+RY2qOX4+nzHOoKD7SY616IYqtgKoz5usxETLwZ6s VtJOmJL0h//z0A7tBliB0zd+SQ5UQQBDC2XouQH2fNX2isJMn0UDmWJGjaHgK6Hh 8jVp6LNqf+CEQS387UxckOyj7fu438hDky1Ggaw4YqowEOhQeqLVO4++x+HITrbp AupXfbJw9h9cMN63Yc0gVxXQ9IMZ+M7UxLtZ3Cd8/PVztNy/clA= =3UUm -----END PGP SIGNATURE----- Merge tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 shadow stack support from Dave Hansen: "This is the long awaited x86 shadow stack support, part of Intel's Control-flow Enforcement Technology (CET). CET consists of two related security features: shadow stacks and indirect branch tracking. This series implements just the shadow stack part of this feature, and just for userspace. The main use case for shadow stack is providing protection against return oriented programming attacks. It works by maintaining a secondary (shadow) stack using a special memory type that has protections against modification. When executing a CALL instruction, the processor pushes the return address to both the normal stack and to the special permission shadow stack. Upon RET, the processor pops the shadow stack copy and compares it to the normal stack copy. For more information, refer to the links below for the earlier versions of this patch set" Link: https://lore.kernel.org/lkml/20220130211838.8382-1-rick.p.edgecombe@intel.com/ Link: https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/ * tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits) x86/shstk: Change order of __user in type x86/ibt: Convert IBT selftest to asm x86/shstk: Don't retry vm_munmap() on -EINTR x86/kbuild: Fix Documentation/ reference x86/shstk: Move arch detail comment out of core mm x86/shstk: Add ARCH_SHSTK_STATUS x86/shstk: Add ARCH_SHSTK_UNLOCK x86: Add PTRACE interface for shadow stack selftests/x86: Add shadow stack test x86/cpufeatures: Enable CET CR4 bit for shadow stack x86/shstk: Wire in shadow stack interface x86: Expose thread features in /proc/$PID/status x86/shstk: Support WRSS for userspace x86/shstk: Introduce map_shadow_stack syscall x86/shstk: Check that signal frame is shadow stack mem x86/shstk: Check that SSP is aligned on sigreturn x86/shstk: Handle signals for shadow stack x86/shstk: Introduce routines modifying shstk x86/shstk: Handle thread shadow stack x86/shstk: Add user-mode shadow stack support ... |
||
|
|
1687d8aca5 |
* Rework apic callbacks, getting rid of unnecessary ones and
coalescing lots of silly duplicates.
* Use static_calls() instead of indirect calls for apic->foo()
* Tons of cleanups an crap removal along the way
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTvfO8ACgkQaDWVMHDJ
krAP2A//ccii/LuvtTnNEIMMR5w2rwTdHv91ancgFkC8pOeNk37Z8sSLq8tKuLFA
vgjBIysVIqunuRcNCJ+eqwIIxYfU+UGCWHppzLwO+DY3Q7o9EoTL0BgytdAqxpQQ
ntEVarqWq25QYXKFoAqbUTJ1UXa42/8HfiXAX/jvP+ACXfilkGPZre6ASxlXeOhm
XbgPuNQPmXi2WYQH9GCQEsz2Nh80hKap8upK2WbQzzJ3lXsm+xA//4klab0HCYwl
Uc302uVZozyXRMKbAlwmgasTFOLiV8KKriJ0oHoktBpWgkpdR9uv/RDeSaFR3DAl
aFmecD4k/Hqezg4yVl+4YpEn2KjxiwARCm4PMW5AV7lpWBPBHAOOai65yJlAi9U6
bP8pM0+aIx9xg7oWfsTnQ7RkIJ+GZ0w+KZ9LXFM59iu3eV1pAJE3UVyUehe/J1q9
n8OcH0UeHRlAb8HckqVm1AC7IPvfHw4OAPtUq7z3NFDwbq6i651Tu7f+i2bj31cX
77Ames+fx6WjxUjyFbJwaK44E7Qez3waztdBfn91qw+m0b+gnKE3ieDNpJTqmm5b
mKulV7KJwwS6cdqY3+Kr+pIlN+uuGAv7wGzVLcaEAXucDsVn/YAMJHY2+v97xv+n
J9N+yeaYtmSXVlDsJ6dndMrTQMmcasK1CVXKxs+VYq5Lgf+A68w=
=eoKm
-----END PGP SIGNATURE-----
Merge tag 'x86_apic_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 apic updates from Dave Hansen:
"This includes a very thorough rework of the 'struct apic' handlers.
Quite a variety of them popped up over the years, especially in the
32-bit days when odd apics were much more in vogue.
The end result speaks for itself, which is a removal of a ton of code
and static calls to replace indirect calls.
If there's any breakage here, it's likely to be around the 32-bit
museum pieces that get light to no testing these days.
Summary:
- Rework apic callbacks, getting rid of unnecessary ones and
coalescing lots of silly duplicates.
- Use static_calls() instead of indirect calls for apic->foo()
- Tons of cleanups an crap removal along the way"
* tag 'x86_apic_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
x86/apic: Turn on static calls
x86/apic: Provide static call infrastructure for APIC callbacks
x86/apic: Wrap IPI calls into helper functions
x86/apic: Mark all hotpath APIC callback wrappers __always_inline
x86/xen/apic: Mark apic __ro_after_init
x86/apic: Convert other overrides to apic_update_callback()
x86/apic: Replace acpi_wake_cpu_handler_update() and apic_set_eoi_cb()
x86/apic: Provide apic_update_callback()
x86/xen/apic: Use standard apic driver mechanism for Xen PV
x86/apic: Provide common init infrastructure
x86/apic: Wrap apic->native_eoi() into a helper
x86/apic: Nuke ack_APIC_irq()
x86/apic: Remove pointless arguments from [native_]eoi_write()
x86/apic/noop: Tidy up the code
x86/apic: Remove pointless NULL initializations
x86/apic: Sanitize APIC ID range validation
x86/apic: Prepare x2APIC for using apic::max_apic_id
x86/apic: Simplify X2APIC ID validation
x86/apic: Add max_apic_id member
x86/apic: Wrap APIC ID validation into an inline
...
|
||
|
|
97efd28334 |
Misc x86 cleanups.
The following commit deserves special mention:
|
||
|
|
c8afaa1b0f |
locking: remove spin_lock_prefetch
The only remaining consumer is new_inode, where it showed up in 2001 as
commit c37fa164f793 ("v2.4.9.9 -> v2.4.9.10") in a historical repo [1]
with a changelog which does not mention it.
Since then the line got only touched up to keep compiling.
While it may have been of benefit back in the day, it is guaranteed to
at best not get in the way in the multicore setting -- as the code
performs *a lot* of work between the prefetch and actual lock acquire,
any contention means the cacheline is already invalid by the time the
routine calls spin_lock(). It adds spurious traffic, for short.
On top of it prefetch is notoriously tricky to use for single-threaded
purposes, making it questionable from the get go.
As such, remove it.
I admit upfront I did not see value in benchmarking this change, but I
can do it if that is deemed appropriate.
Removal from new_inode and of the entire thing are in the same patch as
requested by Linus, so whatever weird looks can be directed at that guy.
Link: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git/commit/fs/inode.c?id=c37fa164f793735b32aa3f53154ff1a7659e6442 [1]
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
||
|
|
eb3515dc99 |
x86: Move gds_ucode_mitigated() declaration to header
The declaration got placed in the .c file of the caller, but that
causes a warning for the definition:
arch/x86/kernel/cpu/bugs.c:682:6: error: no previous prototype for 'gds_ucode_mitigated' [-Werror=missing-prototypes]
Move it to a header where both sides can observe it instead.
Fixes:
|
||
|
|
3ba3fdfe2c |
x86/cpu: Make identify_boot_cpu() static
It's not longer used outside the source file. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest) |
||
|
|
77245f1c3c |
x86/CPU/AMD: Do not leak quotient data after a division by 0
Under certain circumstances, an integer division by 0 which faults, can leave stale quotient data from a previous division operation on Zen1 microarchitectures. Do a dummy division 0/1 before returning from the #DE exception handler in order to avoid any leaks of potentially sensitive data. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Cc: <stable@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
2d39a6add4 |
x86/shstk: Add user-mode shadow stack support
Introduce basic shadow stack enabling/disabling/allocation routines. A task's shadow stack is allocated from memory with VM_SHADOW_STACK flag and has a fixed size of min(RLIMIT_STACK, 4GB). Keep the task's shadow stack address and size in thread_struct. This will be copied when cloning new threads, but needs to be cleared during exec, so add a function to do this. 32 bit shadow stack is not expected to have many users and it will complicate the signal implementation. So do not support IA32 emulation or x32. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-29-rick.p.edgecombe%40intel.com |
||
|
|
98cfa46309 |
x86: Introduce userspace API for shadow stack
Add three new arch_prctl() handles: - ARCH_SHSTK_ENABLE/DISABLE enables or disables the specified feature. Returns 0 on success or a negative value on error. - ARCH_SHSTK_LOCK prevents future disabling or enabling of the specified feature. Returns 0 on success or a negative value on error. The features are handled per-thread and inherited over fork(2)/clone(2), but reset on exec(). Co-developed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-27-rick.p.edgecombe%40intel.com |
||
|
|
566ffa3ae9 |
x86/cpu: Fix amd_check_microcode() declaration
The newly added amd_check_microcode() function has two conflicting definitions
if CONFIG_CPU_SUP_AMD is enabled and CONFIG_MICROCODE_AMD is disabled. Since
the header with the stub definition is not included in cpu/amd.c, this only
causes a -Wmissing-prototype warning with W=1:
arch/x86/kernel/cpu/amd.c:1289:6: error: no previous prototype for 'amd_check_microcode' [-Werror=missing-prototypes]
Adding the missing #include shows the other problem:
arch/x86/kernel/cpu/amd.c:1290:6: error: redefinition of 'amd_check_microcode'
arch/x86/include/asm/microcode_amd.h:58:20: note: previous definition of 'amd_check_microcode' with type 'void(void)'
Move the declaration into a more appropriate header that is already
included, with the #ifdef check changed to match the definition's.
Fixes:
|
||
|
|
fb3bd914b3 |
x86/srso: Add a Speculative RAS Overflow mitigation
Add a mitigation for the speculative return address stack overflow vulnerability found on AMD processors. The mitigation works by ensuring all RET instructions speculate to a controlled location, similar to how speculation is controlled in the retpoline sequence. To accomplish this, the __x86_return_thunk forces the CPU to mispredict every function return using a 'safe return' sequence. To ensure the safety of this mitigation, the kernel must ensure that the safe return sequence is itself free from attacker interference. In Zen3 and Zen4, this is accomplished by creating a BTB alias between the untraining function srso_untrain_ret_alias() and the safe return function srso_safe_ret_alias() which results in evicting a potentially poisoned BTB entry and using that safe one for all function returns. In older Zen1 and Zen2, this is accomplished using a reinterpretation technique similar to Retbleed one: srso_untrain_ret() and srso_safe_ret(). Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> |
||
|
|
e94cd1503b |
x86/smpboot: Get rid of cpu_init_secondary()
The synchronization of the AP with the control CPU is a SMP boot problem and has nothing to do with cpu_init(). Open code cpu_init_secondary() in start_secondary() and move wait_for_master_cpu() into the SMP boot code. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Helge Deller <deller@gmx.de> # parisc Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck Link: https://lore.kernel.org/r/20230512205255.981999763@linutronix.de |
||
|
|
3adee777ad |
x86/smpboot: Remove initial_stack on 64-bit
In order to facilitate parallel startup, start to eliminate some of the global variables passing information to CPUs in the startup path. However, start by introducing one more: smpboot_control. For now this merely holds the CPU# of the CPU which is coming up. Each CPU can then find its own per-cpu data, and everything else it needs can be found from there, allowing the other global variables to be removed. First to be removed is initial_stack. Each CPU can load %rsp from its current_task->thread.sp instead. That is already set up with the correct idle thread for APs. Set up the .sp field in INIT_THREAD on x86 so that the BSP also finds a suitable stack pointer in the static per-cpu data when coming up on first boot. On resume from S3, the CPU needs a temporary stack because its idle task is already active. Instead of setting initial_stack, the sleep code can simply set its own current->thread.sp to point to the temporary stack. Nobody else cares about ->thread.sp for a thread which is currently on a CPU, because the true value is actually in the %rsp register. Which is restored with the rest of the CPU context in do_suspend_lowlevel(). Signed-off-by: Brian Gerst <brgerst@gmail.com> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Usama Arif <usama.arif@bytedance.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Usama Arif <usama.arif@bytedance.com> Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> Reviewed-by: David Woodhouse <dwmw@amazon.co.uk> Link: https://lore.kernel.org/r/20230316222109.1940300-7-usama.arif@bytedance.com |
||
|
|
3f0b0903fd |
- Add getcpu support for the 32-bit version of the vDSO
- Some smaller fixes -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmPzusMACgkQEsHwGGHe VUojfQ/7BOqXI0XsHTIwilF12w2bLQl1PeI4bSk6VY+iAN2YmQkq2qvNUgwt62e5 5Z95cDuCZ8sx6L3mDIoOgWBN9zdLbxNhezLFDykb+6as67PMaww9l9R6n3JoC2qm ELso5JZnWvIZ7Cu7RRm9IzbSj93JAlN3Aypexe61NywMyge9CAvCiOEhvW+lkYSD lhZqgbm5WAB14F1CeqFyC8kVvUez1GH9Dunbe7ozk7LqRfTRlf5YPH88iE4UKzdg JXmbcHB2K4aQzfIW66OFPnl/4Cl+XxS/i5CR2NtWlB4/ANZBPoUr7QAS239OpC6u 3uwv/qPmMe7p/lYMaGXSUpzD/MOCHP1HPN8/CWgdyK+Mdmctpqr0FYh1qXXm1Nuu v0SE3btHVIB5UfvImoOlV/RfCx3+TqxzqUU2erc0iD5VxlRfrqJEwJdJHOgRGxFU vflRxMQOshhyI7+Q7et0S0QlgK4HvGEHmBUwBsUbfyptIxbqpOLK8INC6N8qwGKZ gTuBxLNZ5yRE/NeOVe0cL2ooelfOlg7GKUI+gZbfzzQw8M5WZW9qEDS9y2wIuGey wBFJNzjKXSkrTxc6Hd136N7DX7PlMjiJhXP42s+7rXJguPvgk1oVyEuaX540+xX4 HphXRC2QW0o0hCeFgP11Ai4oq/vRW1RFvdDimJjveJAv19bQNv0= =Wg/8 -----END PGP SIGNATURE----- Merge tag 'x86_vdso_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 vdso updates from Borislav Petkov: - Add getcpu support for the 32-bit version of the vDSO - Some smaller fixes * tag 'x86_vdso_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/vdso: Fix -Wmissing-prototypes warnings x86/vdso: Fake 32bit VDSO build on 64bit compile for vgetcpu selftests: Emit a warning if getcpu() is missing on 32bit x86/vdso: Provide getcpu for x86-32. x86/cpu: Provide the full setup for getcpu() on x86-32 x86/vdso: Move VDSO image init to vdso2c generated code |
||
|
|
4c382d723e |
x86/vdso: Move VDSO image init to vdso2c generated code
Generate an init function for each VDSO image, replacing init_vdso() and sysenter_setup(). Signed-off-by: Brian Gerst <brgerst@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230124184019.26850-1-brgerst@gmail.com |
||
|
|
c0dd9245aa |
x86/microcode: Check CPU capabilities after late microcode update correctly
The kernel caches each CPU's feature bits at boot in an x86_capability[]
structure. However, the capabilities in the BSP's copy can be turned off
as a result of certain command line parameters or configuration
restrictions, for example the SGX bit. This can cause a mismatch when
comparing the values before and after the microcode update.
Another example is X86_FEATURE_SRBDS_CTRL which gets added only after
microcode update:
--- cpuid.before 2023-01-21 14:54:15.652000747 +0100
+++ cpuid.after 2023-01-21 14:54:26.632001024 +0100
@@ -10,7 +10,7 @@ CPU:
0x00000004 0x04: eax=0x00000000 ebx=0x00000000 ecx=0x00000000 edx=0x00000000
0x00000005 0x00: eax=0x00000040 ebx=0x00000040 ecx=0x00000003 edx=0x11142120
0x00000006 0x00: eax=0x000027f7 ebx=0x00000002 ecx=0x00000001 edx=0x00000000
- 0x00000007 0x00: eax=0x00000000 ebx=0x029c6fbf ecx=0x40000000 edx=0xbc002400
+ 0x00000007 0x00: eax=0x00000000 ebx=0x029c6fbf ecx=0x40000000 edx=0xbc002e00
^^^
and which proves for a gazillionth time that late loading is a bad bad
idea.
microcode_check() is called after an update to report any previously
cached CPUID bits which might have changed due to the update.
Therefore, store the cached CPU caps before the update and compare them
with the CPU caps after the microcode update has succeeded.
Thus, the comparison is done between the CPUID *hardware* bits before
and after the upgrade instead of using the cached, possibly runtime
modified values in BSP's boot_cpu_data copy.
As a result, false warnings about CPUID bits changes are avoided.
[ bp:
- Massage.
- Add SRBDS_CTRL example.
- Add kernel-doc.
- Incorporate forgotten review feedback from dhansen.
]
Fixes:
|
||
|
|
ab31c74455 |
x86/microcode: Add a parameter to microcode_check() to store CPU capabilities
Add a parameter to store CPU capabilities before performing a microcode update so that CPU capabilities can be compared before and after update. [ bp: Massage. ] Signed-off-by: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230109153555.4986-2-ashok.raj@intel.com |
||
|
|
94a855111e |
- Add the call depth tracking mitigation for Retbleed which has
been long in the making. It is a lighterweight software-only fix for Skylake-based cores where enabling IBRS is a big hammer and causes a significant performance impact. What it basically does is, it aligns all kernel functions to 16 bytes boundary and adds a 16-byte padding before the function, objtool collects all functions' locations and when the mitigation gets applied, it patches a call accounting thunk which is used to track the call depth of the stack at any time. When that call depth reaches a magical, microarchitecture-specific value for the Return Stack Buffer, the code stuffs that RSB and avoids its underflow which could otherwise lead to the Intel variant of Retbleed. This software-only solution brings a lot of the lost performance back, as benchmarks suggest: https://lore.kernel.org/all/20220915111039.092790446@infradead.org/ That page above also contains a lot more detailed explanation of the whole mechanism - Implement a new control flow integrity scheme called FineIBT which is based on the software kCFI implementation and uses hardware IBT support where present to annotate and track indirect branches using a hash to validate them - Other misc fixes and cleanups -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOZp5EACgkQEsHwGGHe VUrZFxAAvi/+8L0IYSK4mKJvixGbTFjxN/Swo2JVOfs34LqGUT6JaBc+VUMwZxdb VMTFIZ3ttkKEodjhxGI7oGev6V8UfhI37SmO2lYKXpQVjXXnMlv/M+Vw3teE38CN gopi+xtGnT1IeWQ3tc/Tv18pleJ0mh5HKWiW+9KoqgXj0wgF9x4eRYDz1TDCDA/A iaBzs56j8m/FSykZHnrWZ/MvjKNPdGlfJASUCPeTM2dcrXQGJ93+X2hJctzDte0y Nuiw6Y0htfFBE7xoJn+sqm5Okr+McoUM18/CCprbgSKYk18iMYm3ZtAi6FUQZS1A ua4wQCf49loGp15PO61AS5d3OBf5D3q/WihQRbCaJvTVgPp9sWYnWwtcVUuhMllh ZQtBU9REcVJ/22bH09Q9CjBW0VpKpXHveqQdqRDViLJ6v/iI6EFGmD24SW/VxyRd 73k9MBGrL/dOf1SbEzdsnvcSB3LGzp0Om8o/KzJWOomrVKjBCJy16bwTEsCZEJmP i406m92GPXeaN1GhTko7vmF0GnkEdJs1GVCZPluCAxxbhHukyxHnrjlQjI4vC80n Ylc0B3Kvitw7LGJsPqu+/jfNHADC/zhx1qz/30wb5cFmFbN1aRdp3pm8JYUkn+l/ zri2Y6+O89gvE/9/xUhMohzHsWUO7xITiBavewKeTP9GSWybWUs= =cRy1 -----END PGP SIGNATURE----- Merge tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 core updates from Borislav Petkov: - Add the call depth tracking mitigation for Retbleed which has been long in the making. It is a lighterweight software-only fix for Skylake-based cores where enabling IBRS is a big hammer and causes a significant performance impact. What it basically does is, it aligns all kernel functions to 16 bytes boundary and adds a 16-byte padding before the function, objtool collects all functions' locations and when the mitigation gets applied, it patches a call accounting thunk which is used to track the call depth of the stack at any time. When that call depth reaches a magical, microarchitecture-specific value for the Return Stack Buffer, the code stuffs that RSB and avoids its underflow which could otherwise lead to the Intel variant of Retbleed. This software-only solution brings a lot of the lost performance back, as benchmarks suggest: https://lore.kernel.org/all/20220915111039.092790446@infradead.org/ That page above also contains a lot more detailed explanation of the whole mechanism - Implement a new control flow integrity scheme called FineIBT which is based on the software kCFI implementation and uses hardware IBT support where present to annotate and track indirect branches using a hash to validate them - Other misc fixes and cleanups * tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits) x86/paravirt: Use common macro for creating simple asm paravirt functions x86/paravirt: Remove clobber bitmask from .parainstructions x86/debug: Include percpu.h in debugreg.h to get DECLARE_PER_CPU() et al x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit x86/Kconfig: Enable kernel IBT by default x86,pm: Force out-of-line memcpy() objtool: Fix weak hole vs prefix symbol objtool: Optimize elf_dirty_reloc_sym() x86/cfi: Add boot time hash randomization x86/cfi: Boot time selection of CFI scheme x86/ibt: Implement FineIBT objtool: Add --cfi to generate the .cfi_sites section x86: Add prefix symbols for function padding objtool: Add option to generate prefix symbols objtool: Avoid O(bloody terrible) behaviour -- an ode to libelf objtool: Slice up elf_create_section_symbol() kallsyms: Revert "Take callthunks into account" x86: Unconfuse CONFIG_ and X86_FEATURE_ namespaces x86/retpoline: Fix crash printing warning x86/paravirt: Fix a !PARAVIRT build warning ... |
||
|
|
d800169041 |
x86/cpuid: Carve out all CPUID functionality
Carve it out into a special header, where it belongs. No functional changes. Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20221124164150.3040-1-bp@alien8.de |
||
|
|
d7b6d709a7 |
x86/percpu: Move irq_stack variables next to current_task
Further extend struct pcpu_hot with the hard and soft irq stack pointers. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111145.599170752@infradead.org |
||
|
|
c063a217bc |
x86/percpu: Move current_top_of_stack next to current_task
Extend the struct pcpu_hot cacheline with current_top_of_stack; another very frequently used value. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111145.493038635@infradead.org |
||
|
|
1f19e2d50b |
x86/cpu: Get rid of redundant switch_to_new_gdt() invocations
The only place where switch_to_new_gdt() is required is early boot to switch from the early GDT to the direct GDT. Any other invocation is completely redundant because it does not change anything. Secondary CPUs come out of the ASM code with GDT and GSBASE correctly set up. The same is true for XEN_PV. Remove all the voodoo invocations which are left overs from the ancient past, rename the function to switch_gdt_and_percpu_base() and mark it init. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111143.198076128@infradead.org |
||
|
|
b5636d45aa |
x86/cpu: Remove segment load from switch_to_new_gdt()
On 32bit FS and on 64bit GS segments are already set up correctly, but load_percpu_segment() still sets [FG]S after switching from the early GDT to the direct GDT. For 32bit the segment load has no side effects, but on 64bit it causes GSBASE to become 0, which means that any per CPU access before GSBASE is set to the new value is going to fault. That's the reason why the whole file containing this code has stackprotector removed. But that's a pointless exercise for both 32 and 64 bit as the relevant segment selector is already correct. Loading the new GDT does not change that. Remove the segment loads and add comments. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111143.097052006@infradead.org |
||
|
|
2be9880dc8 |
kernel: exit: cleanup release_thread()
Only x86 has own release_thread(), introduce a new weak release_thread() function to clean empty definitions in other ARCHs. Link: https://lkml.kernel.org/r/20220819014406.32266-1-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Acked-by: Guo Ren <guoren@kernel.org> [csky] Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Brian Cain <bcain@quicinc.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: Stafford Horne <shorne@gmail.com> [openrisc] Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64] Acked-by: Huacai Chen <chenhuacai@kernel.org> [LoongArch] Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Chris Zankel <chris@zankel.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Guo Ren <guoren@kernel.org> [csky] Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Jonas Bonn <jonas@southpole.se> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michal Simek <monstr@monstr.eu> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@kernel.org> Cc: Will Deacon <will@kernel.org> Cc: Xuerui Wang <kernel@xen0n.name> Cc: Yoshinori Sato <ysato@users.osdn.me> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
1894a40305 |
x86: Always inline on_thread_stack() and current_top_of_stack()
Becaues GCC clearly lost it's marbles again... vmlinux.o: warning: objtool: enter_from_user_mode+0x4e: call to on_thread_stack() leaves .noinstr.text section vmlinux.o: warning: objtool: syscall_enter_from_user_mode+0x53: call to on_thread_stack() leaves .noinstr.text section vmlinux.o: warning: objtool: syscall_enter_from_user_mode_prepare+0x4e: call to on_thread_stack() leaves .noinstr.text section vmlinux.o: warning: objtool: irqentry_enter_from_user_mode+0x4e: call to on_thread_stack() leaves .noinstr.text section vmlinux.o: warning: objtool: enter_from_user_mode+0x4e: call to current_top_of_stack() leaves .noinstr.text section vmlinux.o: warning: objtool: syscall_enter_from_user_mode+0x53: call to current_top_of_stack() leaves .noinstr.text section vmlinux.o: warning: objtool: syscall_enter_from_user_mode_prepare+0x4e: call to current_top_of_stack() leaves .noinstr.text section vmlinux.o: warning: objtool: irqentry_enter_from_user_mode+0x4e: call to current_top_of_stack() leaves .noinstr.text section Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220526105958.071435483@infradead.org |
||
|
|
9cea0d46f5 |
Merge branch 'x86/cpu' into x86/core, to resolve conflicts
Conflicts: arch/x86/include/asm/cpufeatures.h Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
|
|
f9cdf7ca57 |
x86: Mark stop_this_cpu() __noreturn
vmlinux.o: warning: objtool: smp_stop_nmi_callback()+0x2b: unreachable instruction 0000 0000000000047cf0 <smp_stop_nmi_callback>: ... 0026 47d16: e8 00 00 00 00 call 47d1b <smp_stop_nmi_callback+0x2b> 47d17: R_X86_64_PLT32 stop_this_cpu-0x4 002b 47d1b: b8 01 00 00 00 mov $0x1,%eax Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20220308154319.290905453@infradead.org |
||
|
|
822ccfade5 |
x86/cpu: Read/save PPIN MSR during initialization
Currently, the PPIN (Protected Processor Inventory Number) MSR is read by every CPU that processes a machine check, CMCI, or just polls machine check banks from a periodic timer. This is not a "fast" MSR, so this adds to overhead of processing errors. Add a new "ppin" field to the cpuinfo_x86 structure. Read and save the PPIN during initialization. Use this copy in mce_setup() instead of reading the MSR. Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20220131230111.2004669-4-tony.luck@intel.com |
||
|
|
03b122da74 |
x86/sgx: Hook arch_memory_failure() into mainline code
Add a call inside memory_failure() to call the arch specific code to check if the address is an SGX EPC page and handle it. Note the SGX EPC pages do not have a "struct page" entry, so the hook goes in at the same point as the device mapping hook. Pull the call to acquire the mutex earlier so the SGX errors are also protected. Make set_mce_nospec() skip SGX pages when trying to adjust the 1:1 map. Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Tested-by: Reinette Chatre <reinette.chatre@intel.com> Link: https://lkml.kernel.org/r/20211026220050.697075-6-tony.luck@intel.com |
||
|
|
f5396f2d82 |
Merge branch 'kvm-5.16-fixes' into kvm-master
* Fix misuse of gfn-to-pfn cache when recording guest steal time / preempted status * Fix selftests on APICv machines * Fix sparse warnings * Fix detection of KVM features in CPUID * Cleanups for bogus writes to MSR_KVM_PV_EOI_EN * Fixes and cleanups for MSR bitmap handling * Cleanups for INVPCID * Make x86 KVM_SOFT_MAX_VCPUS consistent with other architectures |
||
|
|
760849b147 |
KVM: x86: Make sure KVM_CPUID_FEATURES really are KVM_CPUID_FEATURES
Currently when kvm_update_cpuid_runtime() runs, it assumes that the
KVM_CPUID_FEATURES leaf is located at 0x40000001. This is not true,
however, if Hyper-V support is enabled. In this case the KVM leaves will
be offset.
This patch introdues as new 'kvm_cpuid_base' field into struct
kvm_vcpu_arch to track the location of the KVM leaves and function
kvm_update_kvm_cpuid_base() (called from kvm_set_cpuid()) to locate the
leaves using the 'KVMKVMKVM\0\0\0' signature (which is now given a
definition in kvm_para.h). Adjustment of KVM_CPUID_FEATURES will hence now
target the correct leaf.
NOTE: A new for_each_possible_hypervisor_cpuid_base() macro is intoduced
into processor.h to avoid having duplicate code for the iteration
over possible hypervisor base leaves.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Message-Id: <20211105095101.5384-3-pdurrant@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
||
|
|
cc0356d6a0 |
- Do not #GP on userspace use of CLI/STI but pretend it was a NOP to
keep old userspace from breaking. Adjust the corresponding iopl selftest to that. - Improve stack overflow warnings to say which stack got overflowed and raise the exception stack sizes to 2 pages since overflowing the single page of exception stack is very easy to do nowadays with all the tracing machinery enabled. With that, rip out the custom mapping of AMD SEV's too. - A bunch of changes in preparation for FGKASLR like supporting more than 64K section headers in the relocs tool, correct ORC lookup table size to cover the whole kernel .text and other adjustments. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmF/uugACgkQEsHwGGHe VUroKw//e8BJ3Aun8bg00FHxfiMGbPYcozjLGDkaoMtMDZ8WlfCUrvtqYICEr8eB UU0eRyygAPI167dre1O9JvAcbilkNTKntaU6qbu/ZVyUwS3+Jkjwsotbqn3xKtkd QDDTDNiCU+beCJ2ZbspbrPgEh13+H0MwMHUfRxZB9Scpmo6aGSEaU3g295f6GX57 VFGJ/LNov5MV1dTD7Pp/h6/Nb+R6WmflKcBzJmQxYuKyKX+g1xsSv0VSga+t+uf3 M9pUkizqTiUxzC2eLgtcEZTqqBHu810E8M76FmhKBUMilsFJT5YAJTiqyahwHXds HYarOFRgcnFuJPd29vn8UHjqeeoi6ru8GtcZYzccEc7U3ku/gXPaDJ9ffmvhs7vU pJX5Um3GiiFm0w/ZZOKDqh78wRAsCKLN+jIoyszuhkkNchZSj/jKfOgdd3EmcZst 6L6rxBA4oRHwNOgM7uVMp+jFeRe1/prR280OWWH0D4QmmuqybThOdO23Iuh/Deth W3qPUH3UQtfSWxGy2yODzJ1ciuGAr/AzJZ9zjg04e3Vl0DkEpyWtLKJiG3ClXZag Nj+3xc4xYH2Aw+M0HRaONk5XVKLpqVjuAfgU5iLQa0YSUbtrR+wCWvY8KgQNbAqK xZmzYzQ89stwVCuGKx10gPsL3jSJ3VCylMfqdHD2Ajmld1yApr0= =DOZU -----END PGP SIGNATURE----- Merge tag 'x86_core_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 core updates from Borislav Petkov: - Do not #GP on userspace use of CLI/STI but pretend it was a NOP to keep old userspace from breaking. Adjust the corresponding iopl selftest to that. - Improve stack overflow warnings to say which stack got overflowed and raise the exception stack sizes to 2 pages since overflowing the single page of exception stack is very easy to do nowadays with all the tracing machinery enabled. With that, rip out the custom mapping of AMD SEV's too. - A bunch of changes in preparation for FGKASLR like supporting more than 64K section headers in the relocs tool, correct ORC lookup table size to cover the whole kernel .text and other adjustments. * tag 'x86_core_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: selftests/x86/iopl: Adjust to the faked iopl CLI/STI usage vmlinux.lds.h: Have ORC lookup cover entire _etext - _stext x86/boot/compressed: Avoid duplicate malloc() implementations x86/boot: Allow a "silent" kaslr random byte fetch x86/tools/relocs: Support >64K section headers x86/sev: Make the #VC exception stacks part of the default stacks storage x86: Increase exception stack sizes x86/mm/64: Improve stack overflow warnings x86/iopl: Fake iopl(3) CLI/STI usage |
||
|
|
e0f4c59dc4 |
- Start checking a CPUID bit on AMD Zen3 which states that the CPU
clears the segment base when a null selector is written. Do the explicit detection on older CPUs, zen2 and hygon specifically, which have the functionality but do not advertize the CPUID bit. Factor in the presence of a hypervisor underneath the kernel and avoid doing the explicit check there which the HV might've decided to not advertize for migration safety reasons, a.o. - Add support for a new X86 CPU vendor: VORTEX. Needed for whitelisting those CPUs in the hardware vulnerabilities detection - Force the compiler to use rIP-relative addressing in the fallback path of static_cpu_has(), in order to avoid unnecessary register pressure -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmF/wRgACgkQEsHwGGHe VUoGQBAAk9V9//FMoENuGFGul/IK8+VBibTfztYgaPvm7vjMDYaYuRBCQiZg5Y8U D14pwkg7CuRa6iwZmrk/X/y6FVjo5BJA//ROk/n/9JNvV5QUp3/o00uLiziv80K3 H6Wm3PUyGgkpBuJg+/K8SLE9UQ6uSh4nsykS+70Dcd45DtkC/vH8pkDs5Q1fVQwb 7AuOuWTCWKUYOMFYWFI3a9D8tZYhg99ABREbXBaJGiGdIlZKNVe/7W8qQw5s6cVA cD5Q2ILY2RCGP55ZQiWoFy3XNP3/ygvZ7Zm1ARYUvUMR2Y5X2XJWN/B6oMbc0oEu OZsDDA/ILYcah9eBV/zk4ON/1djksp1iWNXNxjct0cNBPAKxi6T/HhHuIHBtzvW+ zDyBWUMLlv1m2i1oW4J4NuNJJi9Gaz+7PesmI7C0OQPgywR8UqqfMD+TzlEHWya1 YqYqI0f3aiyC/sLjUp3GSA7a9sWSd3BZfyAlLBJZCxyXAxX92tXX5BRPh/KYbnJn c/NaYA6X4m4Rdvr0gKKtCklaC6w4GLzVak6wIvftzHlUYsWX21BhnTkQrciKbqc+ AKWed41AO+4pDHROePxc409x3UZolti+1RandikrztIVAolVJ6W/OkHWxXfy28Fg iSrtl4M3omv8fCHDaJ26STrXqxH8pIK8noVolwQoXKyAFVyvXTk= =rlVy -----END PGP SIGNATURE----- Merge tag 'x86_cpu_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cpu updates from Borislav Petkov: - Start checking a CPUID bit on AMD Zen3 which states that the CPU clears the segment base when a null selector is written. Do the explicit detection on older CPUs, zen2 and hygon specifically, which have the functionality but do not advertize the CPUID bit. Factor in the presence of a hypervisor underneath the kernel and avoid doing the explicit check there which the HV might've decided to not advertize for migration safety reasons, or similar. - Add support for a new X86 CPU vendor: VORTEX. Needed for whitelisting those CPUs in the hardware vulnerabilities detection - Force the compiler to use rIP-relative addressing in the fallback path of static_cpu_has(), in order to avoid unnecessary register pressure * tag 'x86_cpu_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/cpu: Fix migration safety with X86_BUG_NULL_SEL x86/CPU: Add support for Vortex CPUs x86/umip: Downgrade warning messages to debug loglevel x86/asm: Avoid adding register pressure for the init case in static_cpu_has() x86/asm: Add _ASM_RIP() macro for x86-64 (%rip) suffix |
||
|
|
8cb1ae19bf |
x86/fpu updates:
- Cleanup of extable fixup handling to be more robust, which in turn
allows to make the FPU exception fixups more robust as well.
- Change the return code for signal frame related failures from explicit
error codes to a boolean fail/success as that's all what the calling
code evaluates.
- A large refactoring of the FPU code to prepare for adding AMX support:
- Distangle the public header maze and remove especially the misnomed
kitchen sink internal.h which is despite it's name included all over
the place.
- Add a proper abstraction for the register buffer storage (struct
fpstate) which allows to dynamically size the buffer at runtime by
flipping the pointer to the buffer container from the default
container which is embedded in task_struct::tread::fpu to a
dynamically allocated container with a larger register buffer.
- Convert the code over to the new fpstate mechanism.
- Consolidate the KVM FPU handling by moving the FPU related code into
the FPU core which removes the number of exports and avoids adding
even more export when AMX has to be supported in KVM. This also
removes duplicated code which was of course unnecessary different and
incomplete in the KVM copy.
- Simplify the KVM FPU buffer handling by utilizing the new fpstate
container and just switching the buffer pointer from the user space
buffer to the KVM guest buffer when entering vcpu_run() and flipping
it back when leaving the function. This cuts the memory requirements
of a vCPU for FPU buffers in half and avoids pointless memory copy
operations.
This also solves the so far unresolved problem of adding AMX support
because the current FPU buffer handling of KVM inflicted a circular
dependency between adding AMX support to the core and to KVM. With
the new scheme of switching fpstate AMX support can be added to the
core code without affecting KVM.
- Replace various variables with proper data structures so the extra
information required for adding dynamically enabled FPU features (AMX)
can be added in one place
- Add AMX (Advanved Matrix eXtensions) support (finally):
AMX is a large XSTATE component which is going to be available with
Saphire Rapids XEON CPUs. The feature comes with an extra MSR (MSR_XFD)
which allows to trap the (first) use of an AMX related instruction,
which has two benefits:
1) It allows the kernel to control access to the feature
2) It allows the kernel to dynamically allocate the large register
state buffer instead of burdening every task with the the extra 8K
or larger state storage.
It would have been great to gain this kind of control already with
AVX512.
The support comes with the following infrastructure components:
1) arch_prctl() to
- read the supported features (equivalent to XGETBV(0))
- read the permitted features for a task
- request permission for a dynamically enabled feature
Permission is granted per process, inherited on fork() and cleared
on exec(). The permission policy of the kernel is restricted to
sigaltstack size validation, but the syscall obviously allows
further restrictions via seccomp etc.
2) A stronger sigaltstack size validation for sys_sigaltstack(2) which
takes granted permissions and the potentially resulting larger
signal frame into account. This mechanism can also be used to
enforce factual sigaltstack validation independent of dynamic
features to help with finding potential victims of the 2K
sigaltstack size constant which is broken since AVX512 support was
added.
3) Exception handling for #NM traps to catch first use of a extended
feature via a new cause MSR. If the exception was caused by the use
of such a feature, the handler checks permission for that
feature. If permission has not been granted, the handler sends a
SIGILL like the #UD handler would do if the feature would have been
disabled in XCR0. If permission has been granted, then a new fpstate
which fits the larger buffer requirement is allocated.
In the unlikely case that this allocation fails, the handler sends
SIGSEGV to the task. That's not elegant, but unavoidable as the
other discussed options of preallocation or full per task
permissions come with their own set of horrors for kernel and/or
userspace. So this is the lesser of the evils and SIGSEGV caused by
unexpected memory allocation failures is not a fundamentally new
concept either.
When allocation succeeds, the fpstate properties are filled in to
reflect the extended feature set and the resulting sizes, the
fpu::fpstate pointer is updated accordingly and the trap is disarmed
for this task permanently.
4) Enumeration and size calculations
5) Trap switching via MSR_XFD
The XFD (eXtended Feature Disable) MSR is context switched with the
same life time rules as the FPU register state itself. The mechanism
is keyed off with a static key which is default disabled so !AMX
equipped CPUs have zero overhead. On AMX enabled CPUs the overhead
is limited by comparing the tasks XFD value with a per CPU shadow
variable to avoid redundant MSR writes. In case of switching from a
AMX using task to a non AMX using task or vice versa, the extra MSR
write is obviously inevitable.
All other places which need to be aware of the variable feature sets
and resulting variable sizes are not affected at all because they
retrieve the information (feature set, sizes) unconditonally from
the fpstate properties.
6) Enable the new AMX states
Note, this is relatively new code despite the fact that AMX support is in
the works for more than a year now.
The big refactoring of the FPU code, which allowed to do a proper
integration has been started exactly 3 weeks ago. Refactoring of the
existing FPU code and of the original AMX patches took a week and has
been subject to extensive review and testing. The only fallout which has
not been caught in review and testing right away was restricted to AMX
enabled systems, which is completely irrelevant for anyone outside Intel
and their early access program. There might be dragons lurking as usual,
but so far the fine grained refactoring has held up and eventual yet
undetected fallout is bisectable and should be easily addressable before
the 5.16 release. Famous last words...
Many thanks to Chang Bae and Dave Hansen for working hard on this and
also to the various test teams at Intel who reserved extra capacity to
follow the rapid development of this closely which provides the
confidence level required to offer this rather large update for inclusion
into 5.16-rc1.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/NkITHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYodDkEADH4+/nN/QoSUHIuuha5Zptj3g2b16a
/3TxT9fhwPen/kzMGsUk70s3iWJMA+I5dCfkSZexJ2hfhcRe9cBzZIa1HCawKwf3
YCISTsO/M+LpeORuZ+TpfFLJKnxNr1SEOl+EYffGhq0AkCjifb9Cnr0JZuoMUzGU
jpfJZ2bj28ri5lG812DtzSMBM9E3SAwgJv+GNjmZbxZKb9mAfhbAMdBUXHirX7Ej
jmx6koQjYOKwYIW8w1BrdC270lUKQUyJTbQgdRkN9Mh/HnKyFixQ18JqGlgaV2cT
EtYePUfTEdaHdAhUINLIlEug1MfOslHU+HyGsdywnoChNB4GHPQuePC5Tz60VeFN
RbQ9aKcBUu8r95rjlnKtAtBijNMA4bjGwllVxNwJ/ZoA9RPv1SbDZ07RX3qTaLVY
YhVQl8+shD33/W24jUTJv1kMMexpHXIlv0gyfMryzpwI7uzzmGHRPAokJdbYKctC
dyMPfdE90rxTiMUdL/1IQGhnh3awjbyfArzUhHyQ++HyUyzCFh0slsO0CD18vUy8
FofhCugGBhjuKw3XwLNQ+KsWURz5qHctSzBc3qMOSyqFHbAJCVRANkhsFvWJo2qL
75+Z7OTRebtsyOUZIdq26r4roSxHrps3dupWTtN70HWx2NhQG1nLEw986QYiQu1T
hcKvDmehQLrUvg==
=x3WL
-----END PGP SIGNATURE-----
Merge tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fpu updates from Thomas Gleixner:
- Cleanup of extable fixup handling to be more robust, which in turn
allows to make the FPU exception fixups more robust as well.
- Change the return code for signal frame related failures from
explicit error codes to a boolean fail/success as that's all what the
calling code evaluates.
- A large refactoring of the FPU code to prepare for adding AMX
support:
- Distangle the public header maze and remove especially the
misnomed kitchen sink internal.h which is despite it's name
included all over the place.
- Add a proper abstraction for the register buffer storage (struct
fpstate) which allows to dynamically size the buffer at runtime
by flipping the pointer to the buffer container from the default
container which is embedded in task_struct::tread::fpu to a
dynamically allocated container with a larger register buffer.
- Convert the code over to the new fpstate mechanism.
- Consolidate the KVM FPU handling by moving the FPU related code
into the FPU core which removes the number of exports and avoids
adding even more export when AMX has to be supported in KVM.
This also removes duplicated code which was of course
unnecessary different and incomplete in the KVM copy.
- Simplify the KVM FPU buffer handling by utilizing the new
fpstate container and just switching the buffer pointer from the
user space buffer to the KVM guest buffer when entering
vcpu_run() and flipping it back when leaving the function. This
cuts the memory requirements of a vCPU for FPU buffers in half
and avoids pointless memory copy operations.
This also solves the so far unresolved problem of adding AMX
support because the current FPU buffer handling of KVM inflicted
a circular dependency between adding AMX support to the core and
to KVM. With the new scheme of switching fpstate AMX support can
be added to the core code without affecting KVM.
- Replace various variables with proper data structures so the
extra information required for adding dynamically enabled FPU
features (AMX) can be added in one place
- Add AMX (Advanced Matrix eXtensions) support (finally):
AMX is a large XSTATE component which is going to be available with
Saphire Rapids XEON CPUs. The feature comes with an extra MSR
(MSR_XFD) which allows to trap the (first) use of an AMX related
instruction, which has two benefits:
1) It allows the kernel to control access to the feature
2) It allows the kernel to dynamically allocate the large register
state buffer instead of burdening every task with the the extra
8K or larger state storage.
It would have been great to gain this kind of control already with
AVX512.
The support comes with the following infrastructure components:
1) arch_prctl() to
- read the supported features (equivalent to XGETBV(0))
- read the permitted features for a task
- request permission for a dynamically enabled feature
Permission is granted per process, inherited on fork() and
cleared on exec(). The permission policy of the kernel is
restricted to sigaltstack size validation, but the syscall
obviously allows further restrictions via seccomp etc.
2) A stronger sigaltstack size validation for sys_sigaltstack(2)
which takes granted permissions and the potentially resulting
larger signal frame into account. This mechanism can also be used
to enforce factual sigaltstack validation independent of dynamic
features to help with finding potential victims of the 2K
sigaltstack size constant which is broken since AVX512 support
was added.
3) Exception handling for #NM traps to catch first use of a extended
feature via a new cause MSR. If the exception was caused by the
use of such a feature, the handler checks permission for that
feature. If permission has not been granted, the handler sends a
SIGILL like the #UD handler would do if the feature would have
been disabled in XCR0. If permission has been granted, then a new
fpstate which fits the larger buffer requirement is allocated.
In the unlikely case that this allocation fails, the handler
sends SIGSEGV to the task. That's not elegant, but unavoidable as
the other discussed options of preallocation or full per task
permissions come with their own set of horrors for kernel and/or
userspace. So this is the lesser of the evils and SIGSEGV caused
by unexpected memory allocation failures is not a fundamentally
new concept either.
When allocation succeeds, the fpstate properties are filled in to
reflect the extended feature set and the resulting sizes, the
fpu::fpstate pointer is updated accordingly and the trap is
disarmed for this task permanently.
4) Enumeration and size calculations
5) Trap switching via MSR_XFD
The XFD (eXtended Feature Disable) MSR is context switched with
the same life time rules as the FPU register state itself. The
mechanism is keyed off with a static key which is default
disabled so !AMX equipped CPUs have zero overhead. On AMX enabled
CPUs the overhead is limited by comparing the tasks XFD value
with a per CPU shadow variable to avoid redundant MSR writes. In
case of switching from a AMX using task to a non AMX using task
or vice versa, the extra MSR write is obviously inevitable.
All other places which need to be aware of the variable feature
sets and resulting variable sizes are not affected at all because
they retrieve the information (feature set, sizes) unconditonally
from the fpstate properties.
6) Enable the new AMX states
Note, this is relatively new code despite the fact that AMX support
is in the works for more than a year now.
The big refactoring of the FPU code, which allowed to do a proper
integration has been started exactly 3 weeks ago. Refactoring of the
existing FPU code and of the original AMX patches took a week and has
been subject to extensive review and testing. The only fallout which
has not been caught in review and testing right away was restricted
to AMX enabled systems, which is completely irrelevant for anyone
outside Intel and their early access program. There might be dragons
lurking as usual, but so far the fine grained refactoring has held up
and eventual yet undetected fallout is bisectable and should be
easily addressable before the 5.16 release. Famous last words...
Many thanks to Chang Bae and Dave Hansen for working hard on this and
also to the various test teams at Intel who reserved extra capacity
to follow the rapid development of this closely which provides the
confidence level required to offer this rather large update for
inclusion into 5.16-rc1
* tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
Documentation/x86: Add documentation for using dynamic XSTATE features
x86/fpu: Include vmalloc.h for vzalloc()
selftests/x86/amx: Add context switch test
selftests/x86/amx: Add test cases for AMX state management
x86/fpu/amx: Enable the AMX feature in 64-bit mode
x86/fpu: Add XFD handling for dynamic states
x86/fpu: Calculate the default sizes independently
x86/fpu/amx: Define AMX state components and have it used for boot-time checks
x86/fpu/xstate: Prepare XSAVE feature table for gaps in state component numbers
x86/fpu/xstate: Add fpstate_realloc()/free()
x86/fpu/xstate: Add XFD #NM handler
x86/fpu: Update XFD state where required
x86/fpu: Add sanity checks for XFD
x86/fpu: Add XFD state to fpstate
x86/msr-index: Add MSRs for XFD
x86/cpufeatures: Add eXtended Feature Disabling (XFD) feature bit
x86/fpu: Reset permission and fpstate on exec()
x86/fpu: Prepare fpu_clone() for dynamically enabled features
x86/fpu/signal: Prepare for variable sigframe length
x86/signal: Use fpu::__state_user_size for sigalt stack validation
...
|
||
|
|
639475d434 |
x86/CPU: Add support for Vortex CPUs
DM&P devices were not being properly identified, which resulted in unneeded Spectre/Meltdown mitigations being applied. The manufacturer states that these devices execute always in-order and don't support either speculative execution or branch prediction, so they are not vulnerable to this class of attack. [1] This is something I've personally tested by a simple timing analysis on my Vortex86MX CPU, and can confirm it is true. Add identification for some devices that lack the CPUID product name call, so they appear properly on /proc/cpuinfo. ¹https://www.ssv-embedded.de/doks/infos/DMP_Ann_180108_Meltdown.pdf [ bp: Massage commit message. ] Signed-off-by: Marcos Del Sol Vives <marcos@orca.pet> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20211017094408.1512158-1-marcos@orca.pet |